
G03 – Multivariate Methods

G03DCF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

G03DCF allocates observations to groups according to selected rules. It is intended for use after G03DAF.

2 Specification

SUBROUTINE G03DCF(TYPE, EQUAL, PRIORS, NVAR, NG, NIG, GMEAN, LDG,
1 GC, DET, NOBS, M, ISX, X, LDX, PRIOR, P, LDP,
2 IAG, ATIQ, ATI, WK, IFAIL)
INTEGER NVAR, NG, NIG(NG), LDG, NOBS, M, ISX(M), LDX,
1 LDP, IAG(NOBS), IFAIL
real GMEAN(LDG,NVAR), GC((NG+1)∗NVAR∗(NVAR+1)/2),
1 DET(NG), X(LDX,M), PRIOR(NG), P(LDP,NG),
2 ATI(LDP,∗), WK(2∗NVAR)
LOGICAL ATIQ
CHARACTER∗1 TYPE, EQUAL, PRIORS

3 Description

Discriminant analysis is concerned with the allocation of observations to groups using information from
other observations whose group membership is known, Xt; these are called the training set. Consider
p variables observed on ng populations or groups. Let x̄j be the sample mean and Sj the within-group
variance-covariance matrix for the jth group; these are calculated from a training set of n observations
with nj observations in the jth group, and let xk be the kth observation from the set of observations
to be allocated to the ng groups. The observation can be allocated to a group according to a selected
rule. The allocation rule or discriminant function will be based on the distance of the observation from
an estimate of the location of the groups, usually the group means. A measure of the distance of the
observation from the jth group mean is given by the Mahalanobis distance, D2

kj :

D2
kj = (xk − x̄j)

T S−1
j (xk − x̄j). (1)

If the pooled estimate of the variance-covariance matrix S is used rather than the within-group variance-
covariance matrices, then the distance is:

D2
kj = (xk − x̄j)

T S−1(xk − x̄j). (2)

Instead of using the variance-covariance matrices S and Sj , G03DCF uses the upper triangular matrices
R and Rj supplied by G03DAF such that S = RT R and Sj = RT

j Rj . D2
kj can then be calculated as zT z

where Rjz = (xk − x̄j) or Rz = (xk − x̄j) as appropriate.

In addition to the distances a set of prior probabilities of group membership, πj , for j = 1, 2, . . . , ng,
may be used, with

∑
πj = 1. The prior probabilities reflect the user’s view as to the likelihood

of the observations coming from the different groups. Two common cases for prior probabilities are
π1 = π2 = . . . = πng

, that is equal prior probabilities, and πj = nj/n, for j = 1, 2, . . . , ng, that is prior
probabilities proportional to the number of observations in the groups in the training set.

G03DCF uses one of four allocation rules. In all four rules the p variables are assumed to follow a
multivariate Normal distribution with mean µj and variance-covariance matrix Σj if the observation
comes from the jth group. The different rules depend on whether or not the within-group variance-
covariance matrices are assumed equal, i.e., Σ1 = Σ2 = . . . = Σng

, and whether a predictive or estimative
approach is used. If p(xk|µj ,Σj) is the probability of observing the observation xk from group j, then
the posterior probability of belonging to group j is:

p(j|xk, µj ,Σj) ∝ p(xk|µj ,Σj)πj . (3)
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In the estimative approach the parameters µj and Σj in (3) are replaced by their estimates calculated
from Xt. In the predictive approach a non-informative prior distribution is used for the parameters
and a posterior distribution for the parameters, p(µj ,Σj |Xt), is found. A predictive distribution is then
obtained by integrating p(j|xk, µj ,Σj)p(µj ,Σj |X) over the parameter space. This predictive distribution
then replaces p(xk|µj ,Σj) in (3). See Aitchison and Dunsmore [1], Aitchison et al. [2] and Moran and
Murphy [5] for further details.

The observation is allocated to the group with the highest posterior probability. Denoting the posterior
probabilities, p(j|xk, µj ,Σj), by qj , the four allocation rules are:

(i) Estimative with equal variance-covariance matrices – Linear Discrimination.

log qj ∝ −1
2
D2

kj + log πj

(ii) Estimative with unequal variance-covariance matrices – Quadratic Discrimination.

log qj ∝ −1
2
D2

kj + log πj −
1
2
log |Sj |

(iii) Predictive with equal variance-covariance matrices

q−1
j ∝ ((nj + 1)/nj)

p/2{1 + [nj/((n − ng)(nj + 1))]D2
kj}(n+1−ng)/2

(iv) Predictive with unequal variance-covariance matrices

q−1
j ∝ C{((n2

j − 1)/nj)|Sj |}p/2 1 + (nj/(n
2
j − 1))D2

kj}nj/2

where

C =
Γ(1

2 (nj − p))

Γ(1
2nj)

In the above the appropriate value of D2
kj from (1) or (2) is used. The values of the qj are standardized

so that,
ng∑

j=1

qj = 1.

