
E02 – Curve and Surface Fitting

E02DAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E02DAF forms a minimal, weighted least-squares bicubic spline surface fit with prescribed knots to a
given set of data points.

2 Specification

SUBROUTINE E02DAF(M, PX, PY, X, Y, F, W, LAMDA, MU, POINT, NPOINT,
1 DL, C, NC, WS, NWS, EPS, SIGMA, RANK, IFAIL)
INTEGER M, PX, PY, POINT(NPOINT), NPOINT, NC, NWS, RANK,
1 IFAIL
real X(M), Y(M), F(M), W(M), LAMDA(PX), MU(PY),
1 DL(NC), C(NC), WS(NWS), EPS, SIGMA

3 Description

This routine determines a bicubic spline fit s(x, y) to the set of data points (xr , yr, fr) with weights wr , for
r = 1, 2, . . . , m. The two sets of internal knots of the spline, {λ} and {µ}, associated with the variables x
and y respectively, are prescribed by the user. These knots can be thought of as dividing the data region
of the (x, y) plane into panels (see diagram in Section 5). A bicubic spline consists of a separate bicubic
polynomial in each panel, the polynomials joining together with continuity up to the second derivative
across the panel boundaries.

s(x, y) has the property that Σ, the sum of squares of its weighted residuals ρr, for r = 1, 2, . . . , m, where

ρr = wr(s(xr , yr) − fr) (1)

is as small as possible for a bicubic spline with the given knot sets. The routine produces this minimized
value of Σ and the coefficients cij in the B-spline representation of s(x, y) - see Section 8. E02DEF and
E02DFF are available to compute values of the fitted spline from the coefficients cij .

The least-squares criterion is not always sufficient to determine the bicubic spline uniquely: there may
be a whole family of splines which have the same minimum sum of squares. In these cases, the routine
selects from this family the spline for which the sum of squares of the coefficients cij is smallest: in other
words, the minimal least-squares solution. This choice, although arbitrary, reduces the risk of unwanted
fluctuations in the spline fit. The method employed involves forming a system of m linear equations in
the coefficients cij and then computing its least-squares solution, which will be the minimal least-squares
solution when appropriate. The basis of the method is described in Hayes and Halliday [4]. The matrix
of the equation is formed using a recurrence relation for B-splines which is numerically stable (see Cox
[1] and de Boor [2] – the former contains the more elementary derivation but, unlike [2], does not cover
the case of coincident knots). The least-squares solution is also obtained in a stable manner by using
orthogonal transformations, viz. a variant of Givens rotation (see Gentlemen [3]). This requires only one
row of the matrix to be stored at a time. Advantage is taken of the stepped-band structure which the
matrix possesses when the data points are suitably ordered, there being at most sixteen non-zero elements
in any row because of the definition of B-splines. First the matrix is reduced to upper triangular form
and then the diagonal elements of this triangle are examined in turn. When an element is encountered
whose square, divided by the mean squared weight, is less than a threshold ε, it is replaced by zero and
the rest of the elements in its row are reduced to zero by rotations with the remaining rows. The rank of
the system is taken to be the number of non-zero diagonal elements in the final triangle, and the non-zero
rows of this triangle are used to compute the minimal least-squares solution. If all the diagonal elements
are non-zero, the rank is equal to the number of coefficients cij and the solution obtained is the ordinary
least-squares solution, which is unique in this case.
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5 Parameters

1: M — INTEGER Input

On entry: the number of data points, m.

Constraint: M > 1.

2: PX — INTEGER Input
3: PY — INTEGER Input

On entry: the total number of knots λ and µ associated with the variables x and y, respectively.

Constraint: PX ≥ 8 and PY ≥ 8.

(They are such that PX − 8 and PY − 8 are the corresponding numbers of interior knots.) The
running time and storage required by the routine are both minimized if the axes are labelled so that
PY is the smaller of PX and PY.

4: X(M) — real array Input
5: Y(M) — real array Input
6: F(M) — real array Input

On entry: the co-ordinates of the data point (xr , yr, fr), for r = 1, 2, . . . , m. The order of the data
points is immaterial, but see the array POINT, below.

7: W(M) — real array Input

On entry: the weight wr of the rth data point. It is important to note the definition of weight implied
by the equation (1) in Section 3, since it is also common usage to define weight as the square of this
weight. In this routine, each wr should be chosen inversely proportional to the (absolute) accuracy
of the corresponding fr, as expressed, for example, by the standard deviation or probable error of
the fr. When the fr are all of the same accuracy, all the wr may be set equal to 1.0.

