
f 06 – Linear Algebra Support Functions Introduction – f06

Chapter f06 – Linear Algebra Support Functions

1. Scope of the Chapter

This Chapter is concerned with basic linear algebra functions which perform elementary algebraic
operations involving vectors and matrices.

2. Background

All the functions in this chapter meet the specification of the Basic Linear Algebra Subprograms
(BLAS) in C as described in Datardina et al (1992). These in turn were derived from the pioneering
work of Dongarra et al (1988) and Dongarra et al (1990) on Fortran 77 BLAS. The functions
described are concerned with matrix-vector operations and matrix-matrix operations. These will
be referred to here as the Level-2 BLAS and Level-3 BLAS respectively. The terminology reflects
the number of operations involved. For example, a Level-2 function involves O(n2) operations for
an n by n matrix. The Level 1 Blas will be included at a future mark of the C Library.

Table 1.1 indicates the NAG coded naming scheme for the functions in this Chapter.

Level-2 Level-3
’real’ BLAS function f06p_c f06y_c

’complex’ BLAS function f06s_c f06z_c

The C BLAS names for these functions are the same as the corresponding Fortran names except
that they are in lower case.

The functions in this chapter do not have full function documents, but instead are covered by
general descriptions in Section 4 sufficient to enable their use. As this chapter is concerned only
with basic linear algebra operations, the functions will not normally be required by the general
user. The purpose of each function is indicated in Section 3 so that those users requiring these
functions to build specialist linear algebra modules can determine which functions are of interest.

3. References

Datardina S P, Du Croz J J, Hammarling S J and Pont M W (1992) A Proposed Specification of
BLAS Routines in C The Journal of C Language Translation 3 295–309.

Dongarra J J, Du Croz J J, Hammarling S and Hanson R J (1988) An Extended Set of FORTRAN
Basic Linear Algebra Subprograms ACM Trans. Math. Softw. 14 1–32.

Dongarra J J, Du Croz J J, Duff I S and Hammarling S (1990) A Set of Level 3 Basic Linear
Algebra Subprograms ACM Trans. Math. Softw. 16 1–28.

4. Recommendations on Choice and Use of Functions

This section lists the functions in the categories Level-2 (matrix-vector) and Level-3 (matrix-
matrix). The corresponding BLAS name is indicated in brackets.

Within each section functions are listed in alphabetic order of the fifth character in the short
function name, so that corresponding real and complex functions may have adjacent entries.

4.1. The Level-2 Matrix-vector Functions

The Level-2 functions perform matrix-vector operations, such as forming the product between a
matrix and a vector.

[NP3275/5/pdf] 3.intro-f06.1

Introduction – f06 NAG C Library Manual

Compute a matrix-vector product; real general matrix dgemv (f06pac)

Compute a matrix-vector product; complex general matrix zgemv (f06sac)

Compute a matrix-vector product; real general band matrix dgbmv (f06pbc)

Compute a matrix-vector product; complex general band matrix zgbmv (f06sbc)

Compute a matrix-vector product; real symmetric matrix dsymv (f06pcc)

Compute a matrix-vector product; complex Hermitian matrix zhemv (f06scc)

Compute a matrix-vector product; real symmetric band matrix dsbmv (f06pdc)

Compute a matrix-vector product; complex Hermitian band matrix zhbmv (f06sdc)

Compute a matrix-vector product; real symmetric packed matrix dspmv (f06pec)

Compute a matrix-vector product; complex Hermitian packed matrix zhpmv (f06sec)

Compute a matrix-vector product; real triangular matrix dtrmv (f06pfc)

Compute a matrix-vector product; complex triangular matrix ztrmv (f06sfc)

Compute a matrix-vector product; real triangular band matrix dtbmv (f06pgc)

Compute a matrix-vector product; complex triangular band matrix ztbmv (f06sgc)

Compute a matrix-vector product; real triangular packed matrix dtpmv (f06phc)

Compute a matrix-vector product; complex triangular packed matrix ztpmv (f06shc)

Solve a system of equations; real triangular coefficient matrix dtrsv (f06pjc)

Solve a system of equations; complex triangular coefficient matrix ztrsv (f06sjc)

Solve a system of equations; real triangular band coefficient matrix dtbsv (f06pkc)

Solve a system of equations; complex triangular band coefficient matrix ztbsv (f06skc)

Solve a system of equations; real triangular packed coefficient matrix dtpsv (f06plc)

Solve a system of equations; complex triangular packed coefficient matrix ztpsv (f06slc)

