
e04 – Minimizing or Maximizing a Function e04gbc

nag opt lsq deriv (e04gbc)

1. Purpose

nag opt lsq deriv (e04gbc) is a comprehensive algorithm for finding an unconstrained minimum of
a sum of squares of m nonlinear functions in n variables (m ≥ n). First derivatives are required.

The function nag opt lsq deriv is intended for objective functions which have continuous first
and second derivatives (although it will usually work even if the derivatives have occasional
discontinuities).

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_lsq_deriv(Integer m, Integer n,
void (*lsqfun)(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm),
double x[], double *fsumsq, double fvec[], double fjac[],
Integer tdj, Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3. Description

This function is applicable to problems of the form:

Minimize F (x) =
m∑

i=1

[fi(x)]2

where x = (x1, x2, . . . , xn)T and m ≥ n. (The functions fi(x) are often referred to as ‘residuals’.)
The user must supply a C function to calculate the values of the fi(x) and their first derivatives
∂fi/∂xj at any point x.

From a starting point x(1), supplied by the user, nag opt lsq deriv generates a sequence of points
x(2), x(3), . . . , which is intended to converge to a local minimum of F (x). The sequence of points is
given by

x(k+1) = x(k) + α(k)p(k)

where the vector p(k) is a direction of search, and α(k) is chosen such that F (x(k) + α(k)p(k)) is
approximately a minimum with respect to α(k).

The vector p(k) used depends upon the reduction in the sum of squares obtained during the last
iteration. If the sum of squares was sufficiently reduced, then p(k) is the Gauss-Newton direction;
otherwise the second derivatives of the fi(x) are taken into account using a quasi-Newton updating
scheme.

The method is designed to ensure that steady progress is made whatever the starting point, and to
have the rapid ultimate convergence of Newton’s method.

4. Parameters

m
Input: the number m of residuals, fi(x)

n
Input: the number n of variables, xj .
Constraint: 1 ≤ n ≤ m.

lsqfun
The function lsqfun, supplied by the user, must calculate the vector of values fi(x) and

their first derivatives
∂fi

∂xj

at any point x. (However, if the user does not wish to calculate the

residuals at a particular x, there is the option of setting a parameter to cause nag opt lsq deriv
to terminate immediately.)
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The specification of lsqfun is:

void lsqfun(Integer m, Integer n, double x[], double fvec[],
double fjac[], Integer tdj, Nag_Comm *comm)

m
n

Input: the numbers m and n of residuals and variables, respectively.

x[n]
Input: the point x at which the values of the fi and the ∂fi/∂xj are required.

fvec[m]
Output: unless comm->flag = 1 on entry, or comm->flag is reset to a negative
number, then fvec[i − 1] must contain the value of fi at the point x, for
i = 1, 2, . . . , m.

fjac[m*tdj]
Output: unless comm->flag = 0 on entry, or comm->flag is reset to a negative
number, then fjac[(i−1)*tdj + j−1] must contain the value of the first derivative
∂fi/∂xj at the point x, for i = 1, 2, . . . , m; j = 1, 2, . . . , n.

tdj
Input: the second dimension of the array fjac as declared in the function from
which nag opt lsq deriv is called.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
lsqfun.

flag – Integer
Input: comm->flag contains 0, 1 or 2. The value 0 indicates that only
the residuals need to be evaluated, the value 1 indicates that only the
Jacobian matrix needs to be evaluated, and the value 2 indicates that both
the residuals and the Jacobian matrix must be calculated. (If the default
value of the optional parameter options.minlin is used, Nag Lin Deriv, then
lsqfun will always be called with comm->flag set to 2.)
Output: if lsqfun resets comm->flag to some negative number then
nag opt lsq deriv will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt lsq deriv, fail.errnum will
be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to lsqfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calls made to lsqfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt lsq deriv these pointers may be allocated memory
by the user and initialised with various quantities for use by lsqfun when
called from nag opt lsq deriv.

