
G03 – Multivariate Methods

G03AAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

G03AAF performs a principal component analysis on a data matrix; both the principal component
loadings and the principal component scores are returned.

2 Specification

SUBROUTINE G03AAF(MATRIX, STD, WEIGHT, N, M, X, LDX, ISX, S, WT,
1 NVAR, E, LDE, P, LDP, V, LDV, WK, IFAIL)
INTEGER N, M, LDX, ISX(M), NVAR, LDE, LDP, LDV, IFAIL
real X(LDX,M), S(M), WT(∗), E(LDE,6), P(LDP,NVAR),
1 V(LDV,NVAR), WK(NVAR∗NVAR+5∗(NVAR-1))
CHARACTER∗1 MATRIX, STD, WEIGHT

3 Description

Let X be an n by p data matrix of n observations on p variables x1, x2, . . . , xp and let the p by p
variance-covariance matrix of x1, x2, . . . , xp be S. A vector a1 of length p is found such that:

aT
1 Sa1 is maximized subject to aT

1 a1 = 1.

The variable z1 =
p∑

i=1

a1ixi is known as the first principal component and gives the linear combination of

the variables that gives the maximum variation. A second principal component, z2 =
p∑

i=1

a2ixi, is found

such that:

aT
2 Sa2 is maximized subject to aT

2 a2 = 1 and aT
2 a1 = 0.

This gives the linear combination of variables that is orthogonal to the first principal component that
gives the maximum variation. Further principal components are derived in a similar way.

The vectors a1, a2, . . . , ap, are the eigenvectors of the matrix S and associated with each eigenvector
is the eigenvalue, λ2

i . The value of λ2
i /
∑

λ2
i gives the proportion of variation explained by the ith

principal component. Alternatively the ai’s can be considered as the right singular vectors in a singular
value decomposition with singular values λi of the data matrix centred about its mean and scaled by
1/
√

(n − 1), Xs. This latter approach is used in G03AAF, with

Xs = V ΛP ′

where Λ is a diagonal matrix with elements λi, P ′ is the p by p matrix with columns ai and V is an n by
p matrix with V ′V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a data set, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original data set.

The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k principal components are selected then a test of the equality
of the remaining p − k eigenvalues is

(n − (2p + 5)/6)

{
−

p∑
i=k+1

log(λ2
i ) + (p − k) log

(
p∑

i=k+1

λ2
i /(p − k)

)}

which has, asymptotically, a χ2 distribution with 1
2 (p − k − 1)(p − k + 2) degrees of freedom.
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Equality of the remaining eigenvalues indicates that if any more principal components are to be considered
then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products
matrix or a standardised sums of squares and cross-products matrix may be used. In the last case S is
replaced by σ− 1

2 Sσ− 1
2 for a diagonal matrix σ with positive elements. If the correlation matrix is used

the χ2 approximation for the statistic given above is not valid.

The principal component scores, F , are the values of the principal component variables for the
observations. These can be standardised so that the variance of these scores for each principal component
is 1.0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted
means then each row is scaled by an amount

√
wi, where wi is the weight for the ith observation.
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5 Parameters

1: MATRIX — CHARACTER*1 Input

On entry: indicates for which type of matrix the principal component analysis is to be carried out.

If MATRIX = ’C’, then it is for the correlation matrix.
If MATRIX = ’S’, then it is for a standardised matrix, with standardisations given by S.
If MATRIX = ’U’, then it is for the sums of squares and cross-products matrix.
If MATRIX = ’V’, then it is for the variance-covariance matrix.

Constraint: MATRIX = ’C’, ’S’, ’U’ or ’V’.

2: STD — CHARACTER*1 Input

On entry: indicates if the principal component scores are to be standardised.

If STD = ’S’, then the principal component scores are standardised so that F ′F = I, i.e.,
F = XsPΛ−1 = V .
If STD = ’U’, then the principal component scores are unstandardised, i.e., F = XsP = V Λ.
If STD = ’Z’, then the principal component scores are standardised so that they have unit
variance.
If STD = ’E’, then the principal component scores are standardised so that they have variance
equal to the corresponding eigenvalue.

Constraint: STD = ’E’, ’S’, ’U’ or ’Z’.

3: WEIGHT — CHARACTER*1 Input

On entry: indicates if weights are to be used.

If WEIGHT = ’U’ (Unweighted), then no weights are used.
If WEIGHT = ’W’ (Weighted), then weights are used and must be supplied in WT.