Perform a rank-one update; real general matrix dger (f06pmc)

Perform a rank-one update; complex general matrix (unconjugated vector) zgeru (f06smc)

Perform a rank-one update; complex general matrix (conjugated vector) zgerc (f06snc)

Perform a rank-one update; real symmetric matrix dsyr (f06ppc)

Perform a rank-one update; complex Hermitian matrix zher (f06spc)

Perform a rank-one update; real symmetric packed matrix dspr (f06pqc)

Perform a rank-one update; complex Hermitian packed matrix zhpr (f06sqc)

Perform a rank-two update; real symmetric matrix dsyr2 (f06prc)

Perform a rank-two update; complex Hermitian matrix zher2 (f06src)

Perform a rank-two update; real symmetric packed matrix dspr2 (f06psc)

Perform a rank-two update; complex Hermitian packed matrix zhpr2 (f06ssc)

4.2. The Level-3 Matrix-matrix Functions

The Level-3 functions perform matrix-matrix operations, such as forming the product of two
matrices.

Compute a matrix-matrix product; two real rectangular matrices dgemm (f06yac)

Compute a matrix-matrix product; two complex rectangular matrices zgemm (f06zac)

Compute a matrix-matrix product; one real symmetric matrix, one real
rectangular matrix dsymm (f06ycc)

3.intro-f06.2 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

Compute a matrix-matrix product; one complex Hermitian matrix, one complex
rectangular matrix zhemm (f06zcc)

Compute a matrix-matrix product; one real triangular matrix, one real
rectangular matrix dtrmm (f06yfc)

Compute a matrix-matrix product; one complex triangular matrix, one complex
rectangular matrix ztrmm (f06zfc)

Solve a system of equations with multiple right-hand sides, real triangular
coefficient matrix dtrsm (f06yjc)

Solve a system of equations with multiple right-hand sides, complex triangular
coefficient matrix ztrsm (f06zjc)

Perform a rank-k update of a real symmetric matrix dsyrk (f06ypc)

Perform a rank-k update of a complex hermitian matrix zherk (f06zpc)

Perform a rank-2k update of a real symmetric matrix dsyr2k (f06yrc)

Perform a rank-2k update of a complex Hermitian matrix zher2k (f06zrc)

Compute a matrix-matrix product: one complex symmetric matrix, one complex
rectangular matrix zsymm (f06ztc)

Perform a rank-k update of a complex symmetric matrix zsyrk (f06zuc)

Perform a rank-2k update of a complex symmetric matrix zsyr2k (f06zwc)

5. Description of the f06 Functions

The argument lists use the following data types.
Integer: an integer data type of at least 32 bits.
double: the regular double precision floating-point type.
Complex: a double precision complex type.

plus the enumeration types given by

typedef enum { NoTranspose, Transpose, ConjugateTranspose } MatrixTranspose;
typedef enum { UpperTriangle, LowerTriangle } MatrixTriangle;
typedef enum { UnitTriangular, NotUnitTriangular } MatrixUnitTriangular;
typedef enum { LeftSide, RightSide } OperationSide;

In this section we describe the purpose of each function and give information on the argument lists,
where appropriate indicating their general nature. Usually the association between the function
arguments and the mathematical variables is obvious and in such cases a description of the argument
is omitted.

Within each section, the argument lists for all functions are presented, followed by the purpose of
the functions and information on the argument lists.

Within each section functions are listed in alphabetic order of the fifth character in the function
name, so that corresponding real and complex functions may have adjacent entries.

5.1. The Level-2 Matrix-vector Functions

The matrix-vector functions all have one array argument representing a matrix; usually this is a
two-dimensional array but in some cases the matrix is represented by a one-dimensional array.

The size of the matrix is determined by the arguments m and n for an m by n rectangular matrix;
and by the argument n for an n by n symmetric, Hermitian, or triangular matrix. Note that it
is permissible to call the functions with m or n = 0, in which case the functions exit immediately
without referencing their array arguments. For band matrices, the bandwidth is determined by the
arguments kl and ku for a rectangular matrix with kl sub-diagonals and ku super-diagonals; and
by the argument k for a symmetric, Hermitian, or triangular matrix with k sub-diagonals and/or
super-diagonals.

