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1 Scope of the Chapter

This chapter provides facilities for investigating and modelling the statistical structure of series of
observations collected at equally spaced points in time. The models may then be used to forecast the
series.

The chapter covers the following models and approaches.

1. Univariate time series analysis, including autocorrelation functions and autoregressive moving average
(ARMA) models.

2. Univariate spectral analysis.

3. Transfer function (multi-input) modelling, in which one time series is dependent on other time series.

4. Bivarate spectral methods including coherency, gain and input response functions.

5. Descriptive methods for multivariate time series.

6. Kalman filter models.

7. GARCH models for volatility.

2 Background to the Problems

2.1 Univariate Analysis

Let the given time series be x1; x2; . . . ; xn, where n is its length. The structure which is intended to be
investigated, and which may be most evident to the eye in a graph of the series, can be broadly described
as

(a) trends – linear or possibly higher-order polynomial;

(b) seasonal patterns, associated with fixed integer seasonal periods. The presence of such seasonality and
the period will normally be known a priori. The pattern may be fixed, or slowly varying from one
season to another;

(c) cycles, or waves of stable amplitude and period p (from peak to peak). The period is not necessarily
integer, the corresponding absolute frequency (cycles/time unit) being f ¼ 1=p and angular frequency
! ¼ 2�f . The cycle may be of pure sinusoidal form like sinð!tÞ, or the presence of higher harmonic
terms may be indicated, e.g., by asymmetry in the wave form;

(d) quasi-cycles, i.e., waves of fluctuating period and amplitude; and

(e) irregular statistical fluctuations and swings about the overall mean or trend.

Trends, seasonal patterns, and cycles might be regarded as deterministic components following fixed
mathematical equations, and the quasi-cycles and other statistical fluctuations as stochastic and describable
by short-term correlation structure. For a finite data set it is not always easy to discriminate between these
two types, and a common description using the class of autoregressive integrated moving-average
(ARIMA) models is now widely used. The form of these models is that of difference equations (or
recurrence relations) relating present and past values of the series. The user is referred to Box and Jenkins
(1976) for a thorough account of these models and how to use them. We follow their notation and outline
the recommended steps in ARIMA model building for which functions are available.

2.1.1 Transformations

If the variance of the observations in the series is not constant across the range of observations it may be
useful to apply a variance-stabilizing transformation to the series. A common situation is for the variance
to increase with the magnitude of the observations and in this case typical transformations used are the log
or square root transformation. A range–mean or standard deviation–mean plot provides a quick and easy
way of detecting non-constant variance and of choosing, if required, a suitable transformation. This is a
plot of the range or standard deviation of successive groups of observations against their means.

2.1.2 Differencing operations

These may be used to simplify the structure of a time series.
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First-order differencing, i.e., forming the new series

rxt ¼ xt � xt�1

will remove a linear trend. First-order seasonal differencing

rsxt ¼ xt � xt�s

eliminates a fixed seasonal pattern.

These operations reflect the fact that it is often appropriate to model a time series in terms of changes from
one value to another. Differencing is also therefore appropriate when the series has something of the
nature of a random walk, which is by definition the accumulation of independent changes.

Differencing may be applied repeatedly to a series, giving

wt ¼ rdrD
s xt

where d and D are the orders of differencing. The derived series wt will be shorter, of length
N ¼ n� d� s�D, and extend for t ¼ 1þ dþ s�D; . . . ; n.

2.1.3 Sample autocorrelations

Given that a series has (possibly as a result of simplifying by differencing operations) a homogeneous
appearance throughout its length, fluctuating with approximately constant variance about an overall mean
level, it is appropriate to assume that its statistical properties are stationary. For most purposes the
correlations �k between terms xt; xtþk or wt; wtþk separated by lag k give an adequate description of the
statistical structure and are estimated by the sample autocorrelation function (acf) rk, for k ¼ 1; 2; . . ..

As described by Box and Jenkins (1976), these may be used to indicate which particular ARIMA model
may be appropriate.

2.1.4 Partial autocorrelations

The information in the autocorrelations �k may be presented in a different light by deriving from them the
coefficients of the partial autocorrelation function (pacf) �k;k, for k ¼ 1; 2; . . .. �k;k measures the

correlation between xt and xtþk conditional upon the intermediate values xtþ1; xtþ2; . . . ; xtþk�1. The

corresponding sample values �̂�k;k give further assistance in the selection of ARIMA models.

Both acf and pacf may be rapidly computed, particularly in comparison with the time taken to estimate
ARIMA models.

2.1.5 Finite lag predictor coefficients and error variances

The partial autocorrelation coefficient �k;k is determined as the final parameter in the minimum variance

predictor of xt in terms of xt�1; xt�2; . . . ; xt�k,

xt ¼ �k;1xt�1 þ �k;2xt�2 þ � � � þ �k;kxt�k þ ek;t

where ek;t is the prediction error, and the first subscript k of �k;i and ek;t emphasizes the fact that the

parameters will alter as k increases. Moderately good estimates �̂�k;i of �k;i are obtained from the sample

acf, and after calculating the pacf up to lag L, the successive values v1; v2; . . . ; vL of the prediction error
variance estimates, vk ¼ varðek;tÞ, are available, together with the final values of the coefficients

�̂�k;1; �̂�k;2; . . . ; �̂�k;L. If xt has non-zero mean, �xx, it is adequate to use xt � �xx in place of xt in the prediction

equation.

Although Box and Jenkins (1976) do not place great emphasis on these prediction coefficients, their use is
advocated for example by Akaike (1971), who recommends selecting an optimal order of the predictor as

the lag for which the final prediction error (FPE) criterion ð1þ k=nÞð1� k=nÞ�1vk is a minimum.

2.1.6 ARIMA models

The correlation structure in stationary time series may often be represented by a model with a small
number of parameters belonging to the autoregressive moving-average (ARMA) class. If the stationary
series wt has been derived by differencing from the original series xt, then xt is said to follow an ARIMA
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model. Taking wt ¼ rdxt, the (non-seasonal) ARIMA ðp; d; qÞ model with p autoregressive parameters
�1; �2; . . . ; �p and q moving-average parameters �1; �2; . . . ; �q, represents the structure of wt by the

equation

wt ¼ �1wt�1 þ � � � þ �pwt�p þ at � �1at�1 � � � � � �qat�q; ð1Þ

where at is an uncorrelated series (white noise) with mean 0 and constant variance �2a. If wt has a non-
zero mean c, then this is allowed for by replacing wt; wt�1; . . . by wt � c; wt�1 � c; . . . in the model.
Although c is often estimated by the sample mean of wt this is not always optimal.

A series generated by this model will only be stationary provided restrictions are placed on �1; �2; . . . ; �p
to avoid unstable growth of wt. These are called stationarity constraints. The series at may also be
usefully interpreted as the linear innovations in xt (and in wt), i.e., the error if xt were to be predicted
using the information in all past values xt�1; xt�2; . . ., provided also that �1; �2; . . . ; �q satisfy invertibility

constraints. This allows the series at to be regenerated by rewriting the model equation as

at ¼ wt � �1wt�1 � � � � � �pwt�p þ �1at�1 þ � � � þ �qat�q: ð2Þ

For a series with short-term correlation only, i.e., rk is not significant beyond some low lag q (see Box and
Jenkins (1976) for the statistical test), then the pure moving-average model MAðqÞ is appropriate, with no
autoregressive parameters, i.e., p ¼ 0.

Autoregressive parameters are appropriate when the acf pattern decays geometrically, or with a damped

sinusoidal pattern which is associated with quasi-periodic behaviour in the series. If the sample pacf �̂�k;k
is significant only up to some low lag p, then a pure autoregressive model ARðpÞ is appropriate, with
q ¼ 0. Otherwise moving-average terms will need to be introduced, as well as autoregressive terms.

The seasonal ARIMA ðp; d; q; P ;D;Q; sÞ model allows for correlation at lags which are multiples of the

seasonal period s. Taking wt ¼ rdrD
s xt, the series is represented in a two-stage manner via an

intermediate series et:

wt ¼ �1wt�s þ � � � þ �Pwt�s�P þ et ��1et�s � � � � ��Qet�s�Q ð3Þ

et ¼ �1et�1 þ � � � þ �pet�p þ at � �1at�1 � � � � � �qat�q ð4Þ

where �i, �i are the seasonal parameters and P , Q are the corresponding orders. Again, wt may be
replaced by wt � c.

2.1.7 ARIMA model estimation

In theory, the parameters of an ARIMA model are determined by a sufficient number of autocorrelations
�1; �2; . . .. Using the sample values r1; r2; . . . in their place it is usually (but not always) possible to solve
for the corresponding ARIMA parameters.

