G02CAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02CAF performs a simple linear regression with dependent variable y and independent variable x.

2 Specification

```
SUBROUTINE GO2CAF(N, X, Y, RESULT, IFAIL)INTEGERN, IFAILrealX(N), Y(N), RESULT(20)
```

3 Description

The routine fits a straight line of the form

$$y = a + bx$$

to the data points

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n),$$

such that

$$y_i = a + bx_i + e_i , \ i = 1, 2, \dots, n \ (n > 2)$$

The routine calculates the regression coefficient, b, the regression constant, a (and various other statistical quantities) by minimizing

$$\sum_{i=1}^{n} e_i^2.$$

The input data consist of the n pairs of observations

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

on the independent variable x and the dependent variable y.

The quantities calculated are:

(a) Means:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i; \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

(b) Standard deviations:

$$s_x = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2}; \ \ s_y = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (y_i - \bar{y})^2}$$

(c) Pearson product-moment correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

(d) The regression coefficient, b, and the regression constant, a:

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}; \ a = \bar{y} - b\bar{x}$$

(e) The sum of squares attributable to the regression, SSR, the sum of squares of deviations about the regression, SSD, and the total sum of squares, SST:

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2; \ SSD = \sum_{i=1}^{n} (y_i - a - bx_i)^2; \ SSR = SST - SSD$$

(f) The degrees of freedom attributable to the regression, DFR, the degrees of freedom of deviations about the regression, DFD, and the total degrees of freedom, DFT:

$$DFT = n - 1; DFD = n - 2; DFR = 1$$

(g) The mean square attributable to the regression, MSR, and the mean square of deviations about the regression, MSD:

MSR = SSR/DFR; MSD = SSD/DFD

(h) The *F*-value for the analysis of variance:

$$F = MSR/MSD$$

(i) The standard error of the regression coefficient, se(b), and the standard error of the regression constant, se(a):

$$se(b) = \sqrt{\frac{MSD}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}; \quad se(a) = \sqrt{MSD\left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right)}$$

(j) The t-value for the regression coefficient, t(b), and the t-value for the regression constant, t(a):

$$t(b) = \frac{b}{se(b)}; \quad t(a) = \frac{a}{se(a)}.$$

4 References

[1] Draper N R and Smith H (1985) Applied Regression Analysis Wiley (2nd Edition)

5 Parameters

1:	N - INTEGER				
	On entry: the number n , of pairs of observations.				
	Constraint: N >	> 2.			
2:	$\mathbf{X}(\mathbf{N}) - \boldsymbol{real}$ a	rray	Input		
On entry: $X(i)$ must contain x_i , for $i = 1, 2,, n$.					
3:	: $Y(N) - real$ array				
	On entry: $\mathbf{Y}(i)$	must contain y_i , for $i = 1, 2, \ldots, n$.			
4:	$\text{RESULT}(20) - real \operatorname{array}$				
	On exit: the following information:				
	$\operatorname{RESULT}(1)$	\bar{x} , the mean value of the independent variable, x ;			
	$\operatorname{RESULT}(2)$	\bar{y} , the mean value of the dependent variable, y ;			
	RESULT(3) s_x the standard deviation of the independent variable, x ;				
	$\operatorname{RESULT}(4)$	s_y the standard deviation of the dependent variable, y ;			
	$\operatorname{RESULT}(5)$				
	$\operatorname{RESULT}(6)$	b, the regression coefficient;			
	$\operatorname{RESULT}(7)$	a, the regression constant;			

$\operatorname{RESULT}(8)$	se(b), the standard error of the regression coefficient;
$\operatorname{RESULT}(9)$	se(a), the standard error of the regression constant;
$\operatorname{RESULT}(10)$	t(b), the <i>t</i> -value for the regression coefficient;
$\operatorname{RESULT}(11)$	t(a), the <i>t</i> -value for the regression constant;
$\operatorname{RESULT}(12)$	SSR, the sum of squares attributable to the regression;
$\operatorname{RESULT}(13)$	DFR, the degrees of freedom attributable to the regression;
$\operatorname{RESULT}(14)$	MSR, the mean square attributable to the regression;
$\operatorname{RESULT}(15)$	F, the F-value for the analysis of variance;
$\operatorname{RESULT}(16)$	SSD, the sum of squares of deviations about the regression;
$\operatorname{RESULT}(17)$	DFD, the degrees of freedom of deviations about the regression
$\operatorname{RESULT}(18)$	MSD, the mean square of deviations about the regression;
$\operatorname{RESULT}(19)$	SST, the total sum of squares;
$\operatorname{RESULT}(20)$	DFT, the total degrees of freedom.

5: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, $N \leq 2$.

IFAIL = 2

On entry, all N values of at least one of the variables x and y are identical.

7 Accuracy

If, in calculating F, t(b) or t(a) (see Section 3), the numbers involved are such that the result would be outside the range of numbers which can be stored by the machine, then the answer is set to the largest quantity which can be stored as a real variable, by means of a call to X02ALF.