[NP3275/5/pdf] 3.intro-f06.3

Introduction – f06 NAG C Library Manual

The description of the m × n matrix consists either of the array name (a) followed by the trailing
(last) dimension of the array as declared in the calling (sub)program (tda), when the matrix is being
stored in a two-dimensional array; or the array name (ap) alone when the matrix is being stored
as a (packed) vector. In the former case the actual array must be allocated at least ((m − 1)d + l)
contiguous elements, where d is the trailing dimension of the array, d ≥ l , and l = n for arrays
representing general, symmetric, Hermitian and triangular matrices, l = kl + ku + 1 for arrays
representing general band matrices and l = k + 1 for symmetric, Hermitian and triangular band
matrices. For one-dimensional arrays representing matrices (packed storage) the actual array must
contain at least 1

2n(n + 1) elements.

The length of each vector, n, is represented by the argument n, and the routines may be called with
non-positive values of n, in which case the routine returns immediately.

In addition to the argument n, each vector argument also has an increment argument that
immediately follows the vector argument, and whose name consists of the three characters inc,
followed by the name of the vector. For example, a vector x will be represented by the two
arguments x, incx. The increment argument is the spacing (stride) in the array for which the
elements of the vector occur. For instance, if incx = 2, then the elements of x are in locations
x[0], x[2], . . . , x[2 ∗ n− 2] of the array x and the intermediate locations x[1], x[3], . . . , x[2 ∗ n− 3] are
not referenced.

Zero increments are not permitted. When incx > 0, the vector element xi is in the array element
x[(i − 1) ∗ incx], and when incx < 0 the elements are stored in the reverse order so that the vector
element xi is in the array element x[−(n−i)∗incx] and hence, in particular, the element xn is in x[0].
The declared length of the array x in the calling (sub)program must be at least (1+(n−1)∗ |incx|).
The arguments that specify options are enumeration arguments with the names trans, uplo and
diag. trans is used by the matrix-vector product functions as follows:

Value Meaning

NoTranspose Operate with the matrix

Transpose Operate with the transpose of the matrix

ConjugateTranspose Operate with the conjugate transpose of the matrix

In the real case the values Transpose and ConjugateTranspose have the same meaning.

uplo is used by the Hermitian, symmetric, and triangular matrix functions to specify whether the
upper or lower triangle is being referenced as follows:

Value Meaning

UpperTriangle Upper triangle

LowerTriangle Lower triangle

diag is used by the triangular matrix functions to specify whether or not the matrix is unit
triangular, as follows:

Value Meaning

UnitTriangular Unit triangular

NotUnitTriangular Non-unit triangular

When diag is supplied as UnitTriangular, the diagonal elements are not referenced.

5.1.1. Matrix storage schemes

Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a 2-dimensional
array A, with matrix element aij stored in array element A(i, j).

3.intro-f06.4 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of
the relevant triangle are stored; the remaining elements of the array need not be set. Such elements
are indicated by ∗ in the examples below. For example, when n = 4:

uplo Triangular matrix A Storage in array A

UpperTriangle

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

LowerTriangle

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗
a41 a42 a43 a44

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle
of the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the
remaining elements of the array need not be set. For example, when n = 4:

uplo Hermitian matrix A Storage in array A

UpperTriangle

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

LowerTriangle

a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44

a11 ∗ ∗ ∗
a21 a22 ∗ ∗
a31 a32 a33 ∗
a41 a42 a43 a44

Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle
(again as specified by uplo) is packed by rows in a 1-dimensional array.

- if uplo = UpperTriangle, aij is stored in ap[j − 1 + (2n − i)(i − 1)/2] for i ≤ j;

- if uplo = LowerTriangle, aij is stored in ap[j − 1 + i(i − 1)/2] for j ≤ i.

For example:

uplo Triangular matrix a Packed storage in array ap

UpperTriangle

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

 a11 a12 a13 a14︸ ︷︷ ︸ a22 a23 a24︸ ︷︷ ︸ a33 a34︸ ︷︷ ︸ a44︸︷︷︸

LowerTriangle

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

 a11︸︷︷︸ a21 a22︸ ︷︷ ︸ a31 a32 a33︸ ︷︷ ︸ a41 a42 a43 a44︸ ︷︷ ︸

[NP3275/5/pdf] 3.intro-f06.5

Introduction – f06 NAG C Library Manual

Note that for real symmetric matrices, packing the upper triangle by rows is equivalent to packing
the lower triangle by columns; packing the lower triangle by rows is equivalent to packing the upper
triangle by columns. (For complex Hermitian matrices, the only difference is that the off-diagonal
elements are conjugated.)

Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a
2-dimensional array with kl + ku + 1 columns and m rows. Rows of the matrix are stored in
corresponding rows of the array, and diagonals of the matrix are stored in columns of the array.

For example, when n = 5, kl = 2 and ku = 1:

Band Matrix a Band storage in array ab

a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55

∗ ∗ a11 a12

∗ a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55 ∗

The elements marked ∗ in the upper left kl × kl triangle and lower right ku × ku of the array ab
need not be set, and are not referenced by the routines.

The following code fragment will transfer a band matrix A(m, n) from conventional storage to band
storage ab

for(i=0; i<m; ++i){
k+kl-i;
for (j=MAX(0,i-kl); j<=MIN(n-1,i+ku); ++j){

ab[i][k+j]=A[i][j];
}

}

Triangular band matrices are stored in the same format, with either kl = 0 if upper triangular, or
ku = 0 if lower triangular.

For symmetric or Hermitian band matrices with k subdiagonals or superdiagonals, only the upper
or lower triangle (as specified by uplo) need be stored:

The following code fragments will transfer a symmetric or Hermitian matrix A(n, n) from
conventional storage to band storage ab

if uplo=UpperTriangle

for(i=0; i<n; ++i){
l=-i;
for (j=i; j<=MIN(n-1,i+k); ++j){

ab[i][l+j]=A[i][j];
}

}

if uplo=LowerTriangle

for(i=0; i<n; ++i){
l=k-i;
for (j=MAX(0,i-k); j<=i; ++j){

ab[i][l+j]=A[i][j];
}

}

For example, when n = 5 and k = 2:

3.intro-f06.6 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

uplo Hermitian band matrix A Band storage in array AB

UpperTriangle

a11 a12 a13

a12 a22 a23 a24

a13 a23 a33 a34 a35

a24 a34 a44 a45

a35 a45 a55

a11 a12 a13

a22 a23 a24

a33 a34 a35

a44 a45 ∗
a55 ∗ ∗

LowerTriangle

a11 a21 a31

a21 a22 a32 a42

a31 a32 a33 a43 a53

a42 a43 a44 a54

a53 a54 a55

∗ ∗ a11

∗ a21 a22

a31 a32 a33

a42 a43 a44

a53 a54 a55

Here the elements marked ∗ in the upper left k × k triangle and the lower right k × k triangle need
not be set and are not referenced by the routines.

Unit triangular matrices

Some routines in this chapter have an option to handle unit triangular matrices (that is, triangular
matrices with diagonal elements = 1). This option is specified by an argument diag. If
diag=UnitTriangular, the diagonal elements of the matrix need not be stored, and the corresponding
array elements are not referenced by the routines. The storage scheme for the rest of the matrix
(whether conventional, packed or band) remains unchanged.

Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real.

On input only the real parts of the diagonal elements of Hermitian matrices are referenced. The
imaginary parts of the diagonals of output Hermitian matrices are set to zero.

5.1.2. Level-2 BLAS Functions Specification

In the following specifications, the argument ap refers to arrays containing matrices in packed
storage order.

void dgemv (MatrixTranspose trans, Integer m, Integer n, f06pac
double alpha, const double a[], Integer tda,
const double x[], Integer incx, double beta,
double y[], Integer incy)

void zgemv (MatrixTranspose trans, Integer m, Integer n, f06sac
Complex alpha, const Complex a[], Integer tda,
const Complex x[], Integer incx, Complex beta,
Complex y[], Integer incy)

void dgbmv(MatrixTranspose trans, Integer m, Integer n, f06pbc
Integer kl, Integer ku, double alpha,
const double a[], Integer tda, const double x[],
Integer incx, double beta, double y[],
Integer incy)

void zgbmv(MatrixTranspose trans, Integer m, Integer n, f06sbc
Integer kl, Integer ku, Complex alpha,
const Complex a[], Integer tda,
const Complex x[], Integer incx, Complex beta,
Complex y[], Integer incy)

void dsymv(MatrixTriangle uplo, Integer n, double alpha, f06pcc
const double a[], Integer tda, const double x[],
Integer incx, double beta, double y[],
Integer incy)

void zhemv(MatrixTriangle uplo, Integer n, Complex alpha, f06scc
const Complex a[], Integer tda,
const Complex x[], Integer incx, Complex beta,
Complex y[], Integer incy)