These are rapidly computed but are not fully efficient estimates, particularly if moving-average parameters
are present. They do provide useful preliminary values for an efficient but relatively slow iterative
method of estimation. This is based on the least-squares principle by which parameters are chosen to
minimize the sum of squares of the innovations at, which are regenerated from the data using (2), or the
reverse of (3) and (4) in the case of seasonal models.

Lack of knowledge of terms on the right-hand side of (2), when t ¼ 1; 2; . . . ;maxðp; qÞ, is overcome by
introducing q unknown series values w0; w1; . . . ; w1�q which are estimated as nuisance parameters, and

using correction for transient errors due to the autoregressive terms. If the data w1; w2; . . . ; wN ¼ w is
viewed as a single sample from a multivariate Normal density whose covariance matrix V is a function of
the ARIMA model parameters, then the exact likelihood of the parameters is

�1
2
log jV j � 1

2
wTV �1w:

The least-squares criterion as outlined above is equivalent to using the quadratic form

QF ¼ wTV �1w

as an objective function to be minimized. Neglecting the term �1
2
log jV j yields estimates which differ

very little from the exact likelihood except in small samples, or in seasonal models with a small number of
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whole seasons contained in the data. In these cases bias in moving-average parameters may cause them to
stick at the boundary of their constraint region, resulting in failure of the estimation method.

Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

The model residuals, âat, are the innovations resulting from the estimation and are usually examined for the
presence of autocorrelation as a check on the adequacy of the model.

2.1.8 ARIMA model forecasting

An ARIMA model is particularly suited to extrapolation of a time series. The model equations are simply
used for t ¼ nþ 1; nþ 2; . . . replacing the unknown future values of at by zero. This produces future
values of wt, and if differencing has been used this process is reversed (the so-called integration part of
ARIMA models) to construct future values of xt.

Forecast error limits are easily deduced.

This process requires knowledge only of the model orders and parameters together with a limited set of the
terms at�i; et�i; wt�i; xt�i which appear on the right-hand side of the models (3) and (4) (and the
differencing equations) when t ¼ n. It does not require knowledge of the whole series.

We call this the state set. It is conveniently constituted after model estimation. Moreover, if new
observations xnþ1; xnþ2; . . . come to hand, then the model equations can easily be used to update the state
set before constructing forecasts from the end of the new observations. This is particularly useful when
forecasts are constructed on a regular basis. The new innovations anþ1; anþ2; . . . may be compared with
the residual standard deviation, �a, of the model used for forecasting, as a check that the model is
continuing to forecast adequately.

2.2 Univariate Spectral Analysis

In describing a time series using spectral analysis the fundamental components are taken to be sinusoidal
waves of the form R cosð!tþ �Þ, which for a given angular frequency !, 0 � ! � �, is specified by its
amplitude R > 0 and phase �, 0 � � < 2�. Thus in a time series of n observations it is not possible to
distinguish more than n=2 independent sinusoidal components. The frequency range 0 � ! � � is limited
to a shortest wavelength of two sampling units because any wave of higher frequency is indistinguishable
upon sampling (or is aliased with) a wave within this range. Spectral analysis follows the idea that for a
series made up of a finite number of sine waves the amplitude of any component at frequency ! is given
to order 1=n by

R2 ¼ 1

n2

�� Xn
t¼1

xte
i!t

�����
�����
2

:

2.2.1 The sample spectrum

For a series x1; x2; . . . ; xn this is defined as

f�ð!Þ ¼ 1

2n�

�� Xn
t¼1

xte
i!t

�����
�����
2

;

the scaling factor now being chosen in order that

2

Z �

0

f�ð!Þd! ¼ �2x;

i.e., the spectrum indicates how the sample variance (�2x) of the series is distributed over components in the
frequency range 0 � ! � �.

It may be demonstrated that f�ð!Þ is equivalently defined in terms of the sample autocorrelation function
(acf) rk of the series as
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f�ð!Þ ¼ 1

2�

��
c0 þ 2

Xn�1

k¼1

ck cos k!

! 
;

where ck ¼ �2xrk are the sample autocovariance coefficients.

If the series xt does contain a deterministic sinusoidal component of amplitude R, this will be revealed in

the sample spectrum as a sharp peak of approximate width �=n and height ðn=2�ÞR2. This is called the

discrete part of the spectrum, the variance R2 associated with this component being in effect concentrated
at a single frequency.

If the series xt has no deterministic components, i.e., is purely stochastic being stationary with acf rk, then
with increasing sample size the expected value of f�ð!Þ converges to the theoretical spectrum – the
continuous part

fð!Þ ¼ 1

2�

��
�0 þ 2

X1
k¼1

�k cosð!kÞ
! 
;

where �k are the theoretical autocovariances.

The sample spectrum does not however converge to this value but at each frequency point fluctuates about
the theoretical spectrum with an exponential distribution, being independent at frequencies separated by an
interval of 2�=n or more. Various devices are therefore employed to smooth the sample spectrum and
reduce its variability. Much of the strength of spectral analysis derives from the fact that the error limits
are multiplicative so that features may still show up as significant in a part of the spectrum which has a
generally low level, whereas they are completely masked by other components in the original series. The
spectrum can help to distinguish deterministic cyclical components from the stochastic quasi-cycle
components which produce a broader peak in the spectrum. (The deterministic components can be
removed by regression and the remaining part represented by an ARIMA model.)

A large discrete component in a spectrum can distort the continuous part over a large frequency range
surrounding the corresponding peak. This may be alleviated at the cost of slightly broadening the peak by
tapering a portion of the data at each end of the series with weights which decay smoothly to zero. It is
usual to correct for the mean of the series and for any linear trend by simple regression, since they would
similarly distort the spectrum.

2.2.2 Spectral smoothing by lag window

The estimate is calculated directly from the sample covariances ck as

fð!Þ ¼ 1

2�

��
c0 þ 2

XM�1

k¼1

wkck cos k!

! 
;

the smoothing being induced by the lag window weights wk which extend up to a truncation lag M
which is generally much less than n. The smaller the value of M, the greater the degree of smoothing, the
spectrum estimates being independent only at a wider frequency separation indicated by the bandwidth b
which is proportional to 1=M. It is wise, however, to calculate the spectrum at intervals appreciably less
than this. Although greater smoothing narrows the error limits, it can also distort the spectrum, particularly
by flattening peaks and filling in troughs.

2.2.3 Direct spectral smoothing

The unsmoothed sample spectrum is calculated for a fine division of frequencies, then averaged over
intervals centred on each frequency point for which the smoothed spectrum is required. This is usually at
a coarser frequency division. The bandwidth corresponds to the width of the averaging interval.

2.3 Linear Lagged Relationships Between Time Series

We now consider the context in which one time series, called the dependent or output series y1; y2; . . . ; yn,
is believed to depend on one or more explanatory or input series, e.g., x1; x2; . . . ; xn. This dependency
may follow a simple linear regression, e.g.,
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yt ¼ vxt þ nt

or more generally may involve lagged values of the input

yt ¼ v0xt þ v1xt�1 þ v2xt�2 þ � � � þ nt:

The sequence v0; v1; v2; is called the impulse response function (IRF) of the relationship. The term nt
represents that part of yt which cannot be explained by the input, and it is assumed to follow a univariate
ARIMA model. We call nt the (output) noise component of yt, and it includes any constant term in the
relationship. It is assumed that the input series, xt, and the noise component, nt, are independent.

The part of yt which is explained by the input is called the input component zt:

zt ¼ v0xt þ v1xt�1 þ v2xt�2 þ � � �
so yt ¼ zt þ nt.

The eventual aim is to model both these components of yt on the basis of observations of y1; y2; . . . ; yn
and x1; x2; . . . ; xn. In applications to forecasting or control both components are important. In general
there may be more than one input series, e.g., x1;t and x2;t, which are assumed to be independent and

corresponding components z1;t and z2;t, so

yt ¼ z1;t þ z2;t þ nt:

2.3.1 Transfer function models

In a similar manner to that in which the structure of a univariate series may be represented by a finite-
parameter ARIMA model, the structure of an input component may be represented by a transfer function
(TF) model with delay time b, p autoregressive-like parameters �1; �2; . . . ; �p and q þ 1 moving-average-

like parameters !0; !1; . . . ; !q:

zt ¼ �1zt�1 þ �2zt�2 þ � � � þ �pzt�p þ !0xt�b � !1xt�b�1 � � � � � !qxt�b�q: ð5Þ

If p > 0 this represents an IRF which is infinite in extent and decays with geometric and/or sinusoidal
behaviour. The parameters �1; �2; . . . ; �p are constrained to satisfy a stability condition identical to the

stationarity condition of autoregressive models. There is no constraint on !0; !1; . . . ; !q.

