g02 — Correlation and Regression Analysis g02hlc

NAG C Library Function Document

nag robust m_corr_user_ fn (g02hlc)

1 Purpose

nag_robust m_corr_user_fn (g02hlc) calculates a robust estimate of the covariance matrix for user-supplied
weight functions and their derivatives.

2 Specification

void nag_robust_m_corr_user_fn (Nag_OrderType order,

void (*ucv) (double t, double *u, double *ud, double *w, double *wd,
Nag_Comm *comm) ,

Integer indm, Integer n, Integer m, const double x[], Integer pdx,

double cov[], double al[], double wt[], double theta[], double bl, double bd,
Integer maxit, Integer nitmon, const char *outfile, double tol, Integer *nit,
Nag_Comm *comm, NagError x*fail)

3 Description

For a set of n observations on m variables in a matrix X, a robust estimate of the covariance matrix, C,
and a robust estimate of location, 6, are given by:

C =7 (ATA)7,
where 7 is a correction factor and A is a lower triangular matrix found as the solution to the following
equations.
zj = A(z; — 0)

and
I " ulllzilly)ziz = o(llzl,) T =0,
i=1

where x; is a vector of length m containing the elements of the ¢th row of X,
z; is a vector of length m,
I is the identity matrix and 0 is the zero matrix,

and w and wu are suitable functions.

nag_robust m corr user fn (g02hlc) covers two situations:

(i) o(t) =1 for all ¢,

(i) o(t) = u(t).

The robust covariance matrix may be calculated from a weighted sum of squares and cross-products matrix
about 6 using weights wt; = u(]|z]|). In case (i) a divisor of n is used and in case (ii) a divisor of
S wt; is used. If w(.) = y/u(.), then the robust covariance matrix can be calculated by scaling each
row of X by /wt; and calculating an unweighted covariance matrix about 6.

In order to make the estimate asymptotically unbiased under a Normal model a correction factor, 72, is
needed. The value of the correction factor will depend on the functions employed (see Huber (1981) and
Marazzi (1987a)).

[NP3645/7] g02hic.1

g02hlc NAG C Library Manual

nag_robust m_corr_user_fn (g02hlc) finds A using the iterative procedure as given by Huber.
Ap=(Sp+ 1A,

and
0;, = b L+ 0,
Tk l)1 Jk-1?
where S = (s;), for j,1=1,2,...,m is a lower triangular matrix such that:
—min[max(h; /D5, —BL), BL], j>1
"7\~ minfmax((h,/(2Ds — Da/ D)), —BD), BD), j—1
where

= S {wllll) + S (=)0}
Dy = S {3 (i) Nzl + 26zl)zl = o Qlll) Yzl
Dy = = S (Uil il + 2uCl01)) + w0 Y2413
D=3, {%u(ﬂzinz)nzﬂé — o(ll=0B) }
By = Soiey ullzal) 22 for j > 1
iy = Sy ulllala) (2 — Nl /m)

bj = Zi:l w(||zi||2)($ij - bj)
and BD and BL are suitable bounds.

nag_robust m_corr_user fn (g02hlc) is based on routines in ROBETH; see Marazzi (1987a).

4 References

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987a) Weights for bounded influence regression in ROBETH Cah. Rech. Doc. IUMSP, No. 3
ROB 3 Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: ucv Function

ucv must return the values of the functions v and w and their derivatives for a given value of its
argument.

Its specification is:

void ucv (double t, double *u, double *ud, double *w, double *wd,
Nag_Comm *comm)

g02hic.2 [NP3645/7]

202 — Correlation and Regression Analysis g02hlc

1: t — double Input

On entry: the argument for which the functions v and w must be evaluated.

2: u — double * Output
On exit: the value of the u function at the point t.

Constraint: u > 0.0.

3: ud — double * Output

On exit: the value of the derivative of the u function at the point t.

4: w — double * Output
On exit: the value of the w function at the point t.

Constraint: w > 0.0.

5: wd — double * Output

On exit: the value of the derivative of the w function at the point t.

