202 — Correlation and Regression Analysis g02buc

NAG C Library Function Document

nag_sum_sqs (g02buc)

1 Purpose

nag_sum_sqs (g02buc) calculates the sample means and sums of squares and cross-products, or sums of
squares and cross-products of deviations from the mean, in a single pass for a set of data. The data may
be weighted.

2 Specification

void nag_sum_sqgs (Nag_OrderType order, Nag_SumSquare mean, Integer n, Integer m,
const double x[], Integer pdx, const double wt[], double *sw, double wmean/[],
double c[], NagError *fail)

3 Description

nag_sum sqs (g02buc) is an adaptation of West’s WV2 algorithm; see West (1979). This routine
calculates the (optionally weighted) sample means and (optionally weighted) sums of squares and cross-
products or sums of squares and cross-products of deviations from the (weighted) mean for a sample of n
observations on m variables X, for j =1,2,...,m. The algorithm makes a single pass through the data.

For the first i — 1 observations let the mean of the jth variable be z;(i — 1), the cross-product about the
mean for the jth and kth variables be c;;(¢ — 1) and the sum of weights be W,_,. These are updated by

the ith observation, z;;, for j = 1,2,...,m, with weight w; as follows:

and

. . w; _ . _
Cjk(l) :Cjk:(l_ 1)+W(x1_xj(7’_1))(J"k—xk(7’_1))WL717 J= 1727"'7m; k:jaj+177m

The algorithm is initialised by taking Z;(1) = x,;, the first observation, and c;;(1) = 0.0.
For the unweighted case w; = 1 and W, = ¢ for all .

Note that only the upper triangle of the matrix is calculated and returned packed by column.

4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22
532-555

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] g02buc.1

g02buc NAG C Library Manual

2:

mean — Nag SumSquare Input

On entry. indicates whether nag_sum_sqs (g02buc) is to calculate sums of squares and cross-
products, or sums of squares and cross-products of deviations from the mean.

If mean = Nag_AboutMean, the sums of squares and cross-products of deviations from the mean
are calculated.

If mean = Nag_AboutZero, the sums of squares and cross-products are calculated.

Constraint: mean = Nag_AboutMean or Nag_AboutZero.

n — Integer Input
On entry: the number of observations in the data set, n.

Constraint: n > 1.

m — Integer Input
On entry: the number of variables, m.

Constraint: m > 1.

x[dim| — const double Input

Note: the dimension, dim, of the array x must be at least max(1,pdx x m) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag RowMajor.

Where X(7,j) appears in this document, it refers to the array element
if order = Nag_ColMajor, x[(j —1) x pdx+i — 1];
if order = Nag_RowMajor, x[(i — 1) x pdx + j — 1].

On entry: X(i,7) must contain the ith observation on the jth variable, for i=1,2,...,n;
J=12...,m.
pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:

if order = Nag_ColMajor, pdx > n;

if order = Nag_RowMajor, pdx > m.
wt[dim] — const double Input
Note: the dimension, dim, of the array wt must be at least n.

On entry: the optional weights of each observation. If weights are not provided then wt must be set
to the NULL pointer, i.e., (double *)0, otherwise wt[i] must contain the weight for the i — Ith
observation.

Constraint: if wt is not NULL, wt[i] > 0.0 for i =0,1,...,n— 1.

sw — double * Output
On exit: the sum of weights.

If wt is NULL, then sw contains the number of observations, n.

wmean[m] — double Output

On exit: the sample means. wmean[j — 1] contains the mean for the jth variable.

g02buc.2 [NP3645/7]

202 — Correlation and Regression Analysis g02buc

10: ¢[dim] — double Output
Note: the dimension, dim, of the array ¢ must be at least (m X m + m)/2.
On exit: the cross-products.

If mean = Nag_AboutMean, then ¢ contains the upper triangular part of the matrix of (weighted)
sums of squares and cross-products of deviations about the mean.

If mean = Nag_AboutZero, then ¢ contains the upper triangular part of the matrix of (weighted)
sums of squares and cross-products.

These are stored packed by columns, i.e., the cross-product between the jth and kth variable, k& > 7,
is stored in ¢(k x (k—1)/2 + 7).
11: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 1.

On entry, pdx = (value).
Constraint: pdx > 0.

On entry, m = (value).
Constraint: m > 1.

NE_INT 2

On entry, pdx = (value), n = (value).
Constraint: pdx > n.

On entry, pdx = (value), m = (value).
Constraint: pdx > m.

NE_REAL_ARRAY ELEM_CONS
On entry, wt[(value)] < 0.0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

For a detailed discussion of the accuracy of this algorithm see Chan et al. (1982) or West (1979).

[NP3645/7] g02buc.3

g02buc NAG C Library Manual

8 Further Comments

nag_cov_to corr (g02bwc) may be used to calculate the correlation coefficients from the cross-products of
deviations about the mean. The cross-products of deviations about the mean may be scaled to give a
variance-covariance matrix.