2.3.2 Cross-correlations

An important tool for investigating how an input series xt affects an output series yt is the sample cross-
correlation function (CCF) rxyðkÞ, for k ¼ 0; 1; 2; . . . between the series. If xt and yt are (jointly)

stationary time series this is an estimator of the theoretical quantity

�xyðkÞ ¼ corrðxt; ytþkÞ:

The sequence ryxðkÞ, for k ¼ 0; 1; 2; . . ., is distinct from rxyðkÞ, though it is possible to interpret

ryxðkÞ ¼ rxyð�kÞ:

When the series yt and xt are believed to be related by a transfer function model, the CCF is determined
by the IRF v0; v1; v2; . . . and the autocorrelation function of the input xt.

In the particular case when xt is an uncorrelated series or white noise (and is uncorrelated with any other
inputs):

�xyðkÞ / vk

and the sample CCF can provide an estimate of vk:

~vvk ¼ ðsy=sxÞrxyðkÞ

where sy and sx are the sample standard deviations of yt and xt, respectively.

In theory the IRF coefficients vb; . . . ; vbþpþq determine the parameters in the TF model, and using ~vvk to

estimate ~vvk it is possible to solve for preliminary estimates of �1; �2; . . . ; �p, !0; !1; . . . ; !q.
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2.3.3 Prewhitening or filtering by an ARIMA model

In general an input series xt is not white noise, but may be represented by an ARIMA model with
innovations or residuals at which are white noise. If precisely the same operations by which at is
generated from xt are applied to the output yt to produce a series bt, then the transfer function relationship
between yt and xt is preserved between bt and at. It is then possible to estimate

~vvk ¼ ðsb=saÞrabðkÞ:
The procedure of generating at from xt (and bt from yt) is called prewhitening or filtering by an ARIMA
model. Although at is necessarily white noise, this is not generally true of bt.

2.3.4 Multi-input model estimation

The term multi-input model is used for the situation when one output series yt is related to one or more
input series xj;t, as described in Section 2.3. If for a given input the relationship is a simple linear

regression, it is called a simple input; otherwise it is a transfer function input. The error or noise term
follows an ARIMA model.

Given that the orders of all the transfer function models and the ARIMA model of a multi-input model
have been specified, the various parameters in those models may be (simultaneously) estimated.

The procedure used is closely related to the least-squares principle applied to the innovations in the
ARIMA noise model.

The innovations are derived for any proposed set of parameter values by calculating the response of each
input to the transfer functions and then evaluating the noise nt as the difference between this response
(combined for all the inputs) and the output. The innovations are derived from the noise using the
ARIMA model in the same manner as for a univariate series, and as described in Section 2.1.5.

In estimating the parameters, consideration has to be given to the lagged terms in the various model
equations which are associated with times prior to the observation period, and are therefore unknown. The
function descriptions provide the necessary detail as to how this problem is treated.

Also, as described in Section 2.1.6 the sum of squares criterion

S ¼
X

a2t

is related to the quadratic form in the exact log-likelihood of the parameters:

�1
2
log jV j � 1

2
wTV �1w:

Here w is the vector of appropriately differenced noise terms, and

wTV �1w ¼ S=�2a;

where �2a is the innovation variance parameter.

The least-squares criterion is therefore identical to minimization of the quadratic form, but is not identical

to exact likelihood. Because V may be expressed as M�2a, where M is a function of the ARIMA model

parameters, substitution of �2a by its maximum likelihood estimator yields a concentrated (or profile)
likelihood which is a function of

jMj1=NS:
N is the length of the differenced noise series w, and jMj ¼ detM.

Use of the above quantity, called the deviance, D, as an objective function is preferable to the use of S
alone, on the grounds that it is equivalent to exact likelihood, and yields estimates with better properties.
However, there is an appreciable computational penalty in calculating D, and in large samples it differs
very little from S, except in the important case of seasonal ARIMA models where the number of whole
seasons within the data length must also be large.

The user is given the option of taking the objective function to be either S or D, or a third possibility, the
marginal likelihood. This is similar to exact likelihood but can counteract bias in the ARIMA model due
to the fitting of a large number of simple inputs.
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Approximate standard errors of the parameter estimates and the correlations between them are available
after estimation.

The model residuals âat are the innovations resulting from the estimation, and they are usually examined for
the presence of either autocorrelation or cross-correlation with the inputs. Absence of such correlation
provides some confirmation of the adequacy of the model.

2.3.5 Multi-input model forecasting

A multi-input model may be used to forecast the output series provided future values (possibly forecasts)
of the input series are supplied.

Construction of the forecasts requires knowledge only of the model orders and parameters, together with a
limited set of the most recent variables which appear in the model equations. This is called the state set.
It is conveniently constituted after model estimation. Moreover, if new observations ynþ1; ynþ2; . . . of the
output series and xnþ1; xnþ2; . . . of (all) the independent input series become available, then the model
equations can easily be used to update the state set before constructing forecasts from the end of the new
observations. The new innovations anþ1; anþ2; . . . generated in this updating may be used to monitor the
continuing adequacy of the model.

2.3.6 Transfer function model filtering

In many time series applications it is desired to calculate the response (or output) of a transfer function
model for a given input series.

Smoothing, detrending, and seasonal adjustment are typical applications. The user must specify the orders
and parameters of a transfer function model for the purpose being considered. This may then be applied to
the input series.

Again, problems may arise due to ignorance of the input series values prior to the observation period. The
transient errors which can arise from this cause may be substantially reduced by using ‘backforecasts’ of
these unknown observations.

2.4 Multivariate Time Series

Multi-input modelling represents one time series as dependent on several input time series. In some
circumstances it may be more appropriate to consider the relationships between all the series
simultaneously. The basic tools used in examining multiple time series are cross-correlation matrices,
which are the multivariate extension of the autocorrelation function, and three multivariate versions of the
partial autocorrelation function: multiple squared partial autocorrelations, partial lagcorrelation matrices and
partical autoregression matrices.

It is assumed that the time series have been differenced if necessary, and that they are jointly stationary.
The lagged correlations between all possible pairs of series, i.e.,

�ijl ¼ corrðxi;t; xj;tþlÞ

are then taken to provide an adequate description of the statistical relationships between the series. These
quantities are estimated by sample auto- and cross-correlations rijl. For each l these may be viewed as

elements of a (lagged) autocorrelation matrix.

Thus consider the vector process xt (with elements xit) and lagged autocovariance matrices �l with

elements of �i�j�ijl where �2i ¼ varðxi;tÞ. Correspondingly, �l is estimated by the matrix Cl with

elements sisjrijl where s
2
i is the sample variance of xit.

The correlation matrices provide a description of the joint statistical properties of the series. It is also
possible to calculate matrix quantities which are closely analogous to the partial autocorrelations of
univariate series (see Section 2.1.3). Wei (1990) discusses both the partial autoregression matrices
proposed by Tiao and Box (1981) and partial lag correlation matrices.

In the univariate case the partial autocorrelation function (pacf) between xt and xtþl is the correlation
coefficient between the two after removing the linear dependence on each of the intervening variables
xtþ1; xtþ2; . . . ; xtþl�1. This partial autocorrelation may also be obtained as the last regression coefficient
associated with xt when regressing xtþl on its l lagged variables xtþl�1; xtþl�2; . . . ; xt. Tiao and Box
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(1981) extended this method to the multivariate case to define the partial autoregression matrix. Heyse and
Wei (1985) also extended the univariate definition of the pacf to derive the correlation matrix between the
vectors xt and xtþl after removing the linear dependence on each of the intervening vectors
xtþ1; xtþ2; . . . ; xtþl�1, the partial lag correlation matrix.

Note that the partial lag correlation matrix is a correlation coefficient matrix since each of its elements is a
properly normalised correlation coefficient. This is not true of the partial autoregression matrices (except
in the univariate case for which the two types of matrix are the same). The partial lag correlation matrix at
lag 1 also reduces to the regular correlation matrix at lag 1; this is not true of the partial autoregression
matrices (again except in the univariate case).

The partial autoregression matrices may be found by solving a multivariate version of the Yule–Walker
equations to find the autoregression matrices, using the final regression matrix coefficient as the partial
autoregression matrix at that particular lag.