6: comm — NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

3: indm — Integer Input
On entry: indicates which form of the function v will be used.
Ifindm=1,v=1.
If indm # 1, v =wu.

4: n — Integer Input
On entry: the number of observations, n.

Constraint: n > 1.

5: m — Integer Input
On entry: the number of columns of the matrix X, i.e., number of independent variables, m.

Constraint: 1 <m < n.

6: x[dim] — const double Input

Note: the dimension, dim, of the array x must be at least max(l,pdx x m) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

Where X(7,j) appears in this document, it refers to the array element
if order = Nag_ColMajor, x[(j —1) x pdx +i — 1];
if order = Nag_RowMajor, x[(i — 1) x pdx + j — 1].

On entry: X(i,7) must contain the ith observation on the jth variable, for i=1,2,...,n;
j=12...,m.

7 pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.
Constraints:

if order = Nag_ColMajor, pdx > n;

[NP3645/7] g02hic.3

g02hlc NAG C Library Manual

10:

11:

12:

13:

if order = Nag RowMajor, pdx > m.

cov[dim] — double Output
Note: the dimension, dim, of the array cov must be at least m x (m + 1)/2.

On exit: cov contains a robust estimate of the covariance matrix, C. The upper triangular part of the
matrix C is stored packed by columns (lower triangular stored by rows), C;; is returned in

cov(j x (j—1)/2+1), i < J.
a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least m x (m + 1)/2.

On entry: an initial estimate of the lower triangular real matrix A. Only the lower triangular
elements must be given and these should be stored row-wise in the array.

The diagonal elements must be # 0, and in practice will usually be > 0. If the magnitudes of the
columns of X are of the same order, the identity matrix will often provide a suitable initial value for
A. If the columns of X are of different magnitudes, the diagonal elements of the initial value of A
should be approximately inversely proportional to the magnitude of the columns of X.

Constraint: a[j x (j—1)/2+j] # 0.0 for 5=0,1,...,m — 1.

On exit: the lower triangular elements of the inverse of the matrix A, stored row-wise.

wt[n] — double Output
On exit: wt[i — 1] contains the weights, wt; = u(||z]|,), for i =1,2,...,n.

theta[m] — double Input/Output
On entry: an initial estimate of the location parameter, 6, for j=1,2,...,m.

In many cases an inital estimate of ¢; =0, for j=1,2,...,m, will be adequate. Alternatively
medians may be used as given by nag median_1var (g07dac).

On exit: theta contains the robust estimate of the location parameter, 6;, for j =1,2,...,m.

bl — double Input

On entry: the magnitude of the bound for the off-diagonal elements of S;, BL.
Suggested value: 0.9.
Constraint: bl > 0.0.

bd — double Input
On entry: the magnitude of the bound for the diagonal elements of S}, BD.

Suggested value: 0.9.

Constraint: bd > 0.0.

maxit — Integer Input
On entry: the maximum number of iterations that will be used during the calculation of A.
Suggested value: 150.

Constraint: maxit > 0.

nitmon — Integer Input
On entry: indicates the amount of information on the iteration that is printed.

If nitmon > 0, then the value of A, 6 and ¢ (see Section 7) will be printed at the first and every
nitmon iterations.

g02hic.4 [NP3645/7]

g02 — Correlation and Regression Analysis g02hlc

If nitmon < 0, then no iteration monitoring is printed.

16: outfile — char * Input

On entry: a null terminated character string giving the name of the file to which results should be
printed. If outfile = NULL or an empty string then the stdout stream is used. Note that the file
will be opened in the append mode.

17: tol — double Input

On entry: the relative precision for the final estimates of the covariance matrix. Iteration will stop
when maximum 6 (see Section 7) is less than tol.

Constraint: tol > 0.0.

18: nit — Integer * Output

On exit: the number of iterations performed.

19: comm — NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

20: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 1.

On entry, pdx = (value).
Constraint: pdx > 0.

On entry, maxit = (value).
Constraint: maxit > 0.

On entry, m = (value).
Constraint: m > 1.
NE_INT 2

On entry, pdx = (value), n = {value).
Constraint: pdx > n.

