
F11 – Sparse Linear Algebra

F11JNF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

F11JNF computes an incomplete Cholesky factorization of a complex sparse Hermitian matrix,
represented in symmetric coordinate storage format. This factorization may be used as a preconditioner
in combination with F11JQF.

2 Specification

SUBROUTINE F11JNF(N, NNZ, A, LA, IROW, ICOL, LFILL, DTOL, MIC,
1 DSCALE, PSTRAT, IPIV, ISTR, NNZC, NPIVM, IWORK,
2 LIWORK, IFAIL)
INTEGER N, NNZ, LA, IROW(LA), ICOL(LA), LFILL, IPIV(N),
1 ISTR(N+1), NNZC, NPIVM, IWORK(LIWORK), LIWORK,
2 IFAIL
complex A(LA)
real DTOL, DSCALE
CHARACTER∗1 MIC, PSTRAT

3 Description

This routine computes an incomplete Cholesky factorization [3] of a complex sparse Hermitian n by n
matrix A. It is designed specifically for positive-definite matrices, but may also work for some mildly
indefinite cases. The factorization is intended primarily for use as a preconditioner with the complex
Hermitian iterative solver F11JQF.

The decomposition is written in the form
A = M +R

where
M = PLDLHPT

and P is a permutation matrix, L is lower triangular complex with unit diagonal elements, D is real
diagonal and R is a remainder matrix.

The amount of fill-in occurring in the factorization can vary from zero to complete fill, and can be
controlled by specifying either the maximum level of fill LFILL, or the drop tolerance DTOL. The
factorization may be modified in order to preserve row sums, and the diagonal elements may be perturbed
to ensure that the preconditioner is positive-definite. Diagonal pivoting may optionally be employed,
either with a user-defined ordering, or using the Markowitz strategy [2], which aims to minimize fill-in.
For further details see Section 8.

The sparse matrix A is represented in symmetric coordinate storage (SCS) format (see Section 2.1.2 of
the Chapter Introduction). The array A stores all the non-zero elements of the lower triangular part of
A, while arrays IROW and ICOL store the corresponding row and column indices respectively. Multiple
non-zero elements may not be specified for the same row and column index.

The preconditioning matrix M is returned in terms of the SCS representation of the lower triangular
matrix

C = L+D−1 − I.
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5 Parameters

1: N — INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N ≥ 1.

2: NNZ — INTEGER Input

On entry: the number of non-zero elements in the lower triangular part of the matrix A.

Constraint: 1 ≤ NNZ ≤ N × (N+1)/2.

3: A(LA) — complex array Input/Output

On entry: the non-zero elements in the lower triangular part of the matrix A, ordered by increasing
row index, and by increasing column index within each row. Multiple entries for the same row and
column indices are not permitted. The routine F11ZPF may be used to order the elements in this
way.

On exit: the first NNZ elements of A contain the non-zero elements of A and the next NNZC
elements contain the elements of the lower triangular matrix C. Matrix elements are ordered by
increasing row index, and by increasing column index within each row.

4: LA — INTEGER Input

On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from
which F11JNF is called. These arrays must be of sufficient size to store both A (NNZ elements)
and C (NNZC elements).

Constraint: LA ≥ 2 × NNZ.

5: IROW(LA) — INTEGER array Input/Output
6: ICOL(LA) — INTEGER array Input/Output

On entry: the row and column indices of the non-zero elements supplied in A.

Constraints: IROW and ICOL must satisfy the following constraints (which may be imposed by a
call to F11ZPF):

1 ≤ IROW(i) ≤ N and 1 ≤ ICOL(i) ≤ IROW(i), for i = 1, 2, . . . ,NNZ.
IROW(i − 1) < IROW(i), or
IROW(i − 1) = IROW(i) and ICOL(i − 1) < ICOL(i), for i = 2, 3, . . . ,NNZ.

On exit: the row and column indices of the non-zero elements returned in A.

7: LFILL — INTEGER Input

On entry: if LFILL ≥ 0 its value is the maximum level of fill allowed in the decomposition (see
Section 8.2). A negative value of LFILL indicates that DTOL will be used to control the fill instead.
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8: DTOL — real Input

On entry: if LFILL < 0 then DTOL is used as a drop tolerance to control the fill-in (see Section
8.2). Otherwise DTOL is not referenced.

Constraint: DTOL ≥ 0.0 if LFILL < 0.

9: MIC — CHARACTER*1 Input

On entry: indicates whether or not the factorization should be modified to preserve row sums (see
Section 8.3):

if MIC = ’M’, the factorization is modified (MIC);
if MIC = ’N’, the factorization is not modified.

