G07DBF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G07DBF computes an M-estimate of location with (optional) simultaneous estimation of the scale using Huber's algorithm.

2 Specification

SUBROUTINE GO7DBF(ISIGMA, N, X, IPSI, C, H1, H2, H3, DCHI, THETA,1SIGMA, MAXIT, TOL, RS, NIT, WRK, IFAIL)INTEGERISIGMA, N, IPSI, MAXIT, NIT, IFAILrealX(N), C, H1, H2, H3, DCHI, THETA, SIGMA, TOL,1RS(N), WRK(N)

3 Description

The data consists of a sample of size n, denoted by x_1, x_2, \ldots, x_n , drawn from a random variable X.

The x_i are assumed to be independent with an unknown distribution function of the form

$$F((x_i - \theta)/\sigma)$$

where θ is a location parameter, and σ is a scale parameter. *M*-estimators of θ and σ are given by the solution to the following system of equations:

$$\sum_{i=1}^{n} \psi\left(\left(x_{i} - \hat{\theta}\right) / \hat{\sigma}\right) = 0 \tag{1}$$

$$\sum_{i=1}^{n} \chi\left(\left(x_{i} - \hat{\theta}\right) / \hat{\sigma}\right) = (n-1)\beta$$
(2)

where ψ and χ are given functions, and β is a constant, such that $\hat{\sigma}$ is an unbiased estimator when x_i , for i = 1, 2, ..., n has a normal distribution. Optionally, the second equation can be omitted and the first equation is solved for $\hat{\theta}$ using an assigned value of $\sigma = \sigma_c$.

The values of $\psi\left(\frac{x_i - \hat{\theta}}{\hat{\sigma}}\right)\hat{\sigma}$ are known as the Winsorized residuals.

The following functions are available for ψ and χ in G07DBF;

(a) Null Weights

$$\psi(t) = t$$
 $\chi(t) = \frac{t^2}{2}$

Use of these null functions leads to the mean and standard deviation of the data.

(b) Huber's Function

$$\psi(t) = \max(-c, \min(c, t)) \qquad \qquad \chi(t) = \frac{\|t\|^2}{2} \|t\| \le d$$

$$\chi(t) = \frac{d^2}{2} \|t\| > d$$

(c) Hampel's Piecewise Linear Function

$$\begin{array}{ll} \psi_{h_1,h_2,h_3}(t) &= -\psi_{h_1,h_2,h_3}(-t) \\ &= t & 0 \leq t \leq h_1 \\ &= h_1 & h_1 \leq t \leq h_2 \\ &= h_1(h_3 - t)/(h_3 - h_2) & h_2 \leq t \leq h_3 \\ &= 0 & t > h_3 \end{array} \qquad \qquad \chi(t) = \frac{|t|^2}{2} |t| \leq d \\ \end{array}$$

11.11.9

G07DBF

(d) Andrew's Sine Wave Function

- $\psi(t) = \sin t \qquad -\pi \le t \le \pi \qquad \chi(t) = \frac{|t|^2}{2} |t| \le d$ $= 0 \qquad \text{otherwise} \qquad \chi(t) = \frac{d^2}{2} |t| > d$
- (e) Tukey's Bi-weight

where c, h_1, h_2, h_3 and d are constants.

Equations (1) and (2) are solved by a simple iterative procedure suggested by Huber:

$$\hat{\sigma}_k = \sqrt{\frac{1}{\beta(n-1)} \left(\sum_{i=1}^n \chi\left(\frac{x_i - \hat{\theta}_{k-1}}{\hat{\sigma}_{k-1}}\right)\right)} \hat{\sigma}_{k-1}^2$$

and

$$\hat{\theta}_k = \hat{\theta}_{k-1} + \frac{1}{n} \sum_{i=1}^n \psi\left(\frac{x_i - \hat{\theta}_{k-1}}{\hat{\sigma}_k}\right) \hat{\sigma}_k$$

or

The initial values for $\hat{\theta}$ and $\hat{\sigma}$ may either be user-supplied or calculated within G07DBF as the sample median and an estimate of σ based on the median absolute deviation respectively.