The basis of these calculations is a multivariate autoregressive model:

xt ¼ �l;1xt�1 þ � � � þ �l;lxt�l þ el;t

where �l;1; �l;2; . . . ; �l;l are matrix coefficients, and el;t is the vector of errors in the prediction. These

coefficients may be rapidly computed using a recursive technique which requires, and simultaneously
furnishes, a backward prediction equation:

xt�l�1 ¼  l;1xt�l þ  l;2xt�lþ1 þ � � � þ  l;lxt�1 þ fl;t

(in the univariate case  l;i ¼ �l;i).

The forward prediction equation coefficients, �l;i, are of direct interest, together with the covariance matrix

Dl of the prediction errors el;t. The calculation of these quantities for a particular maximum equation lag

l ¼ L involves calculation of the same quantities for increasing values of l ¼ 1; 2; . . . ; L.

The quantities vl ¼ detDl= det�0 may be viewed as generalized variance ratios, and provide a measure of
the efficiency of prediction (the smaller the better). The reduction from vl�1 to vl which occurs on
extending the order of the predictor to l may be represented as

vl ¼ vl�1ð1� �2l Þ

where �2l is a multiple squared partial autocorrelation coefficient associated with k2 degrees of freedom.

Sample estimates of all the above quantities may be derived by using the series covariance matrices Cl, for
l ¼ 1; 2; . . . ; L, in place of �l. The best lag for prediction purposes may be chosen as that which yields
the minimum final prediction error (FPE) criterion:

FPEðlÞ ¼ vl �
ð1þ lk2=nÞ
ð1� lk2=nÞ

:

An alternative method of estimating the sample partial autoregression matrices is by using multivariate
least-squares to fit a series of multivariate autoregressive models of increasing order.

2.5 Cross-spectral Analysis

The relationship between two time series may be investigated in terms of their sinusoidal components at
different frequencies. At frequency ! a component of yt of the form

Ryð!Þ cosð!t� �yð!ÞÞ

has its amplitude Ryð!Þ and phase lag �yð!Þ estimated by

Ryð!Þei�yð!Þ ¼ 1
n

Xn
t¼1

yte
i!t

and similarly for xt. In the univariate analysis only the amplitude was important – in the cross analysis the
phase is important.
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2.5.1 The sample cross-spectrum

This is defined by

f�xyð!Þ ¼
1

2�n

Xn
t¼1

yte
i!t

! Xn
t¼1

xte
�i!t

! 
:

It may be demonstrated that this is equivalently defined in terms of the sample CCF, rxyðkÞ, of the series as

f�xyð!Þ ¼
1

2�

Xðn�1Þ

�ðn�1Þ
cxyðkÞei!k

where cxyðkÞ ¼ sxsyrxyðkÞ is the cross-covariance function.

2.5.2 The amplitude and phase spectrum

The cross-spectrum is specified by its real part or cospectrum cf�ð!Þ and imaginary part or quadrature

spectrum qf�ð!Þ, but for the purpose of interpretation the cross-amplitude spectrum and phase spectrum
are useful:

A�ð!Þ ¼ jf�xyð!Þj; ��ð!Þ ¼ argðf�xyð!ÞÞ:

If the series xt and yt contain deterministic sinusoidal components of amplitudes Ry;Rx and phases �y; �x
at frequency !, then A�ð!Þ will have a peak of approximate width �=n and height ðn=2�ÞRyRx at that

frequency, with corresponding phase ��ð!Þ ¼ �y � �x. This supplies no information that cannot be

obtained from the two series separately. The statistical relationship between the series is better revealed

when the series are purely stochastic and jointly stationary, in which case the expected value of f�xyð!Þ
converges with increasing sample size to the theoretical cross-spectrum

fxyð!Þ ¼
1

2�

X1
�1

�xyðkÞei!k

where �xyðkÞ ¼ covðxt; ytþkÞ. The sample spectrum, as in the univariate case, does not, however,

converge to the theoretical spectrum without some form of smoothing which either implicitly (using a lag

window) or explicitly (using a frequency window) averages the sample spectrum f�xyð!Þ over wider bands

of frequency to obtain a smoothed estimate f̂fxyð!Þ.

2.5.3 The coherency spectrum

If there is no statistical relationship between the series at a given frequency, then fxyð!Þ ¼ 0, and the

smoothed estimate f̂fxyð!Þ, will be close to 0. This is assessed by the squared coherency between the

series:

ŴWð!Þ ¼
jf̂fxyð!Þj2

f̂fxxð!Þf̂fyyð!Þ

where f̂fxxð!Þ is the corresponding smoothed univariate spectrum estimate for xt, and similarly for yt. The
coherency can be treated as a squared multiple correlation. It is similarly invariant in theory not only to
simple scaling of xt and yt, but also to filtering of the two series, and provides a useful test statistic for the
relationship between autocorrelated series. Note that without smoothing,

jf�xyð!Þj2 ¼ f�xxð!Þf�yyð!Þ;

so the coherency is 1 at all frequencies, just as a correlation is 1 for a sample of size 1. Thus smoothing is
essential for cross-spectrum analysis.

2.5.4 The gain and noise spectrum

If yt is believed to be related to xt by a linear lagged relationship as in Section 2.3, i.e.,

yt ¼ v0xt þ v1xt�1 þ v2xt�2 þ � � � þ nt;
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then the theoretical cross-spectrum is

fxyð!Þ ¼ V ð!Þfxxð!Þ

where

V ð!Þ ¼ Gð!Þei�ð!Þ ¼
X1
k¼0

vke
ik!

is called the frequency response of the relationship.

Thus if xt were a sinusoidal wave at frequency ! (and nt were absent), yt would be similar but multiplied
in amplitude by Gð!Þ and shifted in phase by �ð!Þ. Furthermore, the theoretical univariate spectrum

fyyð!Þ ¼ Gð!Þ2fxxð!Þ þ fnð!Þ

where nt, with spectrum fnð!Þ, is assumed independent of the input xt.

Cross-spectral analysis thus furnishes estimates of the gain

ĜGð!Þ ¼ jf̂fxyð!Þj=f̂fxxð!Þ

and the phase

�̂�ð!Þ ¼ arg f̂fxyð!Þ
��
:

From these representations of the estimated frequency response V̂V ð!Þ, parametric TF models may be
recognised and selected. The noise spectrum may also be estimated as

f̂fyjxð!Þ ¼ f̂fyyð!Þ 1� ŴWð!Þ
��

– a formula which reflects the fact that in essence a regression is being performed of the sinusoidal
components of yt on those of xt over each frequency band.

Interpretation of the frequency response may be aided by extracting from V̂V ð!Þ estimates of the IRF v̂vk. It
is assumed that there is no anticipatory response between yt and xt, i.e., no coefficients vk with
k ¼ �1;�2 are needed (their presence might indicate feedback between the series).

2.5.5 Cross-spectrum smoothing by lag window

The estimate of the cross-spectrum is calculated from the sample cross-variances as

f̂fxyð!Þ ¼
1

2�

XMþS

�MþS
wk�ScxyðkÞei!k:

The lag window wk extends up to a truncation lag M as in the univariate case, but its centre is shifted by
an alignment lag S usually chosen to coincide with the peak cross-correlation. This is equivalent to an
alignment of the series for peak cross-correlation at lag 0, and reduces bias in the phase estimation.

The selection of the truncation lag M, which fixes the bandwidth of the estimate, is based on the same
criteria as for univariate series, and the same choice of M and window shape should be used as in
univariate spectrum estimation to obtain valid estimates of the coherency, gain etc., and test statistics.

2.5.6 Direct smoothing of the cross-spectrum

The computations are exactly as for smoothing of the univariate spectrum except that allowance is made
for an implicit alignment shift S between the series.

2.6 Kalman Filters

Kalman filtering provides a method for the analysis of multi-dimensional time series. The underlying
model is:
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Xtþ1 ¼ AtXt þBtWt

Y t ¼ CtXt þ V t

where Xt is the unobserved state vector, Y t is the observed measurement vector, Wi is the process noise,
V i is the measurement noise, Ai is the system state transition matrix, Bi is the system input weight matrix,
Ci is the system output weight matrix and Di is the control matrix (where the subscript i refers to the
value of the appropriate quantity at time i).

The vectors Xi, Y i, Ui and Wi are of dimension n, p, r and m, respectively. The matrices Ai, Bi, Ci and
Di are of dimension n by n, n by m, p by n and n by r, respectively.

