G02BFF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02BFF computes means and standard deviations of variables, sums of squares and cross-products about zero and correlation-like coefficients for a set of data omitting cases with missing values from only those calculations involving the variables for which the values are missing.

2 Specification

```
SUBROUTINE G02BFF(N, M, X, IX, MISS, XMISS, XBAR, STD, SSPZ,1ISSPZ, RZ, IRZ, NCASES, COUNT, IC, IFAIL)INTEGERN, M, IX, MISS(M), ISSPZ, IRZ, NCASES, IC, IFAILrealX(IX,M), XMISS(M), XBAR(M), STD(M),1SSPZ(ISSPZ,M), RZ(IRZ,M), COUNT(IC,M)
```

3 Description

The input data consists of n observations for each of m variables, given as an array

$$[x_{ij}], \quad i = 1, 2, \dots, n \quad (n \ge 2)$$

 $j = 1, 2, \dots, m \quad (m \ge 2),$

where x_{ij} is the *i*th observation on the *j*th variable. In addition, each of the *m* variables may optionally have associated with it a value which is to be considered as representing a missing observation for that variable; the missing value for the *j*th variable is denoted by xm_j . Missing values need not be specified for all variables.

Let $w_{ij} = 0$ if the *i*th observation for the *j*th variable is a missing value, i.e., if a missing value, xm_j , has been declared for the *j*th variable, and $x_{ij} = xm_j$ (see also Section 7); and $w_{ij} = 1$ otherwise, for i = 1, 2, ..., n; j = 1, 2, ..., m.

The quantities calculated are:

(a) Means:

$$\bar{x}_j = \frac{\sum_{i=1}^n w_{ij} x_{ij}}{\sum_{i=1}^n w_{ij}}, \quad j = 1, 2, \dots, m$$

(b) Standard deviations:

$$s_j = \sqrt{\frac{\sum_{i=1}^n w_{ij} (x_{ij} - \bar{x}_j)^2}{\sum_{i=1}^n w_{ij} - 1}}, \quad j = 1, 2, \dots, m$$

(c) Sums of squares and cross-products about zero:

$$\tilde{S}_{jk} = \sum_{i=1}^{n} w_{ij} w_{ik} x_{ij} x_{ik}, \quad j,k = 1, 2, \dots, m$$

(d) Correlation-like coefficients:

$$\tilde{R}_{jk} = \frac{\tilde{S}_{jk}}{\sqrt{\tilde{S}_{jj(k)}j(k)\tilde{S}_{kk(j)}}}, \quad j,k = 1,2,\ldots,m$$

where
$$\tilde{S}_{jj(k)} = \sum_{i=1}^{n} w_{ij} w_{ik} x_{ij}^2$$
 and $\tilde{S}_{kk(j)} = \sum_{i=1}^{n} w_{ik} w_{ij} x_{ik}^2$

(i.e., the sums of squares about zero are based on the same set of observations as are used in the calculation of the numerator).

If $\tilde{S}_{jj(k)}$ or $\tilde{S}_{kk(j)}$ is zero, \tilde{R}_{jk} is set to zero.

[NP3390/19/pdf]

(e) The number of cases used in the calculation of each of the correlation-like coefficients:

$$c_{jk} = \sum_{i=1}^{n} w_{ij} w_{ik}, \quad j, k = 1, 2, \dots, m.$$

(The diagonal terms, c_{jj} , for j = 1, 2, ..., m, also give the number of cases used in the calculation of the means \bar{x}_j and the standard deviations s_j .)

4 References

None.

5 Parameters

1: N — INTEGER

On entry: the number n, of observations or cases.

Constraint: $N \ge 2$.

2: M — INTEGER

On entry: the number m, of variables.

Constraint: $M \ge 2$.

3: X(IX,M) - real array

On entry: X(i,j) must be set to x_{ij} , the value of *i*th observation on the *j*th variable, for i = 1, 2, ..., n; j = 1, 2, ..., m.

4: IX — INTEGER

 $On\ entry:$ the first dimension of the array X as declared in the (sub)program from which G02BFF is called.

Constraint: $IX \ge N$.

5: MISS(M) — INTEGER array

On entry: MISS(j) must be set equal to 1 if a missing value, xm_j is to be specified for the *j*th variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all *m* variables in the array X.

