C06PFF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PFF computes the discrete Fourier transform of one variable in a multivariate sequence of complex data values.

2 Specification

SUBROUTINE CO6PFF(DIRECT, NDIM, L, ND, N, X, WORK, LWORK, IFAIL)

CHARACTER*1 DIRECT

INTEGER NDIM, L, ND(NDIM), N, LWORK, IFAIL

complex X(N), WORK(LWORK)

3 Description

This routine computes the discrete Fourier transform of one variable (the lth say) in a multivariate sequence of complex data values $z_{j_1j_2...j_m}$, where $j_1=0,1,\ldots,n_1-1,$ $j_2=0,1,\ldots,n_2-1,$ and so on. Thus the individual dimensions are n_1,n_2,\ldots,n_m , and the total number of data values is $n=n_1\times n_2\times\ldots\times n_m$.

The routine computes n/n_l one-dimensional transforms defined by

$$\hat{z}_{j_1...k_l...j_m} = \frac{1}{\sqrt{n_l}} \sum_{j_1=0}^{n_l-1} z_{j_1...j_l...j_m} \times \exp\left(\pm \frac{2\pi i j_l k_l}{n_l}\right)$$

where $k_l = 0, 1, ..., n_l - 1$. The plus or minus sign in the argument of the exponential terms in the above definition determine the direction of the transform: a minus sign defines the **forward** direction and a plus sign defines the **backward** direction.

(Note the scale factor of $\frac{1}{\sqrt{n_l}}$ in this definition.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The data values must be supplied in a one-dimensional complex array in accordance with the Fortran convention for storing multi-dimensional data (i.e., with the first subscript j_1 varying most rapidly).

This routine calls C06PRF to perform one-dimensional discrete Fourier transforms. Hence, the routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2].

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: NDIM — INTEGER

Input

On entry: the number of dimensions (or variables) in the multivariate data, m.

Constraint: NDIM ≥ 1 .

[NP3390/19/pdf] C06PFF.1

3: L — INTEGER Input

On entry: the index of the variable (or dimension) on which the discrete Fourier transform is to be performed, l.

Constraint: $1 \le L \le NDIM$.

4: ND(NDIM) — INTEGER array

Input

On entry: ND(i) must contain n_i (the dimension of the *i*th variable), for i = 1, 2, ..., m. The total number of prime factors of ND(l), counting repetitions, must not exceed 30.

Constraint: $ND(i) \ge 1$ for all i.

5: N — INTEGER Input

On entry: the total number of data values, n.

Constraint: $N = ND(1) \times ND(2) \times ... \times ND(NDIM)$.

6: X(N) - complex array

Input/Output

On entry: $X(1+j_1+n_1j_2+n_1n_2j_3+\ldots)$ must contain the complex data value $z_{j_1j_2...j_m}$, for $0 \le j_1 < n_1$ and $0 \le j_2 < n_2,\ldots$; i.e., the values are stored in consecutive elements of the array according to the Fortran convention for storing multi-dimensional arrays.

On exit: the corresponding elements of the computed transform.

7: WORK(LWORK) — complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current value of N with this implementation.

8: LWORK — INTEGER

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06PFF is called.

Constraint: LWORK $\geq N + ND(L) + 15$.

9: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, NDIM < 1.

IFAIL = 2

On entry, L < 1 or L > NDIM.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

C06PFF.2 [NP3390/19/pdf]

```
IFAIL = 4
```

On entry, at least one of ND(i) < 1 for some i.

IFAIL = 5

On entry, $N \neq ND(1) \times ND(2) \times ... \times ND(NDIM)$.

IFAIL = 6

On entry, LWORK is too small. The minimum amount of workspace required is returned in WORK(1).

IFAIL = 7

On entry, ND(L) has more than 30 prime factors.

IFAIL = 8

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n_l$, but also depends on the factorization of n_l . The routine is somewhat faster than average if the only prime factors of n_l are 2, 3 or 5; and fastest of all if n_l is a power of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the discrete Fourier transform of the second variable. It then performs an inverse transform and prints the sequence so obtained, which may be compared with the original data values.