Moran and Murphy [5] show the similarity between the predictive methods and methods based upon
likelihood ratio tests.

In addition to allocating the observation to a group G03DCF computes an atypicality index, Ij(xk). This
represents the probability of obtaining an observation more typical of group j than the observed xk, see
Aitchison and Dunsmore [1] and Aitchison et al. [2]. The atypicality index is computed as:

Ij(xk) = P (B ≤ z :
1
2
p,

1
2
(nj − d))

where P (B ≤ β : a, b) is the lower tail probability from a beta distribution where for unequal within-group
variance-covariance matrices,

z = D2
kj/(D

2
kj + (n2

j − 1)/nj),

and for equal within-group variance-covariance matrices,

z = D2
kj/(D

2
kj + (n − ng)(nj − 1)/nj).

If Ij(xk) is close to 1 for all groups it indicates that the observation may come from a grouping not
represented in the training set. Moran and Murphy [5] provide a frequentist interpretation of Ij(xk).

4 References

[1] Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge

[2] Aitchison J, Habbema J D F and Kay J W (1977) A critical comparison of two methods of statistical
discrimination Appl. Statist. 26 15–25
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Edition)

[4] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
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5 Parameters

1: TYPE — CHARACTER*1 Input

On entry: whether the estimative or predictive approach is used.

If TYPE = ’E’ the estimative approach is used.

If TYPE = ’P’ the predictive approach is used.

Constraint: TYPE = ’E’ or ‘P’.

2: EQUAL — CHARACTER*1 Input

On entry: indicates whether or not the within-group variance-covariance matrices are assumed to
be equal and the pooled variance-covariance matrix used.

If EQUAL = ’E’ the within-group variance-covariance matrices are assumed equal and the matrix
R stored in the first p(p + 1)/2 elements of GC is used.

If EQUAL = ’U’ the within-group variance-covariance matrices are assumed to be unequal and the
matrices Ri, for i = 1, 2, . . . , ng, stored in the remainder of GC are used.

Constraint: EQUAL = ’E’ or ‘U’.

3: PRIORS — CHARACTER*1 Input

On entry: indicates the form of the prior probabilities to be used.

If PRIORS = ’E’, equal prior probabilities are used.

If PRIORS = ’P’, prior probabilities proportional to the group sizes in the training set, nj , are used.

If PRIORS = ’I’, the prior probabilities are input in PRIOR.

Constraint: PRIORS = ’E’, ‘I’ or ‘P’.

4: NVAR — INTEGER Input

On entry: the number of variables, p, in the variance-covariance matrices.

Constraint: NVAR ≥ 1.

5: NG — INTEGER Input

On entry: the number of groups, ng.

Constraint: NG ≥ 2.

6: NIG(NG) — INTEGER array Input

On entry: the number of observations in each group in the training set, nj .

Constraints:

if EQUAL = ’E’, NIG(j) > 0, for j = 1, 2, . . . , ng and
ng∑

j=1

NIG(j) > NG+NVAR.

If EQUAL = ’U’, NIG(j)> NVAR, for j = 1, 2, . . . , ng.
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7: GMEAN(LDG,NVAR) — real array Input

On entry: the jth row of GMEAN contains the means of the p variables for the jth group, for
j = 1, 2, . . . , nj . These are returned by G03DAF.

8: LDG — INTEGER Input

On entry: the first dimension of the array GMEAN as declared in the (sub)program from which
G03DCF is called.

Constraint: LDG ≥ NG.

9: GC((NG+1)∗NVAR∗(NVAR+1)/2) — real array Input

On entry: the first p(p + 1)/2 elements of GC should contain the upper triangular matrix R and
the next ng blocks of p(p + 1)/2 elements should contain the upper triangular matrices Rj .

All matrices must be stored packed by column. These matrices are returned by G03DAF. If
EQUAL = ’E’ only the first p(p + 1)/2 elements are referenced, if EQUAL = ’U’ only the elements
p(p + 1)/2 + 1 to (ng + 1)p(p + 1)/2 are referenced.