Constraint: MIC = ’M’ or ’N’.

10: DSCALE — real Input

On entry: the diagonal scaling parameter. All diagonal elements are multiplied by the factor
(1.0+DSCALE) at the start of the factorization. This can be used to ensure that the preconditioner
is positive-definite. See also Section 8.3.

11: PSTRAT — CHARACTER*1 Input

On entry: specifies the pivoting strategy to be adopted as follows:

if PSTRAT = ’N’, then no pivoting is carried out;
if PSTRAT = ’M’, then diagonal pivoting aimed at minimizing fill-in is carried out, using the
Markowitz strategy [2];
if PSTRAT = ’U’, then diagonal pivoting is carried out according to the user-defined input
array IPIV.

Suggested value: PSTRAT = ’M’.

Constraint: PSTRAT = ’N’, ’M’ or ’U’.

12: IPIV(N) — INTEGER array Input/Output

On entry: if PSTRAT = ’U’, then IPIV(i) must specify the row index of the diagonal element to
be used as a pivot at elimination stage i. Otherwise IPIV need not be initialized.

Constraint: if PSTRAT = ’U’, then IPIV must contain a valid permutation of the integers on [1,N].

On exit: the pivot indices. If IPIV(i) = j then the diagonal element in row j was used as the pivot
at elimination stage i.

13: ISTR(N+1) — INTEGER array Output

On exit: ISTR(i), for i = 1, 2, . . . ,N holds the starting address in the arrays A, IROW and ICOL of
row i of the matrix C. ISTR(N+1) holds the address of the last non-zero element in C plus one.

14: NNZC — INTEGER Output

On exit: the number of non-zero elements in the lower triangular matrix C.

15: NPIVM — INTEGER Output

On exit: the number of pivots which were modified during the factorization to ensure that M was
positive-definite. The quality of the preconditioner will generally depend on the returned value of
NPIVM. If NPIVM is large the preconditioner may not be satisfactory. In this case it may be
advantageous to call F11JNF again with an increased value of either LFILL or DSCALE. See also
Section 8.4.
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16: IWORK(LIWORK) — INTEGER array Workspace
17: LIWORK — INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which F11JNF
is called.

Constraints: the minimum permissible value of LIWORK depends on LFILL as follows:

LIWORK ≥ 2 × LA − 3 × NNZ + 7 × N + 1, if LFILL ≥ 0, and
LIWORK ≥ LA − NNZ + 7 × N + 1, otherwise.

18: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Errors and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, N < 1,

or NNZ < 1,

or NNZ > N × (N+1)/2,

or LA < 2 × NNZ,

or DTOL < 0.0,

or MIC �= ’M’ or ’N’,

or PSTRAT �= ’N’ ’M’ or ’U’,

or LIWORK is too small.

IFAIL = 2

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 ≤ IROW(i) ≤ N and 1 ≤ ICOL(i) ≤ IROW(i), for i = 1, 2, . . . ,NNZ.
IROW(i − 1) < IROW(i), or
IROW(i − 1) = IROW(i) and ICOL(i − 1) < ICOL(i), for i = 2, 3, . . . ,NNZ.

Therefore a non-zero element has been supplied which does not lie in the lower triangular part of
A, is out of order, or has duplicate row and column indices. Call F11ZPF to reorder and sum or
remove duplicates.

IFAIL = 3

On entry, PSTRAT = ’U’, but IPIV does not represent a valid permutation of the integers in [1,N].
An input value of IPIV is either out of range or repeated.

IFAIL = 4

LA is too small, resulting in insufficient storage space for fill-in elements. The decomposition has
been terminated before completion. Either increase LA or reduce the amount of fill by setting
PSTRAT = ’M’, reducing LFILL, or increasing DTOL.

IFAIL = 5

A serious error has occurred in an internal call to F11ZPF. Check all subroutine calls and array
sizes. Seek expert help.
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7 Accuracy

The accuracy of the factorization will be determined by the size of the elements that are dropped and
the size of any modifications made to the diagonal elements. If these sizes are small then the computed
factors will correspond to a matrix close to A. The factorization can generally be made more accurate
by increasing LFILL, or by reducing DTOL with LFILL < 0.

If F11JNF is used in combination with F11JQF, the more accurate the factorization the fewer iterations
will be required. However, the cost of the decomposition will also generally increase.

8 Further Comments
8.1 Timing

The time taken for a call to F11JNF is roughly proportional to NNZC2/N.