Note: lsqfun should be tested separately before being used in conjunction with
nag opt lsq deriv. Function nag opt lsq check deriv (e04yac) may be used to check the
derivatives. The array x must not be changed within lsqfun.

x[n]
Input: x[j − 1] must be set to a guess at the jth component of the position of the minimum,
for j = 1, 2, . . . , n.
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Output: the final point x∗. On successful exit, x[j−1] is the jth component of the estimated
position of the minimum.

fsumsq
Output: the value of F (x), the sum of squares of the residuals fi(x), at the final point given
in x.

fvec[m]
Output: fvec[i − 1] is the value of the residual fi(x) at the final point given in x, for
i = 1, 2, . . . , m.

fjac[m][tdj]
Output: fjac[i − 1][j − 1] contains the value of the first derivative ∂fi/∂xj at the final point
given in x, for i = 1, 2, . . . , m; j = 1, 2, . . . , n.

tdj
Input: the second dimension of the array fjac as declared in the function from which
nag opt lsq deriv is called.
Constraint: tdj ≥ n.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt lsq deriv. These structure members offer the means of adjusting
some of the parameter values of the algorithm and on output will supply further details of
the results. A description of the members of options is given below in Section 7.

If any of these optional parameters are required then the structure options should be
declared and initialised by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt lsq deriv. However, if the optional parameters are not required the NAG defined null
pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of lsqfun for details. If the user does not need to make use
of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt lsq deriv; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the option print level (see Section 7.2.).The default print level of
Nag Soln Iter provides a single line of output at each iteration and the final result.
The line of results printed at each iteration gives:

Itn the current iteration number k.
Nfun the cumulative number of calls to lsqfun.
Objective the current value of the objective function, F (x(k)).
Norm g the Euclidean norm of the gradient of F (x(k)).
Norm x the Euclidean norm of x(k).
Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).
Step the step α(k) taken along the computed search direction p(k).

The printout of the final result consists of:

x the final point x∗.
g the gradient of F at the final point.
Residuals the values of the residuals fi at the final point.
Sum of squares the value of F (x∗), the sum of squares of the residuals at the final point.
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5. Comments

A list of possible error exits and warnings from nag opt lsq deriv is given in Section 8.

5.1. Preliminary comments on accuracy

If the problem is reasonably well scaled and a successful exit is made, then, for a computer with a
mantissa of t decimals, one would expect to get about t/2−1 decimals accuracy in the components
of x and between t − 1 (if F (x) is of order 1 at the minimum) and 2t − 2 (if F (x) is close to zero
at the minimum) decimals accuracy in F (x).

Further details about accuracy are given in Section 9.

6. Example 1

To find least-squares estimates of x1, x2 and x3 in the model

y = x1 +
t1

x2t2 + x3t3

using the 15 sets of data given in the following table.

y t1 t2 t3
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

The program uses (0.5, 1.0, 1.5) as the initial guess at the position of the minimum.

This example shows the simple use of nag opt lsq deriv where default values are used for all optional
parameters. An example showing the use of optional parameters is given in Section 12. There is
however only one example program file, the main program of which calls both examples. The main
program and example 1 are given below.

6.1. Program Text

/* nag_opt_lsq_deriv (e04gbc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>
#include <nagx02.h>

#ifdef NAG_PROTO
static void lsqfun1(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm);
static void lsqfun2(Integer m, Integer n, double x[], double fvec[],
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double fjac[], Integer tdj, Nag_Comm *comm);
static void ex1(void);
static void ex2(void);
#else
static void lsqfun1();
static void lsqfun2();
static void ex1();
static void ex2();
#endif

#define MMAX 15
#define NMAX 3
#define TMAX 3

/* Define a user structure template to store data in lsqfun. */
struct user
{
double y[MMAX];
double t[MMAX][TMAX];

};

main()
{
/* Two examples are called, ex1() which uses the
* default settings to solve the problem and
* ex2() which solves the same problem with
* some optional parameters set by the user.
*/

Vprintf("e04gbc Example Program Results.\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */
ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1()
{
double fjac[MMAX][NMAX], fvec[MMAX], x[NMAX];
Integer m, n, tdj;
double fsumsq;
static NagError fail;

Vprintf("\ne04gbc example 1: no option setting.\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */
n = 3;
m = 15;
tdj = NMAX;

/* Set up the starting point */
x[0] = 0.5;
x[1] = 1.0;
x[2] = 1.5;

/* Call the optimization routine */
fail.print = TRUE;
e04gbc(m, n, lsqfun1, x, &fsumsq, fvec, (double *)fjac, tdj,

E04_DEFAULT, NAGCOMM_NULL, &fail);
if (fail.code != NE_NOERROR && fail.code != NW_COND_MIN) exit(EXIT_FAILURE);

