# NAG C Library Function Document

# nag\_tsa\_diff (g13aac)

# 1 Purpose

nag\_tsa\_diff (g13aac) carries out non-seasonal and seasonal differencing on a time series. Information which allows the original series to be reconstituted from the differenced series is also produced. This information is required in time series forecasting.

# 2 Specification

# 3 Description

Let  $\nabla^d \nabla^D_s x_i$  be the *i*th value of a time series  $x_i$ , for i = 1, 2, ..., n after non-seasonal differencing of order d and seasonal differencing of order D (with period or seasonality s). In general,

$$\begin{array}{ll} \nabla^d \nabla^D_s x_i \ = \ \nabla^{d-1} \nabla^D_s x_{i+1} - \nabla^{d-1} \nabla^D_s x_i & d > 0 \\ \nabla^d \nabla^D_s x_i \ = \ \nabla^d \nabla^{D-1}_s x_{i+s} - \nabla^d \nabla^{D-1}_s x_i & D > 0 \end{array}$$

Non-seasonal differencing up to the required order d is obtained using

$$\begin{array}{lll} \nabla^1 x_i & = x_{i+1} - x_i & \text{for } i = 1, 2, \dots, (n-1) \\ \nabla^2 x_i & = \nabla^1 x_{i+1} - \nabla^1 x_i & \text{for } i = 1, 2, \dots, (n-2) \\ \vdots & & & \\ \nabla^d x_i & = \nabla^{d-1} x_{i+1} - \nabla^{d-1} x_i & \text{for } i = 1, 2, \dots, (n-d) \end{array}$$

Seasonal differencing up to the required order D is then obtained using

$$\begin{array}{ll} \nabla^d \nabla^1_s x_i &= \nabla^d x_{i+s} - \nabla^d x_i & \text{for } i=1,2,\ldots,(n-d-s) \\ \nabla^d \nabla^2_s x_i &= \nabla^d \nabla^1_s x_{i+s} - \nabla^d \nabla^1_s x_i & \text{for } i=1,2,\ldots,(n-d-2s) \\ &\vdots & \\ \nabla^d \nabla^D_s x_i &= \nabla^d \nabla^{D+1}_s x_{i+s} - \nabla^d \nabla^{D+1}_s x_i & \text{for } i=1,2,\ldots,(n-d-D\times s) \end{array}$$

Mathematically, the sequence in which the differencing operations are performed does not affect the final resulting series of  $m = n - d - D \times s$  values.

#### 4 References

None.

#### 5 Parameters

1:  $\mathbf{x}[\mathbf{n}\mathbf{x}]$  - const double Input On entry: the undifferenced time series,  $x_i$ , for  $i=1,2,\ldots,n$ .

2: **nx** – Integer Input

On entry: the number of values, n, in the undifferenced time series.

Constraint:  $\mathbf{nx} > \mathbf{d} + (\mathbf{ds} \times \mathbf{s})$ .

[NP3645/7] g13aac.1

3: **d** – Integer Input

On entry: the order of non-seasonal differencing, d.

Constraint:  $\mathbf{d} \geq 0$ .

4: **ds** – Integer Input

On entry: the order of seasonal differencing, D.

Constraint:  $ds \ge 0$ .

5:  $\mathbf{s}$  - Integer Input

On entry: the seasonality, s.

Constraints:

if 
$$ds > 0$$
,  $s > 0$ ; if  $ds = 0$ ,  $s \ge 0$ .

6: xd[nx] – double Output

On exit: the differenced values in elements 1 to nxd, and reconstitution data in the remainder of the array.

7: **nxd** – Integer \* Output

On exit: the number of differenced values in the array xd.

8: fail – NagError \* Input/Output

The NAG error parameter (see the Essential Introduction).

### 6 Error Indicators and Warnings

#### NE INT

On entry,  $\mathbf{s} = \langle value \rangle$ .

Constraint:  $\mathbf{s} \geq 0$ .

On entry,  $ds = \langle value \rangle$ .

Constraint: ds > 0.

On entry,  $\mathbf{d} = \langle value \rangle$ .

Constraint:  $\mathbf{d} \geq 0$ .