8.2 Control of Fill-in

If LFILL ≥ 0, the amount of fill-in occurring in the incomplete factorization is controlled by limiting the
maximum level of fill-in to LFILL. The original non-zero elements of A are defined to be of level 0. The
fill level of a new non-zero location occurring during the factorization is defined as:

k = max(ke, kc) + 1,

where ke is the level of fill of the element being eliminated, and kc is the level of fill of the element causing
the fill-in.

If LFILL < 0, the fill-in is controlled by means of the drop tolerance DTOL. A potential fill-in element
aij occurring in row i and column j will not be included if:

|aij | < DTOL×
√
|aiiajj |.

For either method of control, any elements which are not included are discarded if MIC = ’N’, or
subtracted from the diagonal element in the elimination row if MIC = ’M’.

8.3 Choice of Parameters

There is unfortunately no choice of the various algorithmic parameters which is optimal for all types of
complex Hermitian matrix, and some experimentation will generally be required for each new type of
matrix encountered.

If the matrix A is not known to have any particular special properties, the following strategy is
recommended. Start with LFILL = 0, MIC = ’N’ and DSCALE = 0.0. If the value returned for NPIVM
is significantly larger than zero, i.e., a large number of pivot modifications were required to ensure thatM
was positive-definite, the preconditioner is not likely to be satisfactory. In this case increase either LFILL
or DSCALE until NPIVM falls to a value close to zero. Once suitable values of LFILL and DSCALE
have been found try setting MIC = ’M’ to see if any improvement can be obtained by using modified
incomplete Cholesky.

F11JNF is primarily designed for positive-definite matrices, but may work for some mildly indefinite
problems. If NPIVM cannot be satisfactorily reduced by increasing LFILL or DSCALE then A is probably
too indefinite for this routine.

For certain classes of matrices (typically those arising from the discretisation of elliptic or parabolic
partial differential equations), the convergence rate of the preconditioned iterative solver can sometimes
be significantly improved by using an incomplete factorization which preserves the row-sums of the original
matrix. In these cases try setting MIC = ’M’.
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8.4 Direct Solution of Positive-Definite Systems

Although it is not their primary purpose F11JNF and F11JPF may be used together to obtain a direct
solution to a complex Hermitian positive-definite linear system. To achieve this the call to F11JPF should
be preceded by a complete Cholesky factorization

A = PLDLHPT = M.

A complete factorization is obtained from a call to F11JNF with LFILL < 0 and DTOL = 0.0, provided
NPIVM = 0 on exit. A non-zero value of NPIVM indicates that A is not positive-definite, or is ill-
conditioned. A factorization with non-zero NPIVM may serve as a preconditioner, but will not result
in a direct solution. It is therefore essential to check the output value of NPIVM if a direct solution is
required.

The use of F11JNF and F11JPF as a direct method is illustrated in Section 9 of the document for F11JPF.

9 Example

This example program reads in a complex sparse Hermitian matrix A and calls F11JNF to compute an
incomplete Cholesky factorization. It then outputs the non-zero elements of both A and C = L+D−1−I.

The call to F11JNF has LFILL = 0, MIC = ’N’, DSCALE = 0.0 and PSTRAT = ’M’, giving an unmodified
zero-fill factorization of an unperturbed matrix, with Markowitz diagonal pivoting.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* F11JNF Example Program Text.
* Mark 19 Release. NAG Copyright 1999.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LA, LIWORK
PARAMETER (NMAX=1000,LA=10000,LIWORK=2*LA+7*NMAX+1)

* .. Local Scalars ..
real DSCALE, DTOL
INTEGER I, IFAIL, LFILL, N, NNZ, NNZC, NPIVM
CHARACTER MIC, PSTRAT

* .. Local Arrays ..
complex A(LA)
INTEGER ICOL(LA), IPIV(NMAX), IROW(LA), ISTR(NMAX+1),

+ IWORK(LIWORK)
* .. External Subroutines ..

EXTERNAL F11JNF
* .. Executable Statements ..

WRITE (NOUT,*) ’F11JNF Example Program Results’
* Skip heading in data file

READ (NIN,*)
*
* Read algorithmic parameters
*

READ (NIN,*) N
IF (N.LE.NMAX) THEN

READ (NIN,*) NNZ
READ (NIN,*) LFILL, DTOL
READ (NIN,*) MIC, DSCALE
READ (NIN,*) PSTRAT

*
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* Read the matrix A
*

DO 20 I = 1, NNZ
READ (NIN,*) A(I), IROW(I), ICOL(I)