8: LAMDA(PX) — real array Input/Output

On entry: LAMDA(i + 4) must contain the ith interior knot λi+4 associated with the variable x,
for i = 1, 2, . . . , PX − 8. The knots must be in non-decreasing order and lie strictly within the
range covered by the data values of x. A knot is a value of x at which the spline is allowed to
be discontinuous in the third derivative with respect to x, though continuous up to the second
derivative. This degree of continuity can be reduced, if the user requires, by the use of coincident
knots, provided that no more than four knots are chosen to coincide at any point. Two, or three,
coincident knots allow loss of continuity in, respectively, the second and first derivative with respect
to x at the value of x at which they coincide. Four coincident knots split the spline surface into two
independent parts. For choice of knots see Section 8.

On exit: the interior knots LAMDA(5) to LAMDA(PX−4) are unchanged, and the segments
LAMDA(1:4) and LAMDA(PX−3:PX) contain additional (exterior) knots introduced by the routine
in order to define the full set of B-splines required. The four knots in the first segment are all set
equal to the lowest data value of x and the other four additional knots are all set equal to the highest
value: there is experimental evidence that coincident end-knots are best for numerical accuracy. The
complete array must be left undisturbed if E02DEF or E02DFF is to be used subsequently.
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9: MU(PY) — real array Input

On entry: MU(i + 4) must contain the ith interior knot µi+4 associated with the variable y,
i = 1, 2, . . . , PY − 8.

On exit: the same remarks apply to MU as to LAMDA above, with Y replacing X, and y replacing
x.

10: POINT(NPOINT) — INTEGER array Input

On entry: indexing information usually provided by E02ZAF which enables the data points to be
accessed in the order which produces the advantageous matrix structure mentioned in Section 3.
This order is such that, if the (x, y) plane is thought of as being divided into rectangular panels by
the two sets of knots, all data in a panel occur before data in succeeding panels, where the panels
are numbered from bottom to top and then left to right with the usual arrangement of axes, as
indicated in the diagram.

LAMDA(4) LAMDA(5) LAMDA(6) LAMDA(7)

panel 4 8 12

panel 3 7 11

panel 2 6 10

panel 1 5 9

MU(8)

MU(7)

MU(6)

MU(5)

MU(4)

Y

X

Figure 1

A data point lying exactly on one or more panel sides is considered to be in the highest numbered
panel adjacent to the point. E02ZAF should be called to obtain the array POINT, unless it is
provided by other means.

11: NPOINT — INTEGER Input

On entry: the dimension of the array POINT as declared in the (sub)program from which E02DAF
is called.

Constraint: NPOINT ≥ M + ( PX − 7) × ( PY − 7).

12: DL(NC) — real array Output

On exit: DL gives the squares of the diagonal elements of the reduced triangular matrix, divided
by the mean squared weight. It includes those elements, less than ε, which are treated as zero (see
Section 3).

13: C(NC) — real array Output

On exit: C gives the coefficients of the fit. C((PY − 4) × (i − 1) + j) is the coefficient cij of Section
3 and Section 8 for i = 1, 2, . . . , PX − 4 and j = 1, 2, . . . , PY − 4. These coefficients are used by
E02DEF or E02DFF to calculate values of the fitted function.
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14: NC — INTEGER Input

On entry: the value ( PX − 4) × ( PY − 4).

15: WS(NWS) — real array Workspace
16: NWS — INTEGER Input

On entry: the dimension of the array WS as declared in the (sub)program from which E02DAF is
called.

Constraint: NWS ≥ (2 × NC + 1) × (3 × PY − 6) − 2.

17: EPS — real Input

On entry: a threshold ε for determining the effective rank of the system of linear equations. The
rank is determined as the number of elements of the array DL (see below) which are non-zero. An
element of DL is regarded as zero if it is less than ε. Machine precision is a suitable value for ε
in most practical applications which have only 2 or 3 decimals accurate in data. If some coefficients
of the fit prove to be very large compared with the data ordinates, this suggests that ε should be
increased so as to decrease the rank. The array DL will give a guide to appropriate values of ε to
achieve this, as well as to the choice of ε in other cases where some experimentation may be needed
to determine a value which leads to a satisfactory fit.

18: SIGMA — real Output

On exit: Σ, the weighted sum of squares of residuals. This is not computed from the individual
residuals but from the right-hand sides of the orthogonally-transformed linear equations. For further
details see Hayes and Halliday [4] page 97. The two methods of computation are theoretically
equivalent, but the results may differ because of rounding error.

19: RANK — INTEGER Output

On exit: the rank of the system as determined by the value of the threshold ε. When RANK = NC,
the least-squares solution is unique: in other cases the minimal least-squares solution is computed.

