
E01 – Interpolation

E01AEF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E01AEF constructs the Chebyshev-series representation of a polynomial interpolant to a set of data which
may contain derivative values.

2 Specification

SUBROUTINE E01AEF(M, XMIN, XMAX, X, Y, IP, N, ITMIN, ITMAX, A,
1 WRK, LWRK, IWRK, LIWRK, IFAIL)
INTEGER M, IP(M), N, ITMIN, ITMAX, LWRK, IWRK(LIWRK),
1 LIWRK, IFAIL
real XMIN, XMAX, X(M), Y(N), A(N), WRK(LWRK)

3 Description

Letm distinct values xi of an independent variable x be given, with xmin ≤ xi ≤ xmax, for i = 1, 2, . . . , m.
For each value xi, suppose that the value yi of the dependent variable y together with the first pi

derivatives of y with respect to x are given. Each pi must therefore be a non-negative integer, with the

total number of interpolating conditions, n, equal to m+
m∑

i=1

pi.

E01AEF calculates the unique polynomial q(x) of degree n−1 (or less) which is such that q(k)(xi) = y
(k)
i

for i = 1, 2, . . . , m; k = 0, 1, . . . , pi. Here q(0)(xi) means q(xi). This polynomial is represented in
Chebyshev-series form in the normalised variable x̄, as follows:

q(x) =
1
2
a0T0(x̄) + a1T1(x̄) + . . .+ an−1Tn−1(x̄),

where
x̄ =

2x − xmin − xmax

xmax − xmin

so that −1 ≤ x̄ ≤ 1 for x in the interval xmin to xmax, and where Ti(x̄) is the Chebyshev polynomial of
the first kind of degree i with argument x̄.

(The polynomial interpolant can subsequently be evaluated for any value of x in the given range by using
E02AKF. Chebyshev-series representations of the derivative(s) and integral(s) of q(x) may be obtained
by (repeated) use of E02AHF and E02AJF.)

The method used consists first of constructing a divided-difference table from the normalised x̄ values
and the given values of y and its derivatives with respect to x̄. The Newton form of q(x) is then obtained
from this table, as described in Huddleston [1] and Krogh [2], with the modification described in Section
8.2. The Newton form of the polynomial is then converted to Chebyshev-series form as described in
Section 8.3.

Since the errors incurred by these stages can be considerable, a form of iterative refinement is used to
improve the solution. This refinement is particularly useful when derivatives of rather high order are
given in the data. In reasonable examples, the refinement will usually terminate with a certain accuracy
criterion satisfied by the polynomial (see Section 7). In more difficult examples, the criterion may not be
satisfied and refinement will continue until the maximum number of iterations (as specified by the input
parameter ITMAX) is reached.

In extreme examples, the iterative process may diverge (even though the accuracy criterion is satisfied): if
a certain divergence criterion is satisfied, the process terminates at once. In all cases the routine returns
the ‘best’ polynomial achieved before termination. For the definition of ‘best’ and details of iterative
refinement and termination criteria, see Section 8.4.
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5 Parameters

1: M — INTEGER Input

On entry: m, the number of given values of the independent variable x.

Constraint: M ≥ 1.

2: XMIN — real Input
3: XMAX — real Input

On entry: the lower and upper end-points, respectively, of the interval [xmin, xmax]. If they are not
determined by the user’s problem, it is recommended that they be set respectively to the smallest
and largest values among the xi.

Constraint: XMIN < XMAX.

4: X(M) — real array Input

On entry: the value of xi, for i = 1, 2, . . . , m. The X(i) need not be ordered.

Constraint: XMIN ≤ X(i) ≤ XMAX, and the X(i) must be distinct.

5: Y(N) — real array Input

On entry: the given values of the dependent variable, and derivatives, as follows:

The first p1 + 1 elements contain y1, y
(1)
1 , . . . , y

(p1)
1 in that order.

The next p2 + 1 elements contain y2, y
(1)
2 , . . . , y

(p2)
2 in that order.

...

The last pm + 1 elements contain ym, y(1)
m , . . . , y(pm)

m in that order.

6: IP(M) — INTEGER array Input

On entry: pi, the order of the highest-order derivative whose value is given at xi, for i = 1, 2, . . . , m.
If the value of y only is given for some xi then the corresponding value of IP(i) must be zero.

Constraint: IP(i) ≥ 0, for i = 1, 2, . . . ,M.

