
f – Linear Algebra f02bjc

nag real general eigensystem (f02bjc)

1. Purpose

nag real general eigensystem (f02bjc) calculates all the eigenvalues and, if required, all the
eigenvectors of the generalized eigenproblem Ax = λBx where A and B are real, square matrices,
using the QZ algorithm.

2. Specification

#include <nag.h>
#include <nagf02.h>

void nag_real_general_eigensystem(Integer n, double a[], Integer tda,
double b[], Integer tdb, double tol, Complex alfa[],
double beta[], Boolean wantv, double v[], Integer tdv,
Integer iter[], NagError *fail)

3. Description

All the eigenvalues and, if required, all the eigenvectors of the generalized eigenproblem Ax = λBx
where A and B are real, square matrices, are determined using the QZ algorithm. The QZ algorithm
consists of four stages:

(a) A is reduced to upper Hessenberg form and at the same time B is reduced to upper triangular
form.

(b) A is further reduced to quasi-triangular form while the triangular form of B is maintained.

(c) The quasi-triangular form of A is reduced to triangular form and the eigenvalues extracted.

This function does not actually produce the eigenvalues λj , but instead returns αj and βj

such that

λj = αj/βj , j = 1, 2, . . . , n.

The division by βj becomes the responsibility of the user’s program, since βj may be zero
indicating an infinite eigenvalue. Pairs of complex eigenvalues occur with αj/βj and αj+1/βj+1

complex conjugates, even though αj and αj+1 are not conjugate.

(d) If the eigenvectors are required (wantv = TRUE), they are obtained from the triangular
matrices and then transformed back into the original co-ordinate system.

4. Parameters

n
Input: n, the order of the matrices A and B.
Constraint: n ≥ 1.

a[n][tda]
Input: the n by n matrix A.
Output: the array is overwritten.

tda
Input: the second dimension of the array a as declared in the function from which
nag real general eigensystem is called.
Constraint: tda ≥ n.

b[n][tdb]
Input: the n by n matrix B.
Output: the array is overwritten.

tdb
Input: the second dimension of the array b as declared in the function from which
nag real general eigensystem is called.
Constraint: tdb ≥ n.

[NP3275/5/pdf] 3.f02bjc.1

nag real general eigensystem NAG C Library Manual

tol
Input: the tolerance used to determine negligible elements. If tol > 0.0, an element will be
considered negligible if it is less than tol times the norm of its matrix. If tol ≤ 0.0, machine
precision is used in place of tol. A value of tol greater than machine precision may result
in faster execution but less accurate results.

alfa[n]
Output: αj , for j = 1, 2, . . . , n.

beta[n]
Output: βj , for j = 1, 2, . . . , n.

wantv
Input: wantv must be set to TRUE if the eigenvectors are required. If wantv is set to FALSE
then the array v is not referenced.

v[n][tdv]
Output: if wantv = TRUE, then

(i) if the jth eigenvalue is real, the jth column of v contains its eigenvector;

(ii) if the jth and (j + 1)th eigenvalues form a complex pair, the jth and (j + 1)th columns
of v contain the real and imaginary parts of the eigenvector associated with the first
eigenvalue of the pair. The conjugate of this vector is the eigenvector for the conjugate
eigenvalue.

Each eigenvector is normalised so that the component of largest modulus is real and the sum
of squares of the moduli equal one.
If wantv = FALSE, v is not referenced and may be set to the null pointer, i.e., (double ∗)0.

tdv
Input: the second dimension of the array v as declared in the function from which
nag real general eigensystem is called.
Constraint: tdv ≥ n if wantv = TRUE.

iter[n]
Output: iter[j − 1] contains the number of iterations needed to obtain the jth eigenvalue.
Note that the eigenvalues are obtained in reverse order, starting with the nth.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE 2 INT ARG LT
On entry tda = 〈value〉 while n = 〈value〉. These parameters must satisfy tda ≥ n.
On entry tdb = 〈value〉 while n = 〈value〉. These parameters must satisfy tdb ≥ n.
On entry tdv = 〈value〉 while n = 〈value〉. These parameters must satisfy tdv ≥ n.

NE ITERATIONS QZ
More than n × 30 iterations are required to determine all the diagonal 1 by 1 or 2 by 2 blocks
of the quasi-triangular form in the second step of the QZ algorithm. This failure occurs at
the ith eigenvalue, i = 〈value〉. αj and βj are correct for j = i+1, i+2, . . . , n but v does not
contain any correct eigenvectors.

The value of i will be returned in member errnum of the NAG error structure provided
NAGERR DEFAULT is not used as the error parameter.

6. Further Comments
The time taken by the function is approximately proportional to n3 and also depends on the value
chosen for parameter tol.

3.f02bjc.2 [NP3275/5/pdf]

f – Linear Algebra f02bjc

6.1. Accuracy

The computed eigenvalues are always exact for a problem (A + E)x = λ(B + F)x where ‖E‖/‖A‖
and ‖F‖/‖B‖ are both of the order of max(tol, ε), tol being defined as in Section 4 and ε being the
machine precision.
Note: interpretation of results obtained with the QZ algorithm often requires a clear understanding
of the effects of small changes in the original data. These effects are reviewed in Wilkinson (1979),
in relation to the significance of small values of αj and βj . It should be noted that if αj and βj are
both small for any j, it may be that no reliance can be placed on any of the computed eigenvalues
λi = αi/βi. The user is recommended to study Wilkinson (1979) and, if in difficulty, to seek expert
advice on determining the sensitivity of the eigenvalues to perturbations in the data.

