G10ACF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G10ACF estimates the values of the smoothing parameter and fits a cubic smoothing spline to a set of data.

2 Specification

```
SUBROUTINE G10ACF (METHOD, WEIGHT, N, X, Y, WT, YHAT, C, LDC, RSS,1DF, RES, H, CRIT, RHO, U, TOL, MAXCAL, WK, IFAIL)INTEGERN, LDC, MAXCAL, IFAILrealX(N), Y(N), WT(*), YHAT(N), C(LDC,3), RSS, DF,1RES(N), H(N), CRIT, RHO, U, TOL, WK(7*(N+2))CHARACTER*1METHOD, WEIGHT
```

3 Description

For a set of n observations (x_i, y_i) , i = 1, 2, ..., n, the spline provides a flexible smooth function for situations in which a simple polynomial or non-linear regression model is not suitable.

Cubic smoothing splines arise as the unique real-valued solution function f, with absolutely continuous first derivative and squared-integrable second derivative, which minimises:

$$\sum_{i=1}^{n} w_i \{y_i - f(x_i)\}^2 + \rho \int_{-\infty}^{\infty} \{f''(x)\}^2 \, dx,$$

where w_i is the (optional) weight for the *i*th observation and ρ is the smoothing parameter. This criterion consists of two parts: the first measures the fit of the curve and the second the smoothness of the curve. The value of the smoothing parameter ρ weights these two aspects, larger values of ρ give a smoother fitted curve but, in general, a poorer fit. For details of how the cubic spline can be fitted see Hutchinson and de Hoog [3] and Reinsch [4].

The fitted values, $\hat{y} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n)^T$, and weighted residuals, r_i , can be written as:

$$\hat{y} = Hy$$
 and $r_i = \sqrt{w_i}(y_i - \hat{y}_i)$

for a matrix H. The residual degrees of freedom for the spline is trace(I - H) and the diagonal elements of H are the leverages.

The parameter ρ can be estimated in a number of ways.

- (1) The degrees of freedom for the spline can be specified, i.e., find ρ such that trace $(H) = \nu_0$ for given ν_0 .
- (2) Minimise the cross-validation (CV), i.e., find ρ such that the CV is minimised, where

$$CV = \frac{1}{\sum_{i=1}^{n} w_i} \sum_{i=1}^{n} \left[\frac{r_i}{1 - h_{ii}} \right]^2$$

(3) Minimise the generalised cross-validation (GCV), i.e., find ρ such that the GCV is minimised, where

$$GCV = \frac{n^2}{\sum_{i=1}^{n} w_i} \left[\frac{\sum_{i=1}^{n} r_i^2}{\left(\sum_{i=1}^{n} (1-h_{ii})\right)^2} \right].$$

G10ACF requires the x_i 's to be strictly increasing. If two or more observations have the same x_i value then they should be replaced by a single observation with y_i equal to the (weighted) mean of the y values and weight, w_i , equal to the sum of the weights. This operation can be performed by G10ZAF.

The algorithm is based on Hutchinson [2]. C05AZF is used to solve for ρ given ν_0 and the method of E04ABF is used to minimise the GCV or CV.

4 References

- [1] Hastie T J and Tibshirani R J (1990) Generalized Additive Models Chapman and Hall
- [2] Hutchinson M F (1986) Algorithm 642: A fast procedure for calculating minimum cross-validation cubic smoothing splines ACM Trans. Math. Software 12 150–153
- [3] Hutchinson M F and de Hoog F R (1985) Smoothing noisy data with spline functions Numer. Math.
 47 99–106
- [4] Reinsch C H (1967) Smoothing by spline functions Numer. Math. 10 177–183

5 Parameters

1: METHOD — CHARACTER*1

On entry: indicates whether the smoothing parameter is to be found by minimization of the CV or GCV functions, or by finding the smoothing parameter corresponding to a specified degrees of freedom value.

If METHOD = 'C' cross-validation is used.

If METHOD = 'D' the degrees of freedom are specified.

If METHOD = 'G' generalized cross-validation is used.

Constraint: METHOD = 'C', 'D' or 'G'.

2: WEIGHT — CHARACTER*1

On entry: indicates whether user-defined weights are to be used.

If WEIGHT = 'W' user-defined weights should be supplied in WT.

If WEIGHT = 'U' the data is treated as unweighted.

Constraint: WEIGHT = 'W' or 'U'.

3: N — INTEGER

On entry: the number of observations, n. Constraint: $N \geq 3$.

4: X(N) - real array Input

On entry: the distinct and ordered values x_i for i = 1, 2, ..., n.

Constraint: X(i) < X(i+1), i = 1, 2, ..., n-1.

- 5: Y(N) real array On entry: the values y_i for i = 1, 2, ..., n.
- 6: WT(*) real array

Note: the dimension of the array WT must be at least 1 if WEIGHT = 'U' and N if WEIGHT = 'W'. On entry: if WEIGHT = 'W' then WT must contain the n weights. If WEIGHT = 'U' then WT is not referenced and unit weights are assumed.

Constraint: if WEIGHT = 'W' then WT(i) > 0.0 for i = 1, 2, ..., n.