[NP3275/5/pdf] 3.intro-f06.7

Introduction – f06 NAG C Library Manual

void dsbmv(MatrixTriangle uplo, Integer n, Integer k, f06pdc
double alpha, const double a[], Integer tda,
const double x[], Integer incx, double beta,
double y[], Integer incy)

void zhbmv(MatrixTriangle uplo, Integer n, Integer k, f06sdc
Complex alpha, const Complex a[], Integer tda,
const Complex x[], Integer incx, Complex beta,
Complex y[], Integer incy)

void dspmv(MatrixTriangle uplo, Integer n, double alpha, f06pec
const double ap[], const double x[], Integer incx,
double beta, double y[], Integer incy)

void zhpmv(MatrixTriangle uplo, Integer n, Complex alpha, f06sec
const Complex ap[], const Complex x[],
Integer incx, Complex beta, Complex y[],
Integer incy)

void dtrmv(MatrixTriangle uplo, MatrixTranspose trans, f06pfc
MatrixUnitTriangular diag, Integer n,
const double a[], Integer tda, double x[],
Integer incx)

void ztrmv(MatrixTriangle uplo, MatrixTranspose trans, f06sfc
MatrixUnitTriangular diag, Integer n,
const Complex a[], Integer tda, Complex x[],
Integer incx)

void dtbmv(MatrixTriangle uplo, MatrixTranspose trans, f06pgc
MatrixUnitTriangular diag, Integer n, Integer k,
const double a[], Integer tda, double x[],
Integer incx)

void ztbmv(MatrixTriangle uplo, MatrixTranspose trans, f06sgc
MatrixUnitTriangular diag, Integer n, Integer k,
const Complex a[], Integer tda, Complex x[],
Integer incx)

void dtpmv(MatrixTriangle uplo, MatrixTranspose trans, f06phc
MatrixUnitTriangular diag, Integer n,
const double ap[], double x[], Integer incx)

void ztpmv(MatrixTriangle uplo, MatrixTranspose trans, f06shc
MatrixUnitTriangular diag, Integer n,
const Complex ap[], Complex x[], Integer incx)

void dtrsv(MatrixTriangle uplo, MatrixTranspose trans, f06pjc
MatrixUnitTriangular diag, Integer n,
const double a[], Integer tda, double x[],
Integer incx)

void ztrsv(MatrixTriangle uplo, MatrixTranspose trans, f06sjc
MatrixUnitTriangular diag, Integer n,
const Complex a[], Integer tda, Complex x[],
Integer incx)

void dtbsv(MatrixTriangle uplo, MatrixTranspose trans, f06pkc
MatrixUnitTriangular diag, Integer n, Integer k,
const double a[], Integer tda, double x[],
Integer incx)

void ztbsv(MatrixTriangle uplo, MatrixTranspose trans, f06skc
MatrixUnitTriangular diag, Integer n, Integer k,
const Complex a[], Integer tda, Complex x[],
Integer incx)

void dtpsv(MatrixTriangle uplo, MatrixTranspose trans, f06plc
MatrixUnitTriangular diag, Integer n,
const double ap[], double x[], Integer incx)

void ztpsv(MatrixTriangle uplo, MatrixTranspose trans, f06slc
MatrixUnitTriangular diag, Integer n,
const Complex ap[], Complex x[], Integer incx)

void dger(Integer m, Integer n, double alpha, f06pmc
const double x[], Integer incx, const double y[],
Integer incy, double a[], Integer tda)

3.intro-f06.8 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

void zgeru(Integer m, Integer n, Complex alpha, f06smc
const Complex x[], Integer incx,
const Complex y[], Integer incy, Complex a[],
Integer tda)

void zgerc(Integer m, Integer n, Complex alpha, f06snc
const Complex x[], Integer incx,
const Complex y[], Integer incy, Complex a[],
Integer tda)

void dsyr(MatrixTriangle uplo, Integer n, double alpha, f06ppc
const double x[], Integer incx, double a[],
Integer tda)

void zher(MatrixTriangle uplo, Integer n, double alpha, f06spc
const Complex x[], Integer incx, Complex a[],
Integer tda)

void dspr(MatrixTriangle uplo, Integer n, double alpha, f06pqc
const double x[], Integer incx, double ap[])

void zhpr(MatrixTriangle uplo, Integer n, double alpha, f06sqc
const Complex x[], Integer incx, Complex ap[])

void dsyr2(MatrixTriangle uplo, Integer n, double alpha, f06prc
const double x[], Integer incx, const double y[],
Integer incy, double a[], Integer tda)

void zher2(MatrixTriangle uplo, Integer n, Complex alpha, f06src
const Complex x[], Integer incx,
const Complex y[], Integer incy, Complex a[],
Integer tda)

void dspr2(MatrixTriangle uplo, Integer n, double alpha, f06psc
const double x[], Integer incx, const double y[],
Integer incy, double ap[])

void zhpr2(MatrixTriangle uplo, Integer n, Complex alpha, f06ssc
const Complex x[], Integer incx,
const Complex y[], Integer incy, Complex ap[])