} /* ex1 */

#ifdef NAG_PROTO
static void lsqfun1(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm)
#else

static void lsqfun1(m, n, x, fvec, fjac, tdj, comm)
Integer m, n;
double x[], fvec[], fjac[];
Integer tdj;
Nag_Comm *comm;
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#endif
{
/* Function to evaluate the residuals and their 1st derivatives
* in example 1.
*
* This function is also suitable for use when Nag_Lin_NoDeriv is
* specified for linear minimization instead of the default of
* Nag_Lin_Deriv, since it can deal with comm->flag = 0 or 1 as
* well comm->flag = 2.
*
* In this example a static variable is used to hold the
* initial observations. The data is read into the structure
* gs on the first call to lsqfun1(), it could alternatively
* be read in from within main().
*/

#define FJAC(I,J) fjac[(I)*tdj + (J)]

Integer i, j, nt;
double denom, dummy;

static struct user gs;

if (comm->first)
{
/* First call to lsqfun(), read data into structure.
* Observations t (j = 0, 1, 2) are held in gs.t[i][j]
* (i = 0, 1, 2, . . . , 14)
*/
nt = 3;
for (i = 0; i < m; ++i)
{
Vscanf("%lf", &gs.y[i]);
for (j = 0; j < nt; ++j) Vscanf("%lf", &gs.t[i][j]);

}
}

for (i = 0; i < m; ++i)
{
denom = x[1]*gs.t[i][1] + x[2]*gs.t[i][2];
if (comm->flag != 1)
fvec[i] = x[0] + gs.t[i][0]/denom - gs.y[i];

if (comm->flag != 0)
{
FJAC(i,0) = 1.0;
dummy = -1.0 / (denom * denom);
FJAC(i,1) = gs.t[i][0]*gs.t[i][1]*dummy;
FJAC(i,2) = gs.t[i][0]*gs.t[i][2]*dummy;

}
}

} /* lsqfun1 */

6.2. Program Data

e04gbc Example Program Data

Example data for ex1: no option setting
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0
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6.3. Program Results

e04gbc Example Program Results.

e04gbc example 1: no option setting.

Parameters to e04gbc
--------------------

Number of residuals........... 15 Number of variables........... 3

minlin..............Nag_Lin_Deriv machine precision....... 1.11e-16
optim_tol............... 1.05e-08 linesearch_tol.......... 9.00e-01
step_max................ 1.00e+05 max_iter................ 50
print_level.........Nag_Soln_Iter deriv_check............. TRUE
outfile................. stdout

Memory allocation:
s....................... Nag
v....................... Nag tdv..................... 3

Results from e04gbc:
-------------------

Iteration results:

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step
0 1 1.0210e+01 3.2e+01 1.9e+00
1 2 1.9873e-01 2.8e+00 2.4e+00 7.2e-01 1.0e+00
2 3 9.2324e-03 1.9e-01 2.6e+00 2.5e-01 1.0e+00
3 4 8.2149e-03 1.2e-03 2.6e+00 2.7e-02 1.0e+00
4 5 8.2149e-03 5.0e-08 2.6e+00 3.8e-04 1.0e+00
5 6 8.2149e-03 4.7e-09 2.6e+00 3.6e-06 1.0e+00
6 7 8.2149e-03 1.2e-09 2.6e+00 6.3e-07 1.0e+00

Final solution:

x g Residuals
8.24106e-02 1.1994e-09 -5.8811e-03
1.13304e+00 -1.8647e-11 -2.6535e-04
2.34370e+00 1.8073e-11 2.7469e-04

6.5415e-03
-8.2299e-04
-1.2995e-03
-4.4631e-03
-1.9963e-02
8.2216e-02
-1.8212e-02
-1.4811e-02
-1.4710e-02
-1.1208e-02
-4.2040e-03
6.8079e-03

The sum of squares is 8.2149e-03.

7. Optional Parameters

A number of optional input and output parameters to nag opt lsq deriv are available through the
structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use the
NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt lsq deriv; the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialised by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.
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Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialisation of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialisation.

If assignment of functions and memory to pointers in the options structure is required, this must
be done directly in the calling program. They cannot be assigned using nag opt read (e04xyc).

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt lsq deriv together with their default values where relevant. The number ε is a generic
notation for machine precision (see nag machine precision (X02AJC)).

Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Boolean deriv check TRUE
Integer max iter max(50, 5n)
double optim tol

√
ε

Nag LinFun minlin Nag Lin Deriv
double linesearch tol 0.9 (0.0 if n = 1)
double step max 100000.0
double *s size n
double *v size n*n
Integer tdv n
Integer grade
Integer iter
Integer nf

7.2. Description of Optional Parameters

list – Boolean Default = TRUE
Input: if options.list = TRUE the parameter settings in the call to nag opt lsq deriv will be
printed.

print level –Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt lsq deriv. The following values are
available.

