
e04 – Minimizing or Maximizing a Function e04xzc

nag opt free (e04xzc)

1. Purpose

nag opt free is the function for freeing memory allocated by a NAG C Library function to the e04
options structure, type Nag E04 Opt. The function will only free memory which has been allocated
to pointers within the options structure by an optimization routine; it will not free memory allocated
by the user. The standard C function free() must not be used for freeing NAG allocated memory
in Chapter e04.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_free(Nag_E04_Opt *options, char *p_name, NagError *fail)

3. Description

The optimization functions of Chapter e04 have a number of optional parameters, which are set by
means of a structure of type Nag E04 Opt. Optional parameter values can be assigned to members
of the options structure directly in the program text and/or by supplying the optional values in a
file to be read by the function nag opt read (e04xyc).

Many of the optimization functions use pointers within the options structure as arrays. The
appropriate amount of memory for the arrays will be allocated internally by the optimization
function being used. The same options structure may be used in several calls to an optimization
function: NAG allocated memory will be automatically freed and reallocated on each call to the
optimization function. This is the recommended method of use of the pointers within the options
structure.

If users wish to free NAG allocated memory from the options structure at any point in their
program, then nag opt free must be used to perform the freeing operation.

Memory may be allocated to the pointers in the options structure by the user if the NAG default
memory allocation is not wanted — nag opt free will not free this user allocated memory. Dynamic
memory allocated by the user should be freed by the standard C library function free(). If it is
intended to re-enter a NAG optimization routine after this use of free(), with the intention of
using the NAG default memory allocation, then the pointer involved must be set to NULL before
re-entry.

The purpose of using nag opt free to free NAG allocated memory instead of free() is to allow the
optimization routines to maintain knowledge of which pointers have been allocated memory by a
NAG routine and which by the user. If nag opt free is not used to free the NAG allocated memory
and the standard C function free() is used instead then there is the danger that any memory
which is dynamically allocated by the user will be freed by the optimization routine.

To conserve memory nag opt free should also be used to free NAG allocated memory within the
options structure when that memory is no longer required, e.g. before returning from the function
which calls the NAG C Library e04 functions. Any memory not freed will, of course, be freed when
the users program terminates.

4. Parameters

options
Input: the options structure that was used in a call to an optimization function in Chapter
e04. The pointers within the structure may have either NAG allocated memory or user
allocated memory.
Output: those pointers selected (see parameter p name) which pointed to NAG allocated
memory will have been freed and set to NULL. Any user allocated memory will not be freed.
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p name
Input: a character string specifying which pointer is to be freed. The string should give the
optional parameter or structure member name. If the user wishes to free all NAG allocated
memory then an empty string "" or the string "all" should be given. Please note that
p name is case sensitive and as such upper-case letters should not be used unless explictly
required.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE STR UNKNOWN
string supplied, 〈string〉, does not match name of any pointer in the options structure.

6. Further Comments

None.

7. See Also

nag opt init (e04xxc)
nag opt read (e04xyc)
Chapter Introduction.

8. Example

For examples of the use of nag opt free see any of the example programs for nag opt lsq no deriv
(e04fcc), nag opt lsq deriv (e04gbc), nag opt bounds no deriv (e04jbc), nag opt bounds deriv
(e04kbc), nag opt lp (e04mfc), nag opt qp (e04nfc) and nag opt lsq covariance (e04ycc).
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