5.1.3. Level-2 BLAS Details of Matrix-vector Operations

Throughout the following sections AH denotes the complex conjugate of AT and α denotes the
complex conjugate of the scalar α.

f06pac, f06sac, f06pbc and f06sbc

perform the operation

y ← αAx + βy, when trans=NoTranspose,

y ← αAT x + βy, when trans=Transpose,

y ← αAHx + βy, when trans=ConjugateTranspose,

where A is a general matrix for f06pac and f06sac, and is a general band matrix for f06pbc and
f06sbc.

f06pcc, f06scc, f06pec, f06sec, f06pdc and f06sdc

perform the operation

y ← αAx + βy

where A is symmetric and Hermitian for f06pcc and f06scc respectively, is symmetric and Hermitian
stored in packed form for f06pec and f06sec respectively, and is symmetric and Hermitian band for
f06pdc and f06sdc.

f06pfc, f06sfc, f06phc, f06shc, f06pgc and f06sgc

perform the operation

[NP3275/5/pdf] 3.intro-f06.9

Introduction – f06 NAG C Library Manual

x ← Ax, when trans=Notranspose,

x ← AT x, when trans=Transpose,

x ← AHx, when trans=ConjugateTranspose,

where A is a triangular matrix for f06pfc and f06sfc, is a triangular matrix stored in packed form
for f06phc and f06shc, and is a triangular band matrix for f06pgc and f06sgc.

f06pjc, f06sjc, f06plc, f06slc, f06pkc and f06skc

solve the equations

Ax = b, when trans=Notranspose,

AT x = b, when trans=Transpose,

AHx = b, when trans=ConjugateTranspose,

where A is a triangular matrix for f06pjc and f06sjc, is a triangular matrix stored in packed form
for f06plc and f06slc, and is a triangular band matrix for f06pkc and f06skc. The vector b must be
supplied in the array x and is overwritten by the solution. It is important to note that no test for
singularity is included in these functions.

f06pmc and f06smc

perform the operation A ← αxyT + A, where A is a general matrix.

f06snc

performs the operation A ← αxyH + A, where A is a general complex matrix.

f06ppc and f06pqc

perform the operation A ← αxxT +A, where A is a symmetric matrix for f06ppc and is a symmetric
matrix stored in packed form for f06pqc.

f06spc and f06sqc

perform the operation A ← αxxH + A, where A is an Hermitian matrix for f06spc and is an
Hermitian matrix stored in packed form for f06sqc.

f06prc and f06psc

perform the operation A ← αxyT + αyxT + A, where A is a symmetric matrix for f06prc and is a
symmetric matrix stored in packed form for f06psc.

f06src and f06ssc

perform the operation A ← αxyH + αyxH + A, where A is an Hermitian matrix for f06src and is
an Hermitian matrix stored in packed form for f06ssc.

The following argument values are invalid:

Any value of the enumerated arguments diag, trans, or uplo whose meaning is not specified.

m < 0

n < 0

kl < 0

ku < 0

k < 0

tda < n for the functions involving general matrices or full Hermitian, symmetric or triangular
matrices

tda < kl + ku + 1 for the functions involving general band matrices

tda < k + 1 for the functions involving band Hermitian, symmetric or triangular matrices

incx = 0

incy = 0

3.intro-f06.10 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

If a function is called with an invalid value then an error message is output on stderr, giving the
name of the function and the number of the first invalid argument, and execution is terminated.

5.2. The Level-3 Matrix-matrix Functions

The matrix-matrix functions all have either two or three arguments representing a matrix, one of
which is an input-output argument, and in each case the arguments are two-dimensional arrays.

The sizes of the matrices are determined by one or more of the arguments m, n and k. The size
of the input-output array is always determined by the arguments m and n for a rectangular m
by n matrix, and by the argument n for a square n by n matrix. It is permissible to call the
functions with m or n=0, in which case the functions exit immediately without referencing their
array arguments.