Input

Input

Input

Input

Input

YHAT(N) - real array

7:

On exit: the fitted values, \hat{y}_i for i = 1, 2, ..., n. 8: C(LDC,3) - real array On exit: the spline coefficients. More precisely, the value of the spline approximation at t is given by $((\mathbf{C}(i,3) \times d + \mathbf{C}(i,2)) \times d + \mathbf{C}(i,1)) \times d + \hat{y}_i$, where $x_i \leq t < x_{i+1}$ and $d = t - x_i$. 9: LDC — INTEGER On entry: the first dimension of the array C as declared in the (sub)program from which G10ACF is called. Constraint: LDC \geq N - 1. 10: RSS - realOn exit: the (weighted) residual sum of squares. 11: DF - *real* On exit: the residual degrees of freedom. If METHOD = 'D' this will be n - CRIT to the required accuracy. 12: $\operatorname{RES}(N) - real$ array On exit: the (weighted) residuals, r_i for i = 1, 2, ..., n.

13: H(N) — *real* array On exit: the leverages, h_{ii} for $i = 1, 2, \ldots, n$.

14: CRIT — *real*

On entry: if METHOD = 'D', the required degrees of freedom for the spline. If METHOD = 'C' or 'G', CRIT need not be set.

Constraint: $2.0 < CRIT \le N$.

On exit: if METHOD = 'C', the value of the cross-validation, or if METHOD = 'G' the value of the generalized cross-validation function, evaluated at the value of ρ returned in RHO.

15: RHO — *real*

On exit: the smoothing parameter, ρ .

16: U - real

On entry: the upper bound on the smoothing parameter. See Section 8 for details on how this parameter is used.

Constraint: U > TOL.

Suggested value: U = 1000.0.

17: TOL - real

On entry: the accuracy to which the smoothing parameter RHO is required. TOL should be preferably not much less than $\sqrt{\epsilon}$, where ϵ is the *machine precision*.

Constraint: $TOL \ge machine \ precision$.

On entry: the maximum number of spline evaluations to be used in finding the value of ρ .

Constraint: MAXCAL ≥ 3 .

Suggested value: MAXCAL = 30.

19: WK(7*(N+2)) — *real* array

[NP3390/19/pdf]

Output

Output

Input

Output

Output

Output

Output

Input/Output

Output

Input

Input

Workspace

20: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, N < 3, or LDC < N - 1, or METHOD is not 'C', 'G' or 'D', or WEIGHT is not 'W' or 'U', or METHOD = 'D' and CRIT ≤ 2.0 , or METHOD = 'D' and CRIT > N, or TOL < *machine precision*, or U \leq TOL,

or MAXCAL < 3.

IFAIL = 2

On entry, WEIGHT = 'W' and at least one element of WT ≤ 0.0 .

IFAIL = 3

On entry, $X(i) \ge X(i+1)$, for some i, i = 1, 2, ..., n-1.

IFAIL = 4

METHOD = 'D' and the required value of ρ for specified degrees of freedom > U. Try a larger value of U, see Section 8.

IFAIL = 5

 $\mathrm{METHOD}=\mathrm{'D'}$ and the accuracy given by TOL cannot be achieved. Try increasing the value of TOL.

IFAIL = 6

A solution to the accuracy given by TOL has not been achieved in MAXCAL iterations. Try increasing the value of TOL and/or MAXCAL.

IFAIL = 7

METHOD = 'C' or 'G' and the optimal value of $\rho > U$. Try a larger value of U, see Section 8.

7 Accuracy

When minimising the cross-validation or generalised cross-validation, the error in the estimate of ρ should be within $\pm 3(\text{TOL} \times \text{RHO} + \text{TOL})$. When finding ρ for a fixed number of degrees of freedom the error in the estimate of ρ should be within $\pm 2 \times \text{TOL} \times \max(1, \text{RHO})$.

Given the value of ρ , the accuracy of the fitted spline depends on the value of ρ and the position of the x values. The values of $x_i - x_{i-1}$ and w_i are scaled and ρ is transformed to avoid underflow and overflow problems.

8 Further Comments

The time to fit the spline for a given value of ρ is of order n.

When finding the value of ρ that gives the required degrees of freedom, the algorithm examines the interval 0.0 to U. For small degrees of freedom the value of ρ can be large, as in the theoretical case of two degrees of freedom when the spline reduces to a straight line and ρ is infinite. If the CV or GCV is to be minimised then the algorithm searches for the minimum value in the interval 0.0 to U. If the function is decreasing in that range then the boundary value of U will be returned. In either case, the larger the value of U the more likely is the interval to contain the required solution, but the process will be less efficient.

Regression splines with a small (< n) number of knots can be fitted by E02BAF and E02BEF.

9 Example

The data, given by Hastie and Tibshirani [1], is the age, x_i , and C-peptide concentration (pmol/ml), y_i , from a study of the factors affecting insulin-dependent diabetes mellitus in children. The data is input, reduced to a strictly ordered set by G10ZAF and a spline with 5 degrees of freedom is fitted by G10ACF. The fitted values and residuals are printed.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
G10ACF Example Program Text
*
     Mark 16 Release. NAG Copyright 1992.
*
*
      .. Parameters ..
     INTEGER
                       NIN, NOUT
     PARAMETER.
                       (NIN=5,NOUT=6)
     INTEGER
                       NMAX, LDC
     PARAMETER
                       (NMAX=50, LDC=49)
      .. Local Scalars ..
     real
                       CRIT, DF, RHO, RSS, TOL, U
     INTEGER
                       I, IFAIL, MAXCAL