NAG C Library Function Document

nag linf fit (e02gcc)

1 Purpose

nag_linf_fit (e02gcc) calculates an l_{∞} solution to an over-determined system of linear equations.

2 Specification

3 Description

Given a matrix A with m rows and n columns $(m \ge n)$ and a vector b with m elements, the function calculates an l_{∞} solution to the over-determined system of equations

$$Ax = b$$
.

That is to say, it calculates a vector x, with n elements, which minimizes the l_{∞} norm of the residuals (the absolutely largest residual)

$$r(x) = \max_{1 \le i \le m} |r_i|$$

where the residuals r_i are given by

$$r_i = b_i - \sum_{j=1}^n a_{ij} x_{j, i} = 1, 2, \dots, m.$$

Here a_{ij} is the element in row i and column j of A, b_i is the ith element of b and x_j the jth element of x. The matrix A need not be of full rank. The solution is not unique in this case, and may not be unique even if A is of full rank.

Alternatively, in applications where a complete minimization of the l_{∞} norm is not necessary, the user may obtain an approximate solution, usually in shorter time, by giving an appropriate value to the parameter **relerr**.

Typically in applications to data fitting, data consisting of m points with co-ordinates (t_i, y_i) is to be approximated in the l_{∞} norm by a linear combination of known functions $\phi_i(t)$,

$$\alpha_1\phi_1(t) + \alpha_2\phi_2(t) + \cdots + \alpha_n\phi_n(t).$$

This is equivalent to finding an l_{∞} solution to the over-determined system of equations

$$\sum_{i=1}^{n} \phi_{j}(t_{i})\alpha_{j} = y_{i, i} = 1, 2, \dots, m.$$

Thus if, for each value of i and j the element a_{ij} of the matrix A above is set equal to the value of $\phi_j(t_i)$ and b_i is set equal to y_i , the solution vector x will contain the required values of the α_j . Note that the independent variable t above can, instead, be a vector of several independent variables (this includes the case where each ϕ_i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the dual formation of the l_{∞} problem (see Barrodale and Phillips (1974) and Barrodale and Phillips (1975)). The modifications are designed to improve the efficiency and stability of the simplex method for this particular application.

[NP3645/7] e02gcc.1

4 References

Barrodale I and Phillips C (1974) An improved algorithm for discrete Chebyshev linear approximation *Proc. 4th Manitoba Conf. Numerical Mathematics* 177–190 University of Manitoba, Canada

Barrodale I and Phillips C (1975) Solution of an overdetermined system of linear equations in the Chebyshev norm [F4] (Algorithm 495) ACM Trans. Math. Software 1 (3) 264–270

5 Parameters

1: **order** – Nag OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: \mathbf{m} – Integer

On entry: the number of equations, m (the number of rows of the matrix A).

Constraint: $\mathbf{m} \geq \mathbf{n}$.

3: \mathbf{n} – Integer Input

On entry: the number of unknowns, n (the number of columns of the matrix A).

Constraint: $\mathbf{n} \geq 1$.

4: $\mathbf{a}[dim]$ - double Input/Output

Note: the dimension, dim, of the array **a** must be at least $(\mathbf{n}+3) \times (\mathbf{m}+1)$.

Where A(i,j) appears in this document, it refers to the array element

```
if order = Nag_ColMajor, \mathbf{a}[(j-1) \times (\mathbf{n}+3) + i - 1]; if order = Nag_RowMajor, \mathbf{a}[(i-1) \times (\mathbf{m}+1) + j - 1].
```

On entry: A(j,i) must contain a_{ij} , the element in the *i*th row and *j*th column of the matrix A for, $i=1,2,\ldots,m; j=1,2,\ldots,n$ (that is, the **transpose** of the matrix). The remaining elements need not be set. Preferably, the columns of the matrix A (rows of the parameter **a**) should be scaled before entry: see Section 7.

On exit: a contains the last simplex tableau.

5: $\mathbf{b}[\mathbf{m}]$ – double Input/Output

On entry: $\mathbf{b}[i-1]$ must contain b_i , the *i*th element of the vector b, for $i=1,2,\ldots,m$.

On exit: the ith residual r_i corresponding to the solution vector x, for i = 1, 2, ..., m. Note however that these residuals may contain few significant figures, especially when **resmax** is within one or two orders of magnitude of **tol**. Indeed if **resmax** \leq **tol**, the elements $\mathbf{b}[i-1]$ may all be set to zero. It is therefore often advisable to compute the residuals directly.

6: **tol** – double Input

On entry: a threshold below which numbers are regarded as zero. The recommended threshold value is $10.0 \times \epsilon$, where ϵ is the **machine precision**. If **tol** ≤ 0.0 on entry, the recommended value is used within the function. If premature termination occurs, a larger value for **tol** may result in a valid solution.

Suggested value: 0.0.

e02gcc.2 [NP3645/7]

7: relerr – double *

Input/Output

On entry: relerr must be set to a bound on the relative error acceptable in the maximum residual at the solution.

If relerr ≤ 0.0 , then the l_{∞} solution is computed, and relerr is set to 0.0 on exit.

If ${\bf relerr}>0.0$, then the function obtains instead an approximate solution for which the largest residual is less than $1.0+{\bf relerr}$ times that of the l_{∞} solution; on exit, ${\bf relerr}$ contains a smaller value such that the above bound still applies. (The usual result of this option, say with ${\bf relerr}=0.1$, is a saving in the number of simplex iterations).