 $\hat{\sigma}_k = \sigma_c,$ if σ is fixed.

G07DBF is based upon subroutine LYHALG within the ROBETH library, see Marazzi [3].

4 References

- [1] Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach Based on Influence Functions Wiley
- [2] Huber P J (1981) Robust Statistics Wiley
- [3] Marazzi A (1987) Subroutines for robust estimation of location and scale in ROBETH *Cah. Rech. Doc. IUMSP, No. 3 ROB 1* Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Parameters

1: ISIGMA — INTEGER

On entry: the value assigned to ISIGMA determines whether $\hat{\sigma}$ is to be simultaneously estimated.

ISIGMA = 0

The estimation of $\hat{\sigma}$ is bypassed and SIGMA is set equal to σ_c ;

ISIGMA = 1

 $\hat{\sigma}$ is estimated simultaneously.

2: N — INTEGER

On entry: the number of observations, n.

Constraint: N > 1.

3: X(N) - real array

On entry: the vector of observations, x_1, x_2, \ldots, x_n .

Input atod

Input

Input

[NP3390/19/pdf]

4: IPSI — INTEGER

On entry: which ψ function is to be used.

ISPSI = 0,

ISPSI = 1,

Huber's function,

ISPSI = 2,

Hampel's piecewise linear function,

ISPSI = 3,

Andrew's sine wave,

ISPSI = 4,

Tukey's bi-weight.

5: C — *real*

If ISPSI = 1 on entry, C must specify the parameter, c, of Huber's ψ function. C is not referenced if ISPSI $\neq 1$.

 $\psi(t) = t$

Constraint: C > 0.0 if ISPSI = 1.

6: H1 — *real*

7: H2 — *real*

8: H3 — real

If ISPSI = 2 on entry, H1, H2, and H3 must specify the parameters h_1 , h_2 , and h_3 , of Hampel's piecewise linear ψ function. H1, H2, and H3 are not referenced if ISPSI $\neq 2$. Constraint: $0 \leq H1 \leq H2 \leq H3$ and H3 > 0.0 if ISPSI = 2.

9: DCHI — real

On entry: the parameter, d, of the χ function. DCHI is not referenced if ISPSI = 0.

Constraint: DCHI > 0.0 if ISPSI \neq 0.

10: THETA — real

On entry: if SIGMA > 0 then THETA must be set to the required starting value of the estimation of the location parameter $\hat{\theta}$. A reasonable initial value for $\hat{\theta}$ will often be the sample mean or median.

On exit: the M-estimate of the location parameter, $\hat{\theta}$.

11: SIGMA — real

The role of SIGMA depends on the value assigned to ISIGMA (see above) as follows:

ISIGMA = 1

On entry: SIGMA must be assigned a value which determines the values of the starting points for the calculations of $\hat{\theta}$ and $\hat{\sigma}$. If SIGMA ≤ 0.0 then G07DBF will determine the starting points of $\hat{\theta}$ and $\hat{\sigma}$. Otherwise the value assigned to SIGMA will be taken as the starting point for $\hat{\sigma}$, and THETA must be assigned a value before entry, see above.

$\mathrm{ISIGMA}=0$

On entry: SIGMA must be assigned a value which determines the value of σ_c , which is held fixed during the iterations, and the starting value for the calculation of $\hat{\theta}$. If SIGMA ≤ 0 , then G07DBF will determine the value of σ_c as the median absolute deviation adjusted to reduce bias (see G07DAF) and the starting point for $\hat{\theta}$. Otherwise, the value assigned to SIGMA will be taken as the value of σ_c and THETA must be assigned a relevant value before entry, see above.

On exit: SIGMA contains the *M*-estimate of the scale parameter, $\hat{\sigma}$, if ISIGMA was assigned the value 1 on entry, otherwise SIGMA will contain the initial fixed value σ_c .

