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1 Scope of the Chapter

This chapter provides routines for the numerical evaluation of definite integrals in one or more dimensions
and for evaluating weights and abscissae of integration rules.

2 Background to the Problems

The routines in this chapter are designed to estimate:

(a) the value of a one-dimensional definite integral of the form:∫ b

a

f(x) dx (1)

where f(x) is defined by the user, either at a set of points (xi, f(xi)), for i = 1, 2, . . . , n where
a = x1 < x2 < . . . < xn = b, or in the form of a function; and the limits of integration a, b may be
finite or infinite.

Some methods are specially designed for integrands of the form

f(x) = w(x)g(x) (2)

which contain a factor w(x), called the weight-function, of a specific form. These methods take full
account of any peculiar behaviour attributable to the w(x) factor.

(b) the values of the one-dimensional indefinite integrals arising from (1) where the ranges of integration
are interior to the interval [a, b].

(c) the value of a multi-dimensional definite integral of the form:∫
Rn

f(x1, x2, . . . , xn) dxn . . . dx2 dx1 (3)

where f(x1, x2, . . . , xn) is a function defined by the user and Rn is some region of n-dimensional
space.

The simplest form of Rn is the n-rectangle defined by

ai ≤ xi ≤ bi, i = 1, 2, . . . , n (4)

where ai and bi are constants. When ai and bi are functions of xj (j < i), the region can easily
be transformed to the rectangular form (see Davis and Rabinowitz [1], page 266). Some of the
methods described incorporate the transformation procedure.

2.1 One-dimensional Integrals

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in the form
of a weighted sum of integrand values, i.e.,

∫ b

a

f(x) dx �
N∑

i=1

wif(xi). (5)

The points xi within the interval [a, b] are known as the abscissae, and the wi are known as the weights.

More generally, if the integrand has the form (2), the corresponding formula is

∫ b

a

w(x)g(x) dx �
N∑

i=1

wig(xi). (6)

If the integrand is known only at a fixed set of points, these points must be used as the abscissae, and
the weighted sum is calculated using finite-difference methods. However, if the functional form of the
integrand is known, so that its value at any abscissa is easily obtained, then a wide variety of quadrature
rules are available, each characterised by its choice of abscissae and the corresponding weights.
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The appropriate rule to use will depend on the interval [a, b] – whether finite or otherwise – and on the
form of any w(x) factor in the integrand. A suitable value of N depends on the general behaviour of
f(x); or of g(x), if there is a w(x) factor present.

Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution of
abscissae which is optimal for f(x) or g(x) of polynomial form.

The choice of basic rules constitutes one of the principles on which methods for one-dimensional integrals
may be classified. The other major basis of classification is the implementation strategy, of which some
types are now presented.

(a) Single rule evaluation procedures

A fixed number of abscissae, N , is used. This number and the particular rule chosen uniquely
determine the weights and abscissae. No estimate is made of the accuracy of the result.

(b) Automatic procedures

The number of abscissae, N , within [a, b] is gradually increased until consistency is achieved to
within a level of accuracy (absolute or relative) requested by the user. There are essentially two
ways of doing this; hybrid forms of these two methods are also possible:

(i) whole interval procedures (non-adaptive)

A series of rules using increasing values of N are successively applied over the whole interval
[a, b]. It is clearly more economical if abscissae already used for a lower value of N can be used
again as part of a higher-order formula. This principle is known as optimal extension. There is
no overlap between the abscissae used in Gaussian formulae of different orders. However, the
Kronrod formulae are designed to give an optimal (2N + 1)-point formula by adding (N + 1)
points to an N -point Gauss formula. Further extensions have been developed by Patterson.

(ii) adaptive procedures

The interval [a, b] is repeatedly divided into a number of sub-intervals, and integration rules
are applied separately to each sub-interval. Typically, the subdivision process will be carried
further in the neighbourhood of a sharp peak in the integrand, than where the curve is smooth.
Thus, the distribution of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval.
The usual global acceptability criterion demands that the sum of the absolute values of the
error estimates in the sub-intervals should meet the conditions required of the error over the
whole interval. Automatic extrapolation over several levels of subdivision may eliminate the
effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide variety
of integrands, was efficient (i.e., required the use of as few abscissae as possible), and was reliable (i.e.,
always gave results to within the requested accuracy). Complete reliability is unobtainable, and generally
higher reliability is obtained at the expense of efficiency, and vice versa. It must therefore be emphasised
that the automatic routines in this chapter cannot be assumed to be 100% reliable. In general, however,
the reliability is very high.