Constraints:

if EQUAL = ’E’ the diagonal elements of R must be 	= 0.0,
if EQUAL = ’U’ the diagonal elements of the Rj must be 	= 0.0, for j = 1, 2, . . . , ng.

10: DET(NG) — real array Input

On entry: if EQUAL = ’U’ the logarithms of the determinants of the within-group variance-
covariance matrices as returned by G03DAF. Otherwise DET is not referenced.

11: NOBS — INTEGER Input

On entry: the number of observations in X which are to be allocated.

Constraint: NOBS ≥ 1.

12: M — INTEGER Input

On entry: the number of variables in the data array X.

Constraint: M ≥ NVAR.

13: ISX(M) — INTEGER array Input

On entry: ISX(l) indicates if the lth variable in X is to be included in the distance calculations.

If ISX(l) > 0 the lth variable is included, for l = 1, 2, . . . ,M; otherwise the lth variable is not
referenced.

Constraint: ISX(l) > 0 for NVAR values of l.

14: X(LDX,M) — real array Input

On entry: X(k, l) must contain the kth observation for the lth variable, for k = 1, 2, . . . ,NOBS;
l = 1, 2, . . . ,M.

15: LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03DCF
is called.

Constraint: LDX ≥ NOBS.
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16: PRIOR(NG) — real array Input/Output

On entry: if PRIORS = ’I’ the prior probabilities for the ng groups.

Constraint: if PRIORS = ’I’, then PRIOR(j) > 0.0 for j = 1, 2, . . . , ng and

∣∣∣∣∣∣
1−

ng∑

j=1

PRIOR(j)

∣∣∣∣∣∣
≤

10× machine precision.

On exit: if PRIORS = ’P’ the computed prior probabilities in proportion to group sizes for the ng

groups. If PRIORS = ’I’ the input prior probabilities will be unchanged, and if PRIORS = ’E’,
PRIOR is not set.

17: P(LDP,NG) — real array Output

On exit: P(k, j) contains the posterior probability pkj for allocating the kth observation to the jth
group, for k = 1, 2, . . . ,NOBS; j = 1, 2, . . . , ng.

18: LDP — INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which G03DCF
is called.

Constraint: LDP ≥ NOBS.

19: IAG(NOBS) — INTEGER array Output

On exit: the groups to which the observations have been allocated.

20: ATIQ — LOGICAL Input

On entry: AITQ must be .TRUE. if atypicality indices are required. If ATIQ is .FALSE. the array
ATI is not set.

21: ATI(LDP,∗) — real array Output

Note. If ATIQ is .TRUE. the second dimension of ATI must be at least NG, if ATIQ is .FALSE.
the second dimension of ATI must be at least 1.

On exit: if AITQ is .TRUE., ATI(k, j) will contain the atypicality index for the kth observation
with respect to the jth group, for k = 1, 2, . . . ,NOBS; j = 1, 2, . . . , ng. If ATIQ is .FALSE., ATI is
not set.

22: WK(2∗NVAR) — real array Workspace

23: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, NVAR < 1,

or NG < 2,

or NOBS < 1,

or M < NVAR,

or LDG < NG,
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or LDX < NOBS,

or LDP < NOBS,

or TYPE 	= ’E’ or ‘P’,

or EQUAL 	= ’E’ or ‘U’,

or PRIORS 	= ’E’, ‘I’ or ‘P’.

IFAIL = 2

On entry, the number of variables indicated by ISX is not equal to NVAR,

or EQUAL = ’E’ and NIG(j) ≤ 0, for some j,

or EQUAL = ’E’ and
ng∑

j=1

NIG(j) ≤ NG+NVAR,

or EQUAL = ’U’ and NIG(j) ≤ NVAR for some j.

IFAIL = 3

On entry, PRIORS = ’I’ and PRIOR(j) ≤ 0.0 for some j,

or PRIORS = ’I’ and
ng∑

j=1

PRIOR(j) is not within 10 × machine precision of 1.

IFAIL = 4

On entry, EQUAL = ’E’ and a diagonal element of R is zero,

or EQUAL = ’U’ and a diagonal element of Rj for some j is zero.

7 Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or Rj

matrices. The atypicality index should be accurate to four significant places.

8 Further Comments

The distances D2
kj can be computed using G03DBF if other forms of discrimination are required.

