
e04 – Minimizing or Maximizing a Function e04ccc

nag opt simplex (e04ccc)

1. Purpose

nag opt simplex (e04ccc) minimizes a general function F (x) of n independent variables x =
(x1, x2, . . . , xn)T by the Simplex method. No derivatives are required.

2. Specification

#include <stdio.h>
#include <nage04.h>

void nag_opt_simplex(Integer n,
void (*funct)(Integer n, double *xc, double *fc, Nag_Comm *comm),
double x[], double *fmin, Nag_E04_Opt *options, Nag_Comm *user_comm,
NagError *fail)

3. Description

nag opt simplex finds an approximation to a minimum of a function F (x) of n variables. The user
must supply a function to calculate the value of F (x) for any set of values of the variables.
The method is iterative. A simplex of n+1 points is set up in the dimensional space of the variables
(for example, in 2 dimensions the simplex is a triangle) under the assumption that the problem has
been scaled so that the values of the independent variables at the minimum are of order unity. The
starting point provided by the user is the first vertex of the simplex, the remaining n vertices are
generated internally (see Parkinson and Hutchinson (1972)). The vertex of the simplex with the
largest function value is reflected in the centre of gravity of the remaining vertices and the function
value at this new point is compared with the remaining function values. Depending on the outcome
of this test the new point is accepted or rejected, a further expansion move may be made, or a
contraction may be carried out. When no further progress can be made the sides of the simplex
are reduced in length and the method is repeated.
The method tends to be slow, but it is robust and therefore very useful for functions that are
subject to inaccuracies.

4. Parameters

n
Input: n, the number of independent variables.
Constraint: n ≥ 1.

funct
The function funct, supplied by the user, must calculate the value of F (x) at any point x.
(However, if the user does not wish to calculate the value of F (x) at a particular x, there is
the option of setting a parameter to cause nag opt simplex to terminate immediately.)

[NP3275/5/pdf] 3.e04ccc.1

nag opt simplex NAG C Library Manual

The specification of funct is:

void funct(Integer n, double xc[], double *fc, Nag_Comm *comm)

n
Input: n, the number of variables.

xc[n]
Input: x, the point at which the value of F (x) is required.

fc
Output: the value of F (x) at the current point x.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
funct.

flag – Integer
Input: comm->flag contains a non-negative number.
Output: if funct resets comm->flag to some negative number then
nag opt simplex will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt simplex, fail.errnum will
be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to funct and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calls made to funct so far.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt simplex these pointers may be allocated memory by
the user and initialised with various quantities for use by funct when called
from nag opt simplex.

Note: funct should be tested separately before being used in conjunction with
nag opt simplex. The array xc must not be changed within funct.

x[n]
Input: a guess at the position of the minimum. Note that the problem should be scaled so
that the values of the variables x1, x2, . . . , xn are of order unity.
Output: the value of x corresponding to the function value returned in fmin.

fmin
Output: the lowest function value found.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt simplex. These structure members offer the means of adjusting some
of the parameter values of the algorithm and on output will supply further details of the
results. A description of the members of options is given below in Section 7.

If any of these optional parameters are required then the structure options should be
declared and initialised by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt simplex. However, if the optional parameters are not required the NAG defined null
pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of funct for details. If the user does not need to make use
of this communication feature the null pointer NAGCOMM NULL may be used in the call to

3.e04ccc.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04ccc

nag opt simplex; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the option print level (see Section 7.2.).The default print level of
Nag Soln Iter provides a single line of output at each iteration and the final result.
The line of results printed at each iteration gives:

Itn the current iteration number k.
Nfun the cumulative number of calls to lsqfun.
Objective the current value of the objective function, F (x(k)).
Norm g the Euclidean norm of the gradient of F (x(k)).
Norm x the Euclidean norm of x(k).
Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).
Step the step α(k) taken along the computed search direction p(k).

The printout of the final result consists of:

x the final point x∗.
Function value the value of F (x∗).

5. Comments

A list of possible error exits and warnings from nag opt simplex is given in Section 8.

5.1. Accuracy

On a successful exit the accuracy will be as defined by options.optim tol (see Section 7.2.).

6. Example 1

A simple program to locate a minimum of the function:

F = ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1).

The program uses (−1.0, 1.0) as the initial guess at the position of the minimum.