Here the process noise and the measurement noise sequences are assumed to be uncorrelated and have zero
mean. This implies that:

EfWig ¼ 0 EfV ig ¼ 0 and EfWiV
T
i g ¼ 0;

and the covariance matrices are

EfWiW
T
i g ¼ Qi EfV iV

T
i g ¼ Ri

where the operator E denotes the ‘expectation value’, and Qi and Ri are positive definite matrices. At
instant i, Qi is the process noise covariance matrix whilst Ri is the measurement noise covariance matrix.
[Note that in the case of the information filter the first condition is relaxed, i.e., the mean of the process
noise may be non-zero.]

If the system matrices Ai, Bi, Ci, Di and also the covariance matrices Qi, Ri are known then Kalman
filtering can be used to compute the minimum variance estimate of the stochastic variable Xi estimated
from the observed values Y 1 to Y j

X̂Xijj ¼ X̂XijY 1���Y j
: ð6Þ

When j ¼ i the above estimate is called the filtered estimate, and when j ¼ i� 1 it is known as the one-
step predicted estimate, or simply the predicted estimate.

Kalman filtering uses a recursive method which involves computing the state covariance matrices Piji and/

or Piji�1 and the estimates X̂Xiji and/or X̂Xiji�1 from their previous values for i ¼ 1; 2; . . ..

If the covariance of the initial state X0 (represented by P 0j�1) is known, and the mean of the initial state X

(represented by X0j�1) is given then the following recurrence relations provide the required estimates.

Hi ¼ Ri þ CiP iji�1C
T
i ð7Þ

Ki ¼ Piji�1C
T
i H

�1
i ð8Þ

Piji ¼ ½I �KiCi�Piji�1 ð9Þ

X̂Xiji ¼ X̂Xiji�1 þKi�i ð10Þ

where the one step ahead prediction error is given by �i ¼ Y i � CiX̂Xiji�1

Piþ1ji ¼ AiP ijiA
T
i þBiQiB

T
i ð11Þ

X̂Xiþ1ji ¼ AiX̂Xiji þDiUi ð12Þ

where Ki is referred to as the Kalman gain matrix and Hi contains the covariance matrix of the prediction
errors �i. It can be seen that equations (7), (9) and (11) define the recursion involving the covariance
matrices Piji�1; P iji and Piþ1ji. These matrices are positive semidefinite and can therefore be factorised

into their Cholesky (‘square root’) factors. Equations (9) and (10) yielding X̂Xiji and Piji from X̂Xiji�1 and

Piji�1 are termed measurement-update equations, while equations (11) and (12) yielding X̂Xiþ1ji and Pijiþ1

from X̂Xiji and Piji are known as time-update equations.
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2.6.1 The information filter

An alternative set of Kalman filter equations can be constructed which use the inverse of the covariance

matrices. These matrices (e.g., P�1
iþ1ji) are also positive semidefinite and are termed information matrices.

Although the information filter has the disadvantage that it requires the inverses A�1
i and R�1

i to be
computed, it is preferable to the covariance filter in situations where there is no (very little) information
concerning the initial state of the system. In these circumstances the covariance filter will fail because the
initial state covariance matrix P 0j�1 is infinite (very large), whilst the corresponding information filter

initial state P�1
0j�1 ¼ 0 (very small) incurs no such difficulties.

The information filter recursion (with Di ¼ 0) is described by the following equations

P�1
iþ1ji ¼ ½I �NiB

T
i �Mi ð13Þ

P�1
iþ1jiþ1 ¼ P�1

iþ1ji þ CT
iþ1R

�1
iþ1Ciþ1 ð14Þ

where Mi ¼ A�1
i

�� T
P�1
iji A

�1
i

and Ni ¼MiBi½Q�1
i þBT

i MiBi��1

âaiþ1ji ¼ ½I �NiB
T
i � A�1

i

�� T
âaiji ð15Þ

âaiþ1jiþ1 ¼ âaiþ1ji þ CT
iþ1R

�1
iþ1Y iþ1 ð16Þ

where âaiþ1ji ¼ P�1
iþ1jiX̂Xiþ1ji ð17Þ

and âaiþ1jiþ1 ¼ P�1
iþ1jiþ1X̂Xiþ1jiþ1: ð18Þ

2.6.2 Square root filters

The use of the Kalman filter equations previously given can result in covariance matrices which are not
positive semidefinite. This may happen if some of the measurements are very accurate and numerical
computation then involves ill-conditioned quantities. Square root filtering is a technique which overcomes
this difficulty by propagating the covariance matrices in Cholesky (square root) form. This has the
advantage that, despite computational errors, the product of the Cholesky factors will always yield a
positive definite covariance matrix. The numerical conditioning of the Cholesky square root is also
generally much better than that of its corresponding covariance matrix. Since the condition number of the
Cholesky factor is the square root of the condition number of the covariance matrix, square root filtering
can avoid numerical difficulties with only half as many significant digits as the full matrix Kalman filters
outlined above.

2.6.3 The square root covariance filter

The time-varying square root covariance Kalman filter (nag_kalman_sqrt_filt_cov_var (g13eac)) provided
by this chapter requires the construction of the following block matrix pre-array and block matrix post-
array.

R
1=2
i CiSi 0

0 AiSi BiQ
1=2
i

1
A

0
@ U1 ¼

H
1=2
i 0 0

Gi Siþ1 0

1
A

0
@

(Pre-array) (Post-array)

ð19Þ

where U1 is an orthogonal matrix that triangularizes the pre-array and the matrices Piji�1, Qi, Hi and Ri

have been Cholesky factorised as follows:

Piji�1 ¼ SiS
T
i Qi ¼ Q

1=2
i Q

1=2
i

�� T

Ri ¼ R
1=2
i R

1=2
i

�� T

Hi ¼ H
1=2
i H

1=2
i

�� T

where the left factors are lower triangular, and the Kalman filter gain matrix Ki is related to Gi by
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AiKi ¼ Gi H
1=2
�� �1

:

The new state estimate can then be calculated using

X̂Xiþ1ji ¼ AiX̂Xiji�1 þAKiðY i � CiX̂Xiji�1Þ þDiUi ð20Þ

where the product of the matrices Ai and Ki is represented as AKi.

That this method is computationally equivalent to equations (7)–(12) can be demonstrated by ‘squaring’
each side of equation (19) (post-multiplying each side by its transpose) and then equating block matrix
elements on either side. It can similarly be shown that transposition of columns 2 and 3 of the pre-array,
as occurs in function nag_kalman_sqrt_filt_cov_invar (g13ebc), does not affect the elements in the
resultant post-array.

2.6.4 The square root information filter

The time-varying square root information Kalman filter (nag_kalman_sqrt_filt_info_var (g13ecc)) provided
by this chapter requires the construction of the following block matrix pre-array and block matrix post-
array.

U2

Q
�1=2
i 0 0

S�1
i A�1

i Bi S�1
i A�1

i S�1
i X̂Xiji

0 R
�1=2
iþ1 Ciþ1 R

�1=2
iþ1 Y iþ1

1
CA

0
B@ ¼

F
�1=2
iþ1 � �
0 S�1

iþ1 	iþ1jiþ1

0 0 Eiþ1

1
A

0
@

(Pre-array) (Post-array)

ð21Þ

where the asterisk represents elements that are not required, U2 is an orthogonal transformation
triangularizing the pre-array and Fiþ1, the matrix containing the innovations in the process noise, is given
by

F�1
iþ1 ¼ Q�1

i þBT
i MiBi:

The matrices P�1
iji , Q

�1
i , F�1

iþ1 and R�1
i have been Cholesky factorised as follows:

P�1
iji ¼ S�1

i

�� T
S�1
i

Q�1
i ¼ Q

�1=2
i

�� T

Q
�1=2
i

R�1
i ¼ R

�1=2
i

�� T

R
�1=2
i

F�1
iþ1 ¼ F

�1=2
iþ1

�� T

F
�1=2
iþ1

where the right factors are upper triangular.

The new state estimate is computed via

Xiþ1jiþ1 ¼ Siþ1	iþ1jiþ1: ð22Þ

That this method is computationally equivalent to equations (13)–(18) can be demonstrated by transposing
(21), ‘squaring’ the right-hand side to eliminate the orthogonal matrix U2 and then, after performing a
block Cholesky decomposition, equating block matrix elements on either side. It can similarly be shown
that transposition of rows 2 and 3 of the pre-array, as occurs in function nag_kalman_sqrt_filt_info_invar
(g13edc), does not affect the elements in the resultant post-array.