Nag NoPrint No output.
Nag Soln The final solution.
Nag Iter One line of output for each iteration.
Nag Soln Iter The final solution and one line of output for each iteration.
Nag Soln Iter Full The final solution and detailed printout at each iteration.

Details of each level of results printout are described in Section 7.3.
Constraint: options.print level = Nag NoPrint or Nag Soln or Nag Iter or Nag Soln Iter or
Nag Soln Iter Full.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 7.3.1.below for further details.

deriv check – Boolean Default = TRUE

Input: if options.deriv check = TRUE a check of the derivatives defined by lsqfun will be made
at the starting point x. The derivative check is carried out by a call to nag opt lsq check deriv
(e04yac). A starting point of x = 0 or x = 1 should be avoided if this test is to be meaningful,
but if either of these starting points is necessary then nag opt lsq check deriv (e04yac) should
be used to check lsqfun at a different point prior to calling nag opt lsq deriv.
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max iter – Integer Default = max(50, 5n)
Input: the limit on the number of iterations allowed before termination.
Constraint: options.max iter ≥ 0.

optim tol – double Default =
√

ε

Input: the accuracy in x to which the solution is required.
If xtrue is the true value of x at the minimum, then xsol, the estimated position prior to a
normal exit, is such that

||xsol − xtrue|| < optim tol × (1.0 + ||xtrue||),

where ||y|| =

√√√√
n∑

j=1

y2
j . For example, if the elements of xsol are not much larger than 1.0

in modulus and if optim tol = 1.0 × 10−5, then xsol is usually accurate to about 5 decimal
places. (For further details see Section 9.)
If F (x) and the variables are scaled roughly as described in Section 9and ε is the machine
precision, then a setting of order optim tol =

√
ε will usually be appropriate.

Constraint: 10ε ≤ options.optim tol < 1.0.

minlin – Nag LinFun Default = Nag Lin Deriv

Input: minlin specifies whether the linear minimizations (i.e., minimizations of F (x(k) +
α(k)p(k)) with respect to α(k)) are to be performed by a function which just requires the
evaluation of the fi(x), Nag Lin NoDeriv, or by a function which also requires the first
derivatives of the fi(x), Nag Lin Deriv.

It will often be possible to evaluate the first derivatives of the residuals in about the same
amount of computer time that is required for the evaluation of the residuals themselves – if
this is so then nag opt lsq deriv should be called with minlin set to Nag Lin Deriv. However,
if the evaluation of the derivatives takes more than about 4 times as long as the evaluation of
the residuals, then a setting of Nag Lin NoDeriv will usually be preferable. If in doubt, use
the default setting Nag Lin Deriv as it is slightly more robust.
Constraint: options.minlin = Nag Lin Deriv or Nag Lin NoDeriv.

linesearch tol – double Default = 0.9. (If n = 1, default = 0.0)
If options.minlin is set to Nag Lin NoDeriv then the default value of linesearch tol will be
changed from 0.9 to 0.5 if n > 1.
Input: linesearch tol specifies how accurately the linear minimizations are to be performed.
Every iteration of nag opt lsq deriv involves a linear minimization i.e., minimization of
F (x(k)+α(k)p(k)) with respect to α(k). The minimum with respect to α(k) will be located more
accurately for small values of linesearch tol (say 0.01) than for large values (say 0.9). Although
accurate linear minimizations will generally reduce the number of iterations performed by
nag opt lsq deriv, they will increase the number of calls of lsqfun made each iteration. On
balance it is usually more efficient to perform a low accuracy minimization.
Constraint: 0.0 ≤ options.linesearch tol < 1.0.

step max – double Default = 100000.0
Input: an estimate of the Euclidean distance between the solution and the starting point
supplied by the user. (For maximum efficiency, a slight overestimate is preferable.)
nag opt lsq deriv will ensure that, for each iteration,

n∑
j=1

(x(k)
j − x

(k−1)
j )2 ≤ (step max)2

where k is the iteration number. Thus, if the problem has more than one solution,
nag opt lsq deriv is most likely to find the one nearest to the starting point. On difficult
problems, a realistic choice can prevent the sequence x(k) entering a region where the
problem is ill-behaved and can help avoid overflow in the evaluation of F (x). However,
an underestimate of options.step max can lead to inefficiency.
Constraint: options.step max ≥ options.optim tol.
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s – double * Default memory = n