6: XMISS(M) - real array

On entry: XMISS(j) must be set to the missing value, xm_j , to be associated with the *j*th variable in the array X, for those variables for which missing values are specified by means of the array MISS (see Section 7).

7: XBAR(M) — real array Output

On exit: the mean value, \bar{x}_j , of the *j*th variable, for j = 1, 2, ..., m.

8: STD(M) - real array

On exit: the standard deviation, s_j , of the *j*th variable, for j = 1, 2, ..., m.

9: SSPZ(ISSPZ,M) - real array

On exit: SSPZ(j,k) is the cross-product about zero, \tilde{S}_{jk} , for j, k = 1, 2, ..., m.

10: ISSPZ — INTEGER

 $On\ entry:$ the first dimension of the array SSPZ as declared in the (sub)program from which G02BFF is called.

Constraint: ISSPZ \geq M.

Output

Input

Output

Input

Input

Input

Input

Input

Input

11: RZ(IRZ,M) - real array

On exit: $\operatorname{RZ}(j,k)$ is the correlation-like coefficient, \tilde{R}_{jk} , between the *j*th and *k*th variables, for $j, k = 1, 2, \ldots, m$.

12: IRZ — INTEGER

On entry: the first dimension of the array RZ as declared in the (sub)program from which G02BFF is called.

Constraint: $IRZ \ge M$.

13: NCASES — INTEGER

On exit: the minimum number of cases used in the calculation of any of the sums of squares and cross-products and correlation-like coefficients (when cases involving missing values have been eliminated).

14: COUNT(IC,M) — real array

On exit: COUNT(j,k) is the number of cases, c_{jk} , actually used in the calculation of \tilde{S}_{jk} and \tilde{R}_{jk} , the sum of cross-products and correlation-like coefficient for the *j*th and *k*th variables, for $j, k = 1, 2, \ldots, m$.

15: IC — INTEGER

On entry: IC must specify the first dimension of the array COUNT as declared in the (sub)program from which G02BFF is called.

Constraint: IC \geq M.

16: IFAIL — INTEGER

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL $\neq 0$ on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL = 1

```
On entry, N < 2.
```

```
IFAIL = 2
```

On entry, M < 2.

```
IFAIL = 3
```

IFAIL = 4

After observations with missing values were omitted, fewer than two cases remained for at least one pair of variables. (The pairs of variables involved can be determined by examination of the contents of the array COUNT). All means, standard deviations, sums of squares and cross-products, and correlation-like coefficients based on two or more cases are returned by the routine even if IFAIL = 4.

Output

Input

Output

Output

Input

Input/Output

7 Accuracy

The routine does not use *additional precision* arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large n.

Users are warned of the need to exercise extreme care in their selection of missing values, since the routine treats as missing values for variable j, all values in the inclusive range $(1 \pm ACC) \times xm_j$, where xm_j is the missing value for variable j specified by the user, and ACC is a machine-dependent constant (see the Users' Note for your implementation). The user must therefore ensure that the missing value chosen for each variable is sufficiently different from all values for that variable so that none of the valid values fall within the range indicated above.

8 Further Comments

The time taken by the routine depends on n and m, and the occurrence of missing values.

The routine uses a two-pass algorithm.

9 Example

The following program reads in a set of data consisting of five observations on each of three variables. Missing values of 0.0, -1.0 and 0.0 are declared for the first, second and third variables respectively. The means, standard deviations, sums of squares and cross-products about zero, and correlation-like coefficients for all three variables are then calculated and printed, omitting cases with missing values from only those calculations involving the variables for which the values are missing. The program therefore omits cases 4 and 5 in calculating the correlation between the first and second variables, and cases 3 and 4 for the first and third variables etc.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO2BFF Example Program Text
     Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
                       M, N, IA, ISSP, ICORR, IC
     INTEGER
     PARAMETER
                       (M=3,N=5,IA=N,ISSP=M,ICORR=M,IC=M)
     INTEGER
                      NIN, NOUT
                       (NIN=5,NOUT=6)
     PARAMETER
      .. Local Scalars ..
     INTEGER
                      I, IFAIL, J, NCASES
      .. Local Arrays ..
                       A(IA,M), AMEAN(M), CASES(IC,M), CORR(ICORR,M),
     real
    +
                       SSP(ISSP,M), STD(M), XMISS(M)
     INTEGER
                       MISS(M)
      .. External Subroutines ..
*
     EXTERNAL
                       G02BFF
      .. Executable Statements ..
     WRITE (NOUT,*) 'GO2BFF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) ((A(I,J),J=1,M),I=1,N)
     WRITE (NOUT,*)
     WRITE (NOUT,99999) 'Number of variables (columns) =', M
     WRITE (NOUT,99999) 'Number of cases
                                          (rows)
                                                      =', N
     WRITE (NOUT,*)
     WRITE (NOUT,*) 'Data matrix is:-'
```

