nag_bessel_i0 (s18aec)

1. Purpose

nag_bessel_i0 (s18aec) returns the value of the modified Bessel function $I_0(x)$.

2. Specification

```
#include <nag.h>
#include <nags.h>
double nag_bessel_i0(double x, NagError *fail)
```

3. Description

This function evaluates an approximation to the modified Bessel function of the first kind, $I_0(x)$.

The function is based on Chebyshev expansions.

For large x, the function must fail because of the danger of overflow in calculating e^x .

4. Parameters

 \mathbf{x}

Input: the argument x of the function.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_REAL_ARG_GT

On entry, $|\mathbf{x}|$ must not be greater than $\langle value \rangle$: $\mathbf{x} = \langle value \rangle$.

 $|\mathbf{x}|$ is too large and the function returns the approximate value of $I_0(x)$ at the nearest valid argument.

6. Further Comments

6.1. Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is somewhat larger than the **machine precision** (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by $\epsilon \simeq |xI_1(x)/I_0(x)| \delta$.

However, if δ is of the same order as **machine precision**, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small x the amplification factor is approximately $x^2/2$, which implies strong attenuation of the error, but in general ϵ can never be less than the **machine precision**.

For large x, $\epsilon \simeq x\delta$ and we have strong amplification of errors. However, the function must fail for quite moderate values of x, because $I_0(x)$ would overflow; hence in practice the loss of accuracy for large x is not excessive. Note that for large x the errors will be dominated by those of the **math** library function exp.

6.2. References

Abramowitz M and Stegun I A (1968) Handbook of Mathematical Functions Dover Publications, New York ch 9 p 374.

7. See Also

```
nag_bessel_i1 (s18afc)
```

[NP3275/5/pdf] 3.s18aec.1

8. Example

The following program reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

8.1. Program Text

```
/* nag_bessel_i0(s18aec) Example Program
 * Copyright 1990 Numerical Algorithms Group.
 * Mark 2 revised, 1992.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
main()
  double x, y;
  /* Skip heading in data file */
  Vscanf("%*[^\n]");
  Vprintf("s18aec Example Program Results\n");
  Vprintf("
                            y\n");
               x
  while (scanf("%lf", &x) != EOF)
      y = s18aec(x, NAGERR_DEFAULT);
      Vprintf("%12.3e%12.3e\n", x, y);
  exit(EXIT_SUCCESS);
```

8.2. Program Data

```
$18aec Example Program Data

0.0

0.5

1.0

3.0

6.0

8.0

10.0

15.0

20.0

-1.0
```

8.3. Program Results

s18aec Example Program Results

```
1.000e+00
 0.000e+00
5.000e-01
            1.063e+00
 1.000e+00
           1.266e+00
3.000e+00
           4.881e+00
6.000e+00
            6.723e+01
8.000e+00
            4.276e+02
1.000e+01
            2.816e+03
1.500e+01
            3.396e+05
2.000e+01
            4.356e+07
-1.000e+00
            1.266e+00
```

3.s18aec.2 [NP3275/5/pdf]