Input: n values of memory will be automatically allocated by nag opt lsq deriv and this is
the recommended method of use of options.s. However a user may supply memory from the
calling program.
Output: the singular values of the Jacobian matrix at the final point. Thus options.s may be
useful as information about the structure of the user’s problem.

v – double * Default memory = n*n

Input: n*n values of memory will be automatically allocated by nag opt lsq deriv and this is
the recommended method of use of options.v. However a user may supply memory from the
calling program.
Output: the matrix V associated with the singular value decomposition

J = USV T

of the Jacobian matrix at the final point, stored by rows. This matrix may be useful for
statistical purposes, since it is the matrix of orthonormalised eigenvectors of JT J .

tdv – Integer Default = n

Input: if memory is supplied by the user then options.tdv must contain the last dimension
of the array assigned to options.tdv as declared in the function from which nag opt lsq deriv
is called.
Output: the trailing dimension used by options.v. If the NAG default memory allocation has
been used this value will be n.
Constraint: options.tdv ≥ n.

grade – Integer
Output: the grade of the Jacobian at the final point. nag opt lsq deriv estimates the
dimension of the subspace for which the Jacobian matrix can be used as a valid approximation
to the curvature (see Gill and Murray, 1978); this estimate is called the grade.

iter – Integer
Output: the number of iterations which have been performed in nag opt lsq deriv.

nf – Integer
Output: the number of times the residuals have been evaluated (i.e., the number of calls of
lsqfun).

7.3. Description of Printed Output

The level of printed output can be controlled with the structure members options.list and
options.print level (see Section 7.2.).If list = TRUE then the parameter values to nag opt lsq deriv
are listed, whereas the printout of results is governed by the value of print level. The default of
print level = Nag Soln Iter provides a single line of output at each iteration and the final result.
This section describes all of the possible levels of results printout available from nag opt lsq deriv.

When options.print level = Nag Iter or Nag Soln Iter a single line of output is produced on
completion of each iteration, this gives the following values:

Itn the current iteration number k.
Nfun the cumulative number of calls to lsqfun.
Objective the value of the objective function, F (x(k)).
Norm g the Euclidean norm of the gradient of F (x(k)).
Norm x the Euclidean norm of x(k).
Norm(x(k-1)-x(k)) the Euclidean norm of x(k−1) − x(k).
Step the step α(k) taken along the computed search direction p(k).

When options.print level = Nag Soln Iter Full more detailed results are given at each iteration.
Additional values output are

Grade the grade of the Jacobian matrix. (See description of grade, Section 7.2)
x the current point x(k).
g the current gradient of F (x(k)).

3.e04gbc.10 [NP3275/5/pdf]



e04 – Minimizing or Maximizing a Function e04gbc

Singular values the singular values of the current approximation to the Jacobian matrix.

If options.print level = Nag Soln or Nag Soln Iter or Nag Soln Iter Full the final result consists of:

x the final point x∗.
g the gradient of F at the final point.
Residuals the values of the residuals fi at the final point.
Sum of squares the value of F (x∗), the sum of squares of the residuals at the final point.

If options.print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt lsq deriv returns to the calling program.

7.3.1. Output of results via a user defined printing function

Users may also specify their own print function for output of iteration results and the final solution
by use of the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if the default printing facilities provide the required
functionality.

When a user defined function is assigned to options.print fun this will be called in preference to the
internal print function of nag opt lsq deriv. Calls to the user defined function are again controlled
by means of the options.print level member. Information is provided through st and comm, the
two structure arguments to print fun. If comm->it prt = TRUE then the results from the last
iteration of nag opt lsq deriv are in the following members of st:

m – Integer
the number of residuals.

n – Integer
the number of variables.

x – double *
points to the n memory locations holding the current point x(k).

fvec – double *
points to the m memory locations holding the values of the residuals fi at the current point
x(k).

fjac – double *
points to m*st->tdj memory locations. fjac[(i − 1)*st->tdj + (j − 1)] contains the value of
∂fi

∂xj

, for i = 1, 2, . . . , m; j = 1, 2, . . . , n at the current point x(k).

tdj – Integer
the trailing dimension for st->fjac[ ].

step – double
the step α(k) taken along the search direction p(k).

xk norm – double
the Euclidean norm of x(k−1) − x(k).

g – double *
points to the n memory locations holding the gradient of F at the current point x(k).

grade – Integer
the grade of the Jacobian matrix.

s – double *
points to the n memory locations holding the singular values of the current Jacobian.

iter – Integer
the number of iterations, k, performed by nag opt lsq deriv.

nf – Integer
the cumulative number of calls made to lsqfun.
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The relevant members of the structure comm are:

it prt – Boolean
will be TRUE when the print function is called with the result of the current iteration.

sol prt – Boolean
will be TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt lsq deriv or during a call to lsqfun or print fun. The
type Pointer will be void * with a C compiler that defines void * and char * otherwise.

8. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in lsqfun. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE 2 INT ARG LT
On entry, m = 〈value〉 while n = 〈value〉. These parameters must satisfy m ≥ n.
On entry, tdj = 〈value〉 while n = 〈value〉. These parameters must satisfy tdj ≥ n.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the
∂fi/∂xj, because it is very unlikely that lsqfun is calculating them correctly.

NE OPT NOT INIT
Options structure not initialised.

NE BAD PARAM
On entry parameter options.print level had an illegal value.
On entry parameter options.minlin had an illegal value.

NE 2 INT ARG LT
On entry, options.tdv = 〈value〉 while n = 〈value〉. These parameters must satisfy tdv ≥ n.

NE 2 REAL ARG LT
On entry, options.step max = 〈value〉 while options.optim tol = 〈value〉. These parameters
must satisfy step max ≥ optim tol.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.

NE INVALID REAL RANGE EF
Value 〈value〉 given to options.optim tol not valid. Correct range is 〈value〉≤ optim tol < 1.0.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.linesearch tol not valid. Correct range is 0.0 ≤ linesearch tol
< 1.0.

NE ALLOC FAIL
Memory allocation failed.

If one of the above exits occurs, no values will have been assigned to fsumsq, or to the elements of
fvec, fjac, options.s or options.v.
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NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.

If steady reductions in the sum of squares, F (x), were monitored up to the point where this
exit occurred, then the exit probably occurred simply because max iter was set too small, so
the calculations should be restarted from the final point held in x. This exit may also indicate
that F (x) has no minimum.

NW COND MIN
The conditions for a minimum have not all been satisfied, but a lower point could not be
found.

This could be because options.optim tol has been set so small that rounding errors in the
evaluation of the residuals make attainment of the convergence conditions impossible.

NE SVD FAIL
The computation of the singular value decomposition of the Jacobian matrix has failed to
converge in a reasonable number of sub-iterations.

It may be worth applying nag opt lsq deriv again starting with an initial approximation which
is not too close to the point at which the failure occurred.

The exits NW TOO MANY ITER, NW COND MIN, and NE SVD FAIL may also be caused by
mistakes in lsqfun, by the formulation of the problem or by an awkward function. If there are no
such mistakes it is worth restarting the calculations from a different starting point (not the point
at which the failure occurred) in order to avoid the region which caused the failure.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

9. Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the
behaviour of F (x), the accuracy demanded and the distance of the starting point from the solution.
The number of multiplications performed per iteration of nag opt lsq deriv varies, but for m >> n
is approximately n × m2 + O(n3). In addition, each iteration makes at least one call of lsqfun.
So, unless the residuals can be evaluated very quickly, the run time will be dominated by the time
spent in lsqfun.

Ideally, the problem should be scaled so that, at the solution, F (x) and the corresponding values
of the xj are each in the range (−1, +1), and so that at points one unit away from the solution,
F (x) differs from its value at the solution by approximately one unit. This will usually imply that
the Hessian matrix of F (x) at the solution is well-conditioned. It is unlikely that the user will be
able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible
scaling will reduce the difficulty of the minimization problem, so that nag opt lsq deriv will take
less computer time.

When the sum of squares represents the goodness of fit of a nonlinear model to observed data,
elements of the variance-covariance matrix of the estimated regression coefficients can be computed
by a subsequent call to nag opt lsq covariance (e04ycc), using information returned in the arrays
options.s and options.v. See nag opt lsq covariance (e04ycc) for further details.

