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nag_transport (h03abc)

1. Purpose

nag_transport solves the classical transportation (‘Hitchcock’) problem.

2.  Specification
#include <nag.h>
#include <nagh03.h>

void nag_transport(double cost[], Integer tdcost, double availl],
Integer navail, double req[], Integer nreq, Integer maxit,
Integer *numit, double optql[], Integer sourcel[],
Integer dest[], double *optcost, double unitcostl[],
NagError *fail)

3.  Description

nag_transport solves the transportation problem by minimizing
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where the z;; can be interpreted as quantities of goods sent from source ¢ to destination j, for
i=1,2,...,m,;j =1,2,...,my, at a cost of ¢;; per unit, and it is assumed that > ;" A, = Z;n” B,
and T > 0.

nag_transport uses the ‘stepping stone’ method, modified to accept degenerate cases.

4. Parameters

cost[nreq][tdcost]
Input: cost[i — 1][j — 1] contains the coefficients c,;, for i = 1,2,...,m,; j =1,2,...,m,,.

tdcost
Input: the second dimension of the array cost as declared in the function from which
nag-transport is called.
Constraint: tdcost > nreq.

avail[navail]
Input: avail[i — 1] must be set to the availabilities A;, for i =1,2,...,m,;

navail
Input: the number of sources, m,,.
Constraint: navail > 1.

req[nreq]
Input: req[j — 1] must be set to the requirements B;, for j=1,2,...,my.

nreq
Input: the number of destinations, m,.
Constraint: nreq > 1.

maxit
Input: the maximum number of iterations allowed.
Constraint: maxit > 1.
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6.1.

6.2.

numit
Output: the number of iterations performed.

optq[navail+nreq]
Output: optq[k —1], for k =1,2,...,m, +m, — 1, contains the optimal quantities x;; which,
when sent from source ¢ = source[k — 1] to destination j = dest[k — 1], minimize z.

source[navail+nreq]
Output: source[k—1], for k =1,2,...,m,+m,—1, contains the source indices of the optimal
solution (see optq above).

dest[navail+nreq]
Output: dest[k — 1], for k¥ = 1,2,...,m, +m, — 1, contains the destination indices of the
optimal solution (see optq above).

optcost
Output: the value of the minimized total cost.

unitcost[navail+nreq]
Output: unitcost[k — 1], for k = 1,2,...,m, + m, — 1, contains the unit cost c;; associated
with the route from source i = source[k — 1] to destination j = dest[k — 1].

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

Error Indications and Warnings

NE_INT_ARG._LT
On entry, navail must not be less than 1: navail = (value).
On entry, nreq must not be less than 1: nreq = (value).
On entry, maxit must not be less than 1: maxit = (value).

NE_2 INT_ARG._LT
On entry tdcost = (value)while nreq = (value). These parameters must satisfy tdcost > nreq.

NE_REQ_AVAIL
The relative difference between the sum of availabilities and the sum of requirements is greater
than machine precision.
relative difference = (value), machine precision = (value)

NE_.TOO_.MANY
Too many iterations ({value))

NE_ALLOC_FAIL
Memory allocation failed.
Further Comments
An a priori estimate of the run time for a particular problem is difficult to obtain.
Accuracy
The computations are stable.
References

Hadley, G. (1962) Linear Programming Addison-Wesley, New York.

See Also

None.
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Example

A company has three warehouses and three stores. The warehouses have a surplus of 12 units of a
given commodity divided between them as follows:

Warehouse Surplus
1 1
2 5
3 6

The stores altogether need 12 units of commodity, with the following requirements:

Store Requirement
1 4
2 4
3 4

Costs of shipping one unit of the commodity from warehouse ¢ to store j are displayed in the
following matrix:

Store
1 2 3

1 8 8 11
Warehouse 2 5 8 14
3 4 3 10

It is required to find the units of commodity to be moved from the warehouses to the stores, such
that the transportation costs are minimized. The maximum number of iterations allowed is 200.

Program Text

/* nag_transport (h03abc) Example Program.
Copyright 1992 Numerical Algorithms Group.

Mark 3, 1992.

* ¥ X ¥ *

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagh03.h>

#define NAVAIL 3
#define NREQ 3
#define M NAVAIL+NREQ
#define TDCOST 5

main()

{

double cost [NAVAIL] [TDCOST];

double avail [NAVAIL], req[NREQ], optq[M];
Integer source[M], dest([M];

double unitcost[M];

Integer tdcost, navail, nreq, m;

Integer maxit, numit;

double optcost;

Integer i;

static NagError fail;

Vprintf ("hO3abc Example Program Results\n");
tdcost = TDCOST;

navail = NAVAIL;

nreq = NREQ;

m = M;

cost[0][0] = 8.0;
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maxit = 200;

h03abc((double *)cost, tdcost, avail, navail, req, nreq, maxit, &numit,
optq, source, dest, &optcost, unitcost, &fail);

Vprintf ("\nGoods From To Number Cost per Unit\n");
for (i=0; i < m-1; i++)
Vprintf (" %1d %1d %8.3f %8.3f\n",

source[i], dest[i], optql[il, unitcost[i]);
Vprintf ("\nTotal Cost %8.4f\n", optcost);
exit (EXIT_SUCCESS) ;
}

8.2. Program Data
None.

8.3. Program Results
hO3abc Example Program Results

Goods From To Number Cost per Unit
3 2 4.000 3.000
3 3 2.000 10.000
2 3 1.000 14.000
1 3 1.000 11.000
2 1 4.000 5.000

Total Cost 77.0000
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