On exit: relerr is altered as described above.

8: $\mathbf{x}[\mathbf{n}]$ – double

Output

On exit: if an optimal but not necessarily unique solution is found, $\mathbf{x}[j-1]$ contains the jth element of the solution vector x, for $j=1,2,\ldots,n$. Whether this is an l_{∞} solution or an approximation to one, depends on the value of **relerr** on entry.

9: **resmax** – double *

Output

On exit: if an optimal but not necessarily unique solution is found, **resmax** contains the absolute value of the largest residual(s) for the solution vector x. (See **b** above.)

10: rank – Integer *

Output

On exit: if an optimal but not necessarily unique solution is found, \mathbf{rank} contains the computed rank of the matrix A.

11: iter – Integer *

Output

On exit: if an optimal but not necessarily unique solution is found, iter contains the number of iterations taken by the simplex method.

12: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 1.
```

NE_INT_2

```
On entry, \mathbf{m} = \langle value \rangle, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{m} \geq \mathbf{n}.
```

NE NON UNIQUE

An optimal solution has been obtained, but may not be unique.

NE TERMINATION FAILURE

Premature termination due to rounding errors. Try using larger value of tol: tol = $\langle value \rangle$.

NE ALLOC FAIL

Memory allocation failed.

[NP3645/7] e02gcc.3

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy that could be obtained by applying Gaussian elimination with partial pivoting to the n+1 equations which have residuals of largest absolute value. The accuracy therefore varies with the conditioning of the problem, but has been found generally very satisfactory in practice.

8 Further Comments

The effects of m and n on the time and on the number of iterations in the simplex method vary from problem to problem, but typically the number of iterations is a small multiple of n and the total time is approximately proportional to mn^2 .

It is recommended that, before the function is entered, the columns of the matrix A are scaled so that the largest element in each column is of the order of unity. This should improve the conditioning of the matrix, and also enable the parameter **tol** to perform its correct function. The solution x obtained will then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each $j=1,2,\ldots,n$, the elements of the jth column are multiplied by the constant k_j , the element x_j of the solution vector x must be multiplied by k_j if it is desired to recover the solution corresponding to the original matrix A.

9 Example

Suppose we wish to approximate a set of data by a curve of the form

$$y = Ke^t + Le^{-t} + M$$

where K, L and M are unknown. Given values y_i at 5 points t_i we may form the over-determined set of equations for K, L and M

$$e^{t_i}K + e^{-t_i}L + M = y_i, \quad i = 1, 2, \dots, 5.$$

<code>nag_linf_fit</code> (e02gcc) is used to solve these in the l_{∞} sense.

9.1 Program Text

```
/* nag_linf_fit (e02gcc) Example Program.

*
 * Copyright 2001 Numerical Algorithms Group.

*
 * Mark 7, 2001.
 */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
   /* Scalars */
   double relerr, resmax, t, tol;
   Integer exit_status, i, irank, iter, m, n, pda;
   NagError fail;
```

e02gcc.4 [NP3645/7]

```
Nag_OrderType order;
  /* Arrays */
  double *a = 0, *b = 0, *x = 0;
#ifdef NAG COLUMN MAJOR
\#define A(I,J) a[(J-1)*pda + I - 1]
 order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
  order = Nag_RowMajor;
#endif
  INIT_FAIL(fail);
  exit_status = 0;
  Vprintf("e02gcc Example Program Results\n");
  /* Skip heading in data file */
  Vscanf("%*[^\n] ");
  n = 3;
  Vscanf("%ld%*[^\n] ", &m);
  if (m > 0)
    {
      /* Allocate memory */
      if ( !(a = NAG\_ALLOC((n+3)*(m+1), double)) | |
           !(b = NAG_ALLOC(m, double)) ||
           !(x = NAG\_ALLOC(n, double)))
          Vprintf("Allocation failure\n");
          exit_status = -1;
          goto END;
        }
      if (order == Nag_ColMajor)
        pda = n + 3;
      else
        pda = m + 1;
      for (i = 1; i \le m; ++i)
          Vscanf("%lf%lf%*[^\n] ", &t, &b[i-1]);
          A(1, i) = exp(t);
A(2, i) = exp(-t);
A(3, i) = 1.0;
        }
      tol = 0.0;
      relerr = 0.0;
      e02gcc(order, m, n, a, b, tol, &relerr, x, &resmax, &irank, &iter, &fail);
      if (fail.code != NE_NOERROR)
          Vprintf("Error from e02gcc.\n%s\n", fail.message);
          exit_status = 1;
          goto END;
      else
          Vprintf("\n");
          Vprintf("resmax = %10.2e Rank = %5ld Iterations = %5ld\n",
                   resmax, irank, iter);
          Vprintf("\n");
          Vprintf("Solution\n");
          for (i = 1; i <= n; ++i)
    Vprintf("%10.4f", x[i-1]);</pre>
          Vprintf("\n");
END:
```

[NP3645/7] e02gcc.5

```
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (x) NAG_FREE(x);
return exit_status;
}
```

9.2 Program Data

```
e02gcc Example Program Data
5
0.0 4.501
0.2 4.360
0.4 4.333
0.6 4.418
0.8 4.625
```

9.3 Program Results

```
e02gcc Example Program Results
resmax = 1.03e-03 Rank = 3 Iterations = 4
Solution
    1.0049 2.0149 1.4822
```

e02gcc.6 (last) [NP3645/7]