2.2 Multi-dimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5 dimensions),
and those of higher dimensionality. Where the number of dimensions is limited, a one-dimensional
method may be applied to each dimension, according to some suitable strategy, and high accuracy may
be obtainable (using product rules). However, the number of integrand evaluations rises very rapidly with
the number of dimensions, so that the accuracy obtainable with an acceptable amount of computational
labour is limited; for example a product of 3-point rules in 20 dimensions would require more than 109

integrand evaluations. Special techniques such as the Monte Carlo methods can be used to deal with
high dimensions.
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(a) Products of one-dimensional rules

Using a two-dimensional integral as an example, we have

∫ b1

a1

∫ b2

a2

f(x, y) dy dx �
N∑

i=1

wi

[∫ b2

a2

f(xi, y) dy

]
(7)

∫ b1

a1

∫ b2

a2

f(x, y) dy dx �
N∑

i=1

N∑
j=1

wivjf(xi, yj) (8)

where (wi, xi) and (vi, yi) are the weights and abscissae of the rules used in the respective
dimensions.

A different one-dimensional rule may be used for each dimension, as appropriate to the range and
any weight function present, and a different strategy may be used, as appropriate to the integrand
behaviour as a function of each independent variable.

For a rule-evaluation strategy in all dimensions, the formula (8) is applied in a straightforward
manner. For automatic strategies (i.e., attempting to attain a requested accuracy), there is a
problem in deciding what accuracy must be requested in the inner integral(s). Reference to formula
(7) shows that the presence of a limited but random error in the y-integration for different values of
xi can produce a ‘jagged’ function of x, which may be difficult to integrate to the desired accuracy
and for this reason products of automatic one-dimensional routines should be used with caution
(see also Lyness [3]).

(b) Monte Carlo methods

These are based on estimating the mean value of the integrand sampled at points chosen from an
appropriate statistical distribution function. Usually a variance reducing procedure is incorporated
to combat the fundamentally slow rate of convergence of the rudimentary form of the technique.
These methods can be effective by comparison with alternative methods when the integrand contains
singularities or is erratic in some way, but they are of quite limited accuracy.

(c) Number theoretic methods

These are based on the work of Korobov and Conroy and operate by exploiting implicitly the
properties of the Fourier expansion of the integrand. Special rules, constructed from so-called
optimal coefficients, give a particularly uniform distribution of the points throughout n-dimensional
space and from their number theoretic properties minimize the error on a prescribed class of
integrals. The method can be combined with the Monte Carlo procedure.

(d) Sag–Szekeres method

By transformation this method seeks to induce properties into the integrand which make it
accurately integrable by the trapezoidal rule. The transformation also allows effective control over
the number of integrand evaluations.

(e) Automatic adaptive procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into
subregions, concentrating the divisions in those parts of the region where the integrand is worst
behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s).
For this reason, some methods use a region where all the limits are constants; this is called a
hyper-rectangle. Integrals over regions defined by variable or infinite limits may be handled by
transformation to a hyper-rectangle. Integrals over regions so irregular that such a transformation
is not feasible may be handled by surrounding the region by an appropriate hyper-rectangle and
defining the integrand to be zero outside the desired region. Such a technique should always be
followed by a Monte Carlo method for integration.

The method used locally in each subregion produced by the adaptive subdivision process is usually
one of three types: Monte Carlo, number theoretic or deterministic. Deterministic methods are
usually the most rapidly convergent but are often expensive to use for high dimensionality and not
as robust as the other techniques.
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3 Recommendations on Choice and Use of Available Routines
Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The following three sub-sections consider in turn routines for: one-dimensional integrals over a finite
interval, and over a semi-infinite or an infinite interval; and multi-dimensional integrals. Within each
sub-section, routines are classified by the type of method, which ranges from simple rule evaluation to
automatic adaptive algorithms. The recommendations apply particularly when the primary objective is
simply to compute the value of one or more integrals, and in these cases the automatic adaptive routines
are generally the most convenient and reliable, although also the most expensive in computing time.

