NAG C Library Function Document

nag polygamma fun (s14acc)

1 Purpose

nag_polygamma_fun (s14acc) returns a value of the function $\psi(x) - \ln x$, where ψ is the psi function $\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$.

2 Specification

double nag_polygamma_fun (double x, NagError *fail)

3 Description

nag_polygamma_fun (s14acc) returns a value of the function $\psi(x) - \ln x$. The psi function is computed without the logarithmic term so that when x is large, sums or differences of psi functions may be computed without unnecessary loss of precision, by analytically combining the logarithmic terms. For example, the difference $d = \psi(x + \frac{1}{2}) - \psi(x)$ has an asymptotic behaviour for large x given by $d \sim \ln(x + \frac{1}{2}) - \ln x + O\left(\frac{1}{x^2}\right) \sim \ln\left(1 + \frac{1}{2x}\right) \sim \frac{1}{2x}$.

Computing d directly would amount to subtracting two large numbers which are close to $\ln(x+\frac{1}{2})$ and $\ln x$ to produce a small number close to $\frac{1}{2x}$, resulting in a loss of significant digits. However, using this function to compute $f(x) = \psi(x) - \ln x$, we can compute $d = f\left(x + \frac{1}{2}\right) - f(x) + \ln\left(1 + \frac{1}{2x}\right)$, and the dominant logarithmic term may be computed accurately from its power series when x is large. Thus we avoid the unnecessary loss of precision.

The function is derived from the routine PSIFN in Amos (1983).

4 References

Amos D E (1983) Algorithm 610: A portable FORTRAN subroutine for derivatives of the psi function ACM Trans. Math. Software 9 494-502

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Parameters

1: \mathbf{x} – double Input

On entry: the argument x of the function.

Constraint: $\mathbf{x} > 0.0$.

2: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE OVERFLOW LIKELY

Computation halted due to likelihood of overflow. \mathbf{x} may be too small. $\mathbf{x} = \langle value \rangle$.

[NP3645/7] s14acc.1

NE REAL

```
On entry, \mathbf{x} = \langle value \rangle. Constraint: \mathbf{x} > 0.0.
```

NE_UNDERFLOW_LIKELY

Computation halted due to likelihood of underflow. \mathbf{x} may be too large. $\mathbf{x} = \langle value \rangle$.

NE BAD PARAM

On entry, parameter (value) had an illegal value.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

All constants in nag_polygamma_fun (s14acc) are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used t, then clearly the maximum number of correct digits in the results obtained is limited by $p = \min(t, 18)$.

With the above proviso, results returned by this function should be accurate almost to full precision, except at points close to the zero of $\psi(x)$, $x \simeq 1.461632$, where only absolute rather than relative accuracy can be obtained.

8 Further Comments

None.

9 Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

9.1 Program Text

```
/* nag_polygamma_fun (s14acc) Example Program
  Copyright 2002 Numerical Algorithms Group.
* Mark 7, 2002.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
 double f, x;
 /* Skip heading in data file */
Vscanf("%*[^\n]");
 Vprintf("s14acc Example Program Results\n");
 Vprintf("
               X
                      psi(x)-log(x)\n");
 while (scanf("%lf", &x) != EOF)
      f = s14acc(x, NAGERR_DEFAULT);
      Vprintf("%8.3f %14.4f\n", x, f);
 return EXIT_SUCCESS;
```

s14acc.2 [NP3645/7]

9.2 Program Data

```
s14acc Example Program Data
0.1
0.5
3.6
8.0
```

9.3 Program Results

```
s14acc Example Program Results
x psi(x)-log(x)
0.100 -8.1212
0.500 -1.2704
3.600 -0.1453
8.000 -0.0638
```

[NP3645/7] s14acc.3 (last)