e02 — Curve and Surface Fitting e02rac

NAG C Library Function Document

nag 1d pade (e02rac)

1 Purpose

nag_1d pade (e02rac) calculates the coefficients in a Padé approximant to a function from its user-supplied
Maclaurin expansion.

2 Specification

void nag_ld_pade (Integer ia, Integer ib, const double c[], double a[], double b[],
NagError *fail)

3 Description
Given a power series
Co+ T + szz 4+ o4 Cl+mxl+m 4.

nag_1d pade (e02rac) uses the coefficients ¢;, fori = 0,1,...,1 4+ m, to form the [I/m] Padé approximant
of the form

2 l
ayg+ a1z +ax” + -+ aqx

by + byx + byx® + - + b, x™

with b, defined to be unity. The two sets of coefficients a;, for j =0,1,...,l and by, for k=0,1,...,m
in the numerator and denominator are calculated by direct solution of the Padé equations (see
Graves—Morris (1979)); these values are returned through the argument list unless the approximant is
degenerate.

Padé approximation is a useful technique when values of a function are to be obtained from its Maclaurin
expansion but convergence of the series is unacceptably slow or even non-existent. It is based on the
hypothesis of the existence of a sequence of convergent rational approximations, as described in Baker and
Graves—Morris (1981) and Graves—Morris (1979).

Unless there are reasons to the contrary (as discussed in Baker and Graves—Morris (1981) Chapter 4,
Section 2, Chapters 5 and 6), one normally uses the diagonal sequence of Padé approximants, namely

{Im/m],m =0,1,2,...}.

Subsequent evaluation of the approximant at a given value of =z may be carried out using
nag_1d_pade eval (e02rbc).

4 References

Baker G A Jr and Graves—Morris P R (1981) Padé approximants, Part 1: Basic theory encyclopaedia of
Mathematics and its Applications Addison—Wesley

Graves—Morris P R (1979) The numerical calculation of Padé approximants Padé Approximation and its
Applications. Lecture Notes in Mathematics (ed L Wuytack) 765 231-245 Adison—Wesley

5 Parameters

1: ia — Integer Input
2: ib — Integer Input

On entry: ia must specify [+ 1 and ib must specify m + 1, where [ and m are the degrees of the
numerator and denominator of the approximant, respectively.

Constraint: ia > 1 and ib > 1.
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3: clia +ib — 1] — const double Input

On entry: ¢[i — 1] must specify, for i = 1,2,...,0+m+ 1, the coefficient of z'~' in the given
power series.

4: afia] — double Output
On exit: a[j], for j = 1,2,... 1+ 1, contains the coefficient a; in the numerator of the approximant.

5: b[ib] — double Output
On exit: blk], for k=1,2,...,m+ 1, contains the coefficient b, in the denominator of the
approximant.

6: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT 2
On entry, ib = (value), ia = (value).
Constraint: ia > 1 and ib > 1.
NE_DEGENERATE

The Pade approximant is degenerate.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

The solution should be the best possible to the extent to which the solution is determined by the input
coefficients. It is recommended that the user determines the locations of the zeros of the numerator and
denominator polynomials, both to examine compatibility with the analytic structure of the given function
and to detect defects. (Defects are nearby pole-zero pairs; defects close to z = 0.0 characterise ill-
conditioning in the construction of the approximant.) Defects occur in regions where the approximation is
necessarily inaccurate. The example program calls nag_zeros real poly (c02agc) to determine the above
ZEros.

It is easy to test the stability of the computed numerator and denominator coefficients by making small
perturbations of the original Maclaurin series coefficients (e.g., ¢; or ¢;y,,,). These questions of intrinsic
error of the approximants and computational error in their calculation are discussed in Chapter 2 of Baker
and Graves—Morris (1981).

8 Further Comments

The time taken is approximately proportional to m?>.
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9 Example

The example program calculates the [4/4] Padé approximant of e* (whose power-series coefficients are
first stored in the array ¢). The poles and zeros are then calculated to check the character of the [4/4] Padé
approximant.