This example shows the simple use of nag opt simplex where default values are used for all optional
parameters. An example showing the use of optional parameters is given in Section 12. There is
however only one example program file, the main program of which calls both examples. The main
program and example 1 are given below.

6.1. Example Text

/* nag_opt_simplex(e04ccc) Example Program
*
* Copyright 1996 Numerical Algorithms Group.
*
* Mark 4, 1996.
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagx02.h>

#ifdef NAG_PROTO

[NP3275/5/pdf] 3.e04ccc.3

nag opt simplex NAG C Library Manual

static void funct(Integer n, double *xc, double *fc, Nag_Comm *comm);
static void monit(const Nag_Search_State *st, Nag_Comm *comm);
static void ex1(void);
static void ex2(void);
#else
static void funct();
static void monit();
static void ex1();
static void ex2();
#endif

/* Table of constant values */
static Integer c__3 = 3;

main()
{
/* Two examples are called, ex1() which uses the
* default settings to solve the problem and
* ex2() which solves the same problem with
* some optional parameters set by the user.
*/

Vprintf("e04ccc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1()
{
double objf;
double x[2];

Integer n;

Vprintf("\ne04ccc example 1: no option setting.\n");

n = 2;
/* Set up the starting point */
x[0] = 0.4;
x[1] = -0.8;

e04ccc(n, funct, x, &objf, E04_DEFAULT, NAGCOMM_NULL, NAGERR_DEFAULT);

}

#ifdef NAG_PROTO
static void funct(Integer n, double *xc, double *objf, Nag_Comm *comm)
#else

static void funct(n, xc, objf, comm)
Integer n;
double *xc;
double *objf;
Nag_Comm *comm;

#endif
{
*objf = exp(xc[0]) * (xc[0] * 4.0 * (xc[0] + xc[1]) +

xc[1] * 2.0 * (xc[1] + 1.0) + 1.0);
}

6.2 Program Data

None, but there is an example data file which contains the optional parameter values for example
2 below.

3.e04ccc.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04ccc

6.3 Program Results

e04ccc Example Program Results.

e04ccc example 1: no option setting.

Parameters to e04ccc

Number of variables........... 2

optim_tol............... 1.05e-08 max_iter................ 1500
print_level.........Nag_Soln_Iter machine precision....... 1.11e-16
outfile................. stdout

Results from e04ccc:

Iteration results:

Itn Nfun Fmin Fmax
1 8 2.9836e-02 1.4017e+00
2 10 2.9836e-02 2.8134e-01
3 12 2.9836e-02 1.1427e-01
4 14 2.9836e-02 5.9673e-02
5 16 8.4227e-03 4.2612e-02
6 18 8.4227e-03 2.9836e-02
7 19 8.4227e-03 2.1408e-02
8 21 3.1325e-04 1.1706e-02
9 23 3.1325e-04 8.4227e-03

10 25 3.0314e-04 4.6988e-03
11 27 3.0314e-04 8.3804e-04
12 29 1.5662e-04 3.1325e-04
13 31 3.9493e-05 3.0314e-04
14 33 2.4900e-05 1.5662e-04
15 35 2.4900e-05 3.9493e-05
16 37 8.6529e-06 3.8842e-05
17 39 8.6026e-06 2.4900e-05
18 41 2.5852e-06 8.6529e-06
19 43 2.5852e-06 8.6026e-06
20 45 2.4239e-06 3.4565e-06
21 47 3.9390e-07 2.5852e-06
22 49 2.6414e-07 2.4239e-06
23 51 2.6414e-07 4.5291e-07
24 53 1.1839e-07 3.9390e-07
25 55 9.3983e-08 2.6414e-07
26 57 2.6672e-08 1.1839e-07
27 59 2.6672e-08 9.3983e-08
28 61 1.9199e-08 5.1588e-08
29 63 9.7190e-09 2.6672e-08

Final solution:

Vector x
5.0005e-01
-1.0001e+00

Final Function value is 9.7190e-09

7. Optional Parameters

A number of optional input and output parameters to nag opt simplex are available through the
structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use
the NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt simplex; the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialised by a call to the function

[NP3275/5/pdf] 3.e04ccc.5

nag opt simplex NAG C Library Manual

nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialisation of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialisation.

If an assignment of a function pointer in the options structure is required, this must be done directly
in the calling program, it cannot be assigned using nag opt read (e04xyc).

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt simplex together with their default values where relevant. The number ε is a generic
notation for machine precision (see nag machine precision (X02AJC)).

Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Integer max iter 1500
double optim tol ε
Integer iter
Integer nf

7.2. Description of Optional Parameters

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt simplex will be
printed.

print level – Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt simplex. The following values are
available.

Nag NoPrint No output.
Nag Soln The final solution only.
Nag Iter One line of output for each iteration.
Nag Soln Iter The final solution and one line of output for each iteration.
Nag Soln Iter Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 7.3.
Constraint: options.print level = Nag NoPrint or Nag Soln or Nag Iter or Nag Soln Iter or
Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 7.3.1. below for further details.

max iter – Integer Default = 1500
Input: the maximum number of iterations allowed before termination.
Constraint: options.max iter > 0.

optim tol – double Default = ε

Input: the accuracy in x to which the solution is required. If fi, for i = 1, 2, . . . , n + 1, are
the individual function values at the vertices of a simplex and fm is the mean of these values,
then termination will occur when√√√√ 1

n + 1

n+1∑
i=1

(fi − fm)2 < options.optim tol.

Constraint: options.optim tol ≥ ε.

3.e04ccc.6 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04ccc

iter – Integer
Output: the number of iterations which have been performed by nag opt simplex.

nf – Integer
Output: the number of times that funct has been called.

7.3. Description of Printed Output

The level of printed output can be controlled with the structure members options.list and
options.print level (see Section 7.2.). If list = TRUE then the parameter values to nag opt simplex
are listed, whereas the printout of results is governed by the value of print level. The default of
print level = Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes all of the possible levels of results printout available from nag opt simplex.

When options.print level = Nag Iter or Nag Soln Iter a single line of output is produced on
completion of each iteration, this gives the following values:

Itn the current iteration number k.
Nfun the cumulative number of calls made to funct.
Fmin the smallest function value in the current simplex.
Fmax the largest function value in the current simplex.

When options.print level = Nag Soln Iter Full more detailed results are given at each iteration.
Additional values output are

x the current point x(k).
Simplex Vertices of the simplex with their corresponding vectors containing the

positions of the current simplex.

If options.print level = Nag Soln or Nag Soln Iter or Nag Soln Iter Full the final result is printed
out. This consists of:

x the final point x∗.
Function value the value of F (x∗).

If options.print level = Nag NoPrint, printout will be suppressed; the user can then print the final
solution when nag opt simplex returns to the calling program.

7.3.1. Output of results via a user defined printing function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options.print fun function pointer, which has prototype
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if the default printing facilities provide the required
functionality.

When a user defined function is assigned to options.print fun this will be called in preference to the
internal print function of nag opt simplex. Calls to the user defined function are again controlled
by means of the options.print level member. Information is provided through st and comm, the
two structure arguments to print fun. If comm->it prt = TRUE then the results from the last
iteration of nag opt simplex are in the following members of st:

n – Integer
the number of variables.

x – double *
points to the n memory locations holding the current point x(k).

fmin – double
holds the smallest function value in the current simplex.

fmax – double
holds the largest function value in the current simplex.

simplex– double *
points to the (n+1)*n memory locations. If we regard this pointer as pointing to a notional
2-D array then its n+1 rows contain the n position vectors of the vertices of the current
simplex.

[NP3275/5/pdf] 3.e04ccc.7

nag opt simplex NAG C Library Manual

iter – Integer
k, the number of iterations performed by nag opt simplex.

nf – Integer
the cumulative number of calls made to funct.

The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the result of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt simplex or during a call to funct or print fun. The
type Pointer will be void * with a C compiler that defines void * and char * otherwise.

8. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE OPT NOT INIT
Options structure not initialised.

NE BAD PARAM
On entry, parameter options.print level had an illegal value.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter is not valid. Correct range is options.max iter > 0.

NE INVALID REAL RANGE E
Value 〈value〉 given to options.optim tol is not valid. Correct range is options.optim tol ≥ ε.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

NE ALLOC FAIL
Memory allocation failed.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.
options.max iter evaluations of F (x) have been completed, nag opt simplex has been
terminated prematurely. Check the coding of the function funct before increasing the value
of options.max iter.

NE USER STOP
User requested termination, user flag value = 〈value〉
This exit occurs if the user sets comm->flag to a negative value in funct. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag.

9. Further Comments

The time taken depends on the number of variables, the behaviour of F (x) and the distance of the
starting point from the minimum. Each iteration consists of 1 or 2 evaluations of F (x) unless the
size of the simplex is reduced, in which case n + 1 evaluations are required.