G07DBF

Input

Input

Workspace

Input

Input

Input

Input/Output

Input/Output

G07DBF.3

12:	MAXIT — INTEGER In	put
	On entry: the maximum number of iterations that should be used during the estimation.	
	Suggested value: $MAXIT = 50.$	
	Constraint: MAXIT > 0 .	
13:	TOL — real	put
	On entry: the relative precision for the final estimates. Convergence is assumed when the increme for THETA, and SIGMA are less than $\text{TOL} \times \max(1.0, \sigma_{k-1})$.	nts
	Constraint: $TOL > 0.0$.	
14:	RS(N) - real array Out	put
	On exit: the Winsorized residuals.	
15:	NIT — INTEGER Out	put
	On exit: the number of iterations that were used during the estimation.	
16:	WRK(N) - real array Out	put
	On exit: if SIGMA ≤ 0.0 on entry, WRK will contain the <i>n</i> observations in ascending order.	
17:	IFAIL — INTEGER Input/Out	put
	On entry: IFAIL must be set to $0, -1$ or 1 . For users not familiar with this parameter (describe in Chapter P01) the recommended value is 0 .	oed

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

 $\begin{array}{ll} {\rm On\ entry}, & {\rm N} \leq 1, \\ & {\rm or} & {\rm MAXIT} \leq 0, \\ & {\rm or} & {\rm TOL} \leq 0.0, \\ & {\rm or} & {\rm ISIGMA} \neq 0 \ {\rm or} \ 1, \\ & {\rm or} & {\rm ISPSI} < 0, \\ & {\rm or} & {\rm ISPSI} > 4. \end{array}$

$\mathrm{IFAIL}=2$

On entry, $C \le 0.0$ and ISPSI = 1, or H1 < 0.0 and ISPSI = 2, or H1 = H2 = H3 = 0.0 and ISPSI = 2, or H1 > H2 and ISPSI = 2, or H1 > H3 and ISPSI = 2, or H2 > H3 and ISPSI = 2, or H2 > H3 and ISPSI = 2, or $DCHI \le 0.0$ and $ISPSI \ne 0$.

IFAIL = 3

On entry, all elements of the input array X are equal.

IFAIL = 4

SIGMA, the current estimate of σ , is zero or negative. This error exit is very unlikely, although it may be caused by too large an initial value of SIGMA.

IFAIL = 5

The number of iterations required exceeds MAXIT.

IFAIL = 6

On completion of the iterations, the Winsorized residuals were all zero. This may occur when using the ISIGMA = 0 option with a redescending ψ function, i.e., Hampel's piecewise linear function, Andrew's sine wave, and Tukey's biweight.

If the given value of σ is too small, then the standardised residuals $\left(\frac{x_i - \hat{\theta}_k}{\sigma}\right)_c$, will be large and all the residuals may fall into the region for which $\psi(t) = 0$. This may incorrectly terminate the iterations thus making THETA and SIGMA invalid.

Re-enter the routine with a larger value of σ_c or with ISIGMA = 1.

7 Accuracy

On successful exit the accuracy of the results is related to the value of TOL, see Section 5.

8 Further Comments

When the user supplies the initial values, care has to be taken over the choice of the initial value of σ . If too small a value of σ is chosen then initial values of the standardized residuals $\frac{x_i - \hat{\theta}_k}{\sigma}$ will be large. If the redescending ψ functions are used, i.e., Hampel's piecewise linear function, Andrew's sine wave, or Tukey's bi-weight, then these large values of the standardised residuals are Winsorized as zero. If a sufficient number of the residuals fall into this category then a false solution may be returned, see Hampel [1] page 152.

9 Example

The following program reads in a set of data consisting of eleven observations of a variable X.

For this example, Hampels's Piecewise Linear Function is used (ISPSI = 2), values for h_1 , h_2 and h_3 along with d for the χ function, being read from the data file.