7: N — INTEGER Input

On entry: the total number of interpolating conditions, n.

Constraint: N = M + IP(1) + IP(2) + . . . + IP(M).

8: ITMIN — INTEGER Input
9: ITMAX — INTEGER Input

On entry: respectively the minimum and maximum number of iterations to be performed by the
routine (for full details see Section 8.4, second paragraph). Setting ITMIN and/or ITMAX negative
or zero invokes default value(s) of 2 and/or 10, respectively.

The default values will be satisfactory for most problems, but occasionally significant improvement
will result from using higher values.

Suggested value: ITMIN = 0 and ITMAX = 0.
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10: A(N) — real array Output

On exit: A(i) contains the coefficient ai−1 in the Chebyshev-series representation of q(x), for
i = 1, 2, . . . , n.

11: WRK(LWRK) — real array Workspace

Used as workspace, but see also Section 8.5.

12: LWRK — INTEGER Input

On entry: the dimension of the array WRK as declared in the (sub)program from which E01AEF
is called.

Constraint: LWRK ≥ 7 × N + 5 × IPMAX + M + 7, where IPMAX is the largest value of IP(i),
for i = 1, 2, . . . ,M.

13: IWRK(LIWRK) — INTEGER array Workspace

Used as workspace, but see also Section 8.5.

14: LIWRK — INTEGER Input

On entry: the dimension of the array IWRK as declared in the (sub)program from which E01AEF
is called.

Constraint: LIWRK ≥ 2 × M + 2.

15: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, M < 1,

or N �= M + IP(1) + IP(2) + . . .+ IP(M),

or LWRK < 7 × N + 5 × IPMAX + M + 7,

or LIWRK < 2 × M + 2

(IPMAX is defined under LWRK).

IFAIL = 2

On entry, IP(i) < 0 for some i.

IFAIL = 3

On entry, XMIN ≥ XMAX,

or X(i) < XMIN for some i,

or X(i) > XMAX,

or X(i) = X(j) for some i �= j.

IFAIL = 4

Not all the performance indices are less than eight times the machine precision, although
ITMAX iterations have been performed. Parameters A, WRK and IWRK relate to the best
polynomial determined. A more accurate solution may possibly be obtained by increasing ITMAX
and recalling the routine. See also Section 7, Section 8.4 and Section 8.5.
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IFAIL = 5

The computation has been terminated because the iterative process appears to be diverging.
(Parameters A, WRK and IWRK relate to the best polynomial determined.) Thus the problem
specified by the user’s data is probably too ill-conditioned for the solution to be satisfactory. This
may result from some of the X(i) being very close together, or from the number of interpolating
conditions, N, being large. If in such cases the conditions do not involve derivatives, the user is
likely to obtain a much more satisfactory solution to his problem either by cubic spline interpolation
(see E01BAF) or by curve fitting with a polynomial or spline in which the number of coefficients is
less than N, preferably much less if N is large (see the E02 Chapter Introduction). But see Section
7 and Section 8.4–Section 8.5.

7 Accuracy

A complete error analysis is not currently available, but the method gives good results for reasonable
problems.

It is important to realise that for some sets of data, the polynomial interpolation problem is ill-conditioned.
That is, a small perturbation in the data may induce large changes in the polynomial, even in exact
arithmetic. Though by no means the worst example, interpolation by a single polynomial to a large
number of function values given at points equally spaced across the range is notoriously ill-conditioned
and the polynomial interpolating such a data set is prone to exhibit enormous oscillations between the
data points, especially near the ends of the range. These will be reflected in the Chebyshev coefficients
being large compared with the given function values. A more familiar example of ill-conditioning occurs
in the solution of certain systems of linear algebraic equations, in which a small change in the elements
of the matrix and/or in the components of the right-hand side vector induces a relatively large change in
the solution vector. The best that can be achieved in these cases is to make the residual vector small in
some sense. If this is possible, the computed solution is exact for a slightly perturbed set of data. Similar
considerations apply to the interpolation problem.

The residuals y
(k)
i − q(k)(xi) are available for inspection (see Section 8.5). To assess whether these are

reasonable, however, it is necessary to relate them to the largest function and derivative values taken
by q(x) over the interval [xmin, xmax]. The following performance indices aim to do this. Let the kth
derivative of q with respect to the normalised variable x̄ be given by the Chebyshev-series

1
2
ak
0T0(x̄) + ak

1T1(x̄) + . . .+ ak
n−1−kTn−1−k(x̄).