20 CONTINUE
*
* Calculate incomplete Cholesky factorization
*

IFAIL = 0
CALL F11JNF(N,NNZ,A,LA,IROW,ICOL,LFILL,DTOL,MIC,DSCALE,PSTRAT,

+ IPIV,ISTR,NNZC,NPIVM,IWORK,LIWORK,IFAIL)
*
* Output original matrix
*

WRITE (NOUT,*) ’ Original Matrix’
WRITE (NOUT,*) ’ N =’, N
WRITE (NOUT,*) ’ NNZ =’, NNZ
DO 40 I = 1, NNZ

WRITE (NOUT,99999) I, A(I), IROW(I), ICOL(I)
40 CONTINUE

WRITE (NOUT,*)
*
* Output details of the factorization
*

WRITE (NOUT,*) ’ Factorization’
WRITE (NOUT,*) ’ N =’, N
WRITE (NOUT,*) ’ NNZ =’, NNZC
WRITE (NOUT,*) ’ NPIVM =’, NPIVM
DO 60 I = NNZ + 1, NNZ + NNZC

WRITE (NOUT,99999) I, A(I), IROW(I), ICOL(I)
60 CONTINUE

WRITE (NOUT,*)
*

WRITE (NOUT,*) ’ I IPIV(I)’
DO 80 I = 1, N

WRITE (NOUT,99998) I, IPIV(I)
80 CONTINUE

*
END IF
STOP

*
99999 FORMAT (I8,5X,’(’,e16.4,’,’,e16.4,’)’,2I8)
99998 FORMAT (1X,2I8)

END

9.2 Program Data

F11JNF Example Program Data
7 N

16 NNZ
0 0.0 LFILL, DTOL
’N’ 0.0 MIC, DSCALE
’M’ PSTRAT
( 6., 0.) 1 1
( 1.,-2.) 2 1
( 9., 0.) 2 2
( 4., 0.) 3 3
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( 2., 2.) 4 2
( 5., 0.) 4 4
( 0.,-1.) 5 1
( 1., 0.) 5 4
( 4., 0.) 5 5
( 1., 3.) 6 2
( 0.,-2.) 6 5
( 3., 0.) 6 6
( 2., 1.) 7 1
(-1., 0.) 7 2
(-3.,-1.) 7 3
( 5., 0.) 7 7 A(I), IROW(I), ICOL(I), I=1,...,NNZ

9.3 Program Results

F11JNF Example Program Results
Original Matrix
N = 7
NNZ = 16

1 ( 0.6000E+01, 0.0000E+00) 1 1
2 ( 0.1000E+01, -0.2000E+01) 2 1
3 ( 0.9000E+01, 0.0000E+00) 2 2
4 ( 0.4000E+01, 0.0000E+00) 3 3
5 ( 0.2000E+01, 0.2000E+01) 4 2
6 ( 0.5000E+01, 0.0000E+00) 4 4
7 ( 0.0000E+00, -0.1000E+01) 5 1
8 ( 0.1000E+01, 0.0000E+00) 5 4
9 ( 0.4000E+01, 0.0000E+00) 5 5

10 ( 0.1000E+01, 0.3000E+01) 6 2
11 ( 0.0000E+00, -0.2000E+01) 6 5
12 ( 0.3000E+01, 0.0000E+00) 6 6
13 ( 0.2000E+01, 0.1000E+01) 7 1
14 ( -0.1000E+01, 0.0000E+00) 7 2
15 ( -0.3000E+01, -0.1000E+01) 7 3
16 ( 0.5000E+01, 0.0000E+00) 7 7

Factorization
N = 7
NNZ = 16
NPIVM = 0

17 ( 0.2500E+00, 0.0000E+00) 1 1
18 ( 0.2000E+00, 0.0000E+00) 2 2
19 ( 0.2000E+00, 0.0000E+00) 3 2
20 ( 0.2632E+00, 0.0000E+00) 3 3
21 ( 0.0000E+00, -0.5263E+00) 4 3
22 ( 0.5135E+00, 0.0000E+00) 4 4
23 ( 0.0000E+00, 0.2632E+00) 5 3
24 ( 0.1743E+00, 0.0000E+00) 5 5
25 ( -0.7500E+00, -0.2500E+00) 6 1
26 ( 0.3486E+00, 0.1743E+00) 6 5
27 ( 0.6141E+00, 0.0000E+00) 6 6
28 ( 0.4000E+00, -0.4000E+00) 7 2
29 ( 0.5135E+00, -0.1541E+01) 7 4
30 ( 0.1743E+00, -0.3486E+00) 7 5
31 ( -0.6141E+00, 0.5352E+00) 7 6
32 ( 0.3197E+01, 0.0000E+00) 7 7
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I IPIV(I)
1 3
2 4
3 5
4 6
5 1
6 7
7 2
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