9.1 Program Text

/* nag_1d_pade (e0O2rac) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagc02.h>
#include <nage02.h>

int main(void)

{
/* Scalars *x/
Integer exit_status, i, ifail, 1, m, ia, ib, ic;
NagError fail;

/* Arrays */
double *aa = 0, *bb = 0, *cc = 0, *dd = O;
Complex *z = 0;

INIT_FAIL(fail);
exit_status = 0;
Vprintf ("eO2rac Example Program Results\n");

1 = 4;

m = 4;

ia 1+ 1;

ib = m + 1;

ic = ia + ib - 1;

/* Allocate memory */
if ( !(aa = NAG_ALLOC(ia, double)) ||
! (bb = NAG_ALLOC(ib, double)) ||
!'(cc = NAG_ALLOC(ic, double)) ||
! (dd = NAG_ALLOC(ia + ib, double)) ||
! (z = NAG_ALLOC(1l+m, Complex)) )

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Power series coefficients in cc */
cc[0] = 1.0;
for (i = 1; 1 <= 8; ++1)

ccl[i]l = cc[i-1] / (double) 1i;

Vprintf ("\n") ;

Vprintf ("The given series coefficients are\n");

for (i = 1; i <= ic; ++1i)
{
Vprintf ("%13.4e", ccl[i-1]);
Vprintf (i%5 == [] i ==dc 2 "\n" : " ");
}
ifail = 0O;
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e02rac(ia, ib, cc, aa, bb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from eO2rac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n") ;
Vprintf ("Numerator coefficients\n");

for (i = 1; i <= ia; ++1i)
{
Vprintf ("%13.4e", aali-1]);
Vprintf (i%5 == 0 || i == ia ?2"\n":" ");
}

Vprintf ("\n") ;
Vprintf ("Denominator coefficients\n");

for (i = 1; i <= ib; ++1i)
{
Vprintf ("%13.4e", bb[i-1]);
Vprintf (i%5 == || 1 == 1ib 2 "\n" : " ");
}

/* Calculate zeros of the approximant using cO2agc */
/* First need to reverse order of coefficients #*/
for (i = 1; i <= ia; ++1i)

dd[ia-1i] = aali-1];

ifail = 0O;
c02agc(l, dd, TRUE, z, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from cO2agc, 1lst call.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf
Vprintf

( l\nll) ;

(
Vprintf (

t

'Zeros of approximant are at\n");

! Real part Imag part\n");

1; 1 <= 1; ++1)

f("%13.4e%13.4e\n", z[i-1].re, z[i-1].im);

for (i
Vprin

/* Calculate poles of the approximant using cO2agc */
/* Reverse order of coefficients =*/
for (i = 1; i <= ib; ++1i)

dd[ib-i] = bb[i-11];

ifail = 0;
c02agc(m, dd, TRUE, z, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from cO2agc, 2nd call.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
Vprintf ("\n") ;
Vprintf ("Poles of approximant are at\n");
Vprintf (" Real part Imag part\n");
for (i = 1; i <= m; ++1i)
Vprintf ("$13.4e%13.4e\n", z[i-1].re, z[i-1].im);
END:
if (aa) NAG_FREE (aa);
if (bb) NAG_FREE (bb);
if (cc) NAG_FREE(cc);
if (dd) NAG_FREE (44d);

’
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if (z) NAG_FREE(z);

return exit_status;

3

9.2 Program Data

None.

9.3 Program Results

e02rac Example Program Results

The given series coefficients are
1.0000e+00 1.0000e+00 5.0000e-01 1.6667e-01 4.1667e-02
8.3333e-03 1.3889e-03 1.9841e-04 2.4802e-05

Numerator coefficients
1.0000e+00 5.0000e-01 1.0714e-01 1.1905e-02 5.9524e-04

Denominator coefficients
1.0000e+00 -5.0000e-01 1.0714e-01 -1.1905e-02 5.9524e-04

Zeros of approximant are at
Real part Imag part
-5.7924e+00 1.7345e+00
-5.7924e+00 -1.7345e+00
-4.2076e+00 5.3148e+00
-4.2076e+00 -5.3148e+00

Poles of approximant are at
Real part Imag part
5.7924e+00 1.7345e+00
5.7924e+00 =-1.7345e+00
4.2076e+00 5.3148e+00
4.2076e+00 -5.3148e+00
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