The means and cross-products produced by nag _sum_sqs (g02buc) may be updated by adding or removing
observations using nag_sum_sqs_update (g02btc).

9 Example

A program to calculate the means, the required sums of squares and cross-products matrix, and the
variance matrix for a set of 3 observations of 3 variables.

9.1 Program Text

/* nag_sum_sgs (g02buc) Example Program.
* Copyright 2002 Numerical Algorithms Group.

* Mark 7, 2002.
*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf06.h>
#include <nagg02.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
double alpha, sw;
Integer exit_status, j, k, m, mm, n, pdx;
NagError fail;
Nag_SumSquare mean_enum;

/* Arrays */

char mean([2], weight[2];

double *c=0, *v=0, *wmean=0, *wt=0, *x=0;
double *wtptr=0;

Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR

#define X(I,J) x[(J-1)#*pdx + I - 1]
order = Nag_ColMajor;

#else

#define X(I,J) x[(I-1)*pdx + JT - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf ("g02buc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");

while (scanf ("’ %1s ' ' %1s ’'%1d%1d%*["\n]", mean, weight, &m, &n) != EOF)

/* Allocate memory */

if (!(c = NAG_ALLOC((m#*m+m) /2, double)) ||
! (v = NAG_ALLOC((m*m+m) /2, double)) ||
! (wmean = NAG_ALLOC(m, double)) ||
! (wt = NAG_ALLOC(n, double)) ||

g02buc.4 [NP3645/7]

202 — Correlation and Regression Analysis g02buc

#ifdef
#else

#endif

! (x = NAG_ALLOC(n * m, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥

NAG_COLUMN_MAJOR
pdx = n;

pdx = m;

for (3 = 1; j <= n; ++3)
Vscanf ("s1f", awt([j-11);

Vscanf ("sx[*\n] ");
for (j = 1; j <= n; ++3)
{

for (k = 1; k <= m; ++k)
Vscanf ("$1f", &X(j,k));

}
Vscanf ([*\n] ");
if (mean[0] == 'M")
mean_enum = Nag_AboutMean;
else if (mean[0] == 'Z')
mean_enum = Nag_AboutZero;
else
{
Vprintf ("Incorrect value for mean\n")
exit_status = -1;
goto END;
}
if (weight[0] == 'W')

wtptr = wt;

/* Calculate sums of squares and cross—-products matrix */
g02buc(order, mean_enum, n, m, x, pdx, wtptr, &sw, wmean, c, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO2buc.\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

Vprintf ("\n'
Vprintf (! Means\n
for (3 = 1; j <= m, ++j)
Vprintf("s14.4f%s", wmean[j-1], j%6 == 0 || J == m 2 "\n":" ");
if (wtptr)
{
Vprintf ("\n'
Vprintf ("We 1ghts\n"
for (j = 1; j <= n; ++j)
Vprintf ("s14.4f%s", wt[j-11, 3%6 == 0 || j == n 2"\n":" ");
Vprintf ("\n") ;
}

/* Print the sums of squares and cross products matrix */
x04ccc(Nag_ColMajor, Nag_Upper, Nag_NonUnitDiag, m, c,
"Sums of squares and cross-products", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04ccc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
if (sw > 1.0)
{

/* Calculate the variance matrix */

[NP3645/7] 202buc.5

g02buc NAG C Library Manual

alpha = 1.0 / (sw - 1.0);

mm =m * (m+ 1) / 2;

foefdc(mm, alpha, c, 1, v, 1);

/* Print the variance matrix */

Vprintf ("\n");

x04ccc(Nag_ColMajor, Nag_Upper, Nag_NonUnitDiag, m, v,
"Variance matrix", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04ccc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
if (c) NAG_FREE(c);
if (v) NAG_FREE(v);
if (wmean) NAG_FREE (wmean) ;
if (wt) NAG_FREE (wt);
if (x) NAG_FREE(x);
}
END:
if NAG_FREE (c) ;

(c)
if (v) NAG_FREE (V) ;

if (wmean) NAG_FREE (wmean) ;
if (wt) NAG_FREE (wt);

if (x) NAG_FREE (x);

return exit_status;

9.2 Program Data

gO02buc Example Program Data
M’ "W’ 3 3
0.1300 1.3070 0.3700
9.1231 3.7011 4.5230
0.9310 0.0900 0.8870
0.0009 0.0099 0.0999

9.3 Program Results

gO02buc Example Program Results

Means
1.3299 0.3334 0.9874
Weights
0.1300 1.3070 0.3700
Sums of squares and cross-products
1 2 3
1 8.7569 3.6978 4.0707
2 1.5905 1.6861
3 1.9297
Variance matrix
1 2 3
1 10.8512 4.5822 5.0443
2 1.9709 2.0893
3 2.3912

g02buc.6 (last) [NP3645/7]

	g02buc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	mean
	n
	m
	x
	pdx
	wt
	sw
	wmean
	c
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_REAL_ARRAY_ELEM_CONS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

