NAG C Library

Mark 7 Library Contents

a00 - Library Identification

Routine Name	Mark of Introduction	Purpose
a00aac	1	nag_implementation_details Library identification, details of implementation and mark

a02 - Complex Arithmetic

Routine NameMark of IntroductionPurposea02bac2nag_complex Complex number from real and imaginary partsa02bbc2nag_complex_real Real part of a complex numbera02bcc2nag_complex_imag Imaginary part of a complex numbera02cac2nag_complex_add Addition of two complex numbersa02cbc2nag_complex_subtract Subtraction of two complex numbersa02cbc2nag_complex_multiply Multiplication of two complex numbersa02cdc2nag_complex_divide Quotient of two complex numbersa02cdc2nag_complex_negate Negation of a complex numbera02cfc2nag_complex_conjg Conjugate of a complex numbera02cgc2nag_complex_equal Equality of two complex numbersa02chc2nag_complex_auga02dac2nag_complex_argArgument of a complex numbera02dbc2nag_complex_abs Modulus of a complex numbera02dcc2nag_complex_sqrt Square root of a complex number
Complex number from real and imaginary parts a02bbc 2 nag_complex_real Real part of a complex number a02bcc 2 nag_complex_imag Imaginary part of a complex number a02cac 2 nag_complex_add Addition of two complex numbers a02cbc 2 nag_complex_subtract Subtraction of two complex numbers a02ccc 2 nag_complex_multiply Multiplication of two complex numbers a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex_number a02dcc 2 nag_complex_abs Modulus of a complex_number
a02bbc 2 nag_complex_real Real part of a complex number a02bcc 2 nag_complex_imag Imaginary part of a complex number a02cac 2 nag_complex_add Addition of two complex numbers a02cbc 2 nag_complex_subtract Subtraction of two complex numbers a02ccc 2 nag_complex_multiply Multiplication of two complex numbers a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex_number a02dcc 2 nag_complex_sqrt
a02bcc 2 nag_complex_imag Imaginary part of a complex number a02cac 2 nag_complex_add Addition of two complex numbers a02cbc 2 nag_complex_subtract Subtraction of two complex numbers a02ccc 2 nag_complex_multiply Multiplication of two complex numbers a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex_number a02dcc 2 nag_complex_abs Modulus of a complex_number a02dcc 2 nag_complex_sqrt
a02cac 2 nag_complex_add Addition of two complex numbers a02cbc 2 nag_complex_subtract Subtraction of two complex numbers a02ccc 2 nag_complex_multiply Multiplication of two complex numbers a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex_number a02dcc 2 nag_complex_sqrt
a02cbc 2 nag_complex_subtract Subtraction of two complex numbers a02ccc 2 nag_complex_multiply Multiplication of two complex numbers a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02ccc 2 nag_complex_multiply Multiplication of two complex numbers a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02cdc 2 nag_complex_divide Quotient of two complex numbers a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02cec 2 nag_complex_negate Negation of a complex number a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02cfc 2 nag_complex_conjg Conjugate of a complex number a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02cgc 2 nag_complex_equal Equality of two complex numbers a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02chc 2 nag_complex_not_equal Inequality of two complex numbers a02dac 2 nag_complex_arg
a02dac 2 nag_complex_arg Argument of a complex number a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02dbc 2 nag_complex_abs Modulus of a complex number a02dcc 2 nag_complex_sqrt
a02dcc 2 nag_complex_sqrt
Square root of a complex number
a02ddc 2 nag_complex_i_power
Complex number raised to integer power a02dec 2 nag_complex_r_power
Complex number raised to real power a02dfc 2 nag_complex_c_power
Complex number raised to complex power nag_complex_log Complex logarithm
a02dhc 2 nag_complex_exp Complex exponential
a02djc 2 nag_complex_sin Complex sine

a02dkc	2	nag_complex_cos
		Complex cosine
a02dlc	2	nag_complex_tan
		Complex tangent

c02 - Zeros of Polynomials

Routine Name	Mark of Introduction	Purpose
c02afc	2	nag_zeros_complex_poly
		Zeros of a polynomial with complex coefficients
c02agc	2	nag_zeros_real_poly
		Zeros of a polynomial with real coefficients
c02akc	6	nag_cubic_roots
		Zeros of a cubic polynomial with real coefficients
c02alc	6	nag_quartic_roots
		Zeros of a real quartic polynomial with real coefficients

c05 - Roots of One or More Transcendental Equations

Routine Name	Mark of Introduction	Purpose
c05adc	2	nag_zero_cont_func_bd
		Zero of a continuous function of one variable
c05nbc	2	nag_zero_nonlin_eqns
		Solution of a system of nonlinear equations (function values only)
c05pbc	2	nag_zero_nonlin_eqns_deriv
		Solution of a system of nonlinear equations (using first derivatives)
c05sdc	5	nag_zero_cont_func_bd_1
		Zero of a continuous function of one variable, thread-safe
c05tbc	5	nag_zero_nonlin_eqns_1
		Solution of a system of nonlinear equations (function values only), thread-safe
c05ubc	5	nag_zero_nonlin_eqns_deriv_1
		Solution of a system of nonlinear equations (using first derivatives), thread-safe
c05zbc	2	nag_check_deriv
		Derivative checker for nag_zero_nonlin_eqns_deriv (c05pbc)
c05zcc	5	nag_check_deriv_1
		Derivative checker for nag_zero_nonlin_eqns_deriv_1 (c05ubc), thread-safe

c06 - Fourier Transforms

Routine Name	Mark of Introduction	Purpose
c06eac	1	nag fft real
		Single one-dimensional real discrete Fourier transform
c06ebc	1	nag_fft_hermitian
		Single one-dimensional Hermitian discrete Fourier transform
c06ecc	1	nag_fft_complex
		Single one-dimensional complex discrete Fourier transform
c06ekc	1	nag convolution real
		Circular convolution or correlation of two real vectors
c06fpc	1	nag fft multiple real
•		Multiple one-dimensional real discrete Fourier transforms
c06fqc	1	nag fft multiple hermitian
1		Multiple one-dimensional Hermitian discrete Fourier transforms

c06frc	1	nag fft multiple complex
coone	1	Multiple one-dimensional complex discrete Fourier transforms
c06fuc	1	nag fft 2d complex
Coorac	-	two-dimensional complex discrete Fourier transform
c06gbc	1	nag conjugate hermitian
000800	-	Complex conjugate of Hermitian sequence
c06gcc	1	nag conjugate complex
8		Complex conjugate of complex sequence
c06gqc	1	nag multiple conjugate hermitian
21		Complex conjugate of multiple Hermitian sequences
c06gsc	1	nag multiple hermitian to complex
C		Convert Hermitian sequences to general complex sequences
c06gzc	1	nag fft init trig
_		Initialisation function for other c06 functions
c06hac	2	nag_fft_multiple_sine
		Discrete sine transform
c06hbc	2	nag_fft_multiple_cosine
		Discrete cosine transform
c06hcc	2	nag_fft_multiple_qtr_sine
		Discrete quarter-wave sine transform
c06hdc	2	nag_fft_multiple_qtr_cosine
		Discrete quarter-wave cosine transform
c06pfc	7	nag_fft_multid_single
		One-dimensional complex discrete Fourier transform of multi-dimensional data
	_	(using complex data type)
c06pjc	7	nag_fft_multid_full
		Multi-dimensional complex discrete Fourier transform of multi-dimensional data
0.6	_	(using complex data type)
c06pxc	7	nag_fft_3d
		Three-dimensional complex discrete Fourier transform, complex data format

d01 - Quadrature

Routine Name	Mark of Introduction	Purpose
d01ajc	2	nag_1d_quad_gen
		One-dimensional adaptive quadrature, allowing for badly behaved integrands
d01akc	2	nag_ld_quad_osc
10.1 1	2	One-dimensional adaptive quadrature, suitable for oscillating functions
d01alc	2	nag_ld_quad_brkpts
		One-dimensional adaptive quadrature, allowing for singularities at specified
d01amc	2	points nag 1d quad inf
doranic	2	One-dimensional adaptive quadrature over infinite or semi-infinite interval
d01anc	2	nag 1d quad wt trig
do runo	2	One-dimensional adaptive quadrature, finite interval, sine or cosine weight
		functions
d01apc	2	nag_1d_quad_wt_alglog
		One-dimensional adaptive quadrature, weight function with end-point singula-
		rities of algebraic-logarithmic type
d01aqc	2	nag_ld_quad_wt_cauchy
		One-dimensional adaptive quadrature, weight function $1/(x-c)$, Cauchy
401	2	principal value
d01asc	2	nag_ld_quad_inf_wt_trig One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine
		weight function
d01bac	2	nag_1d_quad_guass
201040	_	One-dimensional Gaussian quadrature rule evaluation
		1

d01fcc	2	nag_multid_quad_adapt
		Multi-dimensional adaptive quadrature
d01gac	2	nag_1d_quad_vals
		One-dimensional integration of a function defined by data values only
d01gbc	2	nag_multid_quad_monte_carlo
		Multi-dimensional quadrature, using Monte Carlo method
d01sjc	5	nag_1d_quad_gen_1
		One-dimensional adaptive quadrature, allowing for badly behaved integrands,
		thread-safe
d01skc	5	nag_1d_quad_osc_1
		One-dimensional adaptive quadrature, suitable for oscillating functions, thread-
		safe
d01slc	5	nag_1d_quad_brkpts_1
		One-dimensional adaptive quadrature, allowing for singularities at specified
		points, thread-safe
d01smc	5	nag_1d_quad_inf_1
		One-dimensional adaptive quadrature over infinite or semi-infinite interval,
		thread-safe
d01snc	5	nag 1d quad wt trig 1
		One-dimensional adaptive quadrature, finite interval, sine or cosine weight
		functions, thread-safe
d01spc	5	nag_1d_quad_wt_alglog_1
_		One-dimensional adaptive quadrature, weight function with end-point singula-
		rities of algebraic-logarithmic type, thread-safe
d01sqc	5	nag 1d quad wt cauchy 1
•		One-dimensional adaptive quadrature, weight function $1/(x-c)$, Cauchy
		principal value, thread-safe
d01ssc	5	nag 1d quad inf wt trig 1
		One-dimensional adaptive quadrature, semi-infinite interval, sine or cosine
		weight function, thread-safe
d01tac	5	nag 1d quad gauss 1
		One-dimensional Gaussian quadrature rule evaluation, thread-safe
d01wcc	5	nag_multid_quad_adapt_1
		Multi-dimensional adaptive quadrature, thread-safe
d01xbc	5	nag_multid_quad_monte_carlo_1
		Multi-dimensional quadrature, using Monte Carlo method, thread-safe

d02 - Ordinary Differential Equations

Routine Name	Mark of Introduction	Purpose
d02cjc	2	nag_ode_ivp_adams_gen
		Ordinary differential equation solver using a variable-order variable-step Adams method (Black Box)
d02ejc	3	nag ode ivp bdf gen
J		Ordinary differential equations solver, stiff, initial value problems using the
		Backward Differentiation Formulae
d02gac	3	nag_ode_bvp_fd_nonlin_fixedbc
		Ordinary differential equations solver, for simple nonlinear two-point boundary
100 1		value problems, using a finite difference technique with deferred correction
d02gbc	3	nag_ode_bvp_fd_lin_gen
		Ordinary differential equations solver, for general linear two-point boundary value problems, using a finite difference technique with deferred correction
d02pcc	3	nag ode ivp rk range
P**	2	Ordinary differential equations solver, initial value problems over a range using Runge–Kutta methods

d02pdc	3	nag_ode_ivp_rk_onestep
		Ordinary differential equations solver, initial value problems, one time step
		using Runge-Kutta methods
d02ppc	3	nag_ode_ivp_rk_free
		Freeing function for use with the Runge–Kutta suite (d02p functions)
d02pvc	3	nag_ode_ivp_rk_setup
		Setup function for use with nag_ode_ivp_rk_range (d02pcc) and/or
		nag_ode_ivp_rk_onestep (d02pdc)
d02pwc	3	nag_ode_ivp_rk_reset_tend
		A function to re-set the end point following a call to nag_ode_ivp_rk_onestep
		(d02pdc)
d02pxc	3	nag_ode_ivp_rk_interp
		Ordinary differential equations solver, computes the solution by interpolation
		anywhere on an integration step taken by nag_ode_ivp_rk_onestep (d02pdc)
d02pzc	3	nag_ode_ivp_rk_errass
		A function to provide global error assessment during an integration with either
		nag_ode_ivp_rk_range (d02pcc) or nag_ode_ivp_rk_onestep (d02pdc)
d02qfc	2	nag_ode_ivp_adams_roots
		Ordinary differential equation solver using Adams method (sophisticated use)
d02qwc	2	nag_ode_ivp_adams_setup
		Setup function for nag_ode_ivp_adams_roots (d02qfc)
d02qyc	2	nag_ode_ivp_adams_free
		Freeing function for use with nag_ode_ivp_adams_roots (d02qfc)
d02qzc	2	nag_ode_ivp_adams_interp
		Interpolation function for use with nag_ode_ivp_adams_roots (d02qfc)
d02rac	3	nag_ode_bvp_fd_nonlin_gen
		Ordinary differential equations solver, for general nonlinear two-point boundary
		value problems, using a finite difference technique with deferred correction