### NE\_INT\_2

On entry,  $\mathbf{s} = 0$  and  $\mathbf{ds} > 0$ :  $\mathbf{ds} = \langle value \rangle$ .

# NE\_INT\_4

On entry, 
$$\mathbf{n}\mathbf{x} \leq \mathbf{d} + (\mathbf{d}\mathbf{s} \times \mathbf{s})$$
:  $\mathbf{n}\mathbf{x} = \langle value \rangle$ ,  $\mathbf{d} = \langle value \rangle$   $\mathbf{d}\mathbf{s} = \langle value \rangle$ ,  $\mathbf{s} = \langle value \rangle$ .

#### NE\_BAD\_PARAM

On entry, parameter (value) had an illegal value.

#### NE\_INTERNAL\_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

g13aac.2 [NP3645/7]

### 7 Accuracy

The computations are believed to be stable.

#### **8** Further Comments

The time taken by the routine is approximately proportional to  $(\mathbf{d} + \mathbf{ds}) \times \mathbf{nx}$ .

### 9 Example

The example program reads in a set of data consisting of 20 observations from a time series. Non-seasonal differencing of order 2 and seasonal differencing of order 1 (with seasonality of 4) are applied to the input data, giving an output array holding 14 differenced values and 6 values which can be used to reconstitute the output array.

# 9.1 Program Text

```
/* nag_tsa_diff (g13aac) Example Program.
* Copyright 2002 Numerical Algorithms Group.
* Mark 7, 2002.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg13.h>
int main(void)
  /* Scalars */
 Integer exit_status, i, d, ds, s, nx, nxd;
 NagError fail;
  /* Arrays */
 double *x = 0, *xd = 0;
 INIT_FAIL(fail);
 exit_status = 0;
 Vprintf("g13aac Example Program Results\n");
 /* Skip heading in data file */ Vscanf("%*[^\n]");
 Vscanf("%ld%ld%ld%ld%*[^\n] ", &nx, &d, &ds, &s);
    {
      /* Allocate memory */
      if (!(x = NAG\_ALLOC(nx, double))||
           !(xd = NAG_ALLOC(nx, double)))
          Vprintf("Allocation failure\n");
          exit_status = -1;
          goto END;
      for (i = 1; i \le nx; ++i)
        Vscanf("%lf", &x[i-1]);
      Vscanf("%*[^\n] ");
      Vprintf("\n");
      Vprintf("Non-seasonal differencing of order %ld "
              "and seasonal differencing\nof order %ld "
              "with seasonality %ld are applied\n", d, ds, s);
```

[NP3645/7] g13aac.3

```
g13aac(x, nx, d, ds, s, xd, &nxd, &fail);
      if (fail.code != NE_NOERROR)
          Vprintf("Error from gl3aac.\n%s\n", fail.message);
          exit_status = 1;
          goto END;
      Vprintf("\n");
      Vprintf("The output array holds %2ld values, of which the "
              "first ^221d are differenced valuesn\n", nx, nxd);
      for (i = 1; i \le nx; ++i)
          Vprintf("%10.1f", xd[i-1]);
          if (i % 5 == 0 || i == nx)
            Vprintf("\n");
    }
END:
 if (x) NAG_FREE(x);
if (xd) NAG_FREE(xd);
 return exit_status;
}
```

#### 9.2 Program Data

```
gl3aac Example Program Data

20 2 1 4

120.0 108.0 98.0 118.0 135.0

131.0 118.0 125.0 121.0 100.0

82.0 82.0 89.0 88.0 86.0

96.0 108.0 110.0 99.0 105.0
```

#### 9.3 Program Results

g13aac Example Program Results

Non-seasonal differencing of order 2 and seasonal differencing of order 1 with seasonality 4 are applied  $\,$ 

The output array holds 20 values, of which the first 14 are differenced values

```
-11.0
          -10.0
                     -8.0
                               4.0
                                         12.0
-2.0
          18.0
                    9.0
                               -4.0
                                         -6.0
-5.0
          -2.0
                    -12.0
                               5.0
                                         2.0
-10.0
          -13.0
                    17.0
                               6.0
                                        105.0
```

g13aac.4 (last) [NP3645/7]