2.6.5 Time invariant condensed square root filters

When the system matrices A, B, C are time invariant, it can be advantageous to perform initial unitary
transformations to ‘condense’ them (create as many zeros as possible) and thereby significantly reduce the
number of floating-point operations required by the algorithm. Essentially this entails creating an
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appropriate unitary transformation matrix U and solving for the new state vector Xt ¼ UX in the
transformed reference frame. After the required number of Kalman filter iterations have been performed

the back transformation X ¼ UTXt provides the estimated state vector in the original reference frame. It
can be shown from equations (7)–(12) that the transformed system matrices for the covariance filter are

given by fUAUT ; UB;CUTg, which are in agreement with the arguments required by
nag_kalman_sqrt_filt_cov_invar (g13ebc). It can similarly be shown, from equations (13)–(18), that the

system matrices describing the corresponding transformed information filter are fUA�1UT , UB, CUTg.
These correspond to the arguments used by nag_kalman_sqrt_filt_info_invar (g13edc) (UA�1UT , UA�1B,

CUT ), where the second matrix is input as the product of UA�1UT and UB. It should be noted that in the

transformed frame the covariance matrix P 0
iji is related to the original covariance matrix via the similarity

transformation P 0
iji ¼ UPijiU

T P 0
ijiÞ�1 ¼ UðP 0�1

iji ÞUT
� ��

. This means that, for square root Kalman filter

functions, the appropriate Cholesky factor of P 0
iji must be input.

The condensed matrix forms used by the functions in this chapter are (nag_kalman_sqrt_filt_cov_invar
(g13ebc)) the lower observer Hessenberg form where the compound matrix

UAUT

CUT

! 

is lower trapezoidal and (nag_kalman_sqrt_filt_info_invar (g13edc)) the upper controller Hessenberg form

where the compound matrix ðUBjUAUT Þ is upper trapezoidal.

Both nag_kalman_sqrt_filt_cov_invar (g13ebc) and nag_kalman_sqrt_filt_info_invar (g13edc) contain the
block matrix

CUT

UB UAUT

��

within their pre-array, and the structure of this matrix (for n ¼ 6, m ¼ 3 and p ¼ 2) is illustrated below for
both Hessenberg forms

Lower observer Hessenberg

x 0 0 0 0 0

x x 0 0 0 0

x x x x x x 0 0 0

x x x x x x x 0 0

x x x x x x x x 0

x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

1
CCCCCCCCCCA

0
BBBBBBBBBB@

:

Upper controller Hessenberg

x x x x x x
x x x x x x
x x x x x x

x x x x x x x x
0 x x x x x x x
0 0 x x x x x x
0 0 0 x x x x x
0 0 0 0 x x x x
0 0 0 0 0 x x x

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

:

2.6.6 Model fitting and forecasting

If the state space model contains unknown parameters, �, these can be estimated using maximum
likelihood. Assuming that Wt and V t are normal variates the log-likelihood for observations
Y t; t ¼ 1; 2; . . . ; n is given by
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constant� 1

2

Xn
t¼1

lnðdetðHtÞÞ �
1

2

Xt
t¼1

rTt H
�1
t rt:

Optimal estimates for the unknown model parameters � can then be obtained by using a suitable optimizer
function to maximize the likelihood function.

Once the model has been fitted forecasting can be performed by using the one-step-ahead prediction
equations. The one-step-ahead prediction equations can also be used to ‘jump over’ any missing values in
the series.

2.6.7 Kalman filter and time series models

Many commonly used time series models can be written as state space models. A univariate ARMAðp; qÞ
model can be cast into the following state space form:

xt ¼ Axt�1 þB
t
wt ¼ Cxt

where r ¼ maxðp; q þ 1Þ, the first element of the state vector xt is wt,

A ¼

�1 1

�2 1

: :
: :
�r�1 1

�r 0 0 : : 0

1
CCCCCCA

0
BBBBBB@

; B ¼

1

��1
��2
:
:
��r�1

1
CCCCCCA

0
BBBBBB@

and CT ¼

1

0

0

:
:
0

1
CCCCCCA

0
BBBBBB@

:

The representation for a k-variate ARMAðp; qÞ series (VARMA) is very similar to that given above, except
now the state vector is of length kr and the � and � are now k� k matrices and the 1s in A, B and C are
now the identity matrix of order k. If p < r or q þ 1 < r then the appropriate � or � matrices are set to
zero, respectively.

Since the compound matrix

C
A

��

is already in lower observer Hessenberg form (i.e., it is lower trapezoidal with zeros in the top right-hand
triangle) the invariant Kalman filter algorithm can be used directly without the need to generate a

transformation matrix U�.

2.7 GARCH Models

2.7.1 ARCH models and their generalisations

Rather than modelling the mean (for example using regression models) or the autocorrelation (by using
ARMA models) there are circumstances in which the variance of a time series needs to be modelled. This
is common in financial data modelling where the variance (or standard deviation) is known as volatility.
The ability to forecast volatility is a vital part in deciding the risk attached to financial decisions like
portfolio selection. The basic model for relating the variance at time t to the variance at previous times is
the autoregressive conditional heteroskedastic (ARCH) model. The standard ARCH model is defined as

ytj t�1 � Nð0; htÞ;

ht ¼ �0 þ
Xq
i¼1

�i

2
t�1;

where  t is the information up to time t and ht is the conditional variance.

In a similar way to that in which autoregressive models were generalised to ARMA models the ARCH
models have been generalised to a GARCH model; see Engle (1982), Bollerslev (1986) and Hamilton
(1994).
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ht ¼ �0 þ
Xq
i¼1

�i

2
t�1 þ

Xp
j¼1

�ht�j:

This can be combined with a regression model:

yt ¼ b0 þ
Xk
i¼1

bixit þ 
t;

where 
tj t�1 � Nð0; htÞ and where xit, for i ¼ 1; . . . ; k are the exogenous variables.

The above models assume that the change in variance, ht, is symmetric with respect to the shocks, that is,
that a large negative value of 
t�1 has the same effect as a large positive value of 
t�1. A frequently
observed effect is that a large negative value 
t�1 often leads to a greater variance than a large positive
value. The following three asymmetric models represent this effect in different ways using the parameter 

as a measure of the asymmetry.

Type I AGARCH(p; q)

ht ¼ �0 þ
Xq
i¼1

�ið
t�i þ �Þ2 þ
Xp
j¼1

�iht�j:

Type II AGARCH(p; q)

ht ¼ �0 þ
Xq
i¼1

�iðj
t�ij þ �
t�iÞ2 þ
Xp
j¼1

�iht�j:

GJR-GARCH(p; q), or Glosten, Jagannathan and Runkle GARCH (Glosten et al. (1993))

ht ¼ �0 þ
Xq
i¼1

ð�i þ �St�1Þ
2t�1 þ
Xp
j¼1

�iht�j;

where St ¼ 1 if 
t < 0 and St ¼ 0 if 
t � 0.

The first assumes that the effects of the shocks are symmetric about � rather than zero, so that for � < 0
the effect of negative shocks is increased and the effect of positive shocks is decreased. Both the Type II
AGARCH and the GJR GARCH (Glosten et al. (1993)) models introduce asymmetry by increasing the

value of the coefficient of 
2t�1 for negative values of 
t�1. In the case of the Type II AGARCH the effect
is multiplicative while for the GJR GARCH the effect is additive.

Coefficient 
t�1 < 0 
t�1 > 0

Type II AGARCH �ið1� �Þ2 �ið1þ �Þ2

GJR GARCH �i þ � �i

(Note that in the case of GJR GARCH, � needs to be positive to inflate variance after negative shocks
while for Type I and Type II AGARCH, � needs to be negative.)

lnðhtÞ ¼ �0 þ
Xq
i¼1

�izt�i þ
Xq
i¼1

�iðjzt�ij � E½jzt�ij�Þ þ
Xp
j¼1

�i lnðht�jÞ;

where zt ¼

tffiffiffiffiffi
ht

p and E½jzt�ij� denotes the expected value of jzt�ij.

Note that the �i terms represent a symmetric contribution to the variance while the �i terms give an
asymmetric contribution.

2.7.2 Fitting GARCH models

The models are fitted by maximising the conditional log-likelihood. For the Normal distribution the
conditional log-likelihood is
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1

2

XT
i¼1

logðhiÞ þ

2i
hi

��
:

For the Student’s t-distribution the function is more complex. An approximation to the standard errors of
the parameter estimates is computed from the Fisher information matrix.

3 Recommendations on Choice and Use of Available Functions

3.1 ARMA-type Models

ARMA-type modelling usually follows the methodology made popular by Box and Jenkins. It consists of
four steps: identification, model fitting, model checking and forecasting. The availability of functions for
each of these four steps is given below for the three types of modelling situation considered: univariate,
input-output and multivariate.