Note however that in some circumstances it may be counter-productive to use an automatic routine. If
the results of the quadrature are to be used in turn as input to a further computation (e.g., an ‘outer’
quadrature or an optimization problem), then this further computation may be adversely affected by the
‘jagged performance profile’ of an automatic routine; a simple rule-evaluation routine may provide much
better overall performance. For further guidance, the article by Lyness [3] is recommended.

3.1 One-dimensional Integrals over a Finite Interval

(a) Integrand defined at a set of points

If f(x) is defined numerically at four or more points, then the Gill–Miller finite difference method
(D01GAF) should be used. The interval of integration is taken to coincide with the range of x-
values of the points supplied. It is in the nature of this problem that any routine may be unreliable.
In order to check results independently and so as to provide an alternative technique the user may
fit the integrand by Chebyshev series using E02ADF and then use routines E02AJF and E02AKF
to evaluate its integral (which need not be restricted to the range of the integration points, as is
the case for D01GAF). A further alternative is to fit a cubic spline to the data using E02BAF and
then to evaluate its integral using E02BDF.

(b) Integrand defined as a function

If the functional form of f(x) is known, then one of the following approaches should be taken. They
are arranged in the order from most specific to most general, hence the first applicable procedure
in the list will be the most efficient. However, if the user does not wish to make any assumptions
about the integrand, the most reliable routines to use will be D01AJF (or D01ATF) and D01AHF,
although these will in general be less efficient for simple integrals.

(i) Rule-evaluation routines

If f(x) is known to be sufficiently well behaved (more precisely, can be closely approximated
by a polynomial of moderate degree), a Gaussian routine with a suitable number of abscissae
may be used.

D01BAF may be used if it is not required to examine the weights and abscissae.

D01BBF or D01BCF with D01FBF may be used if it is required to examine the weights and
abscissae.

D01BBF is faster and more accurate, whereas D01BCF is more general.

If f(x) is well behaved, apart from a weight-function of the form∣∣∣∣x − a+ b

2

∣∣∣∣
c

or (b − x)c(x − a)d,

D01BCF with D01FBF may be used.

(ii) Automatic whole-interval routines

If f(x) is reasonably smooth, and the required accuracy is not too high, the automatic
whole-interval routines, D01ARF or D01BDF may be used. D01ARF incorporates high-order
extensions of the Kronrod rule and is the only routine which can also be used for indefinite
integration.
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(iii) Automatic adaptive routines

Firstly, several routines are available for integrands of the form w(x)g(x) where g(x) is a
‘smooth’ function (i.e., has no singularities, sharp peaks or violent oscillations in the interval
of integration) and w(x) is a weight function of one of the following forms:

if w(x) = (b − x)α(x − a)β(log(b − x))k(log(x − a))l, where k, l = 0 or 1, α, β > −1: use
D01APF;
if w(x) = 1

x−c : use D01AQF (this integral is called the Hilbert transform of g);
if w(x) = cos(ωx) or sin(ωx): use D01ANF (this routine can also handle certain types of
singularities in g(x)).

Secondly, there are some routines for general f(x). If f(x) is known to be free of singularities,
though it may be oscillatory, D01AKF or D01AUF may be used.

The most powerful of the finite interval integration routines are D01AJF and D01ATF, which
can cope with singularities of several types, and D01AHF. They may be used if none of
the more specific situations described above applies. D01AHF is likely to be more efficient,
whereas D01AJF and D01ATF are somewhat more reliable, particularly where the integrand
has singularities other than at an end-point, or has discontinuities or cusps, and is therefore
recommended where the integrand is known to be badly behaved, or where its nature is
completely unknown. It may sometimes be useful to use both routines as a check.

