G02BJF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02BJF computes means and standard deviations, sums of squares and cross-products of deviations from means, and Pearson product-moment correlation coefficients for selected variables omitting cases with missing values from only those calculations involving the variables for which the values are missing.

2 Specification

SUBROUTINE GO2BJF(N, M, X, IX, MISS, XMISS, NVARS, KVAR, XBAR,

STD, SSP, ISSP, R, IR, NCASES, COUNT, IC, IFAIL)

INTEGER

N, M, IX, MISS(M), NVARS, KVAR(NVARS), ISSP, IR,

NCASES, IC, IFAIL

real

X(IX,M), XMISS(M), XBAR(NVARS), STD(NVARS),

SSP(ISSP,NVARS), R(IR,NVARS), COUNT(IC,NVARS)

3 Description

The input data consists of n observations for each of m variables, given as an array

$$[x_{ij}], \quad i = 1, 2, \dots, n \quad (n \ge 2)$$

 $j = 1, 2, \dots, m \quad (m \ge 2),$

where x_{ij} is the *i*th observation on the *j*th variable, together with the subset of these variables v_1, v_2, \ldots, v_p , for which information is required.

In addition, each of the m variables may optionally have associated with it a value which is to be considered as representing a missing observation for that variable; the missing value for the jth variable is denoted by xm_j . Missing values need not be specified for all variables.

Let $w_{ij} = 0$ if the *i*th observation for the *j*th variable is a missing value, i.e., if a missing value xm_j , has been declared for the *j*th variable, and $x_{ij} = xm_j$ (see also Section 7); and $w_{ij} = 1$ otherwise, for i = 1, 2, ..., n; j = 1, 2, ..., m.

The quantities calculated are:

(a) Means:

$$\bar{x}_j = \frac{\sum_{i=1}^n w_{ij} x_{ij}}{\sum_{i=1}^n w_{ij}}, \quad j = v_1, v_2, \dots, v_p$$

(b) Standard deviations:

$$s_j = \sqrt{\frac{\sum_{i=1}^n w_{ij} (x_{ij} - \bar{x}_j)^2}{\sum_{i=1}^n w_{ij} - 1}}, \quad j = v_1, v_2, \dots, v_p$$

(c) Sums of squares and cross-products of deviations from means:

$$S_{jk} = \sum_{i=1}^{n} w_{ij} w_{ik} (x_{ij} - \bar{x}_{j(k)}) (x_{ik} - \bar{x}_{k(j)}), \quad j, k = v_1, v_2, \dots, v_p$$

where

$$\bar{x}_{j(k)} = \frac{\sum_{i=1}^n w_{ij} w_{ik} x_{ij}}{\sum_{i=1}^n w_{ij} w_{ik}} \ \text{ and } \ \bar{x}_{k(j)} = \frac{\sum_{i=1}^n w_{ik} w_{ij} x_{ik}}{\sum_{i=1}^n w_{ik} w_{ij}}$$

(i.e., the means used in the calculation of the sum of squares and cross-products of deviations are based on the same set of observations as are the cross-products).

[NP3390/19/pdf] G02BJF.1

(d) Pearson product-moment correlation coefficients:

$$R_{jk} = \frac{S_{jk}}{\sqrt{S_{jj(k)}S_{kk(j)}}}, \quad j,k = v_1, v_2, \dots, v_p$$

where

$$S_{jj(k)} = \sum_{i=1}^{n} w_{ij} w_{ik} (x_{ij} - \bar{x}_{j(k)})^2 \text{ and } S_{kk(j)} = \sum_{i=1}^{n} w_{ik} w_{ij} (x_{ik} - \bar{x}_{k(j)})^2$$

(i.e., the sums of squares of deviations used in the denominator are based on the same set of observations as are used in the calculation of the numerator).

If $S_{jj(k)}$ or $S_{kk(j)}$ is zero, R_{jk} is set to zero.

