NAG C Library Function Document

nag dawson (s15afc)

1 Purpose

nag dawson (s15afc) returns a value for Dawson's Integral, F(x), via the function name.

2 Specification

double nag_dawson (double x)

3 Description

nag_dawson (s15afc) evaluates an approximation for Dawson's Integral

$$F(x) = e^{-x^2} \int_0^x e^{t^2} dt.$$

The function is based on two Chebyshev expansions:

For $0 < |x| \le 4$,

$$F(x) = x \sum_{r=0}^{\prime} a_r T_r(t), \quad \text{where} \quad t = 2 \left(\frac{x}{4}\right)^2 - 1.$$

For |x| > 4,

$$F(x) = \frac{1}{x} \sum_{r=0}^{7} b_r T_r(t)$$
, where $t = 2\left(\frac{4}{x}\right)^2 - 1$.

For |x| near zero, $F(x) \simeq x$, and for |x| large, $F(x) \simeq \frac{1}{2x}$. These approximations are used for those values of x for which the result is correct to **machine precision**. For very large x on some machines, F(x) may underflow and then the result is set exactly to zero (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Parameters

1: \mathbf{x} - double Input

On entry: the argument x of the function.

6 Error Indicators and Warnings

None.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is considerably greater than the **machine precision** (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by:

[NP3645/7] s15afc.1

$$\epsilon \simeq \left| \frac{x(1 - 2xF(x))}{F(x)} \right| \delta.$$

The following graph shows the behaviour of the error amplification factor $\left| \frac{x(1-2xF(x))}{F(x)} \right|$:

Figure 1

However if δ is of the same order as *machine precision*, then rounding errors could make ϵ somewhat larger than the above relation indicates. In fact ϵ will be largely independent of x or δ , but will be of the order of a few times the *machine precision*.

8 Further Comments

None.

9 Example

The example program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

9.1 Program Text

```
/* nag_dawson (s15afc) Example Program
   *
   * Copyright 2002 Numerical Algorithms Group.
   *
   * Mark 7, 2002.
   */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
int main(void)
{
   double x, y;
   Integer exit_status = EXIT_SUCCESS;
```

s15afc.2 [NP3645/7]

9.2 Program Data

```
s15afc Example Program Data
-2.0
-0.5
1.0
1.5
2.0
5.0
10.0
```

9.3 Program Results

[NP3645/7] s15afc.3 (last)