3.1.1 Univariate series

(a) Model identification

The function nag_tsa_mean_range (g13auc) may be used in obtaining either a range–mean or standard
deviation–mean plot for a series of observations, which may be useful in detecting the need for a
variance-stabilising transformation. nag_tsa_mean_range (g13auc) computes the range or standard
deviation and the mean for successive groups of observations that may then be used to produce a
scatter plot of range against mean or of standard deviation against mean.

The function nag_tsa_diff (g13aac) may be used to difference a time series. The N ¼ n� d� s�D
values of the differenced time series which extends for t ¼ 1þ dþ s�D; . . . ; n are stored in the first
N elements of the output array.

The function nag_tsa_auto_corr (g13abc) may be used for direct computation of the autocorrelations.
It requires the time series as input, after optional differencing by nag_tsa_diff (g13aac).

An alternative is to use nag_tsa_spectrum_univar_cov (g13cac), which uses the FFT to carry out the
convolution for computing the autocovariances. Circumstances in which this is recommended are

(i) if the main aim is to calculate the smoothed sample spectrum,

(ii) if the series length and maximum lag for the autocorrelations are both very large, in which case
appreciable computing time may be saved.

For more precise recommendations, see Gentleman and Sande (1966). In this case the
autocorrelations rk need to be obtained from the autocovariances ck by rk ¼ ck=c0.

The function nag_tsa_auto_corr_part (g13acc) computes the partial autocorrelation function and
prediction error variance estimates from an input autocorrelation function. Note that
nag_tsa_multi_part_lag_corr (g13dnc), which is designed for multivariate time series, may also be

used to compute the partial autocorrelation function together with �2 statistics and their significance
levels.

Finite lag predictor coefficients are also computed by the function nag_tsa_auto_corr_part (g13acc). It
may have to be used twice, firstly with a large value for the maximum lag L in order to locate the
optimum FPE lag, then again with L reset to this lag.

The function nag_tsa_arma_roots (g13dxc) may be used to check that the autoregressive part of the
model is stationary and that the moving-average part is invertible.

(b) Model estimation

ARIMA models may be fitted using the function nag_tsa_multi_inp_model_estim (g13bec). This
function can fit both simple ARIMA models as well as more complex multi-input models. There is a
choice of using least-squares or maximum likelihood estimation.
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(c) Model checking

The function nag_tsa_resid_corr (g13asc) calculates the correlations in the residuals from a model
fitted by nag_tsa_multi_inp_model_estim (g13bec). In addition the standard errors and correlations of
the residual autocorrelations are computed along with a portmanteau test for model adequacy.

(d) Forecasting using an ARIMA model

The function nag_tsa_multi_inp_model_forecast (g13bjc) can be used to compute forecasts using a
specified ARIMA model using the observed values of the series.

3.1.2 Multi-input/transfer function modelling

(a) Model identification

Normally use nag_tsa_cross_corr (g13bcc) for direct computation of cross-correlations, from which
cross-covariances may be obtained by multiplying by sysx, and impulse response estimates (after

prewhitening) by multiplying by sy=sx, where sy; sx are the sample standard deviations of the series.

An alternative is to use nag_tsa_spectrum_bivar_cov (g13ccc), which exploits the FFT to carry out the
convolution for computing cross-covariances. The criteria for this are the same as given in
Section 3.1.1 for calculation of autocorrelations. The impulse response function may also be
computed by spectral methods without prewhitening using nag_tsa_noise_spectrum_bivar (g13cgc).

nag_tsa_arma_filter (g13bac) may be used to prewhiten or filter a series by an ARIMA model.

nag_tsa_transf_filter (g13bbc) may be used to filter a time series using a transfer function model.

(b) Estimation of multi-input model parameters

The function nag_tsa_transf_prelim_fit (g13bdc) is used to obtain preliminary estimates of transfer
function model parameters. The model orders and an estimate of the impulse response function (see
Section 3.2.1) are required.

The simultaneous estimation of the transfer function model parameters for the inputs, and ARIMA
model parameters for the output, is carried out by nag_tsa_multi_inp_model_estim (g13bec).

This function requires values of the output and input series, and the orders of all the models. Any
differencing implied by the model is carried out internally.

The function also requires the maximum number of iterations to be specified, and returns the state set
for use in forecasting.

(c) Multi-input model checking

The function nag_tsa_resid_corr (g13asc), primarily designed for univariate time series, can be used to
test the residuals from an input-output model.

(d) Forecasting using a multi-input model

The function nag_tsa_multi_inp_model_forecast (g13bjc) can be used to compute forecasts for a
speicified multi-input model using the observed values of the series. Forecast for the input series have
to be provided.

(e) Filtering a time series using a transfer function model

The function for this purpose is nag_tsa_transf_filter (g13bbc).

3.1.3 Multivariate series

The function nag_tsa_multi_diff (g13dlc) may be used to difference the series. The user must supply the
differencing parameters for each component of the multivariate series. The order of differencing for each
individual component does not have to be the same. The function may also be used to apply a log or
square root transformation to the components of the series.

The function nag_tsa_multi_cross_corr (g13dmc) may be used to calculate the sample cross-correlation or
cross-covariance matrices. It requires a set of time series as input. The user may request either the cross-
covariances or cross-correlations.
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The function nag_tsa_multi_part_lag_corr (g13dnc) computes the partial lag correlation matrices from the
sample cross-correlation matrices computed by nag_tsa_multi_cross_corr (g13dmc), and the function
nag_tsa_multi_part_regsn (g13dpc) computes the least-squares estimates of the partial autoregression

matrices and their standard errors. Both functions compute a series of �2 statistic that aid the
determination of the order of a suitable autoregressive model. nag_tsa_multi_auto_corr_part (g13dbc) may
also be used in the identification of the order of an autoregressive model. The function computes multiple
squared partial autocorrelations and predictive error variance ratios from the sample cross-correlations or
cross-covariances computed by nag_tsa_multi_cross_corr (g13dmc).

The function nag_tsa_arma_roots (g13dxc) may be used to check that the autoregressive part of the model
is stationary and that the moving-average part is invertible.

3.2 Spectral Methods

3.2.1 Univariate spectral estimation

Two functions are available, nag_tsa_spectrum_univar_cov (g13cac) carrying out smoothing using a lag
window and nag_tsa_spectrum_univar (g13cbc) carrying out direct frequency domain smoothing. Both
can take as input the original series, but nag_tsa_spectrum_univar_cov (g13cac) alone can use the sample
autocovariances as alternative input. This has some computational advantage if a variety of spectral
estimates needs to be examined for the same series using different amounts of smoothing.

However, the real choice in most cases will be which of the four shapes of lag window in
nag_tsa_spectrum_univar_cov (g13cac) to use, or whether to use the trapezium frequency window of
nag_tsa_spectrum_univar (g13cbc). The references may be consulted for advice on this, but the two most
recommended lag windows are the Tukey and Parzen. The Tukey window has a very small risk of
supplying negative spectrum estimates; otherwise, for the same bandwidth, both give very similar results,
though the Parzen window requires a higher truncation lag (more acf values).

The frequency window smoothing procedure of nag_tsa_spectrum_univar (g13cbc) with a trapezium shape

parameter p ’ 1
2
generally gives similar results for the same bandwidth as lag window methods with a

slight advantage of somewhat less distortion around sharp peaks, but suffering a rather less smooth
appearance in fine detail.

3.2.2 Cross-spectrum estimation

Two functions are available for the main step in cross-spectral analysis. To compute the cospectrum and
quadrature spectrum estimates using smoothing by a lag window, nag_tsa_spectrum_bivar_cov (g13ccc)
should be used. It takes as input either the original series or cross-covariances which may be computed in
a previous call of the same function or possibly using results from nag_tsa_cross_corr (g13bcc). As in the
univariate case, this gives some advantage if estimates for the same series are to be computed with
different amounts of smoothing.

The choice of window shape will be determined as the same as that which has already been used in
univariate spectrum estimation for the series.

For direct frequency domain smoothing, nag_tsa_spectrum_bivar (g13cdc) should be used, with similar
consideration for the univariate estimation in choice of degree of smoothing.

The cross-amplitude and squared coherency spectrum estimates are calculated, together with upper and
lower confidence bounds, using nag_tsa_cross_spectrum_bivar (g13cec). For input the cross-spectral
estimates from either nag_tsa_spectrum_bivar_cov (g13ccc) or nag_tsa_spectrum_bivar (g13cdc) and
corresponding univariate spectra from either nag_tsa_spectrum_univar_cov (g13cac) or
nag_tsa_spectrum_univar (g13cbc) are required.

The gain and phase spectrum estimates are calculated together with upper and lower confidence bounds
using nag_tsa_gain_phase_bivar (g13cfc). The required input is as for nag_tsa_cross_spectrum_bivar
(g13cec) above.