$d03-Partial\ Differential\ Equations$

Routine Name	Mark of Introduction	Purpose
d03ncc	7	nag_pde_bs_1d
d03ndc	7	Finite difference solution of the Black–Scholes equations nag_pde_bs_1d_analytic Analytic solution of the Black–Scholes equations
d03nec	7	nag_pde_bs_1d_means
d03pcc	7	Compute average values for nag_pde_bs_1d_analytic (d03ndc) nag_pde_parab_1d_fd General system of parabolic PDEs, method of lines, finite differences, one space
d03pdc	7	variable nag_pde_parab_1d_coll General system of parabolic PDEs, method of lines, Chebyshev C^0 collocation,
d03pec	7	one space variable nag_pde_parab_1d_keller General system of first-order PDEs, method of lines, Keller box discretisation,
d03pfc	7	one space variable nag_pde_parab_1d_cd General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on
d03phc	7	Riemann solver, one space variable nag_pde_parab_1d_fd_ode General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
d03pjc	7	nag_pde_parab_1d_coll_ode General system of parabolic PDEs, coupled DAEs, method of lines, Chebysh C^0 collocation, one space variable

d03pkc	7	nag_pde_parab_1d_keller_ode
		General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, one space variable
d03plc	7	nag_pde_parab_1d_cd_ode
		General system of convection-diffusion PDEs with source terms in conservative
		form, coupled DAEs, method of lines, upwind scheme using numerical flux
d02nna	7	function based on Riemann solver, one space variable nag pde parab 1d fd ode remesh
d03ppc	/	General system of parabolic PDEs, coupled DAEs, method of lines, finite
		differences, remeshing, one space variable
d03prc	7	nag pde parab 1d keller ode remesh
•		General system of first-order PDEs, coupled DAEs, method of lines, Keller box
		discretisation, remeshing, one space variable
d03psc	7	nag_pde_parab_1d_cd_ode_remesh
		General system of convection-diffusion PDEs with source terms in conservative
		form, coupled DAEs, method of lines, upwind scheme using numerical flux
d03puc	7	function based on Riemann solver, remeshing, one space variable nag pde parab 1d euler roe
dospue	,	Roe's approximate Riemann solver for Euler equations in conservative form, for
		use with nag pde parab 1d cd (d03pfc), nag pde parab 1d cd ode (d03plc)
		and nag pde parab 1d cd ode remesh (d03psc)
d03pvc	7	nag_pde_parab_1d_euler_osher
		Osher's approximate Riemann solver for Euler equations in conservative form,
		for use with nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode
102	7	(d03plc) and nag_pde_parab_1d_cd_ode_remesh (d03psc)
d03pwc	7	nag_pde_parab_1d_euler_hll
		Modified HLL Riemann solver for Euler equations in conservative form, for use with nag pde parab 1d cd (d03pfc), nag pde parab 1d cd ode (d03plc) and
		nag pde parab 1d cd ode remesh (d03psc)
d03pxc	7	nag pde parab 1d euler exact
doc p.10	,	Exact Riemann Solver for Euler equations in conservative form, for use with
		nag_pde_parab_1d_cd (d03pfc), nag_pde_parab_1d_cd_ode (d03plc) and
		nag_pde_parab_1d_cd_ode_remesh (d03psc)
d03pyc	7	nag_pde_interp_1d_coll
		PDEs, spatial interpolation with nag_pde_parab_1d_coll (d03pdc) or
102	7	nag_pde_parab_1d_coll_ode (d03pjc)
d03pzc	7	nag_pde_interp_1d_fd PDEs, spatial interpolation with nag_pde_parab_1d_fd (d03pcc),
		nag_pde_parab_1d_keller (d03pec), nag_pde_parab_1d_cd (d03pfc),
		nag_pde_parab_1d_kener (do3pee), nag_pde_parab_1d_keller_ode (d03pkc),
		nag pde parab 1d cd ode (d03plc), nag pde parab 1d fd ode remesh
		(d03ppc), nag_pde_parab_1d_keller_ode_remesh (d03prc) or
		nag_pde_parab_1d_cd_ode_remesh (d03psc)
		nag_pde_parab_1d_cd_ode_remesh (d03psc)

d06 - Mesh Generation

Routine	Mark of	
Name	Introduction	Purpose
d06aac	7	nag mesh2d inc
		Generates a two-dimensional mesh using a simple incremental method
d06abc	7	nag_mesh2d_delaunay
		Generates a two-dimensional mesh using a Delaunay-Voronoi process
d06acc	7	nag_mesh2d_front
		Generates a two-dimensional mesh using an Advancing-front method
d06bac	7	nag_mesh2d_bound
		Generates a boundary mesh
d06cac	7	nag_mesh2d_smooth
		Uses a barycentering technique to smooth a given mesh

d06cbc	7	nag_mesh2d_sparse
		Generates a sparsity pattern of a Finite Element matrix associated with a given
		mesh
d06ccc	7	nag_mesh2d_renum
		Renumbers a given mesh using Gibbs method
d06dac	7	nag mesh2d trans
		Generates a mesh resulting from an affine transformation of a given mesh
d06dbc	7	nag mesh2d join
		Joins together two given adjacent (possibly overlapping) meshes

$e01\,-\,Interpolation$

Routine Name	Mark of Introduction	Purpose
e01aec	7	nag_1d_cheb_interp Interpolating functions, polynomial interpolant, data may include derivative values, one variable
e01bac	2	nag_1d_spline_interpolant Interpolating function, cubic spline interpolant, one variable
e01bec	1	nag_monotonic_interpolant Interpolating function, monotonicity-preserving, piecewise cubic Hermite, one variable
e01bfc	1	nag_monotonic_evaluate Evaluation of interpolant computed by nag_monotonic_interpolant (e01bec), function only
e01bgc	2	nag_monotonic_deriv Evaluation of interpolant computed by nag_monotonic_interpolant (e01bec), function and first derivative
e01bhc	2	nag_monotonic_intg Evaluation of interpolant computed by nag_monotonic_interpolant (e01bec), definite integral
e01dac	2	nag_2d_spline_interpolant Interpolating function, bicubic spline interpolant, two variables
e01rac	7	nag_ld_ratnl_interp Interpolating functions, rational interpolant, one variable
e01rbc	7	nag_1d_ratnl_eval Interpolated values, evaluate rational interpolant computed by nag_1d_ratnl interp (e01rac), one variable
e01sac	3	nag_2d_scat_interpolant A function to generate a two-dimensional surface interpolating a set of data points, using either the method of Renka and Cline or the modified Shepard's method
e01sbc	3	nag_2d_scat_eval A function to evaluate, at a set of points, the two-dimensional interpolant function generated by nag 2d scat interpolant (e01sac)
e01szc	3	nag_2d_scat_free Freeing function for use with nag_2d_scat_eval (e01sbc)
e01tgc	7	nag_3d_shep_interp Interpolating functions, modified Shepard's method, three variables
e01thc	7	nag_3d_shep_eval Interpolated values, evaluate interpolant computed by nag_3d_shep_interp (e01tgc), function and first derivatives, three variables

e02 - Curve and Surface Fitting

Routine Name	Mark of Introduction	Purpose
e02adc	5	nag_1d_cheb_fit Computes the coefficients of a Chebyshev series polynomial for arbitrary data
e02aec	5	nag_1d_cheb_eval Evaluates the coefficients of a Chebyshev series polynomial
e02afc	5	nag_ld_cheb_interp_fit Computes the coefficients of a Chebyshev series polynomial for interpolated data
e02agc	7	nag_1d_cheb_fit_constr Least-squares polynomial fit, values and derivatives may be constrained,
e02ahc	7	arbitrary data points nag_ld_cheb_deriv Derivative of fitted polynomial in Chebyshev series form
e02ajc	7	nag_1d_cheb_intg Integral of fitted polynomial in Chebyshev series form
e02akc	7	nag_1d_cheb_eval2 Evaluation of fitted polynomial in one variable from Chebyshev series form
e02bac	2	nag_1d_spline_fit_knots Least-squares curve cubic spline fit (including interpolation), one variable
e02bbc	2	nag_1d_spline_evaluate Evaluation of fitted cubic spline, function only
e02bcc	2	nag_1d_spline_deriv Evaluation of fitted cubic spline, function and derivatives
e02bdc	2	nag_1d_spline_intg Evaluation of fitted cubic spline, definite integral
e02bec	2	nag_1d_spline_fit Least-squares cubic spline curve fit, automatic knot placement, one variable
e02cac	7	nag_2d_cheb_fit_lines Least-squares surface fit by polynomials, data on lines
e02cbc	7	nag_2d_cheb_eval Evaluation of fitted polynomial in two variables
e02dcc	2	nag_2d_spline_fit_grid Least-squares bicubic spline fit with automatic knot placement, two variables (rectangular grid)
e02ddc	2	nag_2d_spline_fit_scat Least-squares bicubic spline fit with automatic knot placement, two variables (scattered data)
e02dec	2	nag_2d_spline_eval Evaluation of bicubic spline, at a set of points
e02dfc	2	nag_2d_spline_eval_rect Evaluation of bicubic spline, at a mesh of points
e02gac	7	nag_lone_fit L_1 -approximation by general linear function
e02gcc	7	nag_linf_fit L_{∞} -approximation by general linear function
e02rac	7	nag_1d_pade Padé-approximants
e02rbc	7	nag_1d_pade_eval Evaluation of fitted rational function as computed by nag_1d_pade (e02rac)

e04 - Minimizing or Maximizing a Function

Routine Name	Mark of Introduction	Purpose
e04abc	5	nag_opt_one_var_no_deriv Minimizes a function of one variable, using function values only
e04bbc	5	nag_opt_one_var_deriv Minimizes a function of one variable, requires first derivatives
e04ccc	4	nag_opt_simplex Unconstrained minimization using simplex algorithm
e04dgc	2	nag_opt_conj_grad Unconstrained minimization using conjugate gradients
e04fcc	2	nag_opt_lsq_no_deriv Unconstrained nonlinear least squares (no derivatives required)
e04gbc	2	nag_opt_lsq_deriv Unconstrained nonlinear least squares (first derivatives required)
e04hcc	2	nag_opt_check_deriv Derivative checker for use with nag_opt_bounds_deriv (e04kbc)
e04hdc	5	nag_opt_check_2nd_deriv Checks second derivatives of a user-defined function
e04jbc	2	nag_opt_bounds_no_deriv Bound constrained nonlinear minimization (no derivatives required)
e04kbc	2	nag_opt_bounds_deriv Bound constrained nonlinear minimization (first derivatives required)
e04lbc	5	nag_opt_bounds_2nd_deriv Solves bound constrained problems (first and second derivatives required)
e04mfc	2	nag_opt_lp Linear programming
e04myc	5	nag_opt_sparse_mps_free Free memory allocated by nag opt sparse mps read (e04mzc)
e04mzc	5	nag_opt_sparse_mps_read Read MPSX data for sparse LP or QP problem from a file
e04ncc	5	nag_opt_lin_lsq Solves linear least-squares and convex quadratic programming problems (non-sparse)
e04nfc	2	nag_opt_qp Quadratic programming
e04nkc	5	nag_opt_sparse_convex_qp Solves sparse linear programming or convex quadratic programming problems
e04ucc	4	nag_opt_nlp Minimization with nonlinear constraints using a sequential QP method
e04ugc	6	nag_opt_nlp_sparse NLP problem (sparse)
e04unc	5	nag_opt_nlin_lsq Solves nonlinear least-squares problems using the sequential QP method
e04xac	5	nag_opt_estimate_deriv Computes an approximation to the gradient vector and/or the Hessian matrix for use with nag opt nlp (e04ucc) and other nonlinear optimization functions
e04xxc	2	nag_opt_init Initialisation function for option setting
e04xyc	2	nag_opt_read Read options from a text file
e04xzc	2	nag_opt_free Memory freeing function for use with option setting
e04yac	2	nag_opt_lsq_check_deriv Least-squares derivative checker for use with nag opt_lsq_deriv (e04gbc)
e04ycc	2	nag_opt_lsq_covariance Covariance matrix for nonlinear least-squares