Constraint: WEIGHT = ’U’ or ’W’.
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4: N — INTEGER Input

On entry: the number of observations, n.

Constraint: N ≥ 2.

5: M — INTEGER Input

On entry: the number of variables in the data matrix, m.

Constraint: M ≥ 1.

6: X(LDX,M) — real array Input

On entry: X(i, j) must contain the ith observation for the jth variable, for i = 1, 2, . . . , n;
j = 1, 2, . . . , m.

7: LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03AAF
is called.

Constraint: LDX ≥ N.

8: ISX(M) — INTEGER array Input

On entry: ISX(j) indicates whether or not the jth variable is to be included in the analysis.

If ISX(j) > 0, then the variable contained in the jth column of X is included in the principal
component analysis, for j = 1, 2, . . . , m.

Constraint: ISX(j) > 0 for NVAR values of j.

9: S(M) — real array Input/Output

On entry: the standardisations to be used, if any.

If MATRIX = ’S’, then the first m elements of S must contain the standardisation coefficients, the
diagonal elements of σ.

Constraint: if ISX(j) > 0, then S(j) > 0.0, for j = 1, 2, . . . , m.

On exit:

If MATRIX = ’S’, then S is unchanged on exit.
If MATRIX = ’C’, then S contains the variances of the selected variables. S(j) contains the
variance of the variable in the jth column of X if ISX(j) > 0.
If MATRIX = ’U’ or ’V’, then S is not referenced.

10: WT(∗) — real array Input

On entry: if WEIGHT = ’W’, then the first n elements of WT must contain the weights to be used
in the principal component analysis.

If WT(i) = 0.0, then the ith observation is not included in the analysis. The effective number of
observations is the sum of the weights.

If WEIGHT = ’U’, then WT is not referenced and the effective number of observations is n.

Constraint: WT(i) ≥ 0.0, for i = 1, 2, . . . , n and the sum of weights ≥ NVAR + 1.

11: NVAR — INTEGER Input

On entry: the number of variables in the principal component analysis, p.

Constraint: 1 ≤ NVAR ≤ min(N−1,M}).
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12: E(LDE,6) — real array Output

On exit: the statistics of the principal component analysis.

E(i,1), the eigenvalues associated with the ith principal component, λ2
i , for i = 1, 2, . . . , p.

E(i,2), the proportion of variation explained by the ith principal component, for i = 1, 2, . . . , p.

E(i,3), the cumulative proportion of variation explained by the first ith principal components, for
i = 1, 2, . . . , p.

E(i,4), the χ2 statistics, for i = 1, 2, . . . , p.

E(i,5), the degrees of freedom for the χ2 statistics, for i = 1, 2, . . . , p.

If MATRIX �= ’C’, then E(i,6) contains significance level for the χ2 statistic, for i = 1, 2, . . . , p.

If MATRIX = ’C’, then E(i,6) is returned as zero.

13: LDE — INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which G03AAF
is called.

Constraint: LDE ≥ NVAR.

14: P(LDP,NVAR) — real array Output

On exit: the first NVAR columns of P contain the principal component loadings, ai. The jth column
of P contains the NVAR coefficients for the jth principal component.

15: LDP — INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G03AAF
is called.

Constraint: LDP ≥ NVAR.

16: V(LDV,NVAR) — real array Output

On exit: the first NVAR columns of V contain the principal component scores. The jth column of
V contains the N scores for the jth principal component.

If WEIGHT = ’W’, then any rows for which WT(i) is zero will be set to zero.

17: LDV — INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which G03AAF
is called.

Constraint: LDV ≥ N.

18: WK(NVAR∗NVAR+5∗(NVAR−1)) — real array Workspace

19: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1,

or N < 2,

or NVAR < 1,

or NVAR > M,

or NVAR ≥ N,

or LDX < N,

or LDV < N,

or LDP < NVAR,

or LDE < NVAR,

or MATRIX �= ’C’, ’S’, ’U’ or ’V’,

or STD �= ’S’, ’U’, ’Z’ or ’E’,

or WEIGHT �= ’U’ or ’W’.

IFAIL = 2

On entry, WEIGHT = ’W’ and a value of WT < 0.0.

IFAIL = 3

On entry, there are not NVAR values of ISX > 0,

or WEIGHT = ’W’ and the effective number of observations is less than NVAR + 1.