Many of the functions perform an operation of the form

C ← P + βC,

where P is the product of two matrices, or the sum of two such products. When the inner dimension
of the matrix product is different from m or n it is denoted by k. Again it is permissible to call the
functions with k = 0; and if m > 0 and n > 0, but k = 0, then the functions perform the operation

C ← βC.

As with the Level-2 functions (see Section 4.1) the description of the matrix consists of the array
name (a or b or c) followed by the second dimension (tda or tdb or tdc).

The arguments that specify options are ennumerated arguments with the names side, transa, transb,
trans, uplo and diag. uplo and diag have the same values and meanings as for the Level-2 functions
(see Section 4.1); transa, transb and trans have the same values and meanings as trans in the
Level-2 functions, where transa and transb apply to the matrices A and B respectively. side is used
by the functions as follows:

Value Meaning

LeftSide Multiply general matrix by symmetric, Hermitian or triangular matrix on the left

Rightside Multiply general matrix by symmetric, Hermitian or triangular matrix on the right

The storage conventions for matrices are as for the Level-2 functions (see Section 4.1).

5.2.1. Level-3 BLAS Functions Specification

void dgemm(MatrixTranspose transa, MatrixTranspose transb, f06yac
Integer m, Integer n, Integer k, double alpha,
const double a[], Integer tda, const double b[],
Integer tdb, double beta, double c[], Integer tdc)

void zgemm(MatrixTranspose transa, MatrixTranspose transb, f06zac
Integer m, Integer n, Integer k, Complex alpha,
const Complex a[], Integer tda, const Complex b[],
Integer tdb, Complex beta, Complex c[],
Integer tdc)

void dsymm(OperationSide side, MatrixTriangle uplo, f06ycc
Integer m, Integer n, double alpha,
const double a[], Integer tda, const double b[],
Integer tdb, double beta, double c[], Integer tdc)

void zhemm(OperationSide side, MatrixTriangle uplo, f06zcc
Integer m, Integer n, Complex alpha,
const Complex a[], Integer tda, const Complex b[],
Integer tdb, Complex beta, Complex c[],
Integer tdc)

[NP3275/5/pdf] 3.intro-f06.11

Introduction – f06 NAG C Library Manual

void dtrmm(MatrixTriangle side, MatrixTriangle uplo, f06yfc
MatrixTranspose transa, MatrixUnitTriangular diag,
Integer m, Integer n, double alpha,
const double a[], Integer tda, double b[],
Integer tdb)

void ztrmm(MatrixTriangle side, MatrixTriangle uplo, f06zfc
MatrixTranspose transa, MatrixUnitTriangular diag,
Integer m, Integer n, Complex alpha,
const Complex a[], Integer tda, Complex b[],
Integer tdb)

void dtrsm(OperationSide side, MatrixTriangle uplo, f06yjc
MatrixTranspose transa, MatrixUnitTriangular diag,
Integer m, Integer n, double alpha,
const double a[], Integer tda, double b[],
Integer tdb)

void ztrsm(OperationSide side, MatrixTriangle uplo, f06zjc
MatrixTranspose transa, MatrixUnitTriangular diag,
Integer m, Integer n, Complex alpha,
const Complex a[], Integer tda, Complex b[],
Integer tdb)

void dsyrk(MatrixTriangle uplo, MatrixTranspose trans, f06ypc
Integer n, Integer k, double alpha,
const double a[], Integer tda, double beta,
double c[], Integer tdc)

void zherk(MatrixTriangle uplo, MatrixTranspose trans, f06zpc
Integer n, Integer k, double alpha,
const Complex a[], Integer tda, double beta,
Complex c[], Integer tdc)

void dsyr2k(MatrixTriangle uplo, MatrixTranspose trans, f06yrc
Integer n, Integer k, double alpha,
const double a[], Integer tda, const double b[],
Integer tdb, double beta, double c[], Integer tdc)

void zher2k(MatrixTriangle uplo, MatrixTranspose trans, f06zrc
Integer n, Integer k, Complex alpha,
const Complex a[], Integer tda,
const Complex b[], Integer tdb, double beta,
Complex c[], Integer tdc)

void zsymm(OperationSide side, MatrixTriangle uplo, f06ztc
Integer m, Integer n, Complex alpha,
const Complex a[], Integer tda, const Complex b[],
Integer tdb, Complex beta, Complex c[],
Integer tdc)

void zsyrk(MatrixTriangle uplo, MatrixTranspose trans, f06zuc
Integer n, Integer k, Complex alpha,
const Complex a[], Integer tda, Complex beta,
Complex c[], Integer tdc)

void zsyr2k(MatrixTriangle uplo, MatrixTranspose trans, f06zwc
Integer n, Integer k, Complex alpha,
const Complex a[], Integer tda, const Complex b[],
Integer tdb, Complex beta, Complex c[],
Integer tdc)

