nag_deviates_chi_sq (g01fcc)

1. Purpose

nag_deviates_chi_sq (g01fcc) returns the deviate associated with the given lower tail probability of the χ^2 distribution with real degrees of freedom.

2. Specification

```
#include <nag.h>
#include <nagg01.h>
```

double nag_deviates_chi_sq(double p, double df, NagError *fail)

3. Description

The deviate, x_p , associated with the lower tail probability p of the χ^2 distribution with ν degrees of freedom is defined as the solution to

$$P(X \le x_p : \nu) = p = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} \int_0^{x_p} e^{-X/2} X^{\nu/2 - 1} dX \qquad 0 \le x_p < \infty; \quad \nu > 0.$$

The required x_p is found by using the relationship between a χ^2 distribution and a gamma distribution, i.e., a χ^2 distribution with ν degrees of freedom is equal to a gamma distribution with scale parameter 2 and shape parameter $\nu/2$.

For very large values of ν , greater than 10^5 , Wilson and Hilferty's normal approximation to the χ^2 is used, see Kendall and Stuart (1969).

4. Parameters

p

Input: the probability, p, from the required χ^2 distribution.

Constraint: $0.0 \le \mathbf{p} < 1.0$.

df

Input: the degrees of freedom, ν , of the χ^2 distribution.

Constraint: df > 0.0.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

On any of the error conditions listed below except **NE_ALG_NOT_CONV** nag_deviates_chi_sq returns 0.0.

NE_REAL_ARG_LT

On entry, **p** must not be less than 0.0: $\mathbf{p} = \langle value \rangle$.

NE REAL ARG GE

On entry, **p** must not be greater than or equal to 1.0: $\mathbf{p} = \langle value \rangle$.

NE_REAL_ARG_LE

On entry, **df** must not be less than or equal to 0.0: $\mathbf{df} = \langle value \rangle$.

NE_PROBAB_CLOSE_TO_TAIL

The probability is too close to 0.0 or 1.0.

NE_ALG_NOT_CONV

The algorithm has failed to converge in $\langle value \rangle$ iterations.

The result should be a reasonable approximation.

NE_GAM_NOT_CONV

The series used to calculate the gamma probabilities has failed to converge.

This is an unlikely error exit.

[NP3275/5/pdf] 3.g01fcc.1

6. Further Comments

For higher accuracy the relationship described in Section 3 may be used and a direct call to nag_deviates_gamma_dist (g01ffc) made.

6.1. Accuracy

The results should be accurate to 5 significant digits for most parameter values. Some accuracy is lost for p close to 0.0.

6.2. References

Best D J and Roberts D E (1975) The percentage points of the χ^2 distribution Appl. Stat. 24 Algorithm AS91 385–388.

Hastings N A J and Peacock J B (1975) Statistical Distributions Butterworth.

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Vol 1) Griffin.

7. See Also

nag_deviates_gamma_dist (g01ffc)

8. Example

Lower tail probabilities are read for several χ^2 distributions, and the corresponding deviates calculated and printed, until the end of data is reached.

8.1. Program Text

```
/* nag_deviates_chi_sq(g01fcc) Example Program
 * Copyright 1990 Numerical Algorithms Group.
 * Mark 1, 1990.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg01.h>
main()
  double df, p, x;
  static NagError fail;
  /* Skip heading in data file */
  Vscanf("%*[^\n]");
  Vprintf(" p df x\n\n");
while (scanf("%lf %lf", &p, &df) != EOF)
      x = g01fcc(p, df, &fail);
if (fail.code==NE_NOERROR)
        Vprintf("%8.3f%8.3f%8.3f\n", p, df, x);
        Vprintf("%8.3f%8.3f%8.3f\n Note: %s\n", p, df, x, fail.message);
  exit(EXIT_SUCCESS);
```

8.2. Program Data

```
g01fcc Example Program Data
0.0100 20.0
0.4279 7.50
0.8694 45.0
```

3.g01fcc.2 [NP3275/5/pdf]

8.3. Program Results

g01fcc Example Program Results p df x 0.010 20.000 8.260 0.428 7.500 6.200 0.869 45.000 55.759

 $[NP3275/5/pdf] \\ 3.g01fcc.3$