6.2. References

Moler C B and Stewart G W (1973) An Algorithm for Generalized Matrix Eigenproblems SIAM
J. Numer. Anal. 10 241–256.

Ward R C (1975) The Combination Shift QZ Algorithm SIAM J. Numer. Anal. 12 835–853.
Wilkinson J H (1979) Kronecker’s Canonical Form and the QZ Algorithm Linear Algebra and Appl.

28 285–303.

7. See Also

None

8. Example

To find all the eigenvalues and eigenvectors of Ax = λBx where

A =

3.9 4.3 4.3 4.4
12.5 21.5 21.5 26.0

−34.5 −47.5 −43.5 −46.0
−0.5 7.5 3.5 6.0

and

B =

1 1 1 1
2 3 3 3

−3 −5 −4 −4
1 4 3 4

 .

8.1. Program Text

/* nag_real_general_eigensystem(f02bjc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagf02.h>
#include <nagx02.h>

#define NMAX 8
#define TDA NMAX
#define TDB NMAX
#define TDZ NMAX

main()
{
Integer i, j, k, n, ip, iter[NMAX];
Complex alfa[NMAX];

[NP3275/5/pdf] 3.f02bjc.3

nag real general eigensystem NAG C Library Manual

double beta[NMAX], eps1;
double a[NMAX][TDA] , b[NMAX][TDB], z[NMAX][TDZ];
Boolean matz;

Vprintf("f02bjc Example Program Results\n");
Vscanf("%*[^\n]"); /* Skip heading in data file */
Vscanf("%ld", &n);
if (n>0 && n<=NMAX)

{
for (i=0; i<n; ++i)
for (j=0; j<n; ++j)
Vscanf("%lf", &a[i][j]);

for (i=0; i<n; ++i)
for (j=0; j<n; ++j)
Vscanf("%lf",&b[i][j]);

matz = TRUE;
eps1 = X02AJC;
f02bjc(n, (double *)a, (Integer)TDA, (double *)b, (Integer)TDB, eps1,

alfa, beta, matz, (double *)z, (Integer)TDZ, iter,
NAGERR_DEFAULT);

ip = 0;
for (i=0; i<n; ++i)
{
Vprintf("Eigensolution %4ld\n",i+1);
Vprintf("alfa[%ld].re %7.3f",i,alfa[i].re);
Vprintf(" alfa[%ld].im %7.3f",i,alfa[i].im);
Vprintf(" beta[%ld] %7.3f\n",i,beta[i]);
if (beta[i] == 0.0)
Vprintf("lambda is infinite");

else
if (alfa[i].im == 0.0)
{

Vprintf("lambda %7.3f\n",alfa[i].re/beta[i]);
Vprintf("Eigenvector\n");
for (j=0; j<n; ++j)
Vprintf("%7.3f\n", z[j][i]);

}
else
{

Vprintf("lambda %7.3f %7.3f\n",
alfa[i].re/beta[i], alfa[i].im/beta[i]);

Vprintf("Eigenvector\n");
k = (Integer)pow((double)-1, (double)(ip+2));
for (j=0; j<n; ++j)
{
Vprintf("%7.3f",z[j][i-ip]);
Vprintf("%7.3f\n",k*z[j][i-ip+1]);

}
ip = 1-ip;

}
}

Vprintf("Number of iterations (machine-dependent)\n");
for (i=0; i<n; ++i)
Vprintf("%2ld",iter[i]);

Vprintf("\n");
exit(EXIT_SUCCESS);

}
else

{
Vfprintf(stderr,"n is out of range: n = %4ld,\n",n);
exit(EXIT_FAILURE);

}
}

3.f02bjc.4 [NP3275/5/pdf]

f – Linear Algebra f02bjc

8.2. Program Data

f02bjc Example Program Data
4
3.9 12.5 -34.5 -0.5
4.3 21.5 -47.5 7.5
4.3 21.5 -43.5 3.5
4.4 26.0 -46.0 6.0
1.0 2.0 -3.0 1.0
1.0 3.0 -5.0 4.0
1.0 3.0 -4.0 3.0
1.0 3.0 -4.0 4.0

8.3. Program Results

f02bjc Example Program Results
Eigensolution 1
alfa[0].re 3.801 alfa[0].im 0.000 beta[0] 1.900
lambda 2.000
Eigenvector
0.996
0.006
0.063
0.063

Eigensolution 2
alfa[1].re 1.563 alfa[1].im 2.084 beta[1] 0.521
lambda 3.000 4.000
Eigenvector
0.945 0.000
0.189 0.000
0.113 -0.151
0.113 -0.151

Eigensolution 3
alfa[2].re 3.030 alfa[2].im -4.040 beta[2] 1.010
lambda 3.000 -4.000
Eigenvector
0.945 0.000
0.189 0.000
0.113 0.151
0.113 0.151

Eigensolution 4
alfa[3].re 4.000 alfa[3].im 0.000 beta[3] 1.000
lambda 4.000
Eigenvector
0.988
0.011
-0.033
0.154

Number of iterations (machine-dependent)
0 0 5 0

[NP3275/5/pdf] 3.f02bjc.5

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

