## E01ABF – NAG Fortran Library Routine Document

**Note.** Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1 Purpose

E01ABF interpolates at a given point x from a table of function values evaluated at equidistant points, by Everett's formula.

# 2 Specification

```
SUBROUTINE E01ABF(N, P, A, G, N1, N2, IFAIL)INTEGERN, N1, N2, IFAILrealP, A(N1), G(N2)
```

# **3** Description

This routine interpolates at a given point

 $x = x_0 + ph, \quad \text{where} \quad -1$ 

from a table of values  $(x_0 + mh)$  and  $y_m$  where  $m = -(n-1), -(n-2), \ldots, -1, 0, 1, \ldots, n$ . The formula used is that of Everett [1], neglecting the remainder term:

$$y_p = \sum_{r=0}^{n-1} \left(\frac{1-p+r}{2r+1}\right) \delta^{2r} y_0 + \sum_{r=0}^{n-1} \left(\frac{p+r}{2r+1}\right) \delta^{2r} y_1.$$

The values of  $\delta^{2r}y_0$  and  $\delta^{2r}y_1$  are stored on exit from the routine in addition to the interpolated function value  $y_p$ .

# 4 References

[1] Froberg C E (1970) Introduction to Numerical Analysis Addison–Wesley

# **5** Parameters

1: N — INTEGER

On entry: n, half the number of points to be used in the interpolation.

2: P — real Input

On entry: the point p at which the interpolated function value is required i.e.,  $p = (x - x_0)/h$  with -1.0 .

Constraint: -1.0 < P < 1.0.

### 3: A(N1) - real array

On entry: A(i) must be set to the function value  $y_{i-n}$  for i = 1, 2, ..., 2n.

On exit: the contents of A are unspecified.

Input/Output

Input

Output

4: G(N2) - real array

On exit: the array contains

| $y_0$            | in $G(1)$                           |
|------------------|-------------------------------------|
| $y_1$            | in $G(2)$                           |
| $\delta^{2r}y_0$ | in $G(2r+1)$                        |
| $\delta^{2r}y_1$ | in G(2r+2) for $r = 1, 2,, n - 1$ . |

The interpolated function value  $y_p$  is stored in G(2n+1).

#### 5: N1 — INTEGER

On entry: the value 2n, that is, N1 is equal to the number of data points.

#### 6: N2 - INTEGER

On entry: the value 2n + 1, that is, N2 is one more than the number of data points.

**7:** IFAIL — INTEGER

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

## 6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

 $\begin{array}{ll} {\rm On\ entry}, \ \ P\leq -1.0,\\ {\rm or} \ \ P\geq 1.0. \end{array}$ 

## 7 Accuracy

In general, increasing n improves the accuracy of the result until full attainable accuracy is reached, after which it might deteriorate. If x lies in the central interval of the data (i.e.,  $0.0 \le p \le 1.0$ ), as is desirable, an upper bound on the contribution of the highest order differences (which is usually an upper bound on the error of the result) is given approximately in terms of the elements of the array G by  $a \times (|G(2n-1)| + |G(2n)|)$ , where a = 0.1, 0.02, 0.005, 0.001, 0.0002 for n = 1, 2, 3, 4, 5 respectively, thereafter decreasing roughly by a factor of 4 each time.

## 8 Further Comments

The computation time increases as the order of n increases.

## 9 Example

To interpolate at the point x = 0.28 from the function values

 $\left(\begin{array}{cccccc} x_i & -1.00 & -0.50 & 0.00 & 0.50 & 1.00 & 1.50 \\ y_i & 0.00 & -0.53 & -1.00 & -0.46 & 2.00 & 11.09 \end{array}\right).$ 

We take n = 3 and p = 0.56.

Input

Input

Input/Output

### 9.1 Program Text

**Note.** The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
*
     E01ABF Example Program Text
     Mark 14 Revised. NAG Copyright 1989.
*
*
      .. Parameters ..
      INTEGER
                       NMAX, N1MAX, N2MAX
     PARAMETER
                       (NMAX=10,N1MAX=2*NMAX,N2MAX=2*NMAX+1)
      INTEGER
                       NIN, NOUT
      PARAMETER
                       (NIN=5,NOUT=6)
      .. Local Scalars ..
     real
                       Ρ
     INTEGER
                       I, IFAIL, N, R
      .. Local Arrays ..
     real
                       A(N1MAX), G(N2MAX)
      .. External Subroutines ..
     EXTERNAL
                      E01ABF
      .. Executable Statements ..
     WRITE (NOUT,*) 'E01ABF Example Program Results'
     Skip heading in data file
*
     READ (NIN,*)
     READ (NIN,*) N, P
      IF (N.GT.O .AND. N.LE.NMAX) THEN
         READ (NIN,*) (A(I),I=1,2*N)
         IFAIL = 0
         CALL E01ABF(N,P,A,G,2*N,2*N+1,IFAIL)
*
         WRITE (NOUT,*)
         DO 2O R = 0, N - 1
            WRITE (NOUT, 99999) 'Central differences order ', R,
              ' of YO =', G(2*R+1)
     +
            WRITE (NOUT,99998) '
                                                                Y1 =',
     +
              G(2*R+2)
  20
         CONTINUE
         WRITE (NOUT,*)
         WRITE (NOUT,99998) 'Function value at interpolation point =',
           G(2*N+1)
     END IF
     STOP
99999 FORMAT (1X,A,I1,A,F12.5)
99998 FORMAT (1X,A,F12.5)
     END
```

### 9.2 Program Data

```
E01ABF Example Program Data

3 0.56

0.00 -0.53 -1.00 -0.46 2.00 11.09
```

## 9.3 Program Results

E01ABF Example Program Results

Central differences order 0 of Y0 = -1.00000Y1 = -0.46000Central differences order 1 of Y0 = 1.01000Y1 = 1.92000Central differences order 2 of Y0 = -0.04000Y1 = 3.80000Function value at interpolation point = -0.83591