Most of the routines in this chapter require the user to supply a function or subroutine to
evaluate the integrand at a single point. D01ATF and D01AUF use the same methods as
D01AJF and D01AKF respectively, but have a different user-interface which can result in
faster execution, especially on vector-processing machines (see Gladwell [2]). They require the
user to provide a subroutine to return an array of values of the integrand at each of an array of
points. This reduces the overhead of function calls, avoids repetition of computations common
to each of the integrand evaluations, and offers greater scope for vectorisation of the user’s
code.

If f(x) has singularities of certain types, discontinuities or sharp peaks occurring at known
points, the integral should be evaluated separately over each of the subranges or D01ALF may
be used.

3.2 One-dimensional Integrals over a Semi-infinite or Infinite Interval

(a) Integrand defined at a set of points

If f(x) is defined numerically at four or more points, and the portion of the integral lying outside
the range of the points supplied may be neglected, then the Gill–Miller finite difference method,
D01GAF, should be used.

(b) Integrand defined as a function

(i) Rule evaluation routines

If f(x) behaves approximately like a polynomial in x, apart from a weight function of the form

e−βx, β > 0 (semi-infinite interval, lower limit finite); or
e−βx, β < 0 (semi-infinite interval, upper limit finite); or
e−β(x−α)2, β > 0 (infinite interval);

or if f(x) behaves approximately like a polynomial in (x+ b)−1 (semi-infinite range), then the
Gaussian routines may be used.

D01BAF may be used if it is not required to examine the weights and abscissae.

D01BBF or D01BCF with D01FBF may be used if it is required to examine the weights and
abscissae.

D01BBF is faster and more accurate, whereas D01BCF is more general.
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(ii) Automatic adaptive routines

D01AMF may be used, except for integrands which decay slowly towards an infinite end-
point, and oscillate in sign over the entire range. For this class, it may be possible to calculate
the integral by integrating between the zeros and invoking some extrapolation process (see
C06BAF).

D01ASF may be used for integrals involving weight functions of the form cos(ωx) and sin(ωx)
over a semi-infinite interval (lower limit finite).

The following alternative procedures are mentioned for completeness, though their use will
rarely be necessary.

1. If the integrand decays rapidly towards an infinite end-point, a finite cut-off may be chosen,
and the finite range methods applied.

2. If the only irregularities occur in the finite part (apart from a singularity at the finite
limit, with which D01AMF can cope), the range may be divided, with D01AMF used on
the infinite part.

3. A transformation to finite range may be employed, e.g.

x =
1− t

t
or x = − loge t

will transform (0,∞) to (1,0) while for infinite ranges we have∫ ∞

−∞
f(x) dx =

∫ ∞

0

[f(x) + f(−x)] dx.

If the integrand behaves badly on (−∞, 0) and well on (0,∞) or vice versa it is better

to compute it as
∫ 0

−∞
f(x) dx +

∫ ∞

0

f(x) dx. This saves computing unnecessary function

values in the semi-infinite range where the function is well behaved.

3.3 Multi-dimensional Integrals

A number of techniques are available in this area and the choice depends to a large extent on the
dimension and the required accuracy. It can be advantageous to use more than one technique as a
confirmation of accuracy particularly for high dimensional integrations. Many of the routines incorporate
the transformation procedure REGION which allows general product regions to be easily dealt with in
terms of conversion to the standard n-cube region.

(a) Products of one-dimensional rules (suitable for up to about 5 dimensions)

If f(x1, x2, . . . , xn) is known to be a sufficiently well behaved function of each variable xi, apart
possibly from weight functions of the types provided, a product of Gaussian rules may be used.
These are provided by D01BBF or D01BCF with D01FBF. Rules for finite, semi-infinite and infinite
ranges are included.

For two-dimensional integrals only, unless the integrand is very badly-behaved, the automatic whole-
interval product procedure of D01DAF may be used. The limits of the inner integral may be user-
specified functions of the outer variable. Infinite limits may be handled by transformation (see
Section 3.2); end-point singularities introduced by transformation should not be troublesome, as
the integrand value will not be required on the boundary of the region.

