g01 — Simple Calculations on Statistical Data gl0laec

NAG C Library Function Document

nag frequency table (g0laec)

1 Purpose

nag_frequency table (gOlaec) constructs a frequency distribution of a variable, according to either user-
supplied, or routine-calculated class boundary values.

2 Specification

void nag_frequency_table(Integer n, const double x[], Integer num_ class,
Nag_ClassBoundary class, double cint[], Integer ifreql],
double *xmin, double *xmax, NagError *fail)

3 Description

The data consists of a sample of n observations of a continuous variable, denoted by «x;, fori = 1,2,... n.
Let a = min(xy,...,x,) and b = max(xy,...,x,). The routine constructs a frequency distribution with &
(> 1) classes denoted by f;, for ¢ =1,2,..., k The boundary values may be either user-supplied, or
routine-calculated, and are denoted by y;, for j =1,2,... k—1.

If the boundary values of the classes are to be routine-calculated, then they are determined in one of the
following ways:

(a) If k> 2, the range of = values is divided into k£ — 2 intervals of equal length, and two extreme
intervals, defined by the class boundary values yi,¥2, ..., Yir_1-

(b) If k=2, yy =1(a+D).

However formed, the values v, ...,yr—; are assumed to be in ascending order. The class frequencies are
formed with

fi = the number of z values in the interval (—oo,y;)

fi = the number of x values in the interval [yz_1,yx), ¢=2,...,k—1

fi = the number of x values in the interval [y;_q,00),

where [means inclusive, and) means exclusive. If the class boundary values are routine-calculated and
k > 2, then f{ = f =0, and y; and y;_; are chosen so that y; < a and y;_; > b.

If a frequency distribution is required for a discrete variable, then it is suggested that the user supplies the
class boundary values; routine-calculated boundary values may be slightly imprecise (due to the adjustment
of y; and y;_, outlined above) and cause values very close to a class boundary to be assigned to the wrong
class.

4 Parameters
I: n — Integer Input
On entry: the number of observations, n.

Constraint: n > 1.

2: x[n] — const double Input

On entry: the sample of observations of the variable for which the frequency distribution is required,
x;, for ¢ =1,2,...,n. The values may be in any order.

[NP3491/6] g0laec.1

g0laec NAG C Library Manual

5

num_class — Integer Input

On entry: the number of classes desired in the frequency distribution, k. Whether or not class
boundary values are user-supplied, num_class must include the two extreme classes which stretch to
Fo0.

Constraint: num_class > 2.

class — Nag ClassBoundary Input

On entry.: indicates whether class boundary values are to be calculated within the routine, or are
supplied by the user.
If class = Nag_ClassBoundaryComp, then the class boundary values are to be calculated
within the routine.
If class = Nag ClassBoundaryUser, they are user-supplied.

Constraint: class = Nag_ClassBoundaryUser or Nag_ClassBoundaryComp.

cint{num_class—1] — double Input/Output

On entry: if class = 0, then the elements of cint need not be assigned values, as the routine
calculates k£ — 1 class boundary values.

If class = 1, the first £k — 1 elements of cint must contain the user-supplied class boundary values,
in ascending order.

On exit: the first kK — 1 elements of cint contain the class boundary values in ascending order.

Constraint: if class = 1, cint[i — 1] < cint[s], for i = 1,2,...,k— 2.
ifreq[num_class] — Integer Output
On exit: the elements of ifreq contain the frequencies in each class, f;, for i =1,2,...,k In

particular ifreq(1) contains the frequency of the class up to cint(1), f;, and ifreq[k — 1] contains the
frequency of the class greater than cint[k — 2], f;.

xmin — double * Output

On exit: the smallest value in the sample, a.

xmax — double * Output

On exit: the largest value in the sample, b.

fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT_ARG_LT

On entry, num_class must not be less than 2: num_class = <value>.

On entry, n must not be less than 1: n = <value>.

NE_BAD_PARAM

On entry, parameter class had an illegal value.

NE_NOT_STRICTLY_INCREASING

The sequence cint is not strictly increasing: cint[<value>] = <value>, cint[<value>] = <value>.

g0laec.? [NP3491/6]

g01 — Simple Calculations on Statistical Data g0laec

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

6 Further Comments

The time taken by the routine increases with num_class and n. It also depends on the distribution of the
sample observations.

6.1 Accuracy
The method used is believed to be stable.

6.2 References

None.

7 See Also

None.

