NAG C Library Function Document

nag prob 1 sample ks (g01eyc)

1 Purpose

nag_prob_1_sample_ks (g01eyc) returns the upper tail probability associated with the one sample Kolmogorov-Smirnov distribution.

2 Specification

double nag_prob_1_sample_ks (Integer n, double d, NagError *fail)

3 Description

Let $S_n(x)$ be the sample cumulative distribution function and $F_0(x)$ the hypothesised theoretical distribution function.

nag_prob_1_sample_ks (g01eyc) returns the upper tail probability, p, associated with the one-sided Kolmogorov–Smirnov test statistic D_n^+ or D_n^- , where these one-sided statistics are defined as follows;

$$D_n^+ = \sup_x [S_n(x) - F_0(x)],$$

$$D_n^- = \sup_x [F_0(x) - S_n(x)].$$

If $n \le 100$ an exact method is used; for the details see Conover (1980). Otherwise a large sample approximation derived by Smirnov is used; see Feller (1948), Kendall and Stuart (1973) or Smirnov (1948).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley

Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions *Ann. Math. Statist.* **19** 179–181

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin

Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions *Ann. Math. Statist.* **19** 279–281

5 Parameters

1: \mathbf{n} – Integer Input

On entry: the number of observations in the sample, n.

Constraint: $\mathbf{n} \geq 1$.

2: \mathbf{d} - double Input

On entry: contains the test statistic, D_n^+ or D_n^- .

Constraint: $0.0 \le \mathbf{d} \le 1.0$.

3: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

[NP3645/7] g01eyc.1

6 Error Indicators and Warnings

NE INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 1.
```

NE REAL

```
On entry, \mathbf{d} < 0.0 or \mathbf{d} > 1.0: \mathbf{d} = \langle value \rangle.
```

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The large sample distribution used as an approximation to the exact distribution should have a relative error of less than 2.5% for most cases.

8 Further Comments

The upper tail probability for the two-sided statistic, $D_n = \max(D_n^+, D_n^-)$, can be approximated by twice the probability returned via nag_prob_1_sample_ks (g01eyc), that is 2p. (Note that if the probability from nag_prob_1_sample_ks (g01eyc) is greater than 0.5 then the two-sided probability should be truncated to 1.0). This approximation to the tail probability for D_n is good for small probabilities, (e.g., $p \le 0.10$) but becomes very poor for larger probabilities.

The time taken by nag_prob_1_sample_ks (g01eyc) increases with n, until n > 100. At this point the approximation is used and the time decreases significantly. The time then increases again modestly with n.

9 Example

The following example reads in 10 different sample sizes and values for the test statistic D_n . The upper tail probability is computed and printed for each case.

9.1 Program Text

```
/* nag_prob_1_sample_ks (g0leyc) Example Program.

*
 * Copyright 2001 Numerical Algorithms Group.

*
 * Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Scalars */
    double d__, prob;
    Integer exit_status, n;
    NagError fail;
    INIT_FAIL(fail);
```

g01eyc.2 [NP3645/7]

```
exit_status = 0;
      Vprintf("%s\n\n",
                                                                                                                  "g01eyc Example Program Results");
      Vprintf("%s\n\n",
                                                                                                                                        d
                                                                                                                                                                                 n One-sided probability");
       /* Skip heading in data file */
      Vscanf("%*[^\n] ");
      while (scanf("%ld %lf%*[^\n] ", &n, &d__) != EOF)
                           prob = g01eyc(n, d___, &fail);
                             if (fail.code != NE_NOERROR)
                                                 \label{lem:printf("Error from g01eyc.\n%s\n", fail.message);} % The printf("Error from g01eyc.\n%s\n", fail.message); % The printf("Error from g01eyc.\n", fail.message); % The printf("Error from g01ey
                                                 exit_status = 1;
                                                goto END;
                           \label{local_vprintf} $$ Vprintf("%7.4f%2s%4ld%10s%7.4f\n", d_, "", n, "", prob); 
END:
    return exit_status;
```

9.2 Program Data

```
g01eyc Example Program Data.
10 0.323
10 0.369
10 0.409
10 0.457
10 0.489
400 0.0535
400 0.061
400 0.068
400 0.076
400 0.0815
```

9.3 Program Results

gOleyc Example Program Results

d	n	One-sided probability
0.3230	10 10	0.0994 0.0497
0.4090	10 10	0.0251 0.0099
0.4890	10	0.0050
0.0535 0.0610	400 400	0.1001 0.0502
0.0680	400 400	0.0243 0.0096
0.0815	400	0.0048

[NP3645/7] g01eyc.3 (last)