f01 - Matrix Factorizations

Routine Name	Mark of Introduction	Purpose
f01bnc	1	nag_complex_cholesky
f01mcc	1	UU^H factorization of complex Hermitian positive-definite matrix nag_real_cholesky_skyline
		LDL^{T} factorization of real symmetric positive-definite variable-bandwidth (skyline) matrix
f01qcc	1	nag_real_qr
		QR factorization of real m by n matrix $(m \ge n)$
f01qdc	1	nag_real_apply_q
		Compute QB or Q^TB after factorization by nag_real_qr (f01qcc)
f01qec	1	nag_real_form_q
~ 1	4	Form columns of Q after factorization by nag_real_qr (f01qcc)
f01rcc	1	nag_complex_qr QR factorization of complex m by n matrix $(m \ge n)$
f01rdc	1	nag complex apply q
101140	-	Compute QB or Q^HB after factorization by nag complex qr (f01rcc)
f01rec	1	nag complex form q
		Form columns of Q after factorization by nag_complex_qr (f01rcc)

f02 - Eigenvalues and Eigenvectors

Routine Name	Mark of Introduction	Purpose
f02aac	1	nag_real_symm_eigenvalues All eigenvalues of real symmetric matrix
f02abc	1	nag_real_symm_eigensystem All eigenvalues and eigenvectors of real symmetric matrix
f02adc	1	nag_real_symm_general_eigenvalues All eigenvalues of generalized real symmetric-definite eigenproblem
f02aec	1	nag_real_symm_general_eigensystem All eigenvalues and eigenvectors of generalized real symmetric-definite eigenproblem
f02afc	1	nag_real_eigenvalues All eigenvalues of real matrix
f02agc	1	nag_real_eigensystem All eigenvalues and eigenvectors of real matrix
f02awc	2	nag_hermitian_eigenvalues All eigenvalues of complex Hermitian matrix
f02axc	2	nag_hermitian_eigensystem All eigenvalues and eigenvectors of complex Hermitian matrix
f02bjc	2	nag_real_general_eigensystem All eigenvalues and optionally eigenvectors of real generalized eigenproblem, by QZ algorithm
f02ecc	5	nag_real_eigensystem_sel Computes selected eigenvalues and eigenvectors of a real general matrix
f02gcc	5	nag_complex_eigensystem_sel Computes selected eigenvalues and eigenvectors of a complex general matrix
f02wec	1	nag_real_svd SVD of real matrix
f02xec	1	nag_complex_svd SVD of complex matrix

f03 – Determinants

Routine Name	Mark of Introduction	Purpose
f03aec	1	nag_real_cholesky
		LL^T factorization and determinant of real symmetric positive-definite matrix
f03afc	1	nag_real_lu
		LU factorization and determinant of real matrix
f03ahc	1	nag_complex_lu
		LU factorization and determinant of complex matrix

f04 - Simultaneous Linear Equations

Routine Name	Mark of Introduction	Purpose
f04adc	1	nag_complex_lin_eqn_mult_rhs Approximate solution of complex simultaneous linear equations with multiple right-hand sides
f04agc	1	nag_real_cholesky_solve_mult_rhs Approximate solution of real symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized by nag real cholesky (f03aec))
f04ajc	1	nag_real_lu_solve_mult_rhs Approximate solution of real simultaneous linear equations (coefficient matrix
f04akc	1	already factorized by nag_real_lu (f03afc)) nag_complex_lu_solve_mult_rhs Approximate solution of complex simultaneous linear equations (coefficient matrix already factorized by nag complex lu (f03ahc))
f04arc	1	nag_real_lin_eqn Approximate solution of real simultaneous linear equations, one right-hand side
f04awc	1	nag_hermitian_lin_eqn_mult_rhs Approximate solution of complex Hermitian positive-definite simultaneous linear equations (coefficient matrix already factorized by nag_complex_cholesky (f01bnc))
f04mcc	1	nag_real_cholesky_skyline_solve Approximate solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized by nag_real_cholesky_skyline (f01mcc))

f06 - Linear Algebra Support Functions

Routine Name	Mark of Introduction	Purpose
f06pac	3	dgemv
		Matrix-vector product, real rectangular matrix
f06pbc	3	dgbmv
		Matrix-vector product, real rectangular band matrix
f06pcc	3	dsymv
		Matrix-vector product, real symmetric matrix
f06pdc	3	dsbmv
		Matrix-vector product, real symmetric band matrix
f06pec	3	dspmv
		Matrix-vector product, real symmetric packed matrix
f06pfc	3	dtrmv
		Matrix-vector product, real triangular matrix
f06pgc	3	dtbmv
		Matrix-vector product, real triangular band matrix

f06phc	3	dtpmv
f06pjc	3	Matrix-vector product, real triangular packed matrix dtrsv
		System of equations, real triangular matrix
f06pkc	3	dtbsv System of equations, real triangular band matrix
f06plc	3	dtpsv
f06nma	3	System of equations, real triangular packed matrix
f06pmc	3	dger Rank-1 update, real rectangular matrix
f06ppc	3	dsyr Rank-1 update, real symmetric matrix
f06pqc	3	dspr
f06prc	3	Rank-1 update, real symmetric packed matrix dsyr2
юфіс	3	Rank-2 update, real symmetric matrix
f06psc	3	dspr2
m.c	2	Rank-2 update, real symmetric packed matrix
f06sac	3	zgemv Matrix-vector product, complex rectangular matrix
f06sbc	3	zgbmv
		Matrix-vector product, complex rectangular band matrix
f06scc	3	zhemv
mc-1-	2	Matrix-vector product, complex Hermitian matrix
f06sdc	3	zhbmv Matrix-vector product, complex Hermitian band matrix
f06sec	3	zhpmv
		Matrix-vector product, complex Hermitian packed matrix
f06sfc	3	ztrmv
M(200	2	Matrix-vector product, complex triangular matrix
f06sgc	3	ztbmv Matrix-vector product, complex triangular band matrix
f06shc	3	ztpmv
		Matrix-vector product, complex triangular packed matrix
f06sjc	3	ztrsv
f06skc	3	System of equations, complex triangular matrix ztbsv
TOOSKC	3	System of equations, complex triangular band matrix
f06slc	3	ztpsv
		System of equations, complex triangular packed matrix
f06smc	3	zgeru
f06snc	3	Rank-1 update, complex rectangular matrix, unconjugated vector zgerc
1005110	J	Rank-1 update, complex rectangular matrix, conjugated vector
f06spc	3	zher
m.c	2	Rank-1 update, complex Hermitian matrix
f06sqc	3	zhpr Rank-1 update, complex Hermitian packed matrix
f06src	3	zher2
		Rank-2 update, complex Hermitian matrix
f06ssc	3	zhpr2
f06xx22	3	Rank-2 update, complex Hermitian packed matrix
f06yac	3	dgemm Matrix-matrix product, two real rectangular matrices
f06ycc	3	dsymm
•		Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
f06yfc	3	dtrmm
		Matrix-matrix product, one real triangular matrix, one real rectangular matrix

f06yjc	3	dtrsm
		Solves a system of equations with multiple right-hand sides, real triangular coefficient matrix
f06ypc	3	dsyrk
• 1		Rank- k update of a real symmetric matrix
f06yrc	3	dsyr2k
		Rank- $2k$ update of a real symmetric matrix
f06zac	3	zgemm
		Matrix-matrix product, two complex rectangular matrices
f06zcc	3	zhemm
		Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
f06zfc	3	ztrmm
		Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
f06zjc	3	ztrsm
		Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
f06zpc	3	zherk
		Rank-k update of a complex Hermitian matrix
f06zrc	3	zher2k
		Rank- $2k$ update of a complex Hermitian matrix
f06ztc	3	zsymm
		Matrix-matrix product, one complex symmetric matrix, one complex rectangular
	_	matrix
f06zuc	3	zsyrk
m (•	Rank- k update of a complex symmetric matrix
f06zwc	3	zsyr2k
		Rank- $2k$ update of a complex symmetric matrix

f07 - Linear Equations (LAPACK)

A list of the LAPACK equivalent names is included in the f07 Chapter Introduction.

Routine Name	Mark of Introduction	Purpose
f07adc	7	nag_dgetrf LU factorization of real m by n matrix
f07aec	7	nag_dgetrs Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by nag dgetrf (f07adc)
f07agc	7	nag_dgecon Estimate condition number of real matrix, matrix already factorized by nag dgetrf (f07adc)
f07ahc	7	nag_dgerfs Refined solution with error bounds of real system of linear equations, multiple right-hand sides
f07ajc	7	nag_dgetri Inverse of real matrix, matrix already factorized by nag_dgetrf (f07adc)
f07arc	7	nag_zgetrf LU factorization of complex m by n matrix
f07asc	7	nag_zgetrs Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by nag zgetrf (f07arc)
f07auc	7	nag_zgecon Estimate condition number of complex matrix, matrix already factorized by nag_zgetrf (f07arc)

f07avc	7	nag_zgerfs
		Refined solution with error bounds of complex system of linear equations,
	_	multiple right-hand sides
f07awc	7	nag_zgetri
	_	Inverse of complex matrix, matrix already factorized by nag_zgetrf (f07arc)
f07bdc	7	nag_dgbtrf
		LU factorization of real m by n band matrix
f07bec	7	nag_dgbtrs
		Solution of real band system of linear equations, multiple right-hand sides,
		matrix already factorized by nag_dgbtrf (f07bdc)
f07bgc	7	nag_dgbcon
		Estimate condition number of real band matrix, matrix already factorized by
		nag_dgbtrf (f07bdc)
f07bhc	7	nag_dgbrfs
		Refined solution with error bounds of real band system of linear equations,
		multiple right-hand sides
f07brc	7	nag_zgbtrf
		LU factorization of complex m by n band matrix
f07bsc	7	nag_zgbtrs
		Solution of complex band system of linear equations, multiple right-hand sides,
		matrix already factorized by nag zgbtrf (f07brc)
f07buc	7	nag zgbcon
		Estimate condition number of complex band matrix, matrix already factorized
		by nag zgbtrf (f07brc)
f07bvc	7	nag zgbrfs
		Refined solution with error bounds of complex band system of linear equations,
		multiple right-hand sides
f07fdc	7	nag dpotrf
	·	Cholesky factorization of real symmetric positive-definite matrix
f07fec	7	nag dpotrs
	·	Solution of real symmetric positive-definite system of linear equations, multiple
		right-hand sides, matrix already factorized by nag dpotrf (f07fdc)
f07fgc	7	nag dpocon
10 / 180	,	Estimate condition number of real symmetric positive-definite matrix, matrix
		already factorized by nag dpotrf (f07fdc)
f07fhc	7	nag dporfs
10 / 1110	,	Refined solution with error bounds of real symmetric positive-definite system of
		linear equations, multiple right-hand sides
f07fjc	7	nag dpotri
107130	,	Inverse of real symmetric positive-definite matrix, matrix already factorized by
		nag dpotrf (f07fdc)
f07frc	7	nag zpotrf
107110	,	Cholesky factorization of complex Hermitian positive-definite matrix
f07fsc	7	nag zpotrs
10 / 150	,	Solution of complex Hermitian positive-definite system of linear equations,
		multiple right-hand sides, matrix already factorized by nag zpotrf (f07frc)
f07fuc	7	nag zpocon
10/140	/	Estimate condition number of complex Hermitian positive-definite matrix,
		matrix already factorized by nag zpotrf (f07frc)
f07fvc	7	• • • • •
10/100	/	nag_zporfs Period solution with error bounds of complex Hermitian positive definite
		Refined solution with error bounds of complex Hermitian positive-definite
f07frva	7	system of linear equations, multiple right-hand sides
f07fwc	7	nag_zpotri
		Inverse of complex Hermitian positive-definite matrix, matrix already factorized
007 1	7	by nag_zpotrf (f07frc)
f07gdc	7	nag_dpptrf
		Cholesky factorization of real symmetric positive-definite matrix, packed
		storage

libconts.14 [NP3645/7]

f07gec	7	nag_dpptrs Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by nag_dpptrf (f07gdc), packed
f07ggc	7	storage nag_dppcon Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by nag dpptrf (f07gdc), packed storage
f07ghc	7	nag_dpprfs Refined solution with error bounds of real symmetric positive-definite system of linear equations, multiple right-hand sides, packed storage
f07gjc	7	nag_dpptri Inverse of real symmetric positive-definite matrix, matrix already factorized by nag_dpptrf (f07gdc), packed storage
f07grc	7	nag_zpptrf Cholesky factorization of complex Hermitian positive-definite matrix, packed storage
f07gsc	7	nag_zpptrs Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by nag_zpptrf (f07grc), packed storage
f07guc	7	nag_zppcon Estimate condition number of complex Hermitian positive-definite matrix, matrix already factorized by nag zpptrf (f07grc), packed storage
f07gvc	7	nag_zpprfs Refined solution with error bounds of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, packed storage
f07gwc	7	nag_zpptri Inverse of complex Hermitian positive-definite matrix, matrix already factorized by nag_zpptrf (f07grc), packed storage
f07hdc	7	nag_dpbtrf Cholesky factorization of real symmetric positive-definite band matrix
f07hec	7	nag_dpbtrs Solution of real symmetric positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by nag_dpbtrf (f07hdc)
f07hgc	7	nag_dpbcon Estimate condition number of real symmetric positive-definite band matrix, matrix already factorized by nag_dpbtrf (f07hdc)
f07hhc	7	nag_dpbrfs Refined solution with error bounds of real symmetric positive-definite band system of linear equations, multiple right-hand sides
f07hrc	7	nag_zpbtrf Cholesky factorization of complex Hermitian positive-definite band matrix
f07hsc	7	nag_zpbtrs Solution of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by nag_zpbtrf (f07hrc)
f07huc	7	nag_zpbcon Estimate condition number of complex Hermitian positive-definite band matrix, matrix already factorized by nag zpbtrf (f07hrc)
f07hvc	7	nag_zpbrfs Refined solution with error bounds of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides
f07mdc	7	nag_dsytrf Bunch–Kaufman factorization of real symmetric indefinite matrix
f07mec	7	nag_dsytrs Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by nag_dsytrf (f07mdc)

