F08LEF (SGBBRD/DGBBRD) – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08LEF (SGBBRD/DGBBRD) reduces a real m by n band matrix to upper bidiagonal form.

2 Specification

```
SUBROUTINE FO8LEF(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,1PT, LDPT, C, LDC, WORK, INFO)ENTRYsgbbrd(VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ,1PT, LDPT, C, LDC, WORK, INFO)INTEGERM, N, NCC, KL, KU, LDAB, LDQ, LDPT, LDC, INFOrealAB(LDAB,*), D(*), E(*), Q(LDQ,*), PT(LDPT,*),1C(LDC,*), WORK(*)CHARACTER*1VECT
```

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine reduces a real m by n band matrix to upper bidiagonal form B by an orthogonal transformation: $A = QBP^{T}$. The orthogonal matrices Q and P^{T} , of order m and n respectively, are determined as a product of Givens rotation matrices, and may be formed explicitly by the routine if required. A matrix C may also be updated to give $\tilde{C} = Q^{T}C$.

The routine uses a vectorisable form of the reduction.

4 References

None.

5 Parameters

1:	VECT - CHARACTER*1	Input
	On entry: indicates whether the matrices Q and/or P^T are generated:	
	if VECT = 'N', then neither Q nor P^T is generated; if VECT = 'Q', then Q is generated; if VECT = 'P', then P^T is generated; if VECT = 'B', then both Q and P^T are generated.	
	Constraint: $VECT = 'N'$, 'Q', 'P' or 'B'.	
2:	M - INTEGER	Input
	On entry: m , the number of rows of the matrix A .	
	Constraint: $M \ge 0$.	
3:	N — INTEGER	Input
	On entry: n , the number of columns of the matrix A .	
	Constraint: $N \ge 0$.	

4:	NCC — INTEGER On entry: n_C , the number of columns of the matrix C .	Input
	Constraint: NCC ≥ 0 .	
5:	KL — INTEGER On entry: k_l , the number of sub-diagonals within the band of A. Constraint: KL ≥ 0 .	Input
6:	KU — INTEGER On entry: k_u , the number of super-diagonals within the band of A.	Input
	Constraint: $\mathrm{KU} \ge 0$.	
7:	AB(LDAB,*) - real array	Input/Output
	Note: the second dimension of the array AB must be at least max(1,N). On entry: the <i>m</i> by <i>n</i> band matrix <i>A</i> , stored in rows 1 to $k_l + k_u + 1$. More precised must be stored in AB $(k_u + 1 + i - j, j)$ for max $(1, j - k_u) \le i \le \min(m, j + k_l)$.	y, element \boldsymbol{a}_{ij}
	On exit: A is overwritten by values generated during the reduction.	
8:	LDAB — INTEGER On entry: the first dimension of the array AB as declared in the (sub)program from w (SGBBRD/DGBBRD) is called.	Input vhich F08LEF
	Constraint: $LDAB \ge KL + KU + 1.$	
9:	D(*) - real array Note: the dimension of the array D must be at least max(1,min(M,N)). <i>On exit:</i> the diagonal elements of the bidiagonal matrix B.	Output
10:	E(*) - real array Note: the dimension of the array E must be at least max(1,min(M,N)-1). <i>On exit:</i> the super-diagonal elements of the bidiagonal matrix B.	Output
11:	Q(LDQ,*) - real array Note: the second dimension of the array Q must be at least max(1,M). <i>On exit:</i> the <i>m</i> by <i>m</i> orthogonal matrix <i>Q</i> , if VECT = 'Q' or 'B'.	Output
	Q is not referenced if $VECT = 'N'$ or 'P'.	
12:		Input which F08LEF
	Constraints:	
	$LDQ \ge max(1,M)$ if $VECT = 'Q'$ or 'B'; $LDQ \ge 1$ otherwise.	
13:	PT(LDPT,*) — <i>real</i> array Note: the second dimension of the array PT must be at least max(1,N). <i>On exit:</i> the <i>n</i> by <i>n</i> orthogonal matrix P^T , if VECT = 'P' or 'B'. PT is not referenced if VECT = 'N' or 'Q'.	Output

14: LDPT — INTEGER

On entry: the first dimension of the array PT as declared in the (sub)program from which F08LEF (SGBBRD/DGBBRD) is called.

Constraints:

 $LDPT \ge max(1,N)$ if VECT = 'P' or 'B'; LDPT ≥ 1 otherwise.

15: C(LDC,*) - real array

Note: the second dimension of the array C must be at least $\max(1, \text{NCC})$.

On entry: an m by n_C matrix C.

On exit: C is overwritten by $Q^T C$.

C is not referenced if NCC = 0.