9.1. Accuracy

A successful exit (fail.code = NE NOERROR) is made from nag opt lsq deriv when (B1, B2 and
B3) or B4 or B5 hold, where

B1 ≡ α(k)× ‖ p(k) ‖< (optim tol + ε) × (1.0+ ‖ x(k) ‖)
B2 ≡ |F (k) − F (k−1)| < (optim tol + ε)2 × (1.0 + F (k))
B3 ≡ ‖ g(k) ‖< ε1/3 × (1.0 + F (k))
B4 ≡ F (k) < ε2

B5 ≡ ‖ g(k) ‖< (ε ×
√

F (k))1/2

[NP3275/5/pdf] 3.e04gbc.13



nag opt lsq deriv NAG C Library Manual

and where ||.||, ε and the optional parameter optim tol are as defined in Section 7.2, while F (k) and
g(k) are the values of F (x) and its vector of first derivatives at x(k).

If fail.code = NE NOERROR then the vector in x on exit, xsol, is almost certainly an estimate of
xtrue, the position of the minimum to the accuracy specified by options.optim tol.

If fail.code = NW COND MIN, then xsol may still be a good estimate of xtrue, but to verify this
the user should make the following checks. If

(a) the sequence {F (x(k))} converges to F (xsol) at a superlinear or a fast linear rate, and
(b) g(xsol)

T g(xsol) < 10ε,

where T denotes transpose, then it is almost certain that xsol is a close approximation to the
minimum. When (b) is true, then usually F (xsol) is a close approximation to F (xtrue).

Further suggestions about confirmation of a computed solution are given in the Chapter
Introduction.

10. References

Gill P E and Murray W (1978) Algorithms for the Solution of the Nonlinear Least-squares Problem
SIAM J. Numer. Anal. 15 977–992.

11. See Also

nag opt lsq covariance (e04ycc)
nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)
nag opt lsq check deriv (e04yac)

12. Example 2

Example 2 solves the same problem as Example 1 but shows the use of certain optional parameters.
This example shows option values being assigned directly within the program text and by reading
values from a data file. The options structure is declared and initialised by nag opt init (e04xxc),
a value is then assigned directly to option optim tol and two further options are read from the
data file by use of nag opt read (e04xyc). The memory freeing function nag opt free (e04xzc) is
used to free the memory assigned to the pointers in the option structure. Users should not use
the standard C function free() for this purpose.
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12.1. Program Text

static void ex2()
{
double fjac[MMAX][NMAX], fvec[MMAX], x[NMAX];
Integer i, j, m, n, nt, tdj;
double fsumsq;
Boolean print;
Nag_E04_Opt options;
Nag_Comm comm;
static NagError fail, fail2;
struct user s;

Vprintf("\n\ne04gbc example 2: using option setting.\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */
n = 3;
m = 15;
tdj = NMAX;
nt = 3;

/* Read data into structure.
* Observations t (j = 0, 1, 2) are held in s->t[i][j]
* (i = 0, 1, 2, . . . , 14)
*/

nt = 3;
for (i = 0; i < m; ++i)

{
Vscanf("%lf", &s.y[i]);
for (j = 0; j < nt; ++j) Vscanf("%lf", &s.t[i][j]);

}

/* Set up the starting point */
x[0] = 0.5;
x[1] = 1.0;
x[2] = 1.5;

/* Read option values from file */
fail.print = TRUE;
print = TRUE;
e04xyc("e04gbc", "stdin", &options, print, "stdout", &fail);
if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);

/* Assign address of user defined structure to
* comm.p for communication to lsqfun2().
*/

comm.p = (Pointer)&s;

/* Call the optimization routine */
e04gbc(m, n, lsqfun2, x, &fsumsq, fvec, (double *)fjac, tdj,

&options, &comm, &fail);

/* Free memory allocated by e04gbc to pointers s and v */
fail2.print = TRUE;
e04xzc(&options, "all", &fail2);
if ((fail.code != NE_NOERROR && fail.code != NW_COND_MIN)

|| fail2.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex2 */

#ifdef NAG_PROTO
static void lsqfun2(Integer m, Integer n, double x[], double fvec[],

double fjac[], Integer tdj, Nag_Comm *comm)
#else

static void lsqfun2(m, n, x, fvec, fjac, tdj, comm)
Integer m, n;
double x[], fvec[], fjac[];
Integer tdj;
Nag_Comm *comm;

#endif
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{
/* Function to evaluate the residuals and their 1st derivatives
* in example 2.
*
* This function is also suitable for use when Nag_Lin_NoDeriv is specified
* for linear minimization instead of the default of Nag_Lin_Deriv,
* since it can deal with comm->flag = 0 or 1 as well as comm->flag = 2.
*
* To avoid the use of a global varibale this example assigns the address
* of a user defined structure to comm.p in the main program (where the
* data was also read in).
* The address of this structure is recovered in each call to lsqfun2()
* from comm->p and the structure used in the calculation of the residuals.
*/