-	_	
f07mgc	7	nag_dsycon
		Estimate condition number of real symmetric indefinite matrix, matrix already factorized by nag dsytrf (f07mdc)
f07mhc	7	nag_dsyrfs
107111110	,	Refined solution with error bounds of real symmetric indefinite system of linear
		equations, multiple right-hand sides
f07mjc	7	nag_dsytri
		Inverse of real symmetric indefinite matrix, matrix already factorized by
m =	-	nag_dsytrf (f07mdc)
f07mrc	7	nag_zhetrf
f07msc	7	Bunch–Kaufman factorization of complex Hermitian indefinite matrix nag zhetrs
10711130	,	Solution of complex Hermitian indefinite system of linear equations, multiple
		right-hand sides, matrix already factorized by nag zhetrf (f07mrc)
f07muc	7	nag zhecon
		Estimate condition number of complex Hermitian indefinite matrix, matrix
		already factorized by nag_zhetrf (f07mrc)
f07mvc	7	nag_zherfs
		Refined solution with error bounds of complex Hermitian indefinite system of
f07mwc	7	linear equations, multiple right-hand sides nag zhetri
10/IIIwC	/	Inverse of complex Hermitian indefinite matrix, matrix already factorized by
		nag zhetrf (f07mrc)
f07nrc	7	nag_zsytrf
		Bunch-Kaufman factorization of complex symmetric matrix
f07nsc	7	nag_zsytrs
		Solution of complex symmetric system of linear equations, multiple right-hand
f07nuc	7	sides, matrix already factorized by nag_zsytrf (f07nrc)
10/Huc	/	nag_zsycon Estimate condition number of complex symmetric matrix, matrix already
		factorized by nag zsytrf (f07nrc)
f07nvc	7	nag_zsyrfs
		Refined solution with error bounds of complex symmetric system of linear
		equations, multiple right-hand sides
f07nwc	7	nag_zsytri
		Inverse of complex symmetric matrix, matrix already factorized by nag_zsytrf (f07nrc)
f07pdc	7	nag dsptrf
107 pac	,	Bunch–Kaufman factorization of real symmetric indefinite matrix, packed
		storage
f07pec	7	nag_dsptrs
		Solution of real symmetric indefinite system of linear equations, multiple right-
m =	7	hand sides, matrix already factorized by nag_dsptrf (f07pdc), packed storage
f07pgc	7	nag_dspcon Estimate condition number of real symmetric indefinite matrix matrix already
		Estimate condition number of real symmetric indefinite matrix, matrix already factorized by nag dsptrf (f07pdc), packed storage
f07phc	7	nag dsprfs
		Refined solution with error bounds of real symmetric indefinite system of linear
		equations, multiple right-hand sides, packed storage
f07pjc	7	nag_dsptri
		Inverse of real symmetric indefinite matrix, matrix already factorized by
007	7	nag_dsptrf (f07pdc), packed storage
f07prc	7	nag_zhptrf Punch Koufmon foetorization of complex Hermitian indefinite metrix, necked
		Bunch-Kaufman factorization of complex Hermitian indefinite matrix, packed storage
f07psc	7	nag zhptrs
		Solution of complex Hermitian indefinite system of linear equations, multiple
		right-hand sides, matrix already factorized by nag_zhptrf (f07prc), packed
		storage

libconts.16 [NP3645/7]

f07puc	7	nag_zhpcon Estimate condition number of complex Hermitian indefinite matrix, matrix
f07pvc	7	already factorized by nag_zhptrf (f07prc), packed storage nag_zhprfs
54 / F / 4		Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
f07pwc	7	nag_zhptri Inverse of complex Hermitian indefinite matrix, matrix already factorized by
f07qrc	7	nag_zsptrf (f07prc), packed storage nag_zsptrf
-		Bunch-Kaufman factorization of complex symmetric matrix, packed storage
f07qsc	7	nag_zsptrs Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by nag zsptrf (f07qrc), packed storage
f07quc	7	nag_zspcon Estimate condition number of complex symmetric matrix, matrix already
f07qvc	7	factorized by nag_zsptrf (f07qrc), packed storage nag_zsprfs
f07qwc	7	Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
107qwc	/	nag_zsptri Inverse of complex symmetric matrix, matrix already factorized by nag_zsptrf (f07qrc), packed storage
f07tec	7	nag_dtrtrs Solution of real triangular system of linear equations, multiple right-hand sides
f07tgc	7	nag_dtrcon Estimate condition number of real triangular matrix
f07thc	7	nag_dtrrfs Error bounds for solution of real triangular system of linear equations, multiple
f07tjc	7	right-hand sides nag_dtrtri
f07tsc	7	Inverse of real triangular matrix nag_ztrtrs Solution of complex triangular system of linear equations, multiple right-hand
f07tuc	7	sides nag_ztrcon
f07tvc	7	Estimate condition number of complex triangular matrix nag ztrrfs
		Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
f07twc	7	nag_ztrtri Inverse of complex triangular matrix
f07uec	7	nag_dtptrs Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
f07ugc	7	nag_dtpcon Estimate condition number of real triangular matrix, packed storage
f07uhc	7	nag_dtprfs Error bounds for solution of real triangular system of linear equations, multiple
f07ujc	7	right-hand sides, packed storage nag_dtptri
f07usc	7	Inverse of real triangular matrix, packed storage nag_ztptrs
£0.7a	7	Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
f07uuc	7	nag_ztpcon Estimate condition number of complex triangular matrix, packed storage

f07uvc	7	nag ztprfs
		Error bounds for solution of complex triangular system of linear equations,
		multiple right-hand sides, packed storage
f07uwc	7	nag_ztptri
		Inverse of complex triangular matrix, packed storage
f07vec	7	nag_dtbtrs
		Solution of real band triangular system of linear equations, multiple right-hand
		sides
f07vgc	7	nag_dtbcon
		Estimate condition number of real band triangular matrix
f07vhc	7	nag_dtbrfs
		Error bounds for solution of real band triangular system of linear equations,
		multiple right-hand sides
f07vsc	7	nag_ztbtrs
		Solution of complex band triangular system of linear equations, multiple right-
		hand sides
f07vuc	7	nag_ztbcon
		Estimate condition number of complex band triangular matrix
f07vvc	7	nag_ztbrfs
		Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
		murupie right-hand sides

f08 - Least-squares and Eigenvalue Problems (LAPACK)

A list of the LAPACK equivalent names is included in the f08 Chapter Introduction.

Routine Name	Mark of Introduction	Purpose
f08aec	7	nag_dgeqrf
f08afc	7	QR factorization of real general rectangular matrix nag_dorgqr Form all or part of orthogonal Q from QR factorization determined by nag dgeqrf (f08aec) or nag dgeqpf (f08bec)
f08agc	7	nag_dgeqff (108aec) of nag_dgeqff (108bec) nag_dormqr Apply orthogonal transformation determined by nag_dgeqff (f08aec) or nag_dgeqff (f08bec)
f08ahc	7	nag_dgelqf LQ factorization of real general rectangular matrix
f08ajc	7	nag_dorglq Form all or part of orthogonal Q from LQ factorization determined by nag_dgelqf (f08ahc)
f08akc	7	nag_dormlq Apply orthogonal transformation determined by nag dgelqf (f08ahc)
f08asc	7	nag_zgeqrf QR factorization of complex general rectangular matrix
f08atc	7	nag_zungqr Form all or part of unitary Q from QR factorization determined by nag_zgeqrf (f08asc) or nag_zgeqpf (f08bsc)
f08auc	7	nag_zunmqr Apply unitary transformation determined by nag_zgeqrf (f08asc) or nag_zgeqpf (f08bsc)
f08avc	7	nag_zgelqf LQ factorization of complex general rectangular matrix
f08awc	7	nag_zunglq Form all or part of unitary Q from LQ factorization determined by nag_zgelqf (f08avc)
f08axc	7	nag_zunmlq Apply unitary transformation determined by nag_zgelqf (f08avc)

f08bec	7	nag dgeqpf
	_	QR factorization of real general rectangular matrix with column pivoting
f08bsc	7	nag_zgeqpf QR factorization of complex general rectangular matrix with column pivoting
f08fcc	7	nag_dsyevd
		All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer
f08fec	7	nag dsytrd
20.0.20	_	Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
f08ffc	7	nag_dorgtr Generate orthogonal transformation matrix from reduction to tridiagonal form
		determined by nag_dsytrd (f08fec)
f08fgc	7	nag_dormtr
f08fqc	7	Apply orthogonal transformation determined by nag_dsytrd (f08fec) nag_zheevd
100140	,	All eigenvalues and optionally all eigenvectors of complex Hermitian matrix,
		using divide and conquer
f08fsc	7	nag_zhetrd Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal
		form
f08ftc	7	nag_zungtr
		Generate unitary transformation matrix from reduction to tridiagonal form
f08fuc	7	determined by nag_zhetrd (f08fsc) nag_zunmtr
100140	,	Apply unitary transformation matrix determined by nag_zhetrd (f08fsc)
f08gcc	7	nag_dspevd
		All eigenvalues and optionally all eigenvectors of real symmetric matrix, packed storage, using divide and conquer
f08gec	7	nag dsptrd
-		Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form,
f08gfc	7	packed storage nag dopgtr
logic	,	Generate orthogonal transformation matrix from reduction to tridiagonal form
		determined by nag_dsptrd (f08gec)
f08ggc	7	nag_dopmtr
f08gqc	7	Apply orthogonal transformation determined by nag_dsptrd (f08gec) nag_zhpevd
8.1		All eigenvalues and optionally all eigenvectors of complex Hermitian matrix,
.	7	packed storage, using divide and conquer
f08gsc	7	nag_zhptrd Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal
		form, packed storage
f08gtc	7	nag_zupgtr
		Generate unitary transformation matrix from reduction to tridiagonal form determined by nag zhptrd (f08gsc)
f08guc	7	nag zupmtr
		Apply unitary transformation matrix determined by nag_zhptrd (f08gsc)
f08hcc	7	nag_dsbevd All eigenvalues and optionally all eigenvectors of real symmetric band matrix,
		using divide and conquer
f08hec	7	nag_dsbtrd
		Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
f08hqc	7	nag zhbevd
.1.	-	All eigenvalues and optionally all eigenvectors of complex Hermitian band
molar	7	matrix, using divide and conquer
f08hsc	/	nag_zhbtrd Unitary reduction of complex Hermitian band matrix to real symmetric
		tridiagonal form