9.1 Program Text

```
CO6PFF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
   INTEGER
   PARAMETER
                     (NIN=5, NOUT=6)
   INTEGER
                    NDIM, NMAX, LWORK
   PARAMETER
                     (NDIM=2,NMAX=96,LWORK=2*NMAX+15)
   .. Local Scalars ..
   INTEGER
                    IFAIL, L, N
   .. Local Arrays ..
   complex
                    WORK (LWORK), X (NMAX)
   INTEGER
                    ND(NDIM)
   .. External Subroutines ..
   EXTERNAL
                    CO6PFF, READX, WRITX
   \dots Executable Statements \dots
   WRITE (NOUT,*) 'CO6PFF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
```

[NP3390/19/pdf] C06PFF.3

```
READ (NIN,*,END=40) ND(1), ND(2), L
     N = ND(1)*ND(2)
      IF (N.GE.1 .AND. N.LE.NMAX) THEN
         CALL READX(NIN,X,ND(1),ND(2))
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Original data'
         CALL WRITX(NOUT, X, ND(1), ND(2))
         IFAIL = 0
         Compute transform
         CALL CO6PFF('F', NDIM, L, ND, N, X, WORK, LWORK, IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT,99999) 'Discrete Fourier transform of variable ', L
         CALL WRITX(NOUT, X, ND(1), ND(2))
         Compute inverse transform
         CALL CO6PFF('B', NDIM, L, ND, N, X, WORK, LWORK, IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT,*)
           'Original sequence as restored by inverse transform'
         CALL WRITX(NOUT, X, ND(1), ND(2))
         GO TO 20
         WRITE (NOUT,*) 'Invalid value of N'
     END IF
   40 CONTINUE
     STOP
99999 FORMAT (1X,A,I1)
     END
     SUBROUTINE READX (NIN, X, N1, N2)
     Read 2-dimensional complex data
      .. Scalar Arguments ..
     INTEGER N1, N2, NIN
     .. Array Arguments ..
     complex X(N1,N2)
     .. Local Scalars ..
     INTEGER
                      I, J
      .. Executable Statements ..
     DO 20 I = 1, N1
         READ (NIN,*) (X(I,J),J=1,N2)
   20 CONTINUE
     RETURN
     END
     SUBROUTINE WRITX (NOUT, X, N1, N2)
     Print 2-dimensional complex data
      .. Scalar Arguments ..
     INTEGER N1, N2, NOUT
     .. Array Arguments ..
     complex X(N1,N2)
     .. Local Scalars ..
     INTEGER
                      I, J
     .. Executable Statements ..
     DO 20 I = 1, N1
```

C06PFF.4 [NP3390/19/pdf]

```
WRITE (NOUT,*)
WRITE (NOUT,99999) (X(I,J),J=1,N2)
20 CONTINUE
RETURN

*
99999 FORMAT (1X,7(:1x,'(',F6.3,',',F6.3,')'))
```

9.2 Program Data

```
CO6PFF Example Program Data
         5
     (1.000, 0.000)
     (0.999, -0.040)
     (0.987, -0.159)
     (0.936, -0.352)
     (0.802, -0.597)
     (0.994, -0.111)
     (0.989, -0.151)
     (0.963, -0.268)
     (0.891, -0.454)
     (0.731, -0.682)
     (0.903, -0.430)
     (0.885, -0.466)
     (0.823, -0.568)
     (0.694, -0.720)
     (0.467, -0.884)
```

9.3 Program Results

CO6PFF Example Program Results

Original data

```
(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597) (0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682) (0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884) Discrete Fourier transform of variable 2 (2.113,-0.513) (0.288, 0.000) (0.126, 0.130) (-0.003, 0.190) (-0.287, 0.194) (2.043,-0.745) (0.286,-0.032) (0.139, 0.115) (0.018, 0.189) (-0.263, 0.225) (1.687,-1.372) (0.260,-0.125) (0.170, 0.063) (0.079, 0.173) (-0.176, 0.299) Original sequence as restored by inverse transform (1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597) (0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682) (0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)
```

[NP3390/19/pdf] C06PFF.5 (last)