IFAIL = 4

On entry, S(j) ≤ 0.0 for some j = 1, 2, . . . , m, when MATRIX = ’S’ and ISX(j) > 0.

IFAIL = 5

The singular value decomposition has failed to converge. See F02WEF. This is an unlikely error
exit.

IFAIL = 6

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

7 Accuracy

As G03AAF uses a singular value decomposition of the data matrix, it will be less affected by ill-
conditioned problems than traditional methods using the eigenvalue decomposition of the variance-
covariance matrix.

8 Further Comments

None.

9 Example

A data set is taken from Cooley and Lohnes [2], it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and
unstandardised principal component scores requested.
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9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* G03AAF Example Program Text
* Mark 17 Revised. NAG Copyright 1995.
* .. Parameters ..

INTEGER NMAX, MMAX
PARAMETER (NMAX=12,MMAX=3)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
INTEGER I, IFAIL, J, M, N, NVAR
CHARACTER MATRIX, STD, WEIGHT

* .. Local Arrays ..
real E(MMAX,6), P(MMAX,MMAX), S(MMAX), V(NMAX,MMAX),

+ WK(MMAX*MMAX+5*(MMAX-1)), WT(NMAX), X(NMAX,MMAX)
INTEGER ISX(MMAX)

* .. External Subroutines ..
EXTERNAL G03AAF

* .. Executable Statements ..
WRITE (NOUT,*) ’G03AAF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) MATRIX, STD, WEIGHT, N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

IF (WEIGHT.EQ.’U’ .OR. WEIGHT.EQ.’u’) THEN
DO 20 I = 1, N

READ (NIN,*) (X(I,J),J=1,M)
20 CONTINUE

ELSE
DO 40 I = 1, N

READ (NIN,*) (X(I,J),J=1,M), WT(I)
40 CONTINUE

END IF
READ (NIN,*) (ISX(J),J=1,M), NVAR
IF (MATRIX.EQ.’S’ .OR. MATRIX.EQ.’s’) READ (NIN,*) (S(J),J=1,M)
IFAIL = 0

*
CALL G03AAF(MATRIX,STD,WEIGHT,N,M,X,NMAX,ISX,S,WT,NVAR,E,MMAX,

+ P,MMAX,V,NMAX,WK,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Eigenvalues Percentage Cumulative Chisq DF Sig’
WRITE (NOUT,*) ’ variation variation’
WRITE (NOUT,*)
DO 60 I = 1, NVAR

WRITE (NOUT,99999) (E(I,J),J=1,6)
60 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,*)
DO 80 I = 1, NVAR

WRITE (NOUT,99998) (P(I,J),J=1,NVAR)
80 CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,*) ’Principal component scores’
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WRITE (NOUT,*)
DO 100 I = 1, N

WRITE (NOUT,99997) I, (V(I,J),J=1,NVAR)
100 CONTINUE

END IF
STOP

*
99999 FORMAT (1X,F11.4,2F12.4,F10.4,F8.1,F8.4)
99998 FORMAT (1X,8F9.4)
99997 FORMAT (1X,I2,(8F9.3))

END

9.2 Program Data

G03AAF Example Program Data
’V’ ’E’ ’U’ 10 3
7.0 4.0 3.0
4.0 1.0 8.0
6.0 3.0 5.0
8.0 6.0 1.0
8.0 5.0 7.0
7.0 2.0 9.0
5.0 3.0 3.0
9.0 5.0 8.0
7.0 4.0 5.0
8.0 2.0 2.0
1 1 1 3

9.3 Program Results

G03AAF Example Program Results

Eigenvalues Percentage Cumulative Chisq DF Sig
variation variation

8.2739 0.6515 0.6515 8.6127 5.0 0.1255
3.6761 0.2895 0.9410 4.1183 2.0 0.1276
0.7499 0.0590 1.0000 0.0000 0.0 0.0000

Eigenvalues

0.1376 0.6990 0.7017
0.2505 0.6609 -0.7075

-0.9583 0.2731 -0.0842

[NP3390/19/pdf] G03AAF.7



G03AAF G03 – Multivariate Methods

Principal component scores

1 2.151 -0.173 -0.107
2 -3.804 -2.887 -0.510
3 -0.153 -0.987 -0.269
4 4.707 1.302 -0.652
5 -1.294 2.279 -0.449
6 -4.099 0.144 0.803
7 1.626 -2.232 -0.803
8 -2.114 3.251 0.168
9 0.235 0.373 -0.275

10 2.746 -1.069 2.094
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