(e) The number of cases used in the calculation of each of the correlation coefficients:

$$c_{jk} = \sum_{i=1}^{n} w_{ij} w_{ik}, \quad j, k = v_1, v_2, \dots, v_p$$

(The diagonal terms, c_{jj} , for $j=v_1,v_2,\ldots,v_p$, also give the number of cases used in the calculation of the means, \bar{x}_j , and the standard deviations, s_j .)

4 References

None.

5 Parameters

1: N — INTEGER Input

On entry: the number n, of observations or cases.

Constraint: $N \geq 2$.

2: M — INTEGER

On entry: the number m, of variables.

Constraint: $M \ge 2$.

3: X(IX,M) - real array Input

On entry: X(i,j) must be set to x_{ij} , the value of the *i*th observation on the *j*th variable, for $i=1,2,\ldots,n;\ j=1,2,\ldots,m$.

4: IX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G02BJF is called.

Constraint: $IX \geq N$.

5: MISS(M) — INTEGER array

Input

On entry: MISS(j) must be set equal to 1 if a missing value, xm_j , is to be specified for the jth variable in the array X, or set equal to 0 otherwise. Values of MISS must be given for all m variables in the array X.

6: XMISS(M) — real array Input

On entry: XMISS(j) must be set to the missing value, xm_j , to be associated with the jth variable in the array X, for those variables for which missing values are specified by means of the array MISS (see Section 7).

G02BJF.2 [NP3390/19/pdf]

7: NVARS — INTEGER

Input

On entry: the number, p, of variables for which information is required.

Constraint: $2 \leq \text{NVARS} \leq \text{M}$.

8: KVAR(NVARS) — INTEGER array

Input

On entry: KVAR(j) must be set to the column number in X of the jth variable for which information is required, for j = 1, 2, ..., p.

Constraint: $1 \leq \text{KVAR}(j) \leq M$, for j = 1, 2, ..., p.

9: XBAR(NVARS) — real array

Output

On exit: the mean value, \bar{x}_j , of the variable specified in KVAR(j), for $j = 1, 2, \ldots, p$.

10: STD(NVARS) — real array

Output

On exit: the standard deviation, s_j , of the variable specified in KVAR(j), for $j = 1, 2, \ldots, p$.

11: SSP(ISSP,NVARS) - real array

Output

On exit: SSP(j, k) is the cross-product of deviations, S_{jk} , for the variables specified in KVAR(j) and KVAR(k), for j, k = 1, 2, ..., p.

12: ISSP — INTEGER

Input

On entry: the first dimension of the array SSP as declared in the (sub)program from which G02BJF is called.

Constraint: ISSP \geq NVARS.

13: R(IR,NVARS) - real array

Output

On exit: R(j,k) is the product-moment correlation coefficient, R_{jk} , between the variables specified in KVAR(j) and KVAR(k), for $j,k=1,2,\ldots,p$.

14: IR — INTEGER

Input

On entry: the first dimension of the array R as declared in the (sub)program from which G02BJF is called.

Constraint: IR \geq NVARS.

15: NCASES — INTEGER

Output

On exit: the minimum number of cases used in the calculation of any of the sums of squares and cross-products and correlation coefficients (when cases involving missing values have been eliminated).

16: COUNT(IC,NVARS) - real array

Output

On exit: COUNT(j, k) is the number of cases, c_{jk} , actually used in the calculation of S_{jk} and R_{jk} , the sum of cross-products and correlation coefficient for the variables specified in KVAR(j) and KVAR(k), for j, k, = 1, 2, ..., p.

17: IC — INTEGER

Input

On entry: the first dimension of the array COUNT as declared in the (sub)program from which G02BJF is called.

Constraint: $IC \ge NVARS$.