20: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one set of knots is not in non-decreasing order, or an interior knot is outside the range of
the data values.

IFAIL = 2

More than four knots coincide at a single point, possibly because all data points have the same
value of x (or y) or because an interior knot coincides with an extreme data value.

IFAIL = 3

Array POINT does not indicate the data points in panel order. Call E02ZAF to obtain a correct
array.

IFAIL = 4

On entry, M ≤ 1,

or PX < 8,

or PY < 8,
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or NC �= (PX − 4) × (PY − 4),

or NWS is too small,

or NPOINT is too small.

IFAIL = 5

All the weights wr are zero or rank determined as zero.

7 Accuracy

The computation of the B-splines and reduction of the observation matrix to triangular form are both
numerically stable.

8 Further Comments

The time taken by this routine is approximately proportional to the number of data points, m, and to
(3 × (PY − 4) + 4)2.

The B-spline representation of the bicubic spline is

s(x, y) =
∑

i,j

cijMi(x)Nj(y)

summed over i = 1, 2, . . . , PX − 4 and over j = 1, 2, . . . , PY − 4. Here Mi(x) and Nj(y) denote
normalised cubic B-splines, the former defined on the knots λi, λi+1, . . . , λi+4 and the latter on the
knots µj , µj+1, . . . , µj+4. For further details, see Hayes and Halliday [4] for bicubic splines and de Boor
[2] for normalised B-splines.

The choice of the interior knots, which help to determine the spline’s shape, must largely be a matter of
trial and error. It is usually best to start with a small number of knots and, examining the fit at each
stage, add a few knots at a time at places where the fit is particularly poor. In intervals of x or y where
the surface represented by the data changes rapidly, in function value or derivatives, more knots will be
needed than elsewhere. In some cases guidance can be obtained by analogy with the case of coincident
knots: for example, just as three coincident knots can produce a discontinuity in slope, three close knots
can produce rapid change in slope. Of course, such rapid changes in behaviour must be adequately
represented by the data points, as indeed must the behaviour of the surface generally, if a satisfactory fit
is to be achieved. When there is no rapid change in behaviour, equally-spaced knots will often suffice.

In all cases the fit should be examined graphically before it is accepted as satisfactory.

The fit obtained is not defined outside the rectangle

λ4 ≤ x ≤ λPX−3, µ4 ≤ y ≤ µPY−3.

The reason for taking the extreme data values of x and y for these four knots is that, as is usual in data
fitting, the fit cannot be expected to give satisfactory values outside the data region. If, nevertheless,
the user requires values over a larger rectangle, this can be achieved by augmenting the data with two
artificial data points (a, c, 0) and (b, d, 0) with zero weight, where a ≤ x ≤ b, c ≤ y ≤ d defines the
enlarged rectangle. In the case when the data are adequate to make the least-squares solution unique
(RANK = NC), this enlargement will not affect the fit over the original rectangle, except for possibly
enlarged rounding errors, and will simply continue the bicubic polynomials in the panels bordering the
rectangle out to the new boundaries: in other cases the fit will be affected. Even using the original
rectangle there may be regions within it, particularly at its corners, which lie outside the data region and
where, therefore, the fit will be unreliable. For example, if there is no data point in panel 1 of the diagram
in Section 5, the least-squares criterion leaves the spline indeterminate in this panel: the minimal spline
determined by the subroutine in this case passes through the value zero at the point (λ4, µ4).

9 Example

This example program reads a value for ε, and a set of data points, weights and knot positions. If there
are more y knots than x knots, it interchanges the x and y axes. It calls E02ZAF to sort the data points
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into panel order, E02DAF to fit a bicubic spline to them, and E02DEF to evaluate the spline at the data
points.

Finally it prints:

the weighted sum of squares of residuals computed from the linear equations;

the rank determined by E02DAF;

data points, fitted values and residuals in panel order;

the weighted sum of squares of the residuals;

the coefficients of the spline fit.

The program is written to handle any number of data sets.

Note. The data supplied in this example is not typical of a realistic problem: the number of data points
would normally be much larger (in which case the array dimensions and the value of NWS in the program
would have to be increased); and the value of ε would normally be much smaller on most machines (see
Section 5; the relatively large value of 10−6 has been chosen in order to illustrate a minimal least-squares
solution when RANK < NC; in this example NC = 24).