The noise spectrum estimates and impulse response function estimates are calculated together with
multiplying factors for confidence limits on the former, and the standard error for the latter, using
nag_tsa_noise_spectrum_bivar (g13cgc). The required input is again the same as for
nag_tsa_cross_spectrum_bivar (g13cec) above.
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3.3 Kalman Filtering

There are four main functions available for Kalman filtering covering both the covariance and information
filters with time-varying ro time-invariant filter. For covariance filters the functions are
nag_kalman_sqrt_filt_cov_var (g13eac) for time-varying filter and nag_kalman_sqrt_filt_cov_invar
(g13ebc) for time-invariant filter while the equivalent for the information filter they are
nag_tsa_cross_spectrum_bivar (g13cec) and nag_kalman_sqrt_filt_info_invar (g13edc) respectively. In
addition, for use with the time invariant-filters, the function nag_trans_hessenberg_observer (g13ewc)
provides the required transformation to lower or upper Hessenberg form while
nag_trans_hessenberg_controller (g13exc) provides the transformation to lower or upper controller
Hessenberg form.

3.4 GARCH Models

The main choice in selecting a type of GARCH model is whether the data is symmetric or asymmetric and
if asymmetric what form of asymmetry should be included in the model.

A symmetric ARCH or GARCH model can be fitted by nag_estimate_agarchI (g13fac) and the volatility
forecast by nag_forecast_agarchI (g13fbc). For asymmetric data the choice is between the type of
asymmetry as described in Section 2.7.

GARCH Type Fit Forecast

Type I nag_estimate_agarchI (g13fac) nag_forecast_agarchI (g13fbc)

Type II nag_estimate_agarchII (g13fcc) nag_forecast_agarchII (g13fdc)

GJR nag_estimate_garchGJR (g13fec) nag_forecast_garchGJR (g13ffc)

All functions allow the option of including regressor variables in the model.

3.5 Time Series Simulation

There are functions available in Chapter g05 for generating a realisation of a time series from a specified
model: nag_rngs_arma_time_series (g05pac) for univariate time series and nag_rngs_varma_time_series
(g05pcc) for multivariate time series. There is also a suite of functions for simulating GARCH models:
nag_generate_agarchI (g05hkc), nag_generate_agarchII (g05hlc) and nag_generate_garchGJR (g05hmc).

3.6 Summary of Recommendations

ARMA modelling
ACF ....................................................................................................... nag_tsa_auto_corr (g13abc)
Diagnostic checking ............................................................................ nag_tsa_resid_corr (g13asc)
Differencing ..................................................................................................... nag_tsa_diff (g13aac)
Fitting ........................................................................... nag_tsa_multi_inp_model_estim (g13bec)
Mean/range .......................................................................................... nag_tsa_mean_range (g13auc)
PACF .......................................................................................... nag_tsa_auto_corr_part (g13acc)

Bivariate spectral analysis
Barltett, Tukey, Parzen windows ...................................... nag_tsa_spectrum_bivar_cov (g13ccc)
Direct smoothing ........................................................................ nag_tsa_spectrum_bivar (g13cdc)
Other representations ..................................................... nag_tsa_cross_spectrum_bivar (g13cec)
Other representations ............................................................. nag_tsa_gain_phase_bivar (g13cfc)
Other representations ..................................................... nag_tsa_noise_spectrum_bivar (g13cgc)

GARCH
Asymmetric ARCH/GARCH

Fitting ........................................................................................ nag_estimate_agarchI (g13fac)
Fitting ...................................................................................... nag_estimate_agarchII (g13fcc)
Fitting ...................................................................................... nag_estimate_garchGJR (g13fec)
Forecasting ................................................................................ nag_forecast_agarchI (g13fbc)
Forecasting .............................................................................. nag_forecast_agarchII (g13fdc)
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Forecasting .............................................................................. nag_forecast_garchGJR (g13ffc)
Symmetric ARCH/GARCH

Fitting ........................................................................................ nag_estimate_agarchI (g13fac)
Forecasting ................................................................................ nag_forecast_agarchI (g13fbc)

Kalman filter
Time invariant ............................................................ nag_kalman_sqrt_filt_cov_invar (g13ebc)
Time varying .................................................................. nag_kalman_sqrt_filt_cov_var (g13eac)

Transfer function modelling
Cross-correlations ................................................................................ nag_tsa_cross_corr (g13bcc)
Fitting ........................................................................... nag_tsa_multi_inp_model_estim (g13bec)
Forecasting ............................................................ nag_tsa_multi_inp_model_forecast (g13bjc)
Pre-whitening .................................................................................... nag_tsa_arma_filter (g13bac)

Univariate spectral analysis
Barltett, Tukey, Parzen windows .................................... nag_tsa_spectrum_univar_cov (g13cac)
Direct smoothing ...................................................................... nag_tsa_spectrum_univar (g13cbc)

Vector ARMA
Cross-correlations ................................................................... nag_tsa_multi_cross_corr (g13dmc)
Differencing ......................................................................................... nag_tsa_multi_diff (g13dlc)
Partial-correlations/autoregressions ................................ nag_tsa_multi_auto_corr_part (g13dbc)
Partial-correlations/autoregressions .................................. nag_tsa_multi_part_lag_corr (g13dnc)
Partial-correlations/autoregressions ........................................ nag_tsa_multi_part_regsn (g13dpc)

4 Functions Withdrawn or Scheduled for Withdrawal

None.

5 References

Akaike H (1971) Autoregressive model fitting for control Ann. Inst. Statist. Math. 23 163–180

Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics 31
307–327

Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control (Revised Edition)
Holden–Day

Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United
Kingdom inflation Econometrica 50 987–1008

Gentleman W S and Sande G (1966) Fast Fourier transforms for fun and profit Proc. Joint Computer
Conference, AFIPS 29 563–578

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the expected value and the volatility
of nominal excess return on stocks Journal of Finance 48 1779–1801

Hamilton J (1994) Time Series Analysis Princeton University Press

Heyse J F and Wei W W S (1985) The partial lag autocorrelation function Technical Report No. 32

Department of Statistics, Temple University, Philadelphia

Tiao G C and Box G E P (1981) Modelling multiple time series with applications J. Am. Stat. Assoc. 76
802–816

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison–Wesley

Introduction – g13 NAG C Library Manual

g13.24 (last) [NP3645/7]


	g13 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Univariate Analysis
	2.1.1 Transformations
	2.1.2 Differencing operations
	2.1.3 Sample autocorrelations
	2.1.4 Partial autocorrelations
	2.1.5 Finite lag predictor coefficients and error variances
	2.1.6 ARIMA models
	2.1.7 ARIMA model estimation
	2.1.8 ARIMA model forecasting

	2.2 Univariate Spectral Analysis
	2.2.1 The sample spectrum
	2.2.2 Spectral smoothing by lag window
	2.2.3 Direct spectral smoothing

	2.3 Linear Lagged Relationships Between Time Series
	2.3.1 Transfer function models
	2.3.2 Cross-correlations
	2.3.3 Prewhitening or filtering by an ARIMA model
	2.3.4 Multi-input model estimation
	2.3.5 Multi-input model forecasting
	2.3.6 Transfer function model filtering

	2.4 Multivariate Time Series
	2.5 Cross-spectral Analysis
	2.5.1 The sample cross-spectrum
	2.5.2 The amplitude and phase spectrum
	2.5.3 The coherency spectrum
	2.5.4 The gain and noise spectrum
	2.5.5 Cross-spectrum smoothing by lag window
	2.5.6 Direct smoothing of the cross-spectrum

	2.6 Kalman Filters
	2.6.1 The information filter
	2.6.2 Square root filters
	2.6.3 The square root covariance filter
	2.6.4 The square root information filter
	2.6.5 Time invariant condensed square root filters
	2.6.6 Model fitting and forecasting
	2.6.7 Kalman filter and time series models

	2.7 GARCH Models
	2.7.1 ARCH models and their generalisations
	2.7.2 Fitting GARCH models


	3 Recommendations on Choice and Use of Available Functions
	3.1 ARMA-type Models
	3.1.1 Univariate series
	3.1.2 Multi-input/transfer function modelling
	3.1.3 Multivariate series

	3.2 Spectral Methods
	3.2.1 Univariate spectral estimation
	3.2.2 Cross-spectrum estimation

	3.3 Kalman Filtering
	3.4 GARCH Models
	3.5 Time Series Simulation
	3.6 Summary of Recommendations

	4 Functions Withdrawn or Scheduled for Withdrawal
	5 References

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


