NAG C Library Function Document

nag normal scores exact (g01dac)

1 Purpose

nag_normal_scores_exact (g01dac) computes a set of Normal scores, i.e., the expected values of an ordered set of independent observations from a Normal distribution with mean 0.0 and standard deviation 1.0.

2 Specification

void nag_normal_scores_exact (Integer n, double pp[], double etol, double *errest,
 NagError *fail)

3 Description

If a sample of n observations from any distribution (which may be denoted by x_1, x_2, \ldots, x_n), is sorted into ascending order, the rth smallest value in the sample is often referred to as the rth 'order statistic', sometimes denoted by $x_{(r)}$ (see Kendall and Stuart (1969)).

The order statistics therefore have the property

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}$$
.

(If n = 2r + 1, x_{r+1} is the sample median.)

For samples originating from a known distribution, the distribution of each order statistic in a sample of given size may be determined. In particular, the expected values of the order statistics may be found by integration. If the sample arises from a Normal distribution, the expected values of the order statistics are referred to as the 'Normal scores'. The Normal scores provide a set of reference values against which the order statistics of an actual data sample of the same size may be compared, to provide an indication of Normality for the sample. A plot of the data against the scores gives a normal probability plot. Normal scores have other applications; for instance, they are sometimes used as alternatives to ranks in nonparametric testing procedures.

nag normal scores exact (g01dac) computes the rth Normal score for a given sample size n as

$$E(x_{(r)}) = \int_{-\infty}^{\infty} x_r dG_r,$$

where

$$dG_r = \frac{A_r^{r-1} (1 - A_r)^{n-r} dA_r}{\beta(r, n - r + 1)}, \quad A_r = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_r} e^{-t^2/2} dt, \quad r = 1, 2, \dots, n,$$

and β denotes the complete Beta function.

The function attempts to evaluate the scores so that the estimated error in each score is less than the value **etol** specified by the user. All integrations are performed in parallel and arranged so as to give good speed and reasonable accuracy.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

[NP3645/7] g01dac.1

5 Parameters

1: \mathbf{n} - Integer Input

On entry: the size of the set, n.

Constraint: $\mathbf{n} > 0$.

2: $\mathbf{pp}[\mathbf{n}]$ – double

On exit: the Normal scores. $\mathbf{pp}[i-1]$ contains the value $E(x_{(i)})$, for $i=1,2,\ldots,n$.

3: **etol** – double *Input*

On entry: the maximum value for the estimated absolute error in the computed scores.

Constraint: **etol** > 0.0.

4: **errest** – double * Output

On exit: a computed estimate of the maximum error in the computed scores (see Section 7).

5: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 1.
```

NE ERROR ESTIMATE

The function was unable to estimate the scores with estimated error less than etol.

NE_REAL

```
On entry, etol = \langle value \rangle. Constraint: etol > 0.0.
```

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

Errors are introduced by evaluation of the functions dG_r and errors in the numerical integration process. Errors are also introduced by the approximation of the true infinite range of integration by a finite range [a,b] but a and b are chosen so that this effect is of lower order than that of the other two factors. In order to estimate the maximum error the functions dG_r are also integrated over the range [a,b]. nag normal scores_exact (g01dac) returns the estimated maximum error as

g01dac.2 [NP3645/7]

$$\mathbf{errest} = \max_{r} \left[\max(|a|, |b|) \times \left| \int_{a}^{b} dG_{r} - 1.0 \right| \right].$$

8 Further Comments

The time taken by nag_normal_scores_exact (g01dac) depends on **etol** and **n**. For a given value of **etol** the timing varies approximately linearly with **n**.

9 Example

The program below generates the Normal scores for samples of size 5, 10, 15, and prints the scores and the computed error estimates.

9.1 Program Text

```
/* nag_normal_scores_exact (g01dac) Example Program.
* Copyright 2001 Numerical Algorithms Group.
* Mark 7, 2001.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>
int main(void)
/* Scalars */
 double errest, etol;
 Integer exit_status, i, j, n, nmax;
 NagError fail;
/* Arrays */
 double *pp=0;
 Vprintf("g01dac Example Program Results\n");
 INIT_FAIL(fail);
 exit_status = 0;
 etol = 0.001;
 nmax = 15;
  /* Allocate memory */
 if ( !(pp = NAG_ALLOC(nmax, double)) )
     Vprintf("Allocation failure\n");
     exit_status = -1;
     goto END;
 for (j = 5; j \le nmax; j += 5)
     n = j;
     g0ldac(n, pp, etol, &errest, &fail);
     Vprintf("Error estimate (output) = %13.3e\n\n", errest);
     Vprintf("Normal scores\n");
     for (i = 1; i \le n; ++i)
         Vprintf("%10.3f", pp[i - 1]);
         Vprintf(i%5 == 0 || i == n ?"\n":" ");
```

[NP3645/7] g01dac.3

9.2 Program Data

None.

9.3 Program Results

```
gOldac Example Program Results
Set size = 5
Error tolerance (input) = 1.000e-03
Error estimate (output) = 9.080e-09
Normal scores
             -0.495 0.000 0.495 1.163
   -1.163
Set size = 10
Error tolerance (input) =
                           1.000e-03
Error estimate (output) = 1.484e-08
Normal scores
                      -0.656
                                -0.376 -0.123
1.001 1.539
             -1.001
   -1.539
    0.123
             0.376
                       0.656
Set size = 15
Error tolerance (input) = 1.000e-03
Error estimate (output) = 2.218e-08
Normal scores
   -1.736
                       -0.948
                                  -0.715
             -1.248
                                           -0.516
            -0.165
                       0.000
   -0.335
                                 0.165
                                           0.335
                                  1.248
                        0.948
    0.516
             0.715
                                            1.736
```

g01dac.4 (last) [NP3645/7]