18: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL $\neq 0$ on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

[NP3390/19/pdf] G02BJF.3

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

```
\begin{split} \text{IFAIL} &= 1 \\ &\quad \text{On entry,} \quad \text{N} < 2. \\ \\ \text{IFAIL} &= 2 \\ &\quad \text{On entry,} \quad \text{NVARS} < 2, \\ &\quad \text{or} \quad \text{NVARS} > \text{M}. \\ \\ \text{IFAIL} &= 3 \\ &\quad \text{On entry,} \quad \text{IX} < \text{N}, \\ &\quad \text{or} \quad \text{ISSP} < \text{NVARS,} \\ &\quad \text{or} \quad \text{IR} < \text{NVARS,} \\ &\quad \text{or} \quad \text{IC} < \text{NVARS.} \\ \\ \text{IFAIL} &= 4 \\ &\quad \text{On entry,} \quad \text{KVAR}(j) < 1, \\ &\quad \text{or} \quad \text{KVAR}(j) > \text{M for some } j = 1, 2, \dots, \text{NVARS.} \\ \\ \text{IFAIL} &= 5 \end{split}
```

After observations with missing values were omitted, fewer than two cases remained for at least one pair of variables. (The pairs of variables involved can be determined by examination of the contents of the array COUNT). All means, standard deviations, sums of squares and cross-products, and correlation coefficients based on two or more cases are returned by the routine even if IFAIL = 5.

7 Accuracy

The routine does not use **additional precision** arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large n.

Users are warned of the need to exercise extreme care in their selection of missing values, since the routine treats as missing values for variable j, all values in the inclusive range $(1 \pm {\rm ACC}) \times xm_j$, where xm_j is the missing value for variable j specified by the user, and ACC is a machine-dependent constant (see the Users' Note for your implementation). The user must therefore ensure that the missing value chosen for each variable is sufficiently different from all valid values for that variable so that none of the valid values fall within the range indicated above.

8 Further Comments

The time taken by the routine depends on n and p, and the occurrence of missing values.

The routine uses a two-pass algorithm.

9 Example

The following program reads in a set of data consisting of five observations on each of four variables. Missing values of -1.0, 0.0 and 0.0 are declared for the first, second and fourth variables respectively; no missing value is specified for the third variable. The means, standard deviations, sums of squares and cross-products of deviations from means, and Pearson product-moment correlation coefficients for the fourth, first and second variables are then calculated and printed, omitting cases with missing values from only those calculations involving the variables for which the values are missing. The program therefore eliminates cases 4 and 5 in calculating the correlation between the fourth and first variables, and cases 3 and 4 for the fourth and second variables etc.

G02BJF.4 [NP3390/19/pdf]

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO2BJF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
.. Parameters ..
                 M, N, NV, IA, ISSP, ICORR, IC
INTEGER
PARAMETER
                 (M=4,N=5,NV=3,IA=N,ISSP=NV,ICORR=NV,IC=NV)
INTEGER
                 NIN, NOUT
                 (NIN=5,NOUT=6)
PARAMETER
.. Local Scalars ..
INTEGER
                 I, IFAIL, J, NCASES
.. Local Arrays ..
real
                 A(IA,M), AMEAN(NV), CASES(IC,NV), CORR(ICORR,NV),
                 SSP(ISSP, NV), STD(NV), XMISS(M)
INTEGER
                 KVAR(NV), MISS(M)
.. External Subroutines ..
EXTERNAL
                 G02BJF
.. Executable Statements ..
WRITE (NOUT,*) 'GO2BJF Example Program Results'
Skip heading in data file
READ (NIN,*)
READ (NIN,*) ((A(I,J),J=1,M),I=1,N)
KVAR(1) = 4
KVAR(2) = 1
KVAR(3) = 2
WRITE (NOUT,*)
WRITE (NOUT,99999) 'Number of variables (columns) =', M
WRITE (NOUT,99999) 'Number of cases
                                         (rows)
WRITE (NOUT,*)
WRITE (NOUT,*) 'Data matrix is:-'
WRITE (NOUT, 99998) (J, J=1, M)
WRITE (NOUT,99997) (I,(A(I,J),J=1,M),I=1,N)
WRITE (NOUT,*)
Set up missing values before calling routine
MISS(1) = 1
MISS(2) = 1
MISS(3) = 0
MISS(4) = 1
XMISS(1) = -1.0e0
XMISS(2) = 0.0e0
XMISS(4) = 0.0e0
IFAIL = 1
CALL GO2BJF(N,M,A,IA,MISS,XMISS,NV,KVAR,AMEAN,STD,SSP,ISSP,CORR,
            ICORR, NCASES, CASES, IC, IFAIL)
IF (IFAIL.NE.O) THEN
   WRITE (NOUT, 99999) 'Routine fails, IFAIL =', IFAIL
ELSE
   WRITE (NOUT,*) 'Variable
                              Mean
                                       St. dev.'
   WRITE (NOUT, 99995) (KVAR(I), AMEAN(I), STD(I), I=1,NV)
   WRITE (NOUT,*)
   WRITE (NOUT,*)
     'Sums of squares and cross-products of deviations'
```

[NP3390/19/pdf] G02BJF.5