5.2.2. Level-3 BLAS Matrix-matrix Details of Operations

Here as in Section 4.1.2, AH denotes the complex conjugate of AT and α denotes the complex
conjugate of the scalar α.

f06yac and f06zac

perform the operation indicated in the following table:

3.intro-f06.12 [NP3275/5/pdf]

f 06 – Linear Algebra Support Functions Introduction – f06

transa=Notranspose transa=Transpose transa=ConjugateTranspose

transb=Notranspose C ← αAB + βC C ← αAT B + βC C ← αAHB + βC

A is m × k, A is k × m, A is k × m,
B is k × n B is k × n B is k × n

transb=Transpose C ← αABT + βC C ← αAT BT + βC C ← αAHBT + βC

A is m × k, A is k × m, A is k × m,
B is n × k B is n × k B is n × k

transb=ConjugateTranspose C ← αABH + βC C ← αAT BH + βC C ← αAHBH + βC

A is m × k, A is k × m, A is k × m,
B is n × k B is n × k B is n × k

where A and B are general matrices and C is a general m by n matrix.

f06ycc, f06zcc and f06ztc perform the operation indicated in the following table:

side=Leftside side=Rightside

C ← αAB + βC C ← αBA + βC

A is m × m B is m × n

B is m × n A is n × n

where A is symmetric for f06ycc and f06ztc and is Hermitian for f06zcc, B is a general matrix and
C is a general m by n matrix.

f06yfc and f06zfc perform the operation indicated in the following table:

transa=Notranspose transa=Transpose transa=ConjugateTranspose

side=Leftside B ← αAB B ← αAT B B ← αAHB

A is triangular m × m A is triangular m × m A is triangular m × m

side=Rightside B ← αBA B ← αBAT B ← αBAH

A is triangular n × n A is triangular n × n A is triangular n × n

where B is a general m by n matrix.

f06yjc and f06zjc solve the equations, indicated in the following table, for X :

transa=Notranspose transa=Transpose transa=ConjugateTranspose

side=Leftside AX = αB AT X = αB AHX = αB

A is triangular m × m A is triangular m × m A is triangular m × m

side=Rightside XA = αB XAT = αB XAH = αB

A is triangular n × n A is triangular n × n A is triangular n × n

where B is a general m by n matrix. The m by n solution matrix X is overwritten on the array B.
It is important to note that no test for singularity is included in these functions.

f06ypc, f06zpc and f06zuc perform the operation indicated in the following table:

trans=Notranspose trans=Transpose trans=ConjugateTranspose

f06ypc C ← αAAT + βC C ← αAT A + βC C ← αAT A + βC

f06zuc C ← αAAT + βC C ← αAT A + βC —

f06zpc C ← αAAH + βC — C ← αAHA + βC

A is n × k A is k × n A is k × n

[NP3275/5/pdf] 3.intro-f06.13

Introduction – f06 NAG C Library Manual

where A is a general matrix and C is an n by n symmetric matrix for f06ypc and f06zuc, and is an
n by n Hermitian matrix for f06zpc.

f06yrc, f06zrc and f06zwc perform the operation indicated in the following table:

trans=Notranspose trans=Transpose trans=ConjugateTranspose

f06yrc C ← αABT + αBAT + βC C ← αAT B + αBT A + βC C ← αAT B + αBT A + βC

f06zwc C ← αABT + αBAT + βC C ← αAT B + αBT A + βC —

f06zrc C ← αABH + αBAH + βC — C ← αAHB + αBHA + βC

A and B are n × k A and B are k × n A and B are k × n

where A and B are general matrices and C is an n by n symmetric matrix for f06yrc and f06zwc,
and is an n by n Hermitian matrix for f06zpc.

The following values of arguments are invalid:

Any value of the ennumerated arguments side, transa, transb, trans, uplo or diag, whose
meaning is not specified.

m < 0

n < 0

k < 0

tda < the number of columns in the matrix A.

tdb < the number of columns in the matrix B.

tdc < the number of columnns in the matrix C.

If a function is called with an invalid value, then an error message is output on stderr, giving the
name of the function and the number of the first invalid argument, and execution is terminated.

3.intro-f06.14 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