Let Ak denote the sum of the moduli of these coefficients (this is an upper bound on the kth derivative
in the interval and is taken as a measure of the maximum size of this derivative), and define

Sk = max
i≤k

Ai.

Then if the root-mean-square value of the residuals of q(k), scaled so as to relate to the normalised variable
x̄, is denoted by rk, the performance indices are defined by

Pk = rk/Sk, for k = 0, 1, . . . ,max
i
(pi).

It is expected that, in reasonable cases, they will all be less than (say) 8 times the machine precision
(this is the accuracy criterion mentioned in Section 3), and in many cases will be of the order ofmachine
precision or less.

8 Further Comments
8.1 Timing

Computation time is approximately proportional to IT × n3, where IT is the number of iterations actually
used. (See Section 8.5).
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8.2 Divided-difference Strategy

In constructing each new coefficient in the Newton form of the polynomial, a new xi must be brought
into the computation. The xi chosen is that which yields the smallest new coefficient. This strategy
increases the stability of the divided-difference technique, sometimes quite markedly, by reducing errors
due to cancellation.

8.3 Conversion to Chebyshev Form

Conversion from the Newton form to Chebyshev-series form is effected by evaluating the former at the
n values of x̄ at which Tn−1(x) takes the value ±1, and then interpolating these n function values by a
call of E02AFF, which provides the Chebyshev-series representation of the polynomial with very small
additional relative error.

8.4 Iterative Refinement

The iterative refinement process is performed as follows. First, an initial approximation, q1(x) say, is
found by the technique described above. The rth step of the refinement process then consists of evaluating
the residuals of the rth approximation qr(x), and constructing an interpolant, dqr(x), to these residuals.
The next approximation qr+1(x) to the interpolating polynomial is then obtained as

qr+1(x) = qr(x) + dqr(x).

This completes the description of the rth step.

The iterative process is terminated according to the following criteria. When a polynomial is found
whose performance indices (as defined in Section 7) are all less than 8 times the machine precision,
the process terminates after ITMIN further iterations (or after a total of ITMAX iterations if that occurs
earlier). This will occur in most reasonable problems. The extra iterations are to allow for the possibility
of further improvement. If no such polynomial is found, the process terminates after a total of ITMAX
iterations. Both these criteria are over-ridden, however, in two special cases. Firstly, if for some value of r
the sum of the moduli of the Chebyshev coefficients of dqr(x) is greater than that of qr(x), it is concluded
that the process is diverging and the process is terminated at once (qr+1(x) is not computed). Secondly,
if at any stage, the performance indices are all computed as zero, again the process is terminated at once.

As the iterations proceed, a record is kept of the best polynomial. Subsequently, at the end of each
iteration, the new polynomial replaces the current best polynomial if it satisfies two conditions (otherwise
the best polynomial remains unchanged). The first condition is that at least one of its root-mean-square
residual values, rk (see Section 7) is smaller than the corresponding value for the current best polynomial.
The second condition takes two different forms according to whether or not the performance indices (see
Section 7) of the current best polynomial are all less than 8 times the machine precision. If they are,
then the largest performance index of the new polynomial is required to be less than that of the current
best polynomial. If they are not, the number of indices which are less than 8 times machine precision
must not be smaller than for the current best polynomial. When the iterative process is terminated, it
is the polynomial then recorded as best, which is returned to the user as q(x).

8.5 Workspace Information

On successful exit, and also if IFAIL = 4 or 5 on exit, the following information is contained in the
workspace arrays WRK and IWRK:

WRK(k+1), for k = 0, 1, . . . ,IPMAX where IPMAX = max
i

pi, contains the ratio of pk, the performance
index relating to the kth derivative of the q(x) finally provided, to 8 times the machine precision.

WRK(IPMAX+1+j), for j = 1, 2, . . . , n, contains the jth residual, i.e., the value of y(k)
i − q(k)(xi), where

i and k are the appropriate values corresponding to the jth element in the array Y (see description of Y
in Section 5).

IWRK(1) contains the number of iterations actually performed in deriving q(x).

If, on exit, IFAIL = 4 or 5, the q(x) finally provided may still be adequate for the user’s requirements. To
assess this the user should examine the residuals contained in WRK(IPMAX+1+j), for j = 1, 2, . . . , n,
to see whether they are acceptably small.