mo:	7	1.41
f08jcc	7	nag_dstevd
		All eigenvalues and optionally all eigenvectors of real symmetric tridiagonal matrix, using divide and conquer
f08jec	7	nag dsteqr
100,00	,	All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced
		from real symmetric matrix using implicit QL or QR
f08jfc	7	nag_dsterf
		All eigenvalues of real symmetric tridiagonal matrix, root-free variant of QL or
wo.	7	QR
f08jgc	7	nag_dpteqr All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal
		matrix, reduced from real symmetric positive-definite matrix
f08jjc	7	nag dstebz
- 33		Selected eigenvalues of real symmetric tridiagonal matrix by bisection
f08jkc	7	nag_dstein
		Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration,
	_	storing eigenvectors in real array
f08jsc	7	nag_zsteqr
		All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR
f08juc	7	non complex Hermitian matrix, using implicit QL of QR
Toojue	,	All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal
		matrix, reduced from complex Hermitian positive-definite matrix
f08jxc	7	nag_zstein
		Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration,
mo1	7	storing eigenvectors in complex array
f08kec	7	nag_dgebrd
f08kfc	7	Orthogonal reduction of real general rectangular matrix to bidiagonal form nag dorgbr
TOOKIC	,	Generate orthogonal transformation matrices from reduction to bidiagonal form
		determined by nag dgebrd (f08kec)
f08kgc	7	nag_dormbr
		Apply orthogonal transformations from reduction to bidiagonal form determined
mo1	7	by nag_dgebrd (f08kec)
f08ksc	7	nag_zgebrd Unitary reduction of complex general rectangular matrix to bidiagonal form
f08ktc	7	nag zungbr
1001100	,	Generate unitary transformation matrices from reduction to bidiagonal form
		determined by nag_zgebrd (f08ksc)
f08kuc	7	nag_zunmbr
		Apply unitary transformations from reduction to bidiagonal form determined by
£001aa	7	nag_zgebrd (f08ksc)
f08lec	7	nag_dgbbrd Reduction of real rectangular band matrix to upper bidiagonal form
f081sc	7	nag zgbbrd
	,	Reduction of complex rectangular band matrix to upper bidiagonal form
f08mec	7	nag_dbdsqr
		SVD of real bidiagonal matrix reduced from real general matrix
f08msc	7	nag_zbdsqr
£00	7	SVD of real bidiagonal matrix reduced from complex general matrix
f08nec	7	nag_dgehrd Orthogonal reduction of real general matrix to upper Hessenberg form
f08nfc	7	nag dorghr
	•	Generate orthogonal transformation matrix from reduction to Hessenberg form
		determined by nag_dgehrd (f08nec)
f08ngc	7	nag_dormhr
		Apply orthogonal transformation matrix from reduction to Hessenberg form
		determined by nag_dgehrd (f08nec)

libconts.20 [NP3645/7]

f08nhc	7	nag_dgebal Balance real general matrix
f08njc	7	nag_dgebak Transform eigenvectors of real balanced matrix to those of original matrix
f08nsc	7	supplied to nag_dgebal (f08nhc) nag_zgehrd Unitary reduction of complex general matrix to upper Hessenberg form
f08ntc	7	nag_zunghr Generate unitary transformation matrix from reduction to Hessenberg form
f08nuc	7	determined by nag_zgehrd (f08nsc) nag_zunmhr Apply unitary transformation matrix from reduction to Hessenberg form determined by nag zgehrd (f08nsc)
f08nvc	7	nag_zgebal Balance complex general matrix
f08nwc	7	nag_zgebak Transform eigenvectors of complex balanced matrix to those of original matrix supplied to nag zgebal (f08nvc)
f08pec	7	nag_dhseqr Eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
f08pkc	7	nag_dhsein Selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
f08psc	7	nag_zhseqr Eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
f08pxc	7	nag_zhsein Selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
f08qfc	7	nag_dtrexc Reorder Schur factorization of real matrix using orthogonal similarity transformation
f08qgc	7	nag_dtrsen Reorder Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
f08qhc	7	nag_dtrsyl Solve real Sylvester matrix equation $AX + XB = C$, A and B are upper quasitriangular or transposes
f08qkc	7	nag_dtrevc Left and right eigenvectors of real upper quasi-triangular matrix
f08qlc	7	nag_dtrsna Estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
f08qtc	7	nag_ztrexc Reorder Schur factorization of complex matrix using unitary similarity transformation
f08quc	7	nag_ztrsen Reorder Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
f08qvc	7	nag_ztrsyl Solve complex Sylvester matrix equation $AX + XB = C$, A and B are upper triangular or conjugate-transposes
f08qxc	7	nag_ztrevc Left and right eigenvectors of complex upper triangular matrix
f08qyc	7	nag_ztrsna Estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix

f08sec	7	nag_dsygst Reduction to standard form of real symmetric-definite generalized eigenproblem
f08ssc	7	$Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by nag_dpotrf (f07fdc) nag_zhegst Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by
f08tec	7	nag_zpotrf (f07frc) nag_dspgst Reduction to standard form of real symmetric-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by
f08tsc	7	nag_dpptrf (f07gdc) nag_zhpgst Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by nag_zpptrf (f07grc)
f08uec	7	nag_dsbgst Reduction of real symmetric-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
f08ufc	7	$\begin{array}{c} \text{nag_dpbstf} \\ \text{Computes a split Cholesky factorization of real symmetric positive-definite band} \\ \text{matrix } A \end{array}$
f08usc	7	nag_zhbgst Reduction of complex Hermitian-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
f08utc	7	nag_zpbstf Computes a split Cholesky factorization of complex Hermitian positive-definite band matrix A
f08wec	7	nag_dgghrd Orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
f08whc	7	nag_dggbal Balance a pair of real general matrices
f08wjc	7	nag_dggbak Transform eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to nag_dggbal (f08whc)
f08wsc	7	nag_zgghrd Unitary reduction of a pair of complex general matrices to generalized upper Hessenberg form
f08wvc	7	nag_zggbal Balance a pair of complex general matrices
f08wwc	7	nag_zggbak Transform eigenvectors of a pair of complex balanced matrices to those of original matrix pair supplied to nag zggbal (f08wvc)
f08xec	7	nag_dhgeqz Eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
f08xsc	7	nag_zhgeqz Eigenvalues and generalized Schur factorization of complex generalized upper Hessenberg form reduced from a pair of complex general matrices
f08ykc	7	nag_dtgevc Left and right eigenvectors of a pair of real upper quasi-triangular matrices
f08yxc	7	nag_ztgevc Left and right eigenvectors of a pair of complex upper triangular matrices

fl1 - Sparse Linear Algebra

Routine Name	Mark of Introduction	Purpose
f11dac	5	nag_sparse_nsym_fac
		Incomplete LU factorization (nonsymmetric)
f11dcc	5	nag_sparse_nsym_fac_sol
		Solver with incomplete LU preconditioning (nonsymmetric)
f11dec	5	nag_sparse_nsym_sol
		Solver with no Jacobi/SSOR preconditioning (nonsymmetric)
fl1jac	5	nag_sparse_sym_chol_fac
		Incomplete Cholesky factorization (symmetric)
fl1jcc	5	nag_sparse_sym_chol_sol
		Solver with incomplete Cholesky preconditioning (symmetric)
f11jec	5	nag_sparse_sym_sol
		Solver with Jacobi, SSOR, or no preconditioning (symmetric)
f11zac	5	nag_sparse_nsym_sort
		Sparse sort (nonsymmetric)
f11zbc	5	nag_sparse_sym_sort
		Sparse sort (symmetric)

f16 - NAG Interface to BLAS

Routine Name	Mark of Introduction	Purpose
f16dbc	7	nag_iload Broadcast scalar into integer vector
fl6ecc	7	nag_daxpby Multiply real vector by scalar, preserving input vector
f16fbc	7	nag_dload Broadcast scalar into real vector
f16hbc	7	nag_zload Broadcast scalar into complex vector
f16pjc	7	nag_dtrsv System of equations, real triangular matrix
f16qec	7	nag_dtr_copy Matrix copy, real triangular matrix
f16qfc	7	nag_dge_copy Matrix copy, real rectangular matrix
f16qgc	7	nag_dtr_load Matrix initialisation, real triangular matrix
f16qhc	7	nag_dge_load Matrix initialisation, real rectangular matrix
f16rac	7	nag_dge_norm 1-norm, ∞-norm, Frobenius norm, largest absolute element, real general matrix
f16rbc	7	nag_dgb_norm 1-norm, ∞-norm, Frobenius norm, largest absolute element, real band matrix
fl6rcc	7	nag_dsy_norm 1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix
f16rdc	7	nag_dsp_norm 1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage
f16rec	7	nag_dsb_norm 1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric band matrix
f16sjc	7	nag_ztrsv System of equations, complex triangular matrix

f16tec	7	nag_ztr_copy
		Matrix copy, complex triangular matrix
f16tfc	7	nag_zge_copy
		Matrix copy, complex rectangular matrix
f16tgc	7	nzg_ztr_load
		Matrix initialisation, complex triangular matrix
f16thc	7	nag_zge_load
		Matrix initialisation, complex rectangular matrix
f16uac	7	nag_zge_norm
		1-norm, ∞-norm, Frobenius norm, largest absolute element, complex general matrix
f16ubc	7	
Houde	/	nag_zgb_norm
		1-norm, ∞-norm, Frobenius norm, largest absolute element, complex band matrix
f16ucc	7	nag zhe norm
Houce	/	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian
		matrix
f16udc	7	nag zhp norm
Houde	/	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian
		matrix, packed storage
f16uec	7	nag zhb norm
Troucc	/	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian
		band matrix
f16ufc	7	nag zsy norm
Troute	,	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric
		matrix
f16ugc	7	nag_zsp_norm
mouge	,	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric
		matrix, packed storage
f16yjc	7	nag dtrsm
noyje	,	Solves a system of equations with multiple right-hand sides, real triangular
		coefficient matrix
f16zjc	7	nag ztrsm
v - -y•	•	Solves system of equations with multiple right-hand sides, complex triangular
		coefficient matrix

g01 - Simple Calculations on Statistical Data

Routine Name	Mark of Introduction	Purpose
g01aac	1	nag_summary_stats_1var Mean, variance, skewness, kurtosis, etc., one variable, from raw data
g01adc	7	nag_summary_stats_freq Mean, variance, skewness, kurtosis, etc., one variable, from frequency table
g01aec	6	nag_frequency_table Frequency table from raw data
g01alc	4	nag_5pt_summary_stats Five-point summary (median, hinges and extremes)
g01bjc	4	nag_binomial_dist Binomial distribution function
g01bkc	4	nag_poisson_dist Poisson distribution function
g01blc	4	nag_hypergeom_dist Hypergeometric distribution function
g01cec	1	nag_deviates_normal_dist Deviate of Normal distribution function
g01dac	7	nag_normal_scores_exact Normal scores, accurate values

g01dcc	7	nag_normal_scores_var
g01ddc	4	Normal scores, approximate variance-covariance matrix nag shapiro wilk test
gorade	•	Shapiro and Wilk's W test for Normality
g01dhc	4	nag_ranks_and_scores
		Ranks, Normal scores, approximate Normal scores or exponential (Savage)
		scores
g01eac	4	nag_prob_normal
		Probabilities for the standard Normal distribution
g01ebc	1	nag_prob_students_t
0.4		Probabilities for Student's t-distribution
g01ecc	1	nag_prob_chi_sq
		Probabilities for χ^2 distribution
g01edc	1	nag_prob_f_dist
0.1	1	Probabilities for F -distribution
g01eec	1	nag_prob_beta_dist
		Upper and lower tail probabilities and probability density function for the beta distribution
g01efc	1	nag gamma dist
goreic	1	Probabilities for the gamma distribution
g01emc	7	nag prob studentized range
gorenie	,	Computes probability for the Studentized range statistic
g01epc	7	nag_prob_durbin_watson
8° 1° P°	,	Computes bounds for the significance of a Durbin–Watson statistic
g01erc	7	nag prob von mises
S		Computes probability for von Mises distribution
g01etc	7	nag prob landau
		Landau distribution function $\Phi(\lambda)$
g01euc	7	nag_prob_vavilov
		Vavilov distribution function $\Phi_V(\lambda; \kappa, \beta^2)$
g01eyc	7	nag_prob_1_sample_ks
		Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
g01ezc	7	nag_prob_2_sample_ks
0.1.0		Computes probabilities for the two-sample Kolmogorov–Smirnov distribution
g01fac	4	nag_deviates_normal
-019	1	Deviates for the Normal distribution
g01fbc	1	nag_deviates_students_t
ant fac	1	Deviates for Student's <i>t</i> -distribution nag deviates chi sq
g01fcc	1	
~01fda	1	Deviates for the χ^2 distribution nag deviates f dist
g01fdc	1	Deviates for the F -distribution
g01fec	1	nag deviates beta
goriec	1	Deviates for the beta distribution
g01ffc	1	nag deviates gamma dist
801110	-	Deviates for the gamma distribution
g01fmc	7	nag deviates studentized range
C		Computes deviates for the Studentized range statistic
g01ftc	7	nag deviates landau
_		Landau inverse function $\Psi(x)$
g01gbc	6	nag_prob_non_central_students_t
		Computes probabilities for the non-central Student's t-distribution
g01gcc	6	nag_prob_non_central_chi_sq
		Computes probabilities for the non-central χ^2 distribution
g01gdc	6	nag_prob_non_central_f_dist
	_	Computes probabilities for the non-central F-distribution
g01gec	6	nag_prob_non_central_beta_dist
		Computes probabilities for the non-central beta distribution