9 Example

The data, taken from Aitchison and Dunsmore [1], is concerned with the diagnosis of three ‘types’ of
Cushing’s syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two
steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices
are computed by G03DAF. A further six observations of unknown type are input and allocations made
using the predictive approach and under the assumption that the within-group covariance matrices are
not equal. The posterior probabilities of group membership, qj , and the atypicality index are printed
along with the allocated group. The atypicality index shows that observations 5 and 6 do not seem to be
typical of the three types present in the initial 21 observations.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* G03DCF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
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INTEGER NMAX, MMAX, GPMAX
PARAMETER (NMAX=21,MMAX=2,GPMAX=3)

* .. Local Scalars ..
real DF, SIG, STAT
INTEGER I, IFAIL, J, M, N, NG, NOBS, NVAR
CHARACTER EQUAL, TYPE, WEIGHT

* .. Local Arrays ..
real ATI(NMAX,GPMAX), DET(GPMAX),

+ GC((GPMAX+1)*MMAX*(MMAX+1)/2), GMEAN(GPMAX,MMAX),
+ P(NMAX,GPMAX), PRIOR(GPMAX), WK(NMAX*(MMAX+1)),
+ WT(NMAX), X(NMAX,MMAX)
INTEGER IAG(NMAX), ING(NMAX), ISX(MMAX), IWK(GPMAX),

+ NIG(GPMAX)
* .. External Subroutines ..

EXTERNAL G03DAF, G03DCF
* .. Executable Statements ..

WRITE (NOUT,*) ’G03DCF Example Program Results’
* Skip headings in data file

READ (NIN,*)
READ (NIN,*) N, M, NVAR, NG, WEIGHT
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN

IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.’w’) THEN
DO 20 I = 1, N

READ (NIN,*) (X(I,J),J=1,M), ING(I), WT(I)
20 CONTINUE

ELSE
DO 40 I = 1, N

READ (NIN,*) (X(I,J),J=1,M), ING(I)
40 CONTINUE

END IF
READ (NIN,*) (ISX(J),J=1,M)
IFAIL = 0

*
CALL G03DAF(WEIGHT,N,M,X,NMAX,ISX,NVAR,ING,NG,WT,NIG,GMEAN,

+ GPMAX,DET,GC,STAT,DF,SIG,WK,IWK,IFAIL)
*

READ (NIN,*) NOBS, EQUAL, TYPE
IF (NOBS.LE.NMAX) THEN

DO 60 I = 1, NOBS
READ (NIN,*) (X(I,J),J=1,M)

60 CONTINUE
IFAIL = 0

*
CALL G03DCF(TYPE,EQUAL,’Equal priors’,NVAR,NG,NIG,GMEAN,

+ GPMAX,GC,DET,NOBS,M,ISX,X,NMAX,PRIOR,P,NMAX,IAG,
+ .TRUE.,ATI,WK,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Obs Posterior Allocated’,

+ ’ Atypicality’
WRITE (NOUT,*)

+ ’ probabilities to group index’
WRITE (NOUT,*)
DO 80 I = 1, NOBS

WRITE (NOUT,99999) I, (P(I,J),J=1,NG), IAG(I),
+ (ATI(I,J),J=1,NG)

80 CONTINUE
END IF
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END IF
STOP

*
99999 FORMAT (1X,2(I6,5X,3F6.3))

END

9.2 Program Data

G03DCF Example Program Data
21 2 2 3 ’U’
1.1314 2.4596 1
1.0986 0.2624 1
0.6419 -2.3026 1
1.3350 -3.2189 1
1.4110 0.0953 1
0.6419 -0.9163 1
2.1163 0.0000 2
1.3350 -1.6094 2
1.3610 -0.5108 2
2.0541 0.1823 2
2.2083 -0.5108 2
2.7344 1.2809 2
2.0412 0.4700 2
1.8718 -0.9163 2
1.7405 -0.9163 2
2.6101 0.4700 2
2.3224 1.8563 3
2.2192 2.0669 3
2.2618 1.1314 3
3.9853 0.9163 3
2.7600 2.0281 3
1 1
6 ’U’ ’P’
1.6292 -0.9163
2.5572 1.6094
2.5649 -0.2231
0.9555 -2.3026
3.4012 -2.3026
3.0204 -0.2231

9.3 Program Results

G03DCF Example Program Results

Obs Posterior Allocated Atypicality
probabilities to group index

1 0.094 0.905 0.002 2 0.596 0.254 0.975
2 0.005 0.168 0.827 3 0.952 0.836 0.018
3 0.019 0.920 0.062 2 0.954 0.797 0.912
4 0.697 0.303 0.000 1 0.207 0.860 0.993
5 0.317 0.013 0.670 3 0.991 1.000 0.984
6 0.032 0.366 0.601 3 0.981 0.978 0.887
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