[NP3390/19/pdf] E01AEF.5



E01AEF E01 – Interpolation

9 Example

To construct an interpolant q(x) to the following data:

m = 4, xmin = 2, xmax = 6,
x1 = 2, p1 = 0, y1 = 1,
x2 = 4, p2 = 1, y2 = 2, y

(1)
2 = −1,

x3 = 5, p3 = 0, y3 = 1,
x4 = 6, p4 = 2, y4 = 2, y

(1)
4 = 4, y

(2)
4 = −2.

The coefficients in the Chebyshev-series representation of q(x) are printed, and also the residuals
corresponding to each of the given function and derivative values.

This program is written in a generalised form which can read any number of data-sets.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E01AEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER MMAX, NMAX, IPMX, LWRK, LIWRK
PARAMETER (MMAX=4,NMAX=8,IPMX=2,LWRK=7*NMAX+5*IPMX+MMAX+7,

+ LIWRK=2*MMAX+2)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real XMAX, XMIN
INTEGER I, IFAIL, IP1, IPMAX, IRES, IY, J, M, N

* .. Local Arrays ..
real A(NMAX), WRK(LWRK), X(MMAX), Y(NMAX)
INTEGER IP(MMAX), IWRK(LIWRK)

* .. External Subroutines ..
EXTERNAL E01AEF

* .. Intrinsic Functions ..
INTRINSIC MAX

* .. Executable Statements ..
WRITE (NOUT,*) ’E01AEF Example Program Results’

* Skip heading in data file
READ (NIN,*)

20 READ (NIN,*,END=120) M, XMIN, XMAX
IF (M.GT.0 .AND. M.LE.MMAX) THEN

N = 0
IPMAX = 0
DO 40 I = 1, M

READ (NIN,*) IP(I), X(I), (Y(J),J=N+1,N+IP(I)+1)
IPMAX = MAX(IPMAX,IP(I))
N = N + IP(I) + 1

40 CONTINUE
IF (N.LE.NMAX .AND. IPMAX.LE.IPMX) THEN

IFAIL = 1
*

CALL E01AEF(M,XMIN,XMAX,X,Y,IP,N,-1,-1,A,WRK,LWRK,IWRK,
+ LIWRK,IFAIL)

*
WRITE (NOUT,*)
IF (IFAIL.EQ.0 .OR. IFAIL.GE.4) THEN
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WRITE (NOUT,99999)
+ ’Total number of interpolating conditions =’, N

WRITE (NOUT,*)
WRITE (NOUT,*) ’Interpolating polynomial’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ I Chebyshev Coefficient A(I+1)’
DO 60 I = 1, N

WRITE (NOUT,99998) I - 1, A(I)
60 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*) ’ X R Rth derivative Residual’
IY = 0
IRES = IPMAX + 1
DO 100 I = 1, M

IP1 = IP(I) + 1
DO 80 J = 1, IP1

IY = IY + 1
IRES = IRES + 1
IF (J-1.NE.0) THEN

WRITE (NOUT,99997) J - 1, Y(IY), WRK(IRES)
ELSE

WRITE (NOUT,99996) X(I), ’ 0’, Y(IY),
+ WRK(IRES)

END IF
80 CONTINUE
100 CONTINUE

ELSE
WRITE (NOUT,99995) ’E01AEF exits with IFAIL =’, IFAIL

END IF
END IF
GO TO 20

END IF
120 STOP

*
99999 FORMAT (1X,A,I4)
99998 FORMAT (1X,I4,F20.3)
99997 FORMAT (5X,I4,F12.1,F17.6)
99996 FORMAT (1X,F4.1,A,F12.1,F17.6)
99995 FORMAT (1X,A,I2,A)

END

9.2 Program Data

E01AEF Example Program Data
4 2.0 6.0
0 2.0 1.0
1 4.0 2.0 -1.0
0 5.0 1.0
2 6.0 2.0 4.0 -2.0
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9.3 Program Results

E01AEF Example Program Results

Total number of interpolating conditions = 7

Interpolating polynomial

I Chebyshev Coefficient A(I+1)
0 9.125
1 -4.578
2 0.461
3 2.852
4 -2.813
5 2.227
6 -0.711

X R Rth derivative Residual
2.0 0 1.0 0.000000
4.0 0 2.0 0.000000

1 -1.0 0.000000
5.0 0 1.0 0.000000
6.0 0 2.0 0.000000

1 4.0 0.000000
2 -2.0 0.000000
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