NAG C Library Function Document

nag deviates studentized range (g01fmc)

1 Purpose

nag_deviates_studentized_range (g01fmc) returns the deviate associated with the lower tail probability of the distribution of the Studentized range statistic.

2 Specification

double nag_deviates_studentized_range (double p, double v, Integer ir, NagError *fail)

3 Description

The externally Studentized range, q, for a sample, x_1, x_2, \ldots, x_r , is defined as

$$q = \frac{\max(x_i) - \min(x_i)}{\hat{\sigma}_e},$$

where $\hat{\sigma}_e$ is an independent estimate of the standard error of the x_i . The most common use of this statistic is in the testing of means from a balanced design. In this case for a set of group means, $\bar{T}_1, \bar{T}_2, \ldots, \bar{T}_r$, the Studentized range statistic is defined to be the difference between the largest and smallest means, \bar{T}_{largest} and $\bar{T}_{\text{smallest}}$, divided by the square root of the mean-square experimental error, MS_{error} , over the number of observations in each group, n, i.e.,

$$q = \frac{\bar{T}_{\text{largest}} - \bar{T}_{\text{smallest}}}{\sqrt{MS_{\text{error}}/n}}.$$

The Studentized range statistic can be used as part of a multiple comparisons procedure such as the Newman–Keuls procedure or Duncan's multiple range test (see Montgomery (1984) and Winer (1970)).

For a Studentized range statistic the probability integral, P(q; v, r), for v degrees of freedom and r groups, can be written as:

$$P(q; v, r) = C \int_0^\infty x^{v-1} e^{-vx^2/2} \left(r \int_{-\infty}^\infty \phi(y) (\Phi(y) - \Phi(y - qx))^{r-1} \, dy \right) dx,$$

where

$$C = \frac{v^{v/2}}{\Gamma(v/2)2^{v/2-1}}, \quad \phi(y) = \frac{1}{\sqrt{2\pi}}e^{-y^2/2} \quad \text{and} \quad \Phi(y) = \int_{-\infty}^{y} \phi(t) \, dt.$$

For a given probability p_0 , the deviate q_0 is found as the solution to the equation

$$P(q_0; v, r) = p_0, (1)$$

using a root finding procedure. Initial estimates are found using the approximation given in Lund and Lund (1983) and a simple search procedure.

4 References

Lund R E and Lund J R (1983) Algorithm AS 190: probabilities and upper quartiles for the studentized range *Appl. Statist.* **32 (2)** 204–210

Montgomery D C (1984) Design and Analysis of Experiments Wiley

Winer B J (1970) Statistical Principles in Experimental Design McGraw-Hill

[NP3645/7] g01fmc.1

5 Parameters

1: \mathbf{p} – double Input

On entry: the lower tail probability for the Studentized range statistic, p_0 .

Constraint: 0.0 .

2: \mathbf{v} – double Input

On entry: the number of degrees of freedom, v.

Constraint: $\mathbf{v} \geq 1.0$.

3: **ir** – Integer *Input*

On entry: the number of groups, r.

Constraint: $ir \geq 2$.

4: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

```
On entry, i\mathbf{r} = \langle value \rangle.
Constraint: i\mathbf{r} \geq 2.
```

NE ACCURACY

Warning - There is some doubt as to whether full accuracy has been achieved.

NE_INIT_ESTIMATE

Unable to find initial estimate.

NE REAL

```
On entry, \mathbf{p} \le 0.0 or \mathbf{p} \ge 1.0: \mathbf{p} = \langle value \rangle.
On entry, \mathbf{v} = \langle value \rangle.
Constraint: \mathbf{v} \ge 1.0.
```

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The returned solution, q_* , to equation (1) is determined so that at least one of the following criteria apply.

- (a) $|P(q_*; v, r) p_0| \le 0.000005$
- (b) $|q_0 q_*| \le 0.000005 \times \max(1.0, |q_*|).$

g01fmc.2 [NP3645/7]

8 Further Comments

To obtain the factors for Duncan's multiple-range test, equation (1) has to be solved for p_1 , where $p_1 = p_0^{r-1}$, so on input **p** should be set to p_0^{r-1} .

9 Example

Three values of p, ν and r are read in and the Studentized range deviates or quantiles are computed and printed.

9.1 Program Text

```
/* nag_deviates_studentized_range (g01fmc) Example Program.
* Copyright 2001 Numerical Algorithms Group.
* Mark 7, 2001.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>
int main(void)
 /* Scalars */
 double p, v, valq;
 Integer exit_status, i__, ir;
 NagError fail;
 exit_status = 0;
 INIT_FAIL(fail);
 Vprintf("g01fmc Example Program Results\n");
 /* Skip heading in data file */
 Vscanf("%*[^\n] ");
 ir
                                        Quantile ");
     Vscanf("%lf%lf%ld%*[^\n] ", &p, &v, &ir);
     valq = g01fmc(p, v, ir, &fail);
     if (fail.code == NE_NOERROR || fail.code == NE_ACCURACY)
       {
           Vprintf("%5.2f%2s%4.1f%1s%3ld%1s%10.4f\n", p, "", v, "",
                                                                         ir,
   valq);
       }
     else
         Vprintf("Error from g01fmc.\n%s\n", fail.message);
         exit_status = 1;
         goto END;
   }
return exit_status;
```

[NP3645/7] g01fmc.3

9.2 Program Data

g01fmc Example Program Data 0.95 10.0 5 0.3 60.0 12 0.9 5.0 4

9.3 Program Results

g01fmc Example Program Results

0.95 10.0 5 4.6543 0.30 60.0 12 2.8099 0.90 5.0 4 4.2636	р	V	ir	Quantile
	0.30	60.0		2.8099

g01fmc.4 (last) [NP3645/7]