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E02DAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER MMAX, MAXPX, MAXPY, NCMAX, IP, NIWS, NWS, NADRES,
+ NPTMAX
PARAMETER (MMAX=40,MAXPX=10,MAXPY=10,NCMAX=(MAXPX-4)

+ *(MAXPY-4),IP=3*(MAXPY-4)+4,NIWS=MAXPY-4,
+ NWS=2*NCMAX*(IP+2)+IP,NADRES=(MAXPX-7)*(MAXPY-7),
+ NPTMAX=MMAX+NADRES)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real EPS, SIGMA, SUM, TEMP
INTEGER I, IADRES, IFAIL, ITEMP, J, M, NC, NP, PX, PY,

+ RANK
* .. Local Arrays ..

real C(NCMAX), DL(NCMAX), F(MMAX), FF(MMAX),
+ LAMDA(MAXPX), MU(MAXPY), W(MMAX), WS(NWS),
+ X(MMAX), Y(MMAX)
INTEGER ADRES(NADRES), IWS(NIWS), POINT(NPTMAX)
CHARACTER*1 LABEL(2)

* .. External Subroutines ..
EXTERNAL E02DAF, E02DEF, E02ZAF

* .. Data statements ..
DATA LABEL/’X’, ’Y’/

* .. Executable Statements ..
WRITE (NOUT,*) ’E02DAF Example Program Results’

* Skip heading in data file
READ (NIN,*)

20 READ (NIN,*,END=140) EPS
* Read data, interchanging X and Y axes if PX.LT.PY

READ (NIN,*) M
IF (M.LE.MMAX .AND. M.GT.0) THEN

READ (NIN,*) PX, PY
IF (PX.GE.8 .AND. PX.LE.MAXPX .AND. PY.GE.8 .AND. PY.LE.MAXPY)
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+ THEN
IF (PX.LT.PY) THEN

ITEMP = PX
PX = PY
PY = ITEMP
ITEMP = 1
READ (NIN,*) (Y(I),X(I),F(I),W(I),I=1,M)
IF (PY.GT.8) READ (NIN,*) (MU(J),J=5,PY-4)
IF (PX.GT.8) READ (NIN,*) (LAMDA(J),J=5,PX-4)

ELSE
ITEMP = 0
READ (NIN,*) (X(I),Y(I),F(I),W(I),I=1,M)
IF (PX.GT.8) READ (NIN,*) (LAMDA(J),J=5,PX-4)
IF (PY.GT.8) READ (NIN,*) (MU(J),J=5,PY-4)

END IF
NC = (PX-4)*(PY-4)
NP = (PX-7)*(PY-7)
WRITE (NOUT,*)
WRITE (NOUT,99995) ’Interior ’, LABEL(ITEMP+1), ’-knots’
DO 40 J = 5, PX - 4

WRITE (NOUT,99996) LAMDA(J)
40 CONTINUE

IF (PX.EQ.8) WRITE (NOUT,*) ’None’
WRITE (NOUT,*)
WRITE (NOUT,99995) ’Interior ’, LABEL(2-ITEMP), ’-knots’
DO 60 J = 5, PY - 4

WRITE (NOUT,99996) MU(J)
60 CONTINUE

IF (PY.EQ.8) WRITE (NOUT,*) ’None’
* Sort points into panel order

IFAIL = 0
*

CALL E02ZAF(PX,PY,LAMDA,MU,M,X,Y,POINT,NPTMAX,ADRES,NP,
+ IFAIL)

*
* Fit bicubic spline to data points

IFAIL = 0
*

CALL E02DAF(M,PX,PY,X,Y,F,W,LAMDA,MU,POINT,NPTMAX,DL,C,NC,
+ WS,NWS,EPS,SIGMA,RANK,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Sum of squares of residual RHS’, SIGMA
WRITE (NOUT,*)
WRITE (NOUT,99998) ’Rank’, RANK

* Evaluate spline at the data points
IFAIL = 0

*
CALL E02DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WS,IWS,IFAIL)

*
SUM = 0
IF (ITEMP.EQ.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’X and Y have been interchanged’

END IF
* Output data points, fitted values and residuals

WRITE (NOUT,*)
WRITE (NOUT,*)
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+ ’ X Y Data Fit Residual’
DO 100 I = 1, NP

IADRES = I + M
80 IADRES = POINT(IADRES)

IF (IADRES.LE.0) GO TO 100
TEMP = FF(IADRES) - F(IADRES)
WRITE (NOUT,99997) X(IADRES), Y(IADRES), F(IADRES),

+ FF(IADRES), TEMP
SUM = SUM + (TEMP*W(IADRES))**2
GO TO 80

100 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Sum of squared residuals’, SUM
WRITE (NOUT,*)
WRITE (NOUT,*) ’Spline coefficients’
DO 120 I = 1, PX - 4

