F07HRF (CPBTRF/ZPBTRF) - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F07HRF (CPBTRF/ZPBTRF) computes the Cholesky factorization of a complex Hermitian positive-definite band matrix.

2 Specification

```
SUBROUTINE FO7HRF (UPLO, N, KD, AB, LDAB, INFO) ENTRY cpbtrf (UPLO, N, KD, AB, LDAB, INFO) INTEGER N, KD, LDAB, INFO complex AB(LDAB,*) CHARACTER*1 UPLO
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine forms the Cholesky factorization of a complex Hermitian positive-definite band matrix A either as $A = U^H U$ if UPLO = 'U', or $A = LL^H$ if UPLO = 'L', where U (or L) is an upper (or lower) triangular band matrix with the same number of super-diagonals (or sub-diagonals) as A.

4 References

- [1] Demmel J W (1989) On floating-point errors in Cholesky *LAPACK Working Note No. 14* University of Tennessee, Knoxville
- [2] Golub G H and van Loan C F (1996) Matrix Computations Johns Hopkins University Press (3rd Edition), Baltimore

5 Parameters

1: UPLO — CHARACTER*1

Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is factorized, as follows:

if UPLO = 'U', then the upper triangular part of A is stored and A is factorized as U^HU , where U is upper triangular;

if UPLO = 'L', then the lower triangular part of A is stored and A is factorized as LL^H , where L is lower triangular.

Constraint: UPLO = 'U' or 'L'.

2: N — INTEGER

Input

On entry: n, the order of the matrix A.

Constraint: $N \geq 0$.

3: KD — INTEGER

Input

On entry: k, the number of super-diagonals or sub-diagonals of the matrix A.

Constraint: $KD \ge 0$.

4: AB(LDAB,*) - complex array

Input/Output

Note: the second dimension of the array AB must be at least max(1,N).

On entry: the n by n Hermitian positive-definite band matrix A, stored in rows 1 to k+1. More precisely, if UPLO = 'U', the elements of the upper triangle of A within the band must be stored with element $a_{i,j}$ in AB(k+1+i-j,j) for $\max(1,j-k) \leq i \leq j$; if UPLO = 'L', the elements of the lower triangle of A within the band must be stored with element $a_{i,j}$ in AB(1+i-j,j) for $j \leq i \leq \min(n,j+k)$.

On exit: the upper or lower triangle of A is overwritten by the Cholesky factor U or L as specified by UPLO, using the same storage format as described above.

5: LDAB — INTEGER

Input

On entry: the first dimension of the array AB as declared in the (sub)program from which F07HRF (CPBTRF/ZPBTRF) is called.

Constraint: LDAB \geq KD + 1.

6: INFO — INTEGER

Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

INFO > 0

If INFO = i, the leading minor of order i is not positive-definite and the factorization could not be completed. Hence A itself is not positive-definite. This may indicate an error in forming the matrix A. There is no routine specifically designed to factorize a Hermitian band matrix which is not positive-definite; the matrix must be treated either as an nonsymmetric band matrix, by calling F07BRF (CGBTRF/ZGBTRF) or as a full Hermitian matrix, by calling F07MRF (CHETRF/ZHETRF).

7 Accuracy

If UPLO = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

$$|E| < c(k+1)\epsilon |U^H||U|,$$

c(k+1) is a modest linear function of k+1, and ϵ is the **machine precision**. If UPLO = 'L', a similar statement holds for the computed factor L. It follows that $|e_{ij}| \leq c(k+1)\epsilon \sqrt{a_{ij}a_{ij}}$.

8 Further Comments

The total number of real floating-point operations is approximately $4n(k+1)^2$, assuming $n \gg k$.

A call to this routine may be followed by calls to the routines:

F07HSF (CPBTRS/ZPBTRS) to solve AX = B;

F07HUF (CPBCON/ZPBCON) to estimate the condition number of A.

The real analogue of this routine is F07HDF (SPBTRF/DPBTRF).

9 Example

To compute the Cholesky factorization of the matrix A, where

```
A = \begin{pmatrix} 9.39 + 0.00i & 1.08 - 1.73i & 0.00 + 0.00i & 0.00 + 0.00i \\ 1.08 + 1.73i & 1.69 + 0.00i & -0.04 + 0.29i & 0.00 + 0.00i \\ 0.00 + 0.00i & -0.04 - 0.29i & 2.65 + 0.00i & -0.33 + 2.24i \\ 0.00 + 0.00i & 0.00 + 0.00i & -0.33 - 2.24i & 2.17 + 0.00i \end{pmatrix}
```

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
FO7HRF Example Program Text
  Mark 15 Release. NAG Copyright 1991.
   .. Parameters ..
   INTEGER
                    NIN, NOUT
  PARAMETER
                    (NIN=5, NOUT=6)
  INTEGER
                  NMAX, KMAX, LDAB
  PARAMETER
                  (NMAX=8,KMAX=8,LDAB=KMAX+1)
   .. Local Scalars ..
  INTEGER
                   I, IFAIL, INFO, J, KD, N
  CHARACTER
                  UPLO
   .. Local Arrays ..
  complex AB(LDAB,NMAX)
  CHARACTER
                   CLABS(1), RLABS(1)
   .. External Subroutines ..
  EXTERNAL cpbtrf, XO4DFF
   .. Intrinsic Functions ..
  INTRINSIC MAX, MIN
   .. Executable Statements ..
  WRITE (NOUT,*) 'FO7HRF Example Program Results'
  Skip heading in data file
  READ (NIN,*)
  READ (NIN,*) N, KD
  IF (N.LE.NMAX .AND. KD.LE.KMAX) THEN
     Read A from data file
     READ (NIN,*) UPLO
      IF (UPLO.EQ.'U') THEN
         DO 20 I = 1, N
            READ (NIN,*) (AB(KD+1+I-J,J),J=I,MIN(N,I+KD))
20
         CONTINUE
     ELSE IF (UPLO.EQ.'L') THEN
         DO 40 I = 1, N
            READ (NIN,*) (AB(1+I-J,J),J=MAX(1,<math>I-KD),I)
40
         CONTINUE
     END IF
     Factorize A
     CALL cpbtrf(	ext{UPLO}, 	ext{N}, 	ext{KD}, 	ext{AB}, 	ext{LDAB}, 	ext{INFO})
      WRITE (NOUT,*)
      IF (INFO.EQ.O) THEN
```

9.2 Program Data

```
FO7HRF Example Program Data

4 1 :Values of N and KD
'L' :Value of UPLO

( 9.39, 0.00)
( 1.08, 1.73) ( 1.69, 0.00)
( -0.04,-0.29) ( 2.65, 0.00)
( -0.33,-2.24) ( 2.17, 0.00) :End of matrix A
```

9.3 Program Results

FO7HRF Example Program Results

```
Factor

1 2 3 4

1 (3.0643, 0.0000)

2 (0.3524, 0.5646) (1.1167, 0.0000)

3 (-0.0358,-0.2597) (1.6066, 0.0000)

4 (-0.2054,-1.3942) (0.4289, 0.0000)
```