8 Example

In the example program, nprob determines the number of sets of data to be analysed. For each analysis the
sample observations and optionally class boundary values, are read. After calling the routine the calculated
frequency distribution and largest and smallest observations values are printed. In the example, there is one
problem to be analysed, with 70 observations to be grouped into 5 routine-calculated classes.

8.1 Program Text
/* nag_frequency_table (gOlaec) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.
*

* Mark 6, 2000.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg0l.h>

int main(void)

{
double xmin, xmax, *a=0, *c=0;
Integer i, iclass, j, *jfreqg=0, num_class, n, nprob;
Integer exit_status=0;
Nag_ClassBoundary iclass_enum;
NagError fail;
INIT _FAIL(fail);
Vprintf ("g0laec Example Program Results\n\n");
/* Skip heading in data file */

Vscanf ("s*[*\n] ");

Vscanf ("%1d", &nprob);

for (i = 1; i <= nprob; ++1i)
{

[NP3491/6] g0laec.3

g0laec NAG C Library Manual

Vscanf ("%1d %1d %1d", &n, &iclass, &num_class);
if (!(a = NAG_ALLOC(n, double))

|| !'(c = NAG_ALLOC (num_class-1, double))

|| '(jfreq = NAG_ALLOC (num_class, Integer)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
for (j = 1; j <= n; ++3)
Vscanf ("s1f", &alj - 11);
Vprintf ("Problem %1d\n", 1i);
Vprintf ("Number of cases %1d\n", n);
Vprintf ("Number of classes, including extreme classes %1d\n", num_class);
if (iclass != 1)
Vprintf ("Routine-supplied class boundaries\n\n");
else
{
for (j = 1; j <= num_class-1; ++j)
Vscanf ("$1f", &cl[j - 11);
Vprintf ("User-supplied class boundaries\n");

¥
if (iclass == 1)

iclass_enum = Nag_ClassBoundaryUser;
else if (iclass == 0)

iclass_enum = Nag_ClassBoundaryComp;
else

iclass_enum = (Nag_ClassBoundary)-999;

gOlaec(n, a, num_class, iclass_enum, c, jfreq, &xmin, &xmax, &fail);
if (fail.code == NE_NOERROR)
{

Vprintf ("Successful call of GO1lAEF\n\n");

Vprintf ("*** Frequency distribution ***\n\n");

Vprintf (" Class Frequency\n\n") ;

Vprintf (" Up to %8.2f %111d\n", c[0], jfreqlO0]);

if (num_class-1 > 1)
{

for (j = 2; j <= num_class-1; ++7j)
Vprintf ("%8.2f to %8.2f %111d\n", cl[j - 21, cl[j - 1], jfreqlj - 11);

¥

Vprintf ("%8.2f and over %91d\n\n", clnum_class - 2], jfreqglnum_class-

11);
Vprintf ("Total frequency = %1ld\n", n);

Vprintf ("Minimum = %9.2f\n", xmin);
Vprintf ("Maximum = %9.2f\n", xmax);
}
else
{
Vprintf ("Error from gOlaec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
}
END:

if (a) NAG_FREE (a);
if (c) NAG_FREE(c);
if (jfreq) NAG_FREE (jfreq);
return exit_status;

g0laec.4 [NP3491/6]

g01 — Simple Calculations on Statistical Data g0laec

8.2 Program Data

g0laec Example Program Data

1
70 0 7
22.3 21.6 22.6 22.4 22.4 22.4 22.1 21.9 23.1 23.4
23.4 22.6 22.5 22.5 22.1 22.6 22.3 22.4 21.8 22.3
22.1 23.6 20.8 22.2 23.1 21.1 21.7 21.4 21.6 22.5
21.2 22.6 22.2 22.2 21.4 21.7 23.2 23.1 22.3 22.3
21.1 21.4 21.5 21.8 22.8 21.4 20.7 21.6 23.2 23.6
22.7 21.7 23.0 21.9 22.6 22.1 22.2 23.4 21.5 23.0
22.8 21.4 23.2 21.8 21.2 22.0 22.4 22.8 23.2 23.6

8.3 Program Results

gO0laec Example Program Results

Problem 1

Number of cases 70

Number of classes, including extreme classes 7
Routine-supplied class boundaries

Successful call of gOlacc

*** Frequency distribution ***

Class Frequency
Up to 20.70 0
20.70 to 21.28 6
21.28 to 21.86 16
21.86 to 22.44 21
22.44 to 23.02 14
23.02 to 23.60 13
23.60 and over 0

Total frequency = 70
Minimum = 20.70
Maximum = 23.60

[NP3491/6] g0laec.5 (last)

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

