h — Operations Research h03abc

nag_transport (h03abc)

1. Purpose

nag_transport solves the classical transportation (‘Hitchcock’) problem.

2. Specification
#include <nag.h>
#include <nagh03.h>

void nag_transport(double cost[], Integer tdcost, double availl],
Integer navail, double req[], Integer nreq, Integer maxit,
Integer *numit, double optql[], Integer sourcel[],
Integer dest[], double *optcost, double unitcostl[],
NagError *fail)

3. Description

nag_transport solves the transportation problem by minimizing

me Mp

225 E Cii%i5-
J

i

subject to the constraints

my

Z T, =4, (availabilities)
J

me

Z Ty = B, (requirements)

where the z;; can be interpreted as quantities of goods sent from source ¢ to destination j, for
i=1,2,...,m,;j =1,2,...,my, at a cost of ¢;; per unit, and it is assumed that > ;" A, = Z;n” B,
and T > 0.

nag_transport uses the ‘stepping stone’ method, modified to accept degenerate cases.

4. Parameters

cost[nreq][tdcost]
Input: cost[i — 1][j — 1] contains the coefficients c,;, for i = 1,2,...,m,; j =1,2,...,m,,.

tdcost
Input: the second dimension of the array cost as declared in the function from which
nag-transport is called.
Constraint: tdcost > nreq.

avail[navail]
Input: avail[i — 1] must be set to the availabilities A;, for i =1,2,...,m,;

navail
Input: the number of sources, m,,.
Constraint: navail > 1.

req[nreq]
Input: req[j — 1] must be set to the requirements B;, for j=1,2,...,my.

nreq
Input: the number of destinations, m,.
Constraint: nreq > 1.

maxit
Input: the maximum number of iterations allowed.
Constraint: maxit > 1.

[NP3275/5/pdf] 3.h03abc. 1

nag_transport NAG C Library Manual

6.1.

6.2.

numit
Output: the number of iterations performed.

optq[navail+nreq]
Output: optq[k —1], for k =1,2,...,m, +m, — 1, contains the optimal quantities x;; which,
when sent from source ¢ = source[k — 1] to destination j = dest[k — 1], minimize z.

source[navail+nreq]
Output: source[k—1], for k =1,2,...,m,+m,—1, contains the source indices of the optimal
solution (see optq above).

dest[navail+nreq]
Output: dest[k — 1], for k¥ = 1,2,...,m, +m, — 1, contains the destination indices of the
optimal solution (see optq above).

optcost
Output: the value of the minimized total cost.

unitcost[navail+nreq]
Output: unitcost[k — 1], for k = 1,2,...,m, + m, — 1, contains the unit cost c;; associated
with the route from source i = source[k — 1] to destination j = dest[k — 1].

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

Error Indications and Warnings

NE_INT_ARG._LT
On entry, navail must not be less than 1: navail = (value).
On entry, nreq must not be less than 1: nreq = (value).
On entry, maxit must not be less than 1: maxit = (value).

NE_2 INT_ARG._LT
On entry tdcost = (value)while nreq = (value). These parameters must satisfy tdcost > nreq.

NE_REQ_AVAIL
The relative difference between the sum of availabilities and the sum of requirements is greater
than machine precision.
relative difference = (value), machine precision = (value)

NE_.TOO_.MANY
Too many iterations ({value))

NE_ALLOC_FAIL
Memory allocation failed.
Further Comments
An a priori estimate of the run time for a particular problem is difficult to obtain.
Accuracy
The computations are stable.
References

Hadley, G. (1962) Linear Programming Addison-Wesley, New York.

See Also

None.

3.h03abc.2 [NP3275/5/pdf]

h —

8.1.

Operations Research h03abc

Example

A company has three warehouses and three stores. The warehouses have a surplus of 12 units of a
given commodity divided between them as follows:

Warehouse Surplus
1 1
2 5
3 6

The stores altogether need 12 units of commodity, with the following requirements:

Store Requirement
1 4
2 4
3 4

Costs of shipping one unit of the commodity from warehouse ¢ to store j are displayed in the
following matrix:

Store
1 2 3

1 8 8 11
Warehouse 2 5 8 14
3 4 3 10

It is required to find the units of commodity to be moved from the warehouses to the stores, such
that the transportation costs are minimized. The maximum number of iterations allowed is 200.

Program Text

/* nag_transport (h03abc) Example Program.
Copyright 1992 Numerical Algorithms Group.

Mark 3, 1992.

* ¥ X ¥ *

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagh03.h>

#define NAVAIL 3
#define NREQ 3
#define M NAVAIL+NREQ
#define TDCOST 5

main()

{

double cost [NAVAIL] [TDCOST];

double avail [NAVAIL], req[NREQ], optq[M];
Integer source[M], dest([M];

double unitcost[M];

Integer tdcost, navail, nreq, m;

Integer maxit, numit;

double optcost;

Integer i;

static NagError fail;

Vprintf ("hO3abc Example Program Results\n");
tdcost = TDCOST;

navail = NAVAIL;

nreq = NREQ;

m = M;

cost[0][0] = 8.0;

[NP3275/5/pdf] 3.h03abc.3

nag_transport NAG C Library Manual

[
o
O~

cost[0] [1]
cost [0] [2]
cost[1] [0]
cost[1][1]
cost[1][2]
cost [2] [0]
cost[2] [1]
cost[2] [2]

S
OO OO-
Owwe we

= WP = 00 o0 00

o
Owr we

avail[0]
availl[1]
avail[2]

o
o O =
o OO

req[0]
req[1]
req[2]

4
4.
4

O O O

maxit = 200;

h03abc((double *)cost, tdcost, avail, navail, req, nreq, maxit, &numit,
optq, source, dest, &optcost, unitcost, &fail);

Vprintf ("\nGoods From To Number Cost per Unit\n");
for (i=0; i < m-1; i++)
Vprintf (" %1d %1d %8.3f %8.3f\n",

source[i], dest[i], optql[il, unitcost[i]);
Vprintf ("\nTotal Cost %8.4f\n", optcost);
exit (EXIT_SUCCESS) ;
}

8.2. Program Data
None.

8.3. Program Results
hO3abc Example Program Results

Goods From To Number Cost per Unit
3 2 4.000 3.000
3 3 2.000 10.000
2 3 1.000 14.000
1 3 1.000 11.000
2 1 4.000 5.000

Total Cost 77.0000

3.h03abc.4 [NP3275/5/pdf]

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