```
WRITE (NOUT,99998) (KVAR(I),I=1,NV)
         WRITE (NOUT, 99996) (KVAR(I), (SSP(I, J), J=1, NV), I=1, NV)
         WRITE (NOUT, *)
         WRITE (NOUT,*) 'Correlation coefficients'
         WRITE (NOUT,99998) (KVAR(I),I=1,NV)
         WRITE (NOUT, 99996) (KVAR(I), (CORR(I, J), J=1, NV), I=1, NV)
         WRITE (NOUT,*)
         WRITE (NOUT, 99999)
           'Minimum number of cases used for any pair of variables:',
           NCASES
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Numbers used for each pair are:'
         WRITE (NOUT, 99998) (KVAR(I), I=1, NV)
         WRITE (NOUT, 99996) (KVAR(I), (CASES(I, J), J=1, NV), I=1, NV)
      END IF
      STOP
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,4I12)
99997 FORMAT (1X, I3, 4F12.4)
99996 FORMAT (1X, I3, 3F12.4)
99995 FORMAT (1X, I5, 2F11.4)
      END
```

9.2 Program Data

G02BJF	Example	Program Data	
3.00	3.00	1.00	2.00
6.00	4.00	-1.00	4.00
9.00	0.00	5.00	9.00
12.00	2.00	0.00	0.00
-1.00	5.00	4.00	12.00

9.3 Program Results

```
GO2BJF Example Program Results
```

Number of variables (columns) = 4Number of cases (rows) = 5

Data matrix is:-3 1 2 4 3.0000 3.0000 1.0000 2.0000 1 2 6.0000 4.0000 -1.0000 4.0000 3 9.0000 0.0000 5.0000 9.0000 2.0000 0.0000 4 12.0000 0.0000 -1.0000 5.0000 4.0000 12.0000

Variable Mean St. dev. 4 6.7500 4.5735 1 7.5000 3.8730 2 3.5000 1.2910

G02BJF.6 [NP3390/19/pdf]

 Sums of squares and cross-products of deviations

	4	1	2
4	62.7500	21.0000	10.0000
1	21.0000	45.0000	-6.0000
2	10.0000	-6.0000	5.0000

${\tt Correlation}\ {\tt coefficients}$

	4	1	2
4	1.0000	0.9707	0.9449
1	0.9707	1.0000	-0.6547
2	0.9449	-0.6547	1.0000

Minimum number of cases used for any pair of variables: 3

Numbers used for each pair are:

	4	1	2
4	4.0000	3.0000	3.0000
1	3.0000	4.0000	3.0000
2	3.0000	3.0000	4.0000

[NP3390/19/pdf] G02BJF.7 (last)