nag_bessel_k0 (s18acc)

1. Purpose

nag_bessel_k0 (s18acc) returns the value of the modified Bessel function $K_0(x)$.

2. Specification

```
#include <nag.h>
#include <nags.h>
```

double nag_bessel_k0(double x, NagError *fail)

3. Description

This function evaluates an approximation to the modified Bessel function of the second kind, $K_0(x)$.

The function is based on Chebyshev expansions.

4. Parameters

х

Input: the argument x of the function. Constraint: $\mathbf{x} > 0.0$.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_REAL_ARG_LE

On entry, **x** must not be less than or equal to 0.0: $\mathbf{x} = \langle value \rangle$. K_0 is undefined and the function returns zero.

6. Further Comments

6.1. Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is somewhat larger than the **machine precision** (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by $\epsilon \simeq |xK_1(x)/K_0(x)| \delta$.

However, if δ is of the same order as **machine precision**, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small x, the amplification factor is approximately $|1/\ln x|$, which implies strong attenuation of the error, but in general ϵ can never be less than the **machine precision**.

For large x, $\epsilon \simeq x\delta$ and we have strong amplification of the relative error. Eventually K_0 , which is asymptotically given by e^{-x}/\sqrt{x} , becomes so small that it cannot be calculated without underflow and hence the function will return zero. Note that for large x the errors will be dominated by those of the **math library** function exp.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 9 p 374.

7. See Also

nag_bessel_k1 (s18adc)

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_bessel_k0(s18acc) Example Program
 * Copyright 1990 Numerical Algorithms Group.
 *
 * Mark 2 revised, 1992.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
{
  double x, y;
  /* Skip heading in data file */
Vscanf("%*[^\n]");
  Vprintf("s18acc Example Program Results\n");
  Vprintf("
                                y∖n");
                x
  while (scanf("%lf", &x) != EOF)
    {
       y = s18acc(x, NAGERR_DEFAULT);
Vprintf("%12.3e%12.3e\n", x, y);
    }
  exit(EXIT_SUCCESS);
}
```

8.2. Program Data

s18acc Example Program Data 0.4

0.4 0.6 1.4 1.6 2.5 3.5 6.0 8.0 10.0 1000.0

8.3. Program Results

s18acc Example Program Results

х	У
4.000e-01	1.115e+00
6.000e-01	7.775e-01
1.400e+00	2.437e-01
1.600e+00	1.880e-01
2.500e+00	6.235e-02
3.500e+00	1.960e-02
6.000e+00	1.244e-03
8.000e+00	1.465e-04
1.000e+01	1.778e-05
1.000e+03	0.000e+00