The routine does not use *additional precision* for the accumulation of scalar products so there may be a loss of significant figures for large n.

8 Further Comments

The time taken by the routine depends on n.

The routine uses a two-pass algorithm.

9 Example

The example program reads in eight observations on each of two variables, and then performs a simple linear regression with the first variable as the independent variable, and the second variable as the dependent variable. Finally the results are printed.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO2CAF Example Program Text
*
     Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
*
      INTEGER
                       Ν
     PARAMETER
                      (N=8)
     INTEGER
                     NIN, NOUT
     PARAMETER
                      (NIN=5,NOUT=6)
      .. Local Scalars ..
*
     INTEGER I, IFAIL
      .. Local Arrays ..
     real
                       RESULT(20), X(N), Y(N)
      .. External Subroutines ..
      EXTERNAL
                      G02CAF
      .. Executable Statements ..
     WRITE (NOUT,*) 'GO2CAF Example Program Results'
      Skip heading in data file
*
      READ (NIN,*)
     READ (NIN,*) (X(I),Y(I),I=1,N)
     WRITE (NOUT,*)
     WRITE (NOUT,*) ' Case
                                Independent
                                                Dependent'
     WRITE (NOUT, *) 'number
                                 variable
                                                 variable'
     WRITE (NOUT,*)
     WRITE (NOUT,99999) (I,X(I),Y(I),I=1,N)
     WRITE (NOUT,*)
      IFAIL = 1
     CALL GO2CAF(N,X,Y,RESULT,IFAIL)
      IF (IFAIL.NE.O) THEN
        WRITE (NOUT, 99998) 'Routine fails, IFAIL =', IFAIL
     ELSE
         WRITE (NOUT, 99997)
           'Mean of independent variable
                                                       = ', RESULT(1)
     +
        WRITE (NOUT, 99997)
     +
           'Mean of
                      dependent variable
                                                        = ', RESULT(2)
        WRITE (NOUT, 99997)
     +
           'Standard deviation of independent variable = ', RESULT(3)
        WRITE (NOUT, 99997)
           'Standard deviation of dependent variable = ', RESULT(4)
     +
        WRITE (NOUT, 99997)
           'Correlation coefficient
                                                        = ', RESULT(5)
     +
        WRITE (NOUT,*)
        WRITE (NOUT, 99997)
                                                        = ', RESULT(6)
           'Regression coefficient
     +
         WRITE (NOUT, 99997)
           'Standard error of coefficient
     +
                                                       = ', RESULT(8)
        WRITE (NOUT,99997)
           't-value for coefficient
                                                        = ', RESULT(10)
        WRITE (NOUT,*)
        WRITE (NOUT, 99997)
                                                        = ', RESULT(7)
           'Regression constant
     +
        WRITE (NOUT, 99997)
     +
           'Standard error of constant
                                                        = ', RESULT(9)
         WRITE (NOUT, 99997)
```

```
= ', RESULT(11)
           't-value for constant
     +
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Analysis of regression table :-'
        WRITE (NOUT,*)
        WRITE (NOUT,*)
     +'
            Source
                          Sum of squares D.F. Mean square
                                                                  F-val
     +ue'
        WRITE (NOUT,*)
        WRITE (NOUT, 99996) 'Due to regression', (RESULT(I), I=12, 15)
        WRITE (NOUT, 99996) 'About regression', (RESULT(I), I=16, 18)
        WRITE (NOUT,99996) 'Total
                                    ', (RESULT(I),I=19,20)
     END IF
     STOP
99999 FORMAT (1X,14,2F15.4)
99998 FORMAT (1X,A,I2)
99997 FORMAT (1X,A,F8.4)
99996 FORMAT (1X,A,F14.4,F8.0,2F14.4)
     END
```

9.2 Program Data

GO2CAF Example Program Data 1.0 20.0 15.5 0.0 4.0 28.3 7.5 45.0 2.5 24.5 0.0 10.0 99.0 10.0 5.0 31.2

9.3 Program Results

GO2CAF Example Program Results

Case	Independent	Dependent		
number	variable	variable		
1	1.0000	20.0000		
2	0.0000	15.5000		
3	4.0000	28.3000		
4	7.5000	45.0000		
5	2.5000	24.5000		
6	0.0000	10.0000		
7	10.0000	99.0000		
8	5.0000	31.2000		
Mean of	independent var	iable	=	3.7500
Mean of	dependent var	iable	=	34.1875
Standard	deviation of i	ndependent variable	=	3.6253
Standard	deviation of	dependent variable	=	28.2604
Correlat	ion coefficient	-	=	0.9096
Regressi	on coefficient		=	7.0905
Standard	=	1.3224		
t-value	=	5.3620		

Regression constant Standard error of o t-value for constan	constant		= 7.5982 = 6.6858 = 1.1365					
Analysis of regression table :-								
Source	Sum of squares	D.F.	Mean square	F-value				
Due to regression About regression Total	4625.3033 965.2454 5590.5488	1. 6. 7.	4625.3033 160.8742	28.7511				