On entry, pdx = (value), m = (value).
Constraint: pdx > m.

On entry, n = (value), m = (value).
Constraint: n > m.

NE_CONST_COL

Column (value) of x has constant value.

NE_CONVERGENCE

Iterations to calculate weights failed to converge.

NE_FUN_RET_ VAL

u value returned by uev < 0.0: u((value)) = (value).

[NP3645/7] g02hic.5

g02hlc NAG C Library Manual

w value returned by uev < 0.0: w((value)) = (value).

NE_REAL

On entry, bd = (value).
Constraint: bd > 0.0.

On entry, bl = (value).
Constraint: bl > 0.0.

On entry, tol = (value).
Constraint: tol > 0.0.

NE_ZERO_DIAGONAL

On entry, diagonal element (value) of a is 0.0.

NE_ZERO SUM
The sum D3 is zero.
The sum D2 is zero.

The sum D1 is zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

On successful exit the accuracy of the results is related to the value of tol; see Section 5. At an iteration
let

(i) dl = the maximum value of |s;|
(ii) d2 = the maximum absolute change in wt(7)
(ili) d3 = the maximum absolute relative change in 0;

and let 6 = max(dl,d2,d3). Then the iterative procedure is assumed to have converged when ¢ < tol.

8 Further Comments

The existence of A will depend upon the function u (see Marazzi (1987a)); also if X is not of full rank a
value of A will not be found. If the columns of X are almost linearly related, then convergence will be
slow.

g02hlc.6 [NP3645/7]

202 — Correlation and Regression Analysis g02hlc

9 Example

A sample of 10 observations on three variables is read in along with initial values for A and theta and
parameter values for the w and w functions, ¢, and c¢,. The covariance matrix computed by
nag_robust m_corr user fn (g02hlc) is printed along with the robust estimate of 6. The function ucv
computes the Huber’s weight functions:

ut) =1, if t<c,
u(t) =%, if t>c,

and

wt)=1, if t<e¢,
w(t)=—, if t>c¢,

and their derivatives.

9.1 Program Text

/* nag_robust_m _corr_user_fn (g02hlc) Example Program.
*

* Copyright 2002 Numerical Algorithms Group.
*

* Mark 7, 2002.

*/

#include <stdio.h>
#include <nag.h>
#include <nagg02.h>
#include <nag_stdlib.h>

static void ucv(double t, double *u, double *ud, double *w, double *wd,
Nag_Comm *comm) ;

int main(void)

{

/* Scalars */

double bd, bl, tol;
Integer exit_status, i
Integer pdx;

NagError fail;
Nag_OrderType order;
Nag_Comm comm;

indm, j, k, 11, 12, m, maxit, mm, n, nit, nitmon;

—

/* Arrays */
double *a=0, *cov=0, *theta=0, *userp=0, *wt=0, *x=0;

#ifdef NAG_COLUMN_MAJOR

#define X(I,J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;

#else

#define X(I,J) x[(I-1)#*pdx + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
exit_status = 0;

Vprintf ("g02hlc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");

/* Read in the dimensions of X */
Vscanf ("$1d%1d%*["\n] ", &n, &m);

[NP3645/7] g02hlc.7

g02hlc

/* Allocate memory */
if (!(a = NAG_ALLOC (m* (m+1)/2, double)) ||
! (cov = NAG_ALLOC (m#* (m+1) /2, double)) ||
‘(theta = NAG_ALLOC(m, double)) ||
‘(userp = NAG_ALLOC(2, double)) ||
! (wt = NAG_ALLOC(n, double)) ||
(x))

= NAG_ALLOC(n * m, double)

{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;
}
#ifdef NAG_COLUMN_MAJOR
pdx = n;
#else
pdx = m;
#endif
/* Read in the X matrix */
for (i = 1; i <= n; ++i_)
{

for (3 = 1; j <= m; ++3)
Vscanf ("$1f", &X(i__,3));
Vscanf ("s*[*\n] ");
}
/* Read in the initial value of A */
mm = (m + 1) * m / 2;
for (j = 1; j <= mm; ++3)
Vscanf("%lf" &alj - 11);
Vscanf ("s*x["\n] ");