```
WRITE (NOUT,*)
      WRITE (NOUT, 99998) (J, J=1, M)
      WRITE (NOUT, 99997) (I, (A(I,J), J=1,M), I=1,N)
      WRITE (NOUT, *)
*
      Set up missing values before calling routine
      MISS(1) = 1
      MISS(2) = 1
      MISS(3) = 1
      XMISS(1) = 0.0e0
      XMISS(2) = -1.0e0
      XMISS(3) = 0.0e0
      IFAIL = 1
*
      CALL G02BFF(N,M,A,IA,MISS,XMISS,AMEAN,STD,SSP,ISSP,CORR,ICORR,
     +
                  NCASES, CASES, IC, IFAIL)
*
      IF (IFAIL.NE.O) THEN
         WRITE (NOUT, 99999) 'Routine fails, IFAIL =', IFAIL
      ELSE
         WRITE (NOUT,*) 'Variable
                                    Mean
                                             St. dev.'
         WRITE (NOUT,99996) (I,AMEAN(I),STD(I),I=1,M)
         WRITE (NOUT,*)
         WRITE (NOUT, *) 'Sums of squares and cross-products about zero'
         WRITE (NOUT, 99998) (I, I=1, M)
         WRITE (NOUT,99997) (I,(SSP(I,J),J=1,M),I=1,M)
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Correlation-like coefficients'
         WRITE (NOUT,99998) (I,I=1,M)
         WRITE (NOUT, 99997) (I, (CORR(I, J), J=1, M), I=1, M)
         WRITE (NOUT, *)
         WRITE (NOUT, 99999)
           'Minimum number of cases used for any pair of variables: ',
     +
           NCASES
     +
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Numbers used for each pair are:'
         WRITE (NOUT,99998) (I,I=1,M)
         WRITE (NOUT,99997) (I,(CASES(I,J),J=1,M),I=1,M)
      END IF
      STOP
99999 FORMAT (1X,A,I2)
99998 FORMAT (1X,6I12)
99997 FORMAT (1X,I3,3F12.4)
99996 FORMAT (1X, I5, 2F11.4)
      END
```

9.2 Program Data

G02BFF	Example Pr	ogram Data
2.00	3.00	3.00
4.00	6.00	4.00
9.00	9.00	0.00
0.00	12.00	2.00
12.00	-1.00	5.00

9.3 Program Results

```
G02BFF Example Program Results
Number of variables (columns) = 3
Number of cases (rows)
                         = 5
Data matrix is:-
         1
                    2
                               3
               3.0000
                             3.0000
 1
       2.0000
 2
                 6.0000
       4.0000
                             4.0000
                 9.0000
 3
       9.0000
                             0.0000
                             2.0000
       0.0000
                 12.0000
 4
       12.0000
                 -1.0000
 5
                             5.0000
Variable Mean
                 St. dev.
   1
        6.7500
                 4.5735
   2
        7.5000
                  3.8730
   3
        3.5000
                  1.2910
Sums of squares and cross-products about zero
         1
                  2
                               3
      245.0000 111.0000
                            82.0000
 1
      111.0000 270.0000 57.0000
 2
 3
      82.0000 57.0000
                          54.0000
Correlation-like coefficients
         1
               2
                               3
       1.0000
                 0.9840
 1
                             0.9055
 2
       0.9840
                 1.0000
                             0.7699
 3
        0.9055
                 0.7699
                             1.0000
Minimum number of cases used for any pair of variables: 3
Numbers used for each pair are:
        1
                   2
                               3
                             3.0000
 1
        4.0000
                  3.0000
 2
       3.0000
                  4.0000
                             3.0000
 3
       3.0000
                  3.0000
                             4.0000
```