C06PRF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PRF computes the discrete Fourier transforms of m sequences, each containing n complex data values.

2 Specification

SUBROUTINE CO6PRF(DIRECT, M, N, X, WORK, IFAIL)

CHARACTER*1 DIRECT INTEGER M, N, IFAIL

complex X(M*N), WORK(M*N+2*N+15)

3 Description

Given m sequences of n complex data values z_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the (**forward** or **backward**) discrete Fourier transforms of all the sequences defined by

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j^p \times \exp\left(\pm i \frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

 $\mathbf{2}: \quad \mathbf{M} \longrightarrow \mathbf{INTEGER}$

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

3: N — INTEGER Input

On entry: the number of complex values in each sequence, n.

Constraint: $N \ge 1$.

[NP3390/19/pdf] C06PRF.1

4: X(M*N) - complex array

Input/Output

On entry: the complex data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of each array. In other words, if the elements of the pth sequence to be transformed are denoted by z_j^p , for $j=0,1,\ldots,n-1$, then X(j*M+p) must contain z_j^p .

On exit: X is overwritten by the complex transforms.

5: WORK(M*N+2*N+15) — complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 4

On entry, N has more than 30 prime factors.

IFAIL = 5

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

C06PRF.2 [NP3390/19/pdf]

9 Example

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as computed by C06PRF with DIRECT set to 'F'). Inverse transforms are then calculated using C06PRF with DIRECT set to 'B' and printed out, showing that the original sequences are restored.

9.1 Program Text

```
CO6PRF Example Program Text.
  Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
   INTEGER
                   NIN, NOUT
  PARAMETER
                   (NIN=5,NOUT=6)
  INTEGER
                  MMAX, NMAX
  PARAMETER
                  (MMAX=5,NMAX=20)
   .. Local Scalars ..
                  I, IFAIL, J, M, N
  INTEGER
   .. Local Arrays ..
  complex
                   WORK ((MMAX+2)*NMAX+15), X(MMAX*NMAX)
   .. External Subroutines ..
  EXTERNAL
                   CO6PRF
   .. Intrinsic Functions ..
  INTRINSIC
                   real, imag
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PRF Example Program Results'
  Skip heading in data file
  READ (NIN,*)
20 CONTINUE
  READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
     DO 40 J = 1, M
        READ (NIN,*) (X(I*M+J),I=0,N-1)
40
     CONTINUE
     WRITE (NOUT,*)
     WRITE (NOUT,*) 'Original data values'
     DO 60 J = 1, M
         WRITE (NOUT,*)
         WRITE (NOUT,99999) 'Real ', (real(X(I*M+J)),I=0,N-1)
         WRITE (NOUT,99999) 'Imag', (imag(X(I*M+J)),I=0,N-1)
60
     CONTINUE
      IFAIL = 0
     CALL CO6PRF('F',M,N,X,WORK,IFAIL)
     WRITE (NOUT,*)
     WRITE (NOUT,*) 'Discrete Fourier transforms'
     DO 80 J = 1, M
         WRITE (NOUT,*)
         WRITE (NOUT,99999) 'Real', (real(X(I*M+J)),I=0,N-1)
         WRITE (NOUT,99999) 'Imag', (imag(X(I*M+J)),I=0,N-1)
80
     CONTINUE
     CALL CO6PRF('B', M, N, X, WORK, IFAIL)
     WRITE (NOUT,*)
     WRITE (NOUT,*) 'Original data as restored by inverse transform'
     DO 100 J = 1, M
         WRITE (NOUT,*)
```

 $[NP3390/19/pdf] \\ C06PRF.3$

9.2 Program Data

```
CO6PRF Example Program Data
     3
           6
     (0.3854, 0.5417)
     (0.6772, 0.2983)
     (0.1138, 0.1181)
     (0.6751, 0.7255)
     (0.6362, 0.8638)
     (0.1424, 0.8723)
     (0.9172, 0.9089)
     (0.0644, 0.3118)
     (0.6037, 0.3465)
     (0.6430, 0.6198)
     (0.0428, 0.2668)
     (0.4815, 0.1614)
     (0.1156, 0.6214)
     (0.0685, 0.8681)
     (0.2060, 0.7060)
     (0.8630, 0.8652)
     (0.6967, 0.9190)
     (0.2792, 0.3355)
```

9.3 Program Results

CO6PRF Example Program Results

Original data values

Real	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
Imag	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
Real	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
near	0.9172	0.0044	0.0037	0.0430	0.0420	0.4015
Imag	0.9089	0.3118	0.3465	0.6198	0.2668	0.1614
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355
Discrete	Fourier t	ransforms				
D 1	4 0707	0 5700	0 4700	0 4407	0.0540	0 0005
Real	1.0737	-0.5706	0.1733	-0.1467	0.0518	0.3625
Imag	1.3961	-0.0409	-0.2958	-0.1521	0.4517	-0.0321
_						
Real	1.1237	0.1728	0.4185	0.1530	0.3686	0.0101

C06PRF.4 [NP3390/19/pdf]

Ima	ag	1.0677	0.0386	0.7481	0.1752	0.0565	0.1403	
Rea Ima		0.9100 1.7617	-0.3054 0.0624	0.4079 -0.0695	-0.0785 0.0725	-0.1193 0.1285	-0.5314 -0.4335	
Ori	iginal	data as	restored	by inverse	transform			
Rea Ima		0.3854 0.5417	0.6772 0.2983	0.1138 0.1181	0.6751 0.7255	0.6362 0.8638	0.1424 0.8723	
Rea Ima		0.9172 0.9089	0.0644 0.3118	0.6037 0.3465	0.6430 0.6198	0.0428 0.2668	0.4815 0.1614	
Rea Ima		0.1156 0.6214	0.0685 0.8681	0.2060 0.7060	0.8630 0.8652	0.6967 0.9190	0.2792 0.3355	

[NP3390/19/pdf] C06PRF.5 (last)