g01hac	1	nag bivariate normal dist
S		Probability for the bivariate Normal distribution
g01hbc	6	nag multi normal
		Computes probabilities for the multivariate Normal distribution
g01jcc	7	nag prob lin non central chi sq
		Computes probability for a positive linear combination of χ^2 variables
g01jdc	7	nag prob lin chi sq
801/40	,	Computes lower tail probability for a linear combination of (central) χ^2
		variables
g01mbc	7	nag mills ratio
gormoe	,	Computes reciprocal of Mills' Ratio
g01mtc	7	nag_prob_density_landau
80111100	,	Landau density function $\phi(\lambda)$
g01muc	7	nag prob density vavilov
8		Varilov density function $\phi_V(\lambda; \kappa, \beta^2)$
g01nac	7	nag moments quad form
8		Cumulants and moments of quadratic forms in Normal variables
g01nbc	7	nag moments ratio quad forms
8.		Moments of ratios of quadratic forms in Normal variables, and related statistics
g01ptc	7	nag moment 1_landau
<i>O</i> 1		Landau first moment function $\Phi_1(x)$
g01qtc	7	nag moment 2 landau
		Landau second moment function $\Phi_2(x)$
g01rtc	7	nag_prob_der_landau
		Landau derivative function $\phi'(\lambda)$
g01zuc	7	nag init_vavilov
		Initialisation function for nag_prob_density_vavilov (g01muc) and
		nag_prob_vavilov (g01euc)

g02 - Correlation and Regression Analysis

Routine Name	Mark of Introduction	Purpose
g02brc	3	nag_ken_spe_corr_coeff Kendall and/or Spearman non-parametric rank correlation coefficients, allows variables and observations to be selectively disregarded
g02btc	7	nag_sum_sqs_update Update a weighted sum of squares matrix with a new observation
g02buc	7	nag_sum_sqs Computes a weighted sum of squares matrix
g02bwc	7	nag_cov_to_corr Computes a correlation matrix from a sum of squares matrix
g02bxc	3	nag_corr_cov Product-moment correlation, unweighted/weighted correlation and covariance matrix, allows variables to be disregarded
g02byc	6	nag_partial_corr Computes partial correlation/variance-covariance matrix from correlation/ variance-covariance matrix computed by nag corr_cov (g02bxc)
g02cac	3	nag_simple_linear_regression Simple linear regression with or without a constant term, data may be weighted
g02cbc	3	nag_regress_confid_interval Simple linear regression confidence intervals for the regression line and individual points
g02dac	1	nag_regsn_mult_linear Fits a general (multiple) linear regression model
g02dcc	2	nag_regsn_mult_linear_addrem_obs Add/delete an observation to/from a general linear regression model

g02ddc	2	nag_regsn_mult_linear_upd_model
g02dec	2	Estimates of regression parameters from an updated model nag regsn mult linear add var
_		Add a new independent variable to a general linear regression model
g02dfc	2	nag_regsn_mult_linear_delete_var Delete an independent variable from a general linear regression model
g02dgc	1	nag regsn mult linear newyvar
0.5.44		Fits a general linear regression model to new dependent variable
g02dkc	2	nag_regsn_mult_linear_tran_model Estimates of parameters of a general linear regression model for given
		constraints
g02dnc	2	nag_regsn_mult_linear_est_func
g02eac	7	Estimate of an estimable function for a general linear regression model nag all regsn
gozeae	,	Computes residual sums of squares for all possible linear regressions for a set of
		independent variables
g02ecc	7	nag_cp_stat
		Calculates R^2 and C_P values from residual sums of squares
g02eec	7	nag_step_regsn
- 026	1	Fits a linear regression model by forward selection
g02fac	1	nag_regsn_std_resid_influence Calculates standardized residuals and influence statistics
g02fcc	7	nag durbin watson stat
8		Computes Durbin–Watson test statistic
g02gac	4	nag_glm_normal
02.1	4	Fits a generalized linear model with Normal errors
g02gbc	4	nag_glm_binomial Fits a generalized linear model with binomial errors
g02gcc	4	nag glm poisson
		Fits a generalized linear model with Poisson errors
g02gdc	4	nag_glm_gamma
g02gkc	4	Fits a generalized linear model with gamma errors nag glm tran model
gozgkc	7	Estimates and standard errors of parameters of a general linear model for given
		constraints
g02gnc	4	nag_glm_est_func
- 021	4	Estimable function and the standard error of a generalized linear model
g02hac	4	nag_robust_m_regsn_estim Robust regression, standard M-estimates
g02hbc	7	nag robust m regsn wts
		Robust regression, compute weights for use with nag_robust_m_regsn_user_fn
	_	(g02hdc)
g02hdc	7	nag_robust_m_regsn_user_fn Pahyst_regression_compute_regression_with_user_symplicd_functions_and_vasishts
g02hfc	7	Robust regression, compute regression with user-supplied functions and weights nag robust m regsn param var
gozine	,	Robust regression, variance-covariance matrix following
		nag_robust_m_regsn_user_fn (g02hdc)
g02hkc	4	nag_robust_corr_estim
a02hla	7	Robust estimation of a correlation matrix, Huber's weight function nag robust m corr user fn
g02hlc	/	Calculates a robust estimation of a correlation matrix, user-supplied weight
		function plus derivatives
g02hmc	7	nag_robust_m_corr_user_fn_no_derr
		Calculates a robust estimation of a correlation matrix, user-supplied weight
		function

g03 - Multivariate Methods

Routine Name	Mark of Introduction	Purpose
g03aac	5	nag_mv_prin_comp Principal component analysis
g03acc	5	nag_mv_canon_var Canonical variate analysis
g03adc	5	nag_mv_canon_corr Canonical correlation analysis
g03bac	5	nag_mv_orthomax Orthogonal rotations for loading matrix
g03bcc	5	nag_mv_procustes Procrustes rotations
g03cac	5	nag_mv_factor Maximum likelihood estimates of parameters
g03ccc	5	nag_mv_fac_score Factor score coefficients, following nag mv factor (g03cac)
g03dac	5	nag_mv_discrim Test for equality of within-group covariance matrices
g03dbc	5	nag_mv_discrim_mahaldist Mahalanobis squared distances, following nag mv discrim (g03dac)
g03dcc	5	nag_mv_discrim_group Allocates observations to groups, following nag mv discrim (g03dac)
g03eac	5	nag_mv_distance_mat Compute distance (dissimilarity) matrix
g03ecc	5	nag_mv_hierar_cluster_analysis Hierarchical cluster analysis
g03efc	5	nag_mv_kmeans_cluster_analysis K-means
g03ehc	5	nag_mv_dendrogram Construct dendogram following nag mv hierar cluster analysis (g03ecc)
g03ejc	5	nag_mv_cluster_indicator Construct clusters following nag mv hierar cluster analysis (g03ecc)
g03fac	5	nag_mv_prin_coord_analysis Principal co-ordinate analysis
g03fcc	5	nag_mv_ordinal_multidimscale Multidimensional scaling
g03xzc	5	nag_mv_dend_free Frees memory allocated to the dendrogram array in nag_mv_dendrogram
g03zac	5	(g03ehc) nag_mv_z_scores Standardize values of a data matrix

g04 - Analysis of Variance

Routine	Mark of	Durmoss
Name	Introduction	rurpose
g04bbc	5	nag_anova_random
		General block design or completely randomized design
g04bcc	6	nag_anova_row_col
		Analysis of variance, general row and column design, treatment means and
		standard errors
g04cac	5	nag_anova_factorial
		Complete factorial design
g04czc	5	nag anova factorial free
		Memory freeing function for nag_anova_factorial (g04cac)

g04dbc	6	nag_anova_confid_interval
		Computes confidence intervals for differences between means computed by
		nag anova random (g04bbc) or nag anova row col (g04bcc)
g04eac	6	nag_dummy_vars
		Computes orthogonal polynomials or dummy variables for factor/classification
		variable

g05 - Random Number Generators

Routine Name	Mark of Introduction	Purpose
g05cac	1	nag_random_continuous_uniform Pseudo-random real numbers, uniform distribution over (0,1)
g05cbc	1	nag_random_init_repeatable Initialise random number generating functions to give repeatable sequence
g05ccc	1	nag_random_init_nonrepeatable Initialise random number generating functions to give non-repeatable sequence
g05cfc	1	nag_save_random_state
g05cgc	1	Save state of random number generating functions nag_restore_random_state
g05dac	1	Restore state of random number generating functions nag_random_continuous_uniform_ab
g05dbc	1	Pseudo-random real numbers, uniform distribution over (a, b) nag_random_exp
g05ddc	1	Pseudo-random real numbers, (negative) exponential distribution nag_random_normal
g05dyc	1	Pseudo-random real numbers, Normal distribution nag_random_discrete_uniform
g05eac	2	Pseudo-random integer from uniform distribution nag_ref_vec_multi_normal
g05ecc	2	Set up reference vector for multivariate Normal distribution nag_ref_vec_poisson
0.5.1	2	Set up reference vector for generating pseudo-random integers, Poisson distribution
g05edc	2	nag_ref_vec_binomial Set up reference vector for generating pseudo-random integers, binomial
g05ehc	3	distribution nag_ran_permut_vec
g05ejc	3	Pseudo-random permutation of an integer vector nag_ran_sample_vec
g05exc	2	Pseudo-random sample without replacement from an integer vector nag_ref_vec_discrete_pdf_cdf
		Set up reference vector from supplied cumulative distribution function or probability distribution function
g05eyc	2	nag_return_discrete Pseudo-random integer from reference vector
g05ezc	2	nag_return_multi_normal Pseudo-random multivariate Normal vector from reference vector
g05fec	2	nag_random_beta Pseudo-random real numbers from the beta distribution
g05ffc	2	nag_random_gamma Pseudo-random real numbers from the gamma distribution
g05hac	3	nag_arma_time_series ARMA time series of <i>n</i> terms
g05hkc	6	nag_generate_agarchI Univariate time series, generate n terms of either a symmetric GARCH process
		or a GARCH process with asymmetry of the form $(\epsilon_{t-1} + \gamma)^2$

g05hlc	6	nag_generate_agarchII Univariate time series, generate n terms of a GARCH process with asymmetry
g05hmc	6	of the form $(\epsilon_{t-1} + \gamma \epsilon_{t-1})^2$ nag_generate_garchGJR Univariate time series, generate n terms of an asymmetric Glosten, Jagannathan
g05kac	7	and Runkle (GJR) GARCH process nag_rngs_basic
g05kbc	7	Pseudo-random real numbers, uniform distribution over (0,1), seeds and generator number passed explicitly nag rngs init repeatable
goskoc	,	Initialise seeds of a given generator for random number generating functions (that pass seeds explicitly) to give a repeatable sequence
g05kcc	7	nag_rngs_init_nonrepeatable Initialise seeds of a given generator for random number generating functions
g05kec	7	(that pass seeds expicitly) to give non-repeatable sequence nag_rngs_logical Pseudo-random logical (boolean) value, seeds and generator number passed explicitly
g05lac	7	nag_rngs_normal Generates a vector of random numbers from a Normal distribution, seeds and
g05lbc	7	generator number passed explicitly nag_rngs_students_t Generates a vector of random numbers from a Student's <i>t</i> -distribution, seeds
g051cc	7	and generator number passed explicitly nag_rngs_chi_sq
		Generates a vector of random numbers from a χ^2 distribution, seeds and generator number passed explicitly
g051dc	7	nag_rngs_f Generates a vector of random numbers from an <i>F</i> -distribution, seeds and generator number passed explicitly
g05lec	7	nag_rngs_beta Generates a vector of random numbers from a β distribution, seeds and
g05lfc	7	generator number passed explicitly nag_rngs_gamma Generates a vector of random numbers from a γ distribution, seeds and
g05lgc	7	generator number passed explicitly nag_rngs_uniform Generates a vector of random numbers from a uniform distribution, seeds and
g05lhc	7	generator number passed explicitly nag_rngs_triangular Generates a vector of random numbers from a triangular distribution, seeds and
g05ljc	7	generator number passed explicitly nag rngs exp
	_	Generates a vector of random numbers from an exponential distribution, seeds and generator number passed explicitly
g05lkc	7	nag_rngs_lognormal Generates a vector of random numbers from a lognormal distribution, seeds and generator number passed explicitly
g05llc	7	nag_rngs_cauchy Generates a vector of random numbers from a Cauchy distribution, seeds and
g05lmc	7	generator number passed explicitly nag_rngs_weibull Generates a vector of random numbers from a Weibull distribution, seeds and
g05lnc	7	generator number passed explicitly nag_rngs_logistic Generates a vector of random numbers from a logistic distribution, seeds and generator number passed explicitly