WRITE (NOUT,99996) (C((I-1)*(PY-4)+J),J=1,PY-4)
120 CONTINUE

GO TO 20
END IF

END IF
140 STOP

*
99999 FORMAT (1X,A,1P,e16.2)
99998 FORMAT (1X,A,I5)
99997 FORMAT (1X,4F11.4,e11.2)
99996 FORMAT (1X,6F11.4)
99995 FORMAT (1X,A,A1,A)

END

9.2 Program Data

E02DAF Example Program Data
0.000001
30
8
10
-0.52 0.60 0.93 10.
-0.61 -0.95 -1.79 10.
0.93 0.87 0.36 10.
0.09 0.84 0.52 10.
0.88 0.17 0.49 10.

-0.70 -0.87 -1.76 10.
1.00 1.00 0.33 1.
1.00 0.10 0.48 1.
0.30 0.24 0.65 1.

-0.77 -0.77 -1.82 1.
-0.23 0.32 0.92 1.
-1.00 1.00 1.00 1.
-0.26 -0.63 8.88 1.
-0.83 -0.66 -2.01 1.
0.22 0.93 0.47 1.
0.89 0.15 0.49 1.

-0.80 0.99 0.84 1.
-0.88 -0.54 -2.42 1.
0.68 0.44 0.47 1.

-0.14 -0.72 7.15 1.
0.67 0.63 0.44 1.
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-0.90 -0.40 -3.34 1.
-0.84 0.20 2.78 1.
0.84 0.43 0.44 1.
0.15 0.28 0.70 1.

-0.91 -0.24 -6.52 1.
-0.35 0.86 0.66 1.
-0.16 -0.41 2.32 1.
-0.35 -0.05 1.66 1.
-1.00 -1.00 -1.00 1.
-0.5
0.0

9.3 Program Results

E02DAF Example Program Results

Interior Y-knots
-0.5000
0.0000

Interior X-knots
None

Sum of squares of residual RHS 1.47E+01

Rank 22

X and Y have been interchanged

X Y Data Fit Residual
-0.9500 -0.6100 -1.7900 -1.7931 -0.31E-02
-0.8700 -0.7000 -1.7600 -1.7521 0.79E-02
-0.7700 -0.7700 -1.8200 -2.4301 -0.61E+00
-0.6300 -0.2600 8.8800 7.6346 -0.12E+01
-0.6600 -0.8300 -2.0100 -1.5815 0.43E+00
-0.5400 -0.8800 -2.4200 -2.6795 -0.26E+00
-0.7200 -0.1400 7.1500 7.5708 0.42E+00
-1.0000 -1.0000 -1.0000 -1.0228 -0.23E-01
-0.4000 -0.9000 -3.3400 -4.6955 -0.14E+01
-0.2400 -0.9100 -6.5200 -4.7072 0.18E+01
-0.4100 -0.1600 2.3200 2.7039 0.38E+00
-0.0500 -0.3500 1.6600 2.2865 0.63E+00
0.6000 -0.5200 0.9300 0.9441 0.14E-01
0.8700 0.9300 0.3600 0.3529 -0.71E-02
0.8400 0.0900 0.5200 0.5024 -0.18E-01
0.1700 0.8800 0.4900 0.4705 -0.20E-01
1.0000 1.0000 0.3300 0.6315 0.30E+00
0.1000 1.0000 0.4800 1.4910 0.10E+01
0.2400 0.3000 0.6500 0.9241 0.27E+00
0.3200 -0.2300 0.9200 -0.3692 -0.13E+01
1.0000 -1.0000 1.0000 1.0835 0.84E-01
0.9300 0.2200 0.4700 1.4912 0.10E+01
0.1500 0.8900 0.4900 0.4414 -0.49E-01
0.9900 -0.8000 0.8400 0.5495 -0.29E+00
0.4400 0.6800 0.4700 1.5862 0.11E+01
0.6300 0.6700 0.4400 0.6288 0.19E+00
0.2000 -0.8400 2.7800 1.7123 -0.11E+01
0.4300 0.8400 0.4400 0.6888 0.25E+00
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0.2800 0.1500 0.7000 0.7713 0.71E-01
0.8600 -0.3500 0.6600 0.9347 0.27E+00

Sum of squared residuals 1.47E+01

Spline coefficients
-1.0228 115.4668 -433.5558 -68.1973
24.8426 -140.1485 258.5042 15.6756
-29.4878 132.2933 -173.5103 20.0983
9.9575 -51.6200 67.6666 -5.8765

10.0577 4.7543 -15.3533 -0.3260
1.0835 -2.7932 7.7708 0.6315
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