F08NJF (SGEBAK/DGEBAK) – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08NJF (SGEBAK/DGEBAK) transforms eigenvectors of a balanced matrix to those of the original real nonsymmetric matrix.

2 Specification

SUBROUTINE FO8NJF(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)ENTRYsgebak(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)INTEGERN, ILO, IHI, M, LDV, INFOrealSCALE(*), V(LDV,*)CHARACTER*1JOB, SIDE

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine is intended to be used after a real nonsymmetric matrix A has been balanced by F08NHF (SGEBAL/DGEBAL), and eigenvectors of the balanced matrix $A_{22}^{\prime\prime}$ have subsequently been computed.

For a description of balancing, see the document for F08NHF. The balanced matrix A'' is obtained as $A'' = DPAP^TD^{-1}$, where P is a permutation matrix and D is a diagonal scaling matrix. This routine transforms left or right eigenvectors as follows:

- if x is a right eigenvector of A'', $P^T D^{-1} x$ is a right eigenvector of A;
- if y is a left eigenvector of A'', $P^T Dy$ is a left eigenvector of A.

4 References

None.

5 Parameters

1: JOB — CHARACTER*1

On entry: this **must** be the same parameter JOB as supplied to F08NHF (SGEBAL/DGEBAL). *Constraint:* JOB = 'N', 'P', 'S' or 'B'.

2: SIDE — CHARACTER*1

On entry: indicates whether left or right eigenvectors are to be transformed, as follows:

if SIDE = 'L', then left eigenvectors are transformed; if SIDE = 'R', then right eigenvectors are transformed.

Constraint: SIDE = 'L' or 'R'.

3: N — INTEGER

On entry: n, the number of rows of the matrix of eigenvectors.

Constraint: $N \ge 0$.

Input

Input

Input

4:	ILO — INTEGER	Input
5:	IHI — INTEGER	Input
	On entry: the values i_{lo} and i_{hi} , as returned by F08NHF (SGEBAL/DGEBAL).	
	Constraints:	
	$1 \leq \text{ILO} \leq \text{IHI} \leq \text{N if N} > 0,$	
	ILO = 1 and $IHI = 0$ if $N = 0$.	
6:	SCALE(*) - real array	Input
	Note: the dimension of the array SCALE must be at least $\max(1,N)$.	
	On entry: details of the permutations and/or the scaling factors used to balance the origin nonsymmetric matrix, as returned by F08NHF (SGEBAL/DGEBAL).	nal real
7:	M - INTEGER	Input
	On entry: m , the number of columns of the matrix of eigenvectors.	
	Constraint: $M \ge 0$.	
8:	V(LDV,*) - real array Input/	'Output
	Note: the second dimension of the array V must be at least $\max(1,M)$.	
	On entry: the matrix of left or right eigenvectors to be transformed.	
	On exit: the transformed eigenvectors.	
9:	LDV - INTEGER	Input
	On entry: the first dimension of the array V as declared in the (sub)program from which F	08NJF

(SGEBAK/DGEBAK) is called.

Constraint: LDV $\geq \max(1,N)$.

10: INFO — INTEGER

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If INFO = -i, the *i*th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The errors are negligible.

Further Comments 8

The total number of floating-point operations is approximately proportional to nm. The complex analogue of this routine is F08NWF (CGEBAK/ZGEBAK).

9 Example

See the example for Section 9 of the document for F08NHF.

Output

INFO < 0