/* Read in the initial value of theta =*/
for (3 = 1; j <= m; ++3j)

Vscanf ("%1f", &thetalj - 11)
Vscanf ("s*x["\n] ");

NAG C Library Manual

/* Read in the values of the parameters of the ucv functions *x/

Vscanf ("$1fs1fs+x["\n] ", &userp[0], &userpl[l]);
/* Set the values of remaining parameters #*/
indm = 1;

bl = 0.9;
bd = 0.9;
maxit = 50;

tol = 5e-5;

/* Change nitmon to a positive value if monitoring information

* is required
*/

nitmon = 0;

comm.p = (void #*)userp;

g02hlc(order, ucv, indm, n, m, x, pdx, cov, a, wt,

theta, bl, bd, maxit, nitmon, O, tol, &nit, &comm,

&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO2hlc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf ("\n") ;

Vprintf ("g02hlc required %41d iterations to converge\n\n", nit);
Vprintf ("Robust covariance matrix\n")
12 = 0;
for (j = 1; j <= m; ++3)
{

11 = 12 + 1;

12 += j;

for (k = 11; k <= 12; ++k)

Vprintf ("%10.3f%s", covlk - 1], k%6 == 0 || k == 12 ?"\n":

g02hlc.8

[NP3645/7]

202 — Correlation and Regression Analysis g02hlc

Vprintf ("\n") ;

Vprintf ("Robust estimates of theta\n");
for (j = 1; j <= m; ++3j)
Vprintf (" %10.3f\n", thetalj - 11);

END:

if (a) NAG_FREE(a);

if (cov) NAG_FREE(cov) ;

if (theta) NAG_FREE (theta);

if (userp) NAG_FREE (userp);

if (wt) NAG_FREE (wt);

if (x) NAG_FREE(x);

return exit_status;
}
static void ucv(double t, double *u, double *ud, double *w, double *wd,
Nag_Comm *comm)
{

double t2, cu, cw;
double #*userp = (double *)comm->p;

/* Function Body */

cu = userpl0];

*u = 1.0;

*ud = 0.0

if (t !=
{

0.0)

t2 =t * t;
if (t2 > cu)
{
*u = cu / t2;
*ud = *u * -2.0 / t;
}
}
/* w function and derivative #*/
cw = userp[l];
if (£t > cw)
{
*w = cw / t;
*wd = —-(*w) / t;
}
else
{
*w = 1.0;
*wd = 0.0;
3

return;

9.2 Program Data

g02hlc Example Program Data

10 3 : N M
3.4 6.9 12.2 : X1 X2 X3
6.4 2.5 15.1
4.9 5.5 14.2
7.3 1.9 18.2
8.8 3.6 11.7
8.4 1.3 17.9
5.3 3.1 15.0
2.7 8.1 7.7
6.1 3.0 21.9
5.3 2.2 13.9 : End of X1 X2 and X3 values
1.0 0.0 1.0 0.0 0.0 1.0 : A
0.0 0.0 0.0 : THETA
4.0 2.0 : CU CwW

[NP3645/7] g02hlc.9

g02hlc NAG C Library Manual

9.3 Program Results

gO02hlc Example Program Results
g02hlc required 25 iterations to converge

Robust covariance matrix
3.278
-3.692 5.284
4.739 -6.409 11.837

Robust estimates of theta
5.700
3.864
14.704

g02hlc.10 (last) [NP3645/7]

	g02hlc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	ucv
	t
	t
	u
	ud
	w
	wd
	comm

	indm
	n
	m
	x
	pdx
	cov
	a
	wt
	theta
	bl
	bd
	maxit
	nitmon
	outfile
	tol
	nit
	comm
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_CONST_COL
	NE_CONVERGENCE
	NE_FUN_RET_VAL
	NE_REAL
	NE_ZERO_DIAGONAL
	NE_ZERO_SUM
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_NOT_WRITE_FILE
	NE_NOT_CLOSE_FILE
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