libconts.30 [NP3645/7]

g05lpc	7	nag_rngs_von_mises Generates a vector of random numbers from a von Mises distribution, seeds and
g05lqc	7	generator number passed explicitly nag rngs exp mix
gooiqu	,	Generates a vector of random numbers from an exponential mixture distribution, seeds and generator number passed explicitly
g05lzc	7	nag_rngs_multi_normal
		Generates a vector of random numbers from a multivariate Normal distribution, seeds and generator number passed explicitly
g05mac	7	nag_rngs_discrete_uniform Generates a vector of random integers from a uniform distribution, seeds and generator number passed explicitly
g05mbc	7	nag_rngs_geom
		Generates a vector of random integers from a geometric distribution, seeds and generator number passed explicitly
g05mcc	7	nag_rngs_neg_bin
	_	Generates a vector of random integers from a negative binomial distribution, seeds and generator number passed explicitly
g05mdc	7	nag_rngs_logarithmic Generates a vector of random integers from a logarithmic distribution, seeds and
	_	generator number passed explicitly
g05mec	7	nag_rngs_compd_poisson Generates a vector of random integers from a Poisson distribution with varying
o.#	_	mean, seeds and generator number passed explicitly
g05mjc	7	nag_rngs_binomial Generates a vector of random integers from a binomial distribution, seeds and
		generator number passed explicitly
g05mkc	7	nag_rngs_poisson
		Generates a vector of random integers from a Poisson distribution, seeds and generator number passed explicitly
g05mlc	7	nag_rngs_hypergeometric
		Generates a vector of random integers from a hypergeometric distribution, seeds and generator number passed explicitly
g05mrc	7	nag_rngs_gen_multinomial
		Generates a vector of random integers from a multinomial distribution, seeds and generator number passed explicitly
g05mzc	7	nag rngs gen discrete
		Generates a vector of random integers from a general discrete distribution, seeds
g05nac	7	and generator number passed explicitly nag rngs permute
Sosnac	,	Pseudo-random permutation of an integer vector
g05nbc	7	nag_rngs_sample
g05pac	7	Pseudo-random sample from an integer vector nag rngs arma time series
Sospac	,	Generates a realisation of a time series from an ARMA model
g05pcc	7	nag_rngs_varma_time_series Generates a realisation of a multivariate time series from a VARMA model
g05qac	7	nag_rngs_orthog_matrix
05.1	7	Computes a random orthogonal matrix
g05qbc	7	nag_rngs_corr_matrix Computes a random correlation matrix
g05qdc	7	nag_rngs_2_way_table
a05vaa	7	Generates a random table matrix
g05yac	/	nag_quasi_random_uniform Multi-dimensional quasi-random number generator with a uniform probability
	_	distribution
g05ybc	7	nag_quasi_random_normal Multi-dimensional quasi-random number generator with a Gaussian or log-
		normal probability distribution

g07 - Univariate Estimation

Routine Name	Mark of Introduction	Purpose
g07aac	7	nag_binomial_ci Computes confidence interval for the parameter of a binomial distribution
g07abc	7	nag_poisson_ci Computes confidence interval for the parameter of a Poisson distribution
g07bbc	7	nag_censored_normal
071	7	Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
g07bec	7	nag_estim_weibull Computes maximum likelihood estimates for parameters of the Weibull
g07cac	4	distribution nag_2_sample_t_test
		Computes <i>t</i> -test statistic for a difference in means between two Normal populations, confidence interval
g07dac	1	nag_median_1var Robust estimation, median, median absolute deviation, robust standard deviation
g07dbc	4	nag_robust_m_estim_1var Robust estimation, M-estimates for location and scale parameters, standard
~07.doo	7	weight functions
g07dcc	/	nag_robust_m_estim_lvar_usr Robust estimation, M-estimates for location and scale parameters, user-defined
g07ddc	4	weight functions nag_robust_trimmed_1var
		Trimmed and winsorized mean of a sample with estimates of the variances of the two means
g07eac	7	nag_rank_ci_1var Robust confidence intervals, one-sample
g07ebc	7	nag_rank_ci_2var Robust confidence intervals, two-sample

g08 - Nonparametric Statistics

Routine Name	Mark of Introduction	Purpose
g08aac	6	nag_sign_test
g08acc	6	Sign test on two paired samples nag_median_test Median test on two samples of unequal size
g08aec	6	nag friedman test
C		Friedman two-way analysis of variance on k matched samples
g08afc	6	nag_kruskal_wallis_test
00		Kruskal–Wallis one-way analysis of variance on k samples of unequal size
g08agc	6	nag_wilcoxon_test Performs the Wilcoxon one-sample (matched pairs) signed rank test
g08amc	6	nag mann whitney
Boomine	Ŭ	Performs the Mann–Whitney U test on two independent samples
g08cbc	6	nag_1_sample_ks_test
		Performs the one-sample Kolmogorov-Smirnov test for standard distributions
g08cdc	6	nag_2_sample_ks_test
~00.~~	6	Performs the two-sample Kolmogorov–Smirnov test
g08cgc	6	nag_chi_sq_goodness_of_fit_test
g08eac	6	Performs the χ^2 goodness of fit test, for standard continuous distributions nag runs test
goocac	O	Performs the runs up or runs down test for randomness

g08ebc	6	nag_pairs_test
- 00	(Performs the pairs (serial) test for randomness
g08ecc	6	nag_triplets_test
	_	Performs the triplets test for randomness
g08edc	6	nag_gaps_test
		Performs the gaps test for randomness
g08rac	7	nag_rank_regsn
		Regression using ranks, uncensored data
g08rbc	7	nag rank regsn censored
-		Regression using ranks, right-censored data

g10 - Smoothing in Statistics

Routine	Mark of	
Name	Introduction	Purpose
g10abc	6	nag_smooth_spline_fit
		Fit cubic smoothing spline, smoothing parameter given
g10acc	6	nag_smooth_spline_estim
		Fit cubic smoothing spline, smoothing parameter estimated
g10bac	6	nag_kernel_density_estim
		Kernel density estimate using Gaussian kernel
g10cac	3	nag_running_median_smoother
		Compute smoothed data sequence using running median smoothers
g10zac	6	nag order data
=		Reorder data to give ordered distinct observations

g11 - Contingency Table Analysis

Routine Name	Mark of Introduction	Purpose
g11aac	4	nag_chi_sq_2_way_table
g11bac	6	χ^2 statistics for two-way contingency table nag_tabulate_stats Computes multiway table from set of classification factors using selected
g11bbc	6	statistic nag_tabulate_percentile Computes multiway table from set of classification factors using given
g11bcc	7	percentile/quantile nag_tabulate_margin Computes marginal tables for multiway table computed by nag_tabulate_stats
g11cac	7	(g11bac) or nag_tabulate_percentile (g11bbc) nag_condl_logistic Returns parameter estimates for the conditional analysis of stratified data
g11sac	7	nag_binary_factor
g11sbc	7	Contingency table, latent variable model for binary data nag_binary_factor_service Frequency count for nag_binary_factor (g11sac)

g12 - Survival Analysis

Routine Name	Mark of Introduction	Purpose
g12aac	4	nag_prod_limit_surviv_fn
g12bac	6	Computes Kaplan–Meier (product-limit) estimates of survival probabilities nag_surviv_cox_model Fits Cox's proportional hazard model

g12zac 7 nag_surviv_risk_sets

Creates the risk sets associated with the Cox proportional hazards model for fixed covariates

g13 – Time Series Analysis

Routine Name	Mark of Introduction	Purpose
g13aac	7	nag_tsa_diff
g13abc	2	Univariate time series, seasonal and non-seasonal differencing nag_tsa_auto_corr Sample autocorrelation function
g13acc	2	nag_tsa_auto_corr_part Partial autocorrelation function
g13asc	6	nag_tsa_resid_corr Univariate time series, diagnostic checking of residuals, following
g13auc	7	nag_tsa_multi_inp_model_estim (g13bec) nag_tsa_mean_range Computes quantities needed for range-mean or standard deviation-mean plot
g13bac	7	nag_tsa_arma_filter Multivariate time series, filtering (pre-whitening) by an ARIMA model
g13bbc	7	nag_tsa_transf_filter Multivariate time series, filtering by a transfer function model
g13bcc	7	nag_tsa_cross_corr Multivariate time series, cross-correlations
g13bdc	7	nag_tsa_transf_prelim_fit Multivariate time series, preliminary estimation of transfer function model
g13bec	2	nag_tsa_multi_inp_model_estim Estimation for time series models
g13bjc	2	nag_tsa_multi_inp_model_forecast Forecasting function
g13bxc	2	nag_tsa_options_init Initialisation function for option setting
g13byc	2	nag_tsa_transf_orders Allocates memory to transfer function model orders
g13bzc	2	nag_tsa_trans_free Freeing function for the structure holding the transfer function model orders
g13cac	7	nag_tsa_spectrum_univar_cov Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window
g13cbc	4	nag_tsa_spectrum_univar Univariate time series, smoothed sample spectrum using spectral smoothing by
g13ccc	7	the trapezium frequency (Daniell) window nag_tsa_spectrum_bivar_cov Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
g13cdc	4	nag_tsa_spectrum_bivar Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
g13cec	4	nag_tsa_cross_spectrum_bivar Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra
g13cfc	4	nag_tsa_gain_phase_bivar Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra
g13cgc	4	nag_tsa_noise_spectrum_bivar Multivariate time series, noise spectrum, bounds, impulse response function and its standard error

g13dbc	7	nag_tsa_multi_auto_corr_part
g13dlc	7	Multivariate time series, multiple squared partial autocorrelations nag_tsa_multi_diff
g13dmc	7	Multivariate time series, differences and/or transforms nag_tsa_multi_cross_corr
g13dnc	7	Multivariate time series, sample cross-correlation or cross-covariance matrices nag_tsa_multi_part_lag_corr
10.1	-	Multivariate time series, sample partial lag correlation matrices, χ^2 statistics and significance levels
g13dpc	7	nag_tsa_multi_part_regsn Multivariate time series, partial autoregression matrices
g13dxc	7	nag_tsa_arma_roots Calculates the zeros of a vector autoregressive (or moving average) operator
g13eac	3	nag_kalman_sqrt_filt_cov_var One iteration step of the time-varying Kalman filter recursion using the square root covariance implementation
g13ebc	3	nag_kalman_sqrt_filt_cov_invar One iteration step of the time-invariant Kalman filter recursion using the square root covariance implementation with (A, C) in lower observer Hessenberg form
g13ecc	3	nag_kalman_sqrt_filt_info_var One iteration step of the time-varying Kalman filter recursion using the square
g13edc	3	root information implementation nag_kalman_sqrt_filt_info_invar One iteration step of the time-invariant Kalman filter recursion using the square root information implementation with $(A^{-1}, A^{-1}B)$ in upper controller
- 12	2	Hessenberg form
g13ewc	3	nag_trans_hessenberg_observer Unitary state-space transformation to reduce (A, C) to lower or upper observer Hessenberg form
g13exc	3	nag_trans_hessenberg_controller Unitary state-space transformation to reduce (B, A) to lower or upper controller Hessenberg form
g13fac	6	nag_estimate_agarchI Univariate time series, parameter estimation for either a symmetric GARCH
g13fbc	6	process or a GARCH process with asymmetry of the form $(\epsilon_{t-1} + \gamma)^2$ nag_forecast_agarchI Univariate time series, forecast function for either a symmetric GARCH process
g13fcc	6	or a GARCH process with asymmetry of the form $(\epsilon_{t-1} + \gamma)^2$ nag_estimate_agarchII Univariate time series, parameter estimation for a GARCH process with
g13fdc	6	asymmetry of the form $(\epsilon_{t-1} + \gamma \epsilon_{t-1})^2$ nag_forecast_agarchII Univariate time series, forecast function for a GARCH process with asymmetry
g13fec	6	of the form $(\epsilon_{t-1} + \gamma \epsilon_{t-1})^2$ nag_estimate_garchGJR Univariate time series, parameter estimation for an asymmetric Glosten,
g13ffc	6	Jagannathan and Runkle (GJR) GARCH process nag_forecast_garchGJR Univariate time series, forecast function for an asymmetric Glosten, Jagannathan
g13xzc	2	and Runkle (GJR) GARCH process nag_tsa_free Freeing function for use with g13 option setting