Using the following starting values various estimates of θ and σ are calculated and printed along with the number of iterations used:

- (a) G07DBF determines the starting values, σ is estimated simultaneously.
- (b) The user supplies the starting values, σ is estimated simultaneously.
- (c) G07DBF determines the starting values, σ is fixed.
- (d) The user supplies the starting values, σ is fixed.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- GO7DBF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters .. INTEGER NIN, NOUT PARAMETER (NIN=5,NOUT=6)

```
NMAX
     INTEGER
     PARAMETER
                     (NMAX=25)
      .. Local Scalars ..
*
                     C, DCHI, H1, H2, H3, SIGMA, SIGSAV, THESAV,
     real
    +
                     THETA, TOL
     INTEGER
                     I, IFAIL, IPSI, ISIGMA, MAXIT, N, NIT
     .. Local Arrays ..
*
                     RS(NMAX), WRK(NMAX), X(NMAX)
     real
     .. External Subroutines ..
*
     EXTERNAL GO7DBF
     .. Executable Statements ..
     WRITE (NOUT,*) 'GO7DBF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) N
     WRITE (NOUT,*)
     IF (N.LE.NMAX) THEN
        READ (NIN,*) (X(I),I=1,N)
        READ (NIN,*) IPSI, H1, H2, H3, DCHI, MAXIT
        WRITE (NOUT,*)
          ,
    +
                     Input parameters
                                          Output parameters'
        WRITE (NOUT,*) 'ISIGMA SIGMA THETA TOL
                                                        SIGMA THETA'
  20
        READ (NIN,*,END=40) ISIGMA, SIGMA, THETA, TOL
        SIGSAV = SIGMA
        THESAV = THETA
        IFAIL = 0
*
        CALL GO7DBF(ISIGMA,N,X,IPSI,C,H1,H2,H3,DCHI,THETA,SIGMA,MAXIT,
                    TOL, RS, NIT, WRK, IFAIL)
    +
*
        WRITE (NOUT, 99999) ISIGMA, SIGSAV, THESAV, TOL, SIGMA, THETA
        GO TO 20
     ELSE
        WRITE (NOUT,99998) 'N is out of range: N =', N
     END IF
  40 STOP
*
99999 FORMAT (1X,I3,3X,2F8.4,F7.4,F9.4,F8.4,I4)
99998 FORMAT (1X,A,I5)
     END
```

9.2 Program Data

```
      G07DBF Example Program Data

      11
      : NUMBER OF OBSERVATIONS

      13.0
      11.0
      16.0
      5.0
      3.0
      18.0
      9.0
      8.0
      6.0
      27.0
      7.0
      : OBSERVATIONS

      2
      1.5
      3.0
      4.5
      1.5
      50
      : IPSI
      H1
      H2
      H3
      DCHI
      MAXIT

      1
      -1.0
      0.0
      0.0001
      : ISIGMA
      SIGMA
      THETA
      TOL

      1
      7.0
      2.0
      0.0001
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0<
```

G07DBF Example Program Results

Input	paramet	ters	Output parameters		
SIGMA	THETA	TOL	SIGMA	THETA	
-1.0000	0.0000	0.0001	6.3247	10.5487	
7.0000	2.0000	0.0001	6.3249	10.5487	
-1.0000	0.0000	0.0001	5.9304	10.4896	
7.0000	2.0000	0.0001	7.0000	10.6500	
	SIGMA -1.0000 7.0000 -1.0000	SIGMA THETA -1.0000 0.0000 7.0000 2.0000 -1.0000 0.0000	Input parameters SIGMA THETA TOL -1.0000 0.0000 0.0001 7.0000 2.0000 0.0001 -1.0000 0.0000 0.0001 7.0000 2.0000 0.0001	SIGMA THETA TOL SIGMA -1.0000 0.0000 0.0001 6.3247 7.0000 2.0000 0.0001 6.3249 -1.0000 0.0000 0.0001 5.9304	