If none of these routines proves suitable and convenient, the one-dimensional routines may be used
recursively. For example, the two-dimensional integral

I =
∫ b1

a1

∫ b2

a2

f(x, y) dy dx

may be expressed as

I =
∫ b1

a1

F (x) dx, where F (x) =
∫ b2

a2

f(x, y) dy.
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The user segment to evaluate F (x) will call the integration routine for the y-integration, which
will call another user segment for f(x, y) as a function of y (x being effectively a constant). Note
that, as Fortran 77 is not a recursive language, a different library integration routine must be used
for each dimension. Apart from this restriction, the following combinations are not permitted:
D01AJF and D01ALF, D01ANF and D01APF, D01APF and D01AQF, D01AQF and D01ANF,
D01ASF and D01ANF, D01ASF and D01AMF, D01AUF and D01ATF. Otherwise the full range
of one-dimensional routines are available, for finite/infinite intervals, constant/variable limits, rule
evaluation/automatic strategies etc.

(b) Sag–Szekeres method

Two routines are based on this method.

D01FDF is particularly suitable for integrals of very large dimension although the accuracy is
generally not high. It allows integration over either the general product region (with
built-in transformation to the n-cube) or the n-sphere. Although no error estimate is
provided, two adjustable parameters may be varied for checking purposes or may be
used to tune the algorithm to particular integrals.

D01JAF is also based on the Sag–Szekeres method and integrates over the n-sphere. It uses
improved transformations which may be varied according to the behaviour of the
integrand. Although it can yield very accurate results it can only practically be
employed for dimensions not exceeding 4.

(c) Number Theoretic method

Two routines are based on this method.

D01GCF carries out multiple integration using the Korobov–Conroymethod over a product region
with built-in transformation to the n-cube. A stochastic modification of this method
is incorporated hybridising the technique with the Monte Carlo procedure. An error
estimate is provided in terms of the statistical standard error. The routine includes a
number of optimal coefficient rules for up to 20 dimensions; others can be computed
using D01GYF and D01GZF. Like the Sag–Szekeres method it is suitable for large
dimensional integrals although the accuracy is not high.

D01GDF uses the same method as D01GCF, but has a different interface which can result in faster
execution, especially on vector-processing machines. The user is required to provide two
subroutines, the first to return an array of values of the integrand at each of an array
of points, and the second to evaluate the limits of integration at each of an array of
points. This reduces the overhead of function calls, avoids repetitions of computations
common to each of the evaluations of the integral and limits of integration, and offers
greater scope for vectorization of the user’s code.

(d) A combinatorial extrapolation method

D01PAF computes a sequence of approximations and an error estimate to the integral of
a function over a multi-dimensional simplex using a combinatorial method with
extrapolation.

(e) Automatic routines (D01GBF and D01FCF)

Both routines are for integrals of the form∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

f(x1, x2, . . . , xn) dxn dxn−1 . . . dx1.

D01GBF is an adaptive Monte Carlo routine. This routine is usually slow and not recommended
for high-accuracy work. It is a robust routine that can often be used for low-accuracy
results with highly irregular integrands or when n is large.

D01FCF is an adaptive deterministic routine. Convergence is fast for well behaved integrands.
Highly accurate results can often be obtained for n between 2 and 5, using significantly
fewer integrand evaluations than would be required by D01GBF. The routine will usually
work when the integrand is mildly singular and for n ≤ 10 should be used before
D01GBF. If it is known in advance that the integrand is highly irregular, it is best to
compare results from at least two different routines.
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There are many problems for which one or both of the routines will require large amounts of
computing time to obtain even moderately accurate results. The amount of computing time is
controlled by the number of integrand evaluations allowed by the user, and users should set this
parameter carefully, with reference to the time available and the accuracy desired.

D01EAF extends the technique of D01FCF to integrate adaptively more than one integrand, that
is to calculate the set of integrals∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

(f1, f2, . . . , fm) dxn dxn−1 . . . dx1

for a set of similar integrands f1, f2, . . . , fm where fi = fi(x1, x2, . . . , xn).
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4 Decision Trees

(i) One-dimensional integrals over a finite interval
(If in doubt, follow the downward branch.)

Is indefinite integration required?
Is the functional
form of the
integrand known?