#define FJAC(I,J) fjac[(I)*tdj + (J)]

Integer i;
double denom, dummy;
struct user *s = (struct user *)comm->p;

for (i = 0; i < m; ++i)
{
denom = x[1]*s->t[i][1] + x[2]*s->t[i][2];
if (comm->flag != 1)
fvec[i] = x[0] + s->t[i][0]/denom - s->y[i];

if (comm->flag != 0)
{
FJAC(i,0) = 1.0;
dummy = -1.0 / (denom * denom);
FJAC(i,1) = s->t[i][0]*s->t[i][1]*dummy;
FJAC(i,2) = s->t[i][0]*s->t[i][2]*dummy;

}
}

} /* lsqfun2 */

12.2. Program Data

Example data for ex2: using option setting
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

Following optional parameter settings are read by e04xyc

begin e04gbc

print_level = Nag_Soln_Iter_Full /* Results printout set to fullest detail */

/* Estimate minimum will be within 10 units of the
* starting point.
*/

step_max = 10.0

optim_tol = 1.0e-06 /* Set required accuracy of solution */

end
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12.3. Program Results

e04gbc example 2: using option setting.

Optional parameter setting for e04gbc.
--------------------------------------

Option file: stdin

print_level set to Nag_Soln_Iter_Full
step_max set to 1.00e+01
optim_tol set to 1.00e-06

Parameters to e04gbc
--------------------

Number of residuals........... 15 Number of variables........... 3

minlin..............Nag_Lin_Deriv machine precision....... 1.11e-16
optim_tol............... 1.00e-06 linesearch_tol.......... 9.00e-01
step_max................ 1.00e+01 max_iter................ 50
print_level....Nag_Soln_Iter_Full deriv_check............. TRUE
outfile................. stdout

Memory allocation:
s....................... Nag
v....................... Nag tdv..................... 3

Results from e04gbc:
-------------------

Iteration results:

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step Grade
0 1 1.0210e+01 3.2e+01 1.9e+00 3

x g Singular values
5.00000e-01 2.1202e+01 4.9542e+00
1.00000e+00 -1.6838e+01 2.5672e+00
1.50000e+00 -1.6353e+01 9.6486e-02

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step Grade
1 2 1.9873e-01 2.8e+00 2.4e+00 7.2e-01 1.0e+00 3

x g Singular values
8.24763e-02 1.8825e+00 4.1973e+00
1.13575e+00 -1.5133e+00 1.8396e+00
2.06664e+00 -1.5073e+00 6.6356e-02

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step Grade
2 3 9.2324e-03 1.9e-01 2.6e+00 2.5e-01 1.0e+00 3

x g Singular values
8.24402e-02 1.3523e-01 4.1026e+00
1.13805e+00 -9.4890e-02 1.6131e+00
2.31707e+00 -9.4630e-02 6.1372e-02

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step Grade
3 4 8.2149e-03 1.2e-03 2.6e+00 2.7e-02 1.0e+00 3

x g Singular values
8.24150e-02 8.1961e-04 4.0965e+00
1.13323e+00 -5.7539e-04 1.5951e+00
2.34337e+00 -5.7660e-04 6.1250e-02
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Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step Grade
4 5 8.2149e-03 5.0e-08 2.6e+00 3.8e-04 1.0e+00 2

x g Singular values
8.24107e-02 3.4234e-08 4.0965e+00
1.13304e+00 8.8965e-09 1.5950e+00
2.34369e+00 -3.4761e-08 6.1258e-02

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step Grade
5 6 8.2149e-03 4.7e-09 2.6e+00 3.6e-06 1.0e+00 2

x g Singular values
8.24106e-02 9.5237e-11 4.0965e+00
1.13304e+00 3.4598e-09 1.5950e+00
2.34369e+00 -3.1752e-09 6.1258e-02

Final solution:

x g Residuals
8.24106e-02 9.5237e-11 -5.8811e-03
1.13304e+00 3.4598e-09 -2.6536e-04
2.34369e+00 -3.1752e-09 2.7468e-04

6.5415e-03
-8.2300e-04
-1.2995e-03
-4.4631e-03
-1.9963e-02
8.2216e-02
-1.8212e-02
-1.4811e-02
-1.4710e-02
-1.1208e-02
-4.2040e-03
6.8078e-03

The sum of squares is 8.2149e-03.
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