3.e04ccc.8 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04ccc

10. References

Nelder J A and Mead R (1965) A Simplex Method for Function Minimization Comput. J. 7 308–313.
Parkinson J M and Hutchinson D (1972) An Investigation Into the Efficiency of Variants of the

Simplex Method Numerical Methods for Nonlinear Optimization. (ed. F A Lootsma) Academic
Press.

11. See Also

nag opt init (e04xxc)
nag opt read (e04xyc)

12. Example 2

Example 2 solves the same problem as Example 1 but shows the use of certain optional parameters.
This example shows option values being assigned directly within the program text and by reading
values from a data file. The options structure is declared and initialised by nag opt init (e04xxc),
a value is then assigned directly to the print fun option. One further option, optim tol is read
from the data file by the use of nag opt read (e04xyc).

12.1. Program Text

static void ex2()
{

double objf;
double x[2];

Integer i, n;
Integer monit_freq;

Boolean print;

Nag_Comm comm;
Nag_E04_Opt options;

static NagError fail;

Vprintf("\n\ne04ccc example 2: using option setting.\n");

n = 2;
monit_freq = 20;
e04xxc(&options);
options.print_fun = monit;
/* Read remaining option value from file */
fail.print = TRUE;
print = TRUE;
e04xyc("e04ccc", "stdin", &options, print, "stdout", NAGERR_DEFAULT);

comm.p = (Pointer)&monit_freq;

/* Starting values */
x[0] = -1.0;
x[1] = 1.0;

e04ccc(n, funct, x, &objf, &options, &comm, &fail);

}

#ifdef NAG_PROTO
static void monit(const Nag_Search_State *st, Nag_Comm *comm)
#else

static void monit(st, comm)
Nag_Search_State *st;
Nag_Comm *comm;

#endif
{
#define SIM(I,J) sim[((I)-1)*n + (J)-1]

[NP3275/5/pdf] 3.e04ccc.9

nag opt simplex NAG C Library Manual

double *sim;
Integer i, j;
Integer n, ncall, iter;
double fmin, fmax;

Integer *monit_freq=(Integer *)comm->p;

fmin = st->fmin;
fmax = st->fmax;
sim=st->simplex;
ncall = st->nf;
iter = st->iter;
n = st->n;

if (iter % *monit_freq == 0)
{
Vprintf("\nAfter %1ld iteration and %1ld function calls,\

the function value is %10.4e\n", iter, ncall, fmin);
Vprintf("The simplex is\n");
for (i = 1; i <= n+1; ++i)
{
for (j = 1; j <= n; ++j)
{
Vprintf(" %12.4e", SIM(i,j));

}
Vprintf("\n");

}
}

if (comm->sol_prt)
{
Vprintf("The final solution is\n");
for (i = 0; i <n; i++)
Vprintf("%12.4e\n", st->x[i]);

Vprintf("After %1ld iterations and %1ld function calls the function \n\
value at the current solution point is %12.4e.\n", iter, ncall, fmin);

}
} /* monit */

12.2. Program Data

e04ccc Example Program Data

Example data for ex2: using option setting

Following optional parameter settings are read by e04xyc

begin e04ccc

/* Error tolerance */

optim_tol = 1.0e-14
end

12.3. Program Results

e04ccc example 2: using option setting.

Optional parameter setting for e04ccc.

Option file: stdin

optim_tol set to 1.00e-14

3.e04ccc.10 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04ccc

Parameters to e04ccc

Number of variables........... 2

optim_tol............... 1.00e-14 max_iter................ 1500
print_level.........Nag_Soln_Iter machine precision....... 1.11e-16
outfile................. stdout

After 20 iteration and 44 function calls, the function value is 2.0075e-04
The simplex is

5.0050e-01 -1.0083e+00
5.1487e-01 -1.0182e+00
5.1090e-01 -1.0008e+00

After 40 iteration and 83 function calls, the function value is 6.6865e-10
The simplex is

5.0001e-01 -1.0000e+00
5.0001e-01 -1.0000e+00
4.9999e-01 -1.0000e+00

The final solution is
5.0000e-01
-1.0000e+00

After 58 iterations and 119 function calls the function
value at the current solution point is 2.9287e-15.

[NP3275/5/pdf] 3.e04ccc.11

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