D01ARF

D01GAF

Are you concerned with efficiency for simple
integrals?

Is the integrand smooth (polynomial−like)?

Is the integrand reasonably smooth and the
required accuracy not too great?

Has the integrand discontinuities, sharp peaks
or singularities at known points other than the
end−points?

Is the integrand free of singularities, sharp peaks
and violent oscillations?

Is the integrand free of violent oscillations
apart from weight function cos (ωx) or sin

(ωx)?

Is the integrand free of singularities?

Is the integrand free of discontinuities and of
singularitites except possibly at the end−points?

D01AJF or D01ATF*

no

no

no

yes

yes

no

D01AJF,
D01ATF* or
D01AHF

D01ARF,
D01BAF or
D01BBF/D01FBF
or
D01BCF/D01FBF

D01BDF

Split the range
and begin again;
or use D01ALF

D01APF

D01AQF

D01ANF

D01AKF or
D01AUF*

D01AHF

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

− apart from weight function

x−(a+b)/2
c
?

− apart from weight function

(b−x)
c
(x−a)

d
?

− apart from weight function ?
1

x−c

− apart from weight function

(b−x)
α

(x−a)
β
(log(b−x))

k
(log(x−a))

l
?

no

no

no

no

no

no

no

*D01ATF and D01AUF are likely to be more efficient than D01AJF and D01AKF, which use a more
conventional user-interface, consistent with other routines in the chapter.
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(ii) One-dimensional integrals over a semi-infinite or infinite interval
(If in doubt, follow the downward branch.)

Are you concerned with efficiency for
simple integrals?

Is the
functional
form of the
integrand
known?

D01GAF
(integrates
over the
range of the
points
supplied)

D01AMF

Is the integrand smooth
(polynomial−like)?

Has integrand discontinuities, sharp peaks
or singularities at known points other than
a finite limit?

Does the integrand oscillate over the
entire range?

Is the integrand polynomial−like in
(semi−infinite range)?1

x+b

D01BDF,
D01ARF with
transformation
See Section 3.2.

D01BAF,
D01BBF/D01FBF
or
D01BCF/D01FBF

Split range;
begin again using
finite or infinite
range trees

D01AMF

− apart from weight function
(semi−infinite range)?

e
−βx

no

yes

yes

no

no

no

no

no

yes

yes

yes

yes

yes

no

2
− apart from weight function
(infinite range)?

e
−β(x−a)

Does the integrand decay rapidly towards
an infinite limit?

Is the integrand free of violent
oscillations apart from weight function
cos (ωx) or sin (ωx) (semi−infinite

range)?

Use finite−range integration between the
zeros, and extrapolate (see C06BAF)

Use D01AMF;
or set cutoff
and use finite
range tree

D01ASF

yes

no

no

yes

yes
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(iii) Multi-dimensional integrals

D01FDF

Is dimension = 2
and product region?

Is dimension < 4?

D01PAF

D01FDF with
parameter tuning

Is region an n−
sphere?

Is region a Simplex?

Is high accuracy
required?

Is dimension high?

D01FCF*

D01DAF

Is region an n−sphere?

Is region a Simplex?

Is the integrand smooth
(polynomial−like)
in each dimension apart
from weight function?

Is integrand free of
extremely bad
behaviour?

Compare results from
at least 2 of D01GBF,
D01FCF*, D01GCF,
D01FDF and one−
dimensional recursive
application

D01JAF or
D01FBF with user
transformation

D01PAF or
D01FBF with user
transformation

D01BBF/D01FBF or
D01BCF/D01FBF

D01FCF*,
D01FDF
or
D01GCF

D01FDF or
D01FCF*

Is bad behaviour on
the boundary?

yes

yes

yes

yes

yes

yes yes

yes

yes

yes

yes

no

no no

no

no

no

no

D01FDF
D01GCF
or
D01GDF

no

no

no

no

* In the case where there are many integrals to be evaluated D01EAF should be preferred to D01FCF.

† D01GDF is likely to be more efficient than D01GCF, which uses a more conventional user-interface,
consistent with other routines in the chapter.

5 Routines Withdrawn or Scheduled for Withdrawal

None since Mark 13.
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