h - Operations Research

Routine Name	Mark of Introduction	Purpose
h02bbc	5	nag_ip_bb
		Solves integer programming problems using a branch and bound method
h02buc	5	nag_ip_mps_read
		Read MPSX data for IP, LP or QP problem from a file
h02bvc	5	nag ip mps free
		Free memory allocated by nag ip mps read (h02buc)
h02xxc	5	nag ip init
		Initialise option structure to null values
h02xyc	5	nag ip read
•		Read optional parameter values from a file
h02xzc	5	nag ip free
		Free NAG allocated memory from option structures
h03abc	3	nag transport
		Classical transportation algorithm

m01 - Sorting

Routine Name	Mark of Introduction	Purpose
m01cac	1	nag_double_sort
		Quicksort of set of values of data type double
m01csc	1	nag_quicksort
		Quicksort of set of values of arbitrary data type
m01ctc	1	nag_stable_sort
		Stable sort of set of values of arbitrary data type
m01cuc	1	nag_chain_sort
		Chain sort of linked list
m01dsc	1	nag_rank_sort
		Rank sort of set of values of arbitrary data type
m01esc	1	nag_reorder_vector
		Reorders set of values of arbitrary data type into the order specified by a set of
		indices
m01fsc	1	nag_search_vector
		Searches a vector for either the first or last match to a given value
m01zac	1	nag_make_indices
		Inverts a permutation converting a rank vector to an index vector or vice versa

s - Approximations of Special Functions

Routine Name	Mark of Introduction	Purpose
s01bac	7	nag shifted log
		$\ln(1+x)$
s10aac	1	nag_tanh
		Hyperbolic tangent, $\tan x$
s10abc	1	nag sinh
		Hyperbolic sine, $\sinh x$
s10acc	1	nag_cosh
		Hyperbolic cosine, $\cosh x$
s11aac	1	nag arctanh
		Inverse hyperbolic tangent, arctanh x
s11abc	1	nag arcsinh
		Inverse hyperbolic sine, arcsinh x

s11acc	1	nag_arccosh Inverse hyperbolic cosine, arccosh x
s13aac	1	nag_exp_integral $E_1(x)$
s13acc	1	nag_cos_integral $Ci(x)$ Cosine integral $Ci(x)$
s13adc	1	nag_sin_integral Sine integral $Si(x)$
s14aac	1	nag_gamma Gamma function $\Gamma(x)$
s14abc	1	nag_log_gamma Log Gamma function $\ln(\Gamma(x))$
s14acc	7	nag_polygamma_fun $\psi(x) - \ln x$
s14adc	7	nag_polygamma_deriv Scaled derivatives of $\psi(x)$
s14aec	6	nag_real_polygamma Derivative of the psi function $\psi(x)$
s14afc	6	nag_complex_polygamma Derivative of the psi function $\psi(z)$
s14agc	7	nag_complex_log_gamma Logarithm of the Gamma function $\ln \Gamma(z)$
s14bac	1	nag_incomplete_gamma Incomplete Gamma functions $P(a,x)$ and $Q(a,x)$
s15abc	1	nag_cumul_normal Cumulative Normal distribution function $P(x)$
s15acc	1	nag_cumul_normal_complem Complement of cumulative Normal distribution function $Q(x)$
s15adc	1	nag_erfc Complement of error function $\operatorname{erfc}(x)$
s15aec	1	nag_erf Error function $erf(x)$
s15afc	7	nag_dawson Dawson's integral
s15ddc	7	nag_complex_erfc Scaled complex complement of error function, $\exp(-z^2)\operatorname{erfc}(-iz)$
s17acc	1	nag_bessel_y0 Bessel function $Y_0(x)$
s17adc	1	nag_bessel_yl Bessel function $Y_1(x)$
s17aec	1	nag_bessel_j0 Bessel function $J_0(x)$
s17afc	1	nag_bessel_j1 Bessel function $J_1(x)$
s17agc	1	nag_airy_ai Airy function $Ai(x)$
s17ahc	1	nag_airy_bi Airy function $Bi(x)$
s17ajc	1	nag_airy_ai_deriv
s17akc	1	Airy function Ai'(x) nag_airy_bi_deriv
s17alc	6	Airy function $Bi'(x)$ nag_bessel_zeros
s17dcc	7	Zeros of Bessel functions $J_{\alpha}(x)$, $J'_{\alpha}(x)$, $Y_{\alpha}(x)$ or $Y'_{\alpha}(x)$ nag_complex_bessel_y
s17dec	7	Bessel functions $Y_{\nu+a}(z)$, real $a \ge 0$, complex z , $\nu = 0, 1, 2, \ldots$ nag_complex_bessel_j Bessel functions $J_{\nu+a}(z)$, real $a \ge 0$, complex z , $\nu = 0, 1, 2, \ldots$
		$-\nu_{+}a(\nu_{-}), -\nu_{-}a(\nu_{-}), -\nu_{-}a(\nu_{-$

	_	
s17dgc	7	nag_complex_airy_ai
s17dhc	7	Airy functions $Ai(z)$ and $Ai'(z)$, complex z
S1 / difc	/	nag_complex_airy_bi Airy functions $Bi(z)$ and $Bi'(z)$, complex z
s17dlc	7	nag complex hankel
31 / die	,	Hankel functions $H_{\nu+a}^{(j)}(z)$, $j=1,2$, real $a\geq 0$, complex $z,\ \nu=0,1,2,\ldots$
s18acc	1	nag bessel k0
310000	1	Modified Bessel function $K_0(x)$
s18adc	1	nag bessel k1
		Modified Bessel function $K_1(x)$
s18aec	1	nag_bessel_i0
10.0	1	Modified Bessel function $I_0(x)$
s18afc	1	nag_bessel_il Modified_Bossel_function_L(m)
s18ccc	2	Modified Bessel function $I_1(x)$ nag bessel k0 scaled
310000	2	Scaled modified Bessel function $e^x K_0(x)$
s18cdc	2	nag bessel k1 scaled
		Scaled modified Bessel function $e^x K_1(x)$
s18cec	2	nag bessel i0 scaled
		Scaled modified Bessel function $e^{- x }I_0(x)$
s18cfc	2	nag_bessel_il_scaled
		Scaled modified Bessel function $e^{- x }I_1(x)$
s18dcc	7	nag_complex_bessel_k
		Modified Bessel functions $K_{\nu+a}(z)$, real $a \ge 0$, complex $z, \nu = 0, 1, 2,$
s18dec	7	nag_complex_bessel_i
1.0		Modified Bessel functions $I_{\nu+a}(z)$, real $a \geq 0$, complex $z, \nu = 0, 1, 2,$
s18ecc	6	nag_bessel_i_nu_scaled
a19ada	6	Scaled modified Bessel function $e^{-x}I_{\nu/4}(x)$
s18edc	O	nag_bessel_k_nu_scaled Scaled modified Bessel function $e^x K_{\nu/4}(x)$
s18eec	6	nag_bessel_i_nu
310000	O	Modified Bessel function $I_{\nu/4}(x)$
s18efc	6	nag_bessel_k_nu
		Modified Bessel function $K_{\nu/4}(x)$
s18egc	6	nag bessel k alpha
		Modified Bessel functions $K_{\alpha+n}(x)$ for real $x>0$, selected values of $\alpha\geq 0$
		and $n = 0, 1,, N$
s18ehc	6	nag_bessel_k_alpha_scaled
		Scaled modified Bessel functions $K_{\alpha+n}(x)$ for real $x>0$, selected values of
al Paia	6	$\alpha \geq 0$ and $n = 0, 1, \dots, N$
s18ejc	6	nag_bessel_i_alpha Modified Bessel functions $I_{\alpha+n-1}(x)$ or $I_{\alpha-n+1}(x)$ for real $x \neq 0$, non-negative
		who differ a desired functions $I_{\alpha+n-1}(x)$ of $I_{\alpha-n+1}(x)$ for real $x \neq 0$, non-negative $\alpha < 1$ and $n = 1, 2, \dots, N + 1$
s18ekc	6	nag bessel j alpha
		Bessel functions $J_{\alpha+n-1}(x)$ or $J_{\alpha-n+1}(x)$ for real $x \neq 0$, non-negative $\alpha < 1$
		and $n = 1, 2,, N + 1$
s18gkc	7	nag_complex_bessel_j_seq
		Bessel function of the 1st kind $J_{\alpha \pm n}(z)$
s19aac	1	nag_kelvin_ber
a10aha	1	Kelvin function ber x
s19abc	1	nag_kelvin_bei Kelvin function bei x
s19acc	1	nag kelvin ker
~ - > ****	-	Kelvin function ker x
s19adc	1	nag_kelvin_kei
		Kelvin function kei x

s20acc	1	nag fresnel s
		Fresnel integral $S(x)$
s20adc	1	nag fresnel c
		Fresnel integral $C(x)$
s21bac	1	nag elliptic integral rc
		Degenerate symmetrised elliptic integral of 1st kind $R_C(x,y)$
s21bbc	1	nag_elliptic_integral_rf
		Symmetrised elliptic integral of 1st kind $R_F(x, y, z)$
s21bcc	1	nag_elliptic_integral_rd
		Symmetrised elliptic integral of 2nd kind $R_D(x, y, z)$
s21bdc	1	nag_elliptic_integral_rj
		Symmetrised elliptic integral of 3rd kind $R_J(x, y, z, r)$
s21cac	7	nag_real_jacobian_elliptic
		Jacobian elliptic functions sn, cn and dn of real argument
s21cbc	6	nag_jacobian_elliptic
		Jacobian elliptic functions sn, cn and dn of complex argument
s21ccc	6	nag_jacobian_theta
		Jacobian theta functions with real arguments
s21dac	6	nag_elliptic_integral_f
		Elliptic integrals of the second kind with complex arguments
s22aac	6	nag_legendre_p
		Legendre and associated Legendre functions of the first kind with real
		arguments

x01 – Mathematical Constants

Routine Name	Mark of Introduction	Purpose
X01AAC	2	nag_pi
X01ABC	2	π nag_euler_constant Euler's constant, γ

x02 – Machine Constants

Routine Name	Mark of Introduction	Purpose
X02AHC	2	nag_max_sine_argument
X02AJC	2	The largest permissible argument for sin and cos nag_machine_precision The machine precision
X02AKC	2	nag_real_smallest_number
		The smallest positive model number
X02ALC	2	nag_real_largest_number
X02AMC	2	The largest positive model number nag_real_safe_small_number Safe range of floating-point arithmetic
X02ANC	6	nag_complex_safe_small_number Safe range of NAG complex floating-point arithmetic
X02BBC	2	nag_max_integer The largest representable integer
X02BEC	2	nag_decimal_digits The maximum number of decimal digits that can be represented
X02BHC	2	nag_real_base Parameter b of model of floating-point arithmetic
X02BJC	2	nag_real_base_digits Parameter p of model of floating-point arithmetic

X02BKC	2	nag real min exponent
		Parameter e_{\min} of model of floating-point arithmetic
X02BLC	2	nag_real_max_exponent
		Parameter e_{max} of model of floating-point arithmetic
X02DAC	2	nag_underflow_flag
		Switch for taking precautions to avoid underflow
X02DJC	2	nag_real_arithmetic_rounds
		Parameter ROUNDS of model of floating-point arithmetic

x04 - Input/Output Utilities

Routine Name	Mark of Introduction	Purpose
x04cac	7	nag_gen_real_mat_print
0.4.1	-	Print real general matrix (easy-to-use)
x04cbc	7	nag_gen_real_mat_print_comp
**0.4 a a a	7	Print real general matrix (comprehensive)
x04ccc	/	nag_pack_real_mat_print
x04cdc	7	Print real packed triangular matrix (easy-to-use) nag pack real mat print comp
XU4CUC	/	Print real packed triangular matrix (comprehensive)
x04cec	7	nag band real mat print
Ao iccc	,	Print real packed banded matrix (easy-to-use)
x04cfc	7	nag band real mat print comp
		Print real packed banded matrix (comprehensive)
x04dac	7	nag gen complx mat print
		Print complex general matrix (easy-to-use)
x04dbc	7	nag_gen_complx_mat_print_comp
		Print complex general matrix (comprehensive)
x04dcc	7	nag_pack_complx_mat_print
	_	Print complex packed triangular matrix (easy-to-use)
x04ddc	7	nag_pack_complx_mat_print_comp
0.4.1	-	Print complex packed triangular matrix (comprehensive)
x04dec	7	nag_band_complx_mat_print
04.10	7	Print complex packed banded matrix (easy-to-use)
x04dfc	7	nag_band_complx_mat_print_comp
		Print complex packed banded matrix (comprehensive)