16: LDC — INTEGER

On entry: the first dimension of the array C as declared in the (sub)program from which F08LEF (SGBBRD/DGBBRD) is called.

Constraints:

 $LDC \ge max(1,M)$ if NCC > 0; $LDC \ge 1$ if NCC = 0.

17: WORK(*) — *real* array Workspace

Note: the dimension of the array WORK must be at least 2*max(M,N).

18: INFO — INTEGER

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed bidiagonal form B satisfies $QBP^T = A + E$, where

 $|| E ||_{2} \leq c(n)\epsilon || A ||_{2},$

c(n) is a modestly increasing function of n, and ϵ is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix F such that

 $\parallel F \parallel_2 = O(\epsilon).$

A similar statement holds for the computed matrix P^T .

Input

Input

Input/Output

Output

8 Further Comments

The total number of real floating-point operations is approximately the sum of:

 $6n^2k$, if VECT = 'N' and NCC = 0, and: $3n^2n_C(k-1)/k$, if C is updated, and: $3n^3(k-1)/k$, if either Q or P^T is generated (double this if both),

where $k = k_l + k_u$, assuming $n \gg k$. For this section we assume that m = n. The complex analogue of this routine is F08LSF (CGBBRD/ZGBBRD).

9 Example

To reduce the matrix A to upper bidiagonal form, where

	(-0.57)	-1.28	0.00	0.00	
	-1.93	1.08	-0.31	0.00	
4	2.30	0.24	0.40	-0.35	
A =	0.00	0.64	-0.66	0.08	
	0.00	0.00	0.15	-2.13	
	(-0.00)	0.00	0.00	0.50/	

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
FO8LEF Example Program Text.
*
*
     Mark 19 Release. NAG Copyright 1999.
*
      .. Parameters ..
     INTEGER
                       NIN, NOUT
     PARAMETER
                       (NIN=5,NOUT=6)
     INTEGER
                       MMAX, NMAX, NCCMAX, KLMAX, KUMAX, LDAB, LDQ,
                       LDPT, LDC
     +
     PARAMETER
                       (MMAX=8,NMAX=8,NCCMAX=8,KLMAX=8,KUMAX=8,
                       LDAB=KLMAX+KUMAX+1,LDQ=MMAX,LDPT=NMAX,LDC=MMAX)
     +
     CHARACTER
                       VECT
                       (VECT='N')
     PARAMETER
×
      .. Local Scalars ..
     INTEGER
                       I, INFO, J, KL, KU, M, N, NCC
      .. Local Arrays ..
                       AB(LDAB,NMAX), C(MMAX,NCCMAX), D(NMAX),
     real
                       E(NMAX-1), PT(LDPT,NMAX), Q(LDQ,MMAX),
     +
                       WORK(2*MMAX+2*NMAX)
     +
      .. External Subroutines ..
     EXTERNAL
                       sgbbrd
      .. Intrinsic Functions ..
     INTRINSIC
                       MAX, MIN
      .. Executable Statements ..
     WRITE (NOUT,*) 'FO8LEF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) M, N, KL, KU, NCC
     IF (M.LE.MMAX .AND. N.LE.NMAX .AND. KL.LE.KLMAX .AND. KU.LE.
         KUMAX .AND. NCC.LE.NCCMAX) THEN
        Read A from data file
*
*
```

```
READ (NIN,*) ((AB(KU+1+I-J,J),J=MAX(I-KL,1),MIN(I+KU,N)),I=1,M)
*
         Reduce A to upper bidiagonal form
*
*
         CALL sgbbrd(VECT,M,N,NCC,KL,KU,AB,LDAB,D,E,Q,LDQ,PT,LDPT,C,LDC,
     +
                     WORK, INFO)
*
*
         Print bidiagonal form
         WRITE (NOUT, *)
         WRITE (NOUT, *) 'Diagonal'
         WRITE (NOUT, 99999) (D(I), I=1, MIN(M,N))
         WRITE (NOUT, *) 'Super-diagonal'
         WRITE (NOUT,99999) (E(I),I=1,MIN(M,N)-1)
      END IF
      STOP
99999 FORMAT (1X,8F9.4)
      END
```

9.2 Program Data

```
F08LEF Example Program Data

6 4 2 1 0 :Values of M, N, KL, KU and NCC

-0.57 -1.28

-1.93 1.08 -0.31

2.30 0.24 0.40 -0.35

0.64 -0.66 0.08

0.15 -2.13

0.50 :End of matrix A
```

9.3 Program Results

FO8LEF Example Program Results

Diagonal 3.0561 1.5259 0.9690 -1.5685 Super-diagonal 0.6206 1.2353 -1.1240