
e04 – Minimizing or Maximizing a Function e04xzc

nag opt free (e04xzc)

1. Purpose

nag opt free is the function for freeing memory allocated by a NAG C Library function to the e04
options structure, type Nag E04 Opt. The function will only free memory which has been allocated
to pointers within the options structure by an optimization routine; it will not free memory allocated
by the user. The standard C function free() must not be used for freeing NAG allocated memory
in Chapter e04.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_free(Nag_E04_Opt *options, char *p_name, NagError *fail)

3. Description

The optimization functions of Chapter e04 have a number of optional parameters, which are set by
means of a structure of type Nag E04 Opt. Optional parameter values can be assigned to members
of the options structure directly in the program text and/or by supplying the optional values in a
file to be read by the function nag opt read (e04xyc).

Many of the optimization functions use pointers within the options structure as arrays. The
appropriate amount of memory for the arrays will be allocated internally by the optimization
function being used. The same options structure may be used in several calls to an optimization
function: NAG allocated memory will be automatically freed and reallocated on each call to the
optimization function. This is the recommended method of use of the pointers within the options
structure.

If users wish to free NAG allocated memory from the options structure at any point in their
program, then nag opt free must be used to perform the freeing operation.

Memory may be allocated to the pointers in the options structure by the user if the NAG default
memory allocation is not wanted — nag opt free will not free this user allocated memory. Dynamic
memory allocated by the user should be freed by the standard C library function free(). If it is
intended to re-enter a NAG optimization routine after this use of free(), with the intention of
using the NAG default memory allocation, then the pointer involved must be set to NULL before
re-entry.

The purpose of using nag opt free to free NAG allocated memory instead of free() is to allow the
optimization routines to maintain knowledge of which pointers have been allocated memory by a
NAG routine and which by the user. If nag opt free is not used to free the NAG allocated memory
and the standard C function free() is used instead then there is the danger that any memory
which is dynamically allocated by the user will be freed by the optimization routine.

To conserve memory nag opt free should also be used to free NAG allocated memory within the
options structure when that memory is no longer required, e.g. before returning from the function
which calls the NAG C Library e04 functions. Any memory not freed will, of course, be freed when
the users program terminates.

4. Parameters

options
Input: the options structure that was used in a call to an optimization function in Chapter
e04. The pointers within the structure may have either NAG allocated memory or user
allocated memory.
Output: those pointers selected (see parameter p name) which pointed to NAG allocated
memory will have been freed and set to NULL. Any user allocated memory will not be freed.

[NP3275/5/pdf] 3.e04xzc.1



nag opt free NAG C Library Manual

p name
Input: a character string specifying which pointer is to be freed. The string should give the
optional parameter or structure member name. If the user wishes to free all NAG allocated
memory then an empty string "" or the string "all" should be given. Please note that
p name is case sensitive and as such upper-case letters should not be used unless explictly
required.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE STR UNKNOWN
string supplied, 〈string〉, does not match name of any pointer in the options structure.

6. Further Comments

None.

7. See Also

nag opt init (e04xxc)
nag opt read (e04xyc)
Chapter Introduction.

8. Example

For examples of the use of nag opt free see any of the example programs for nag opt lsq no deriv
(e04fcc), nag opt lsq deriv (e04gbc), nag opt bounds no deriv (e04jbc), nag opt bounds deriv
(e04kbc), nag opt lp (e04mfc), nag opt qp (e04nfc) and nag opt lsq covariance (e04ycc).

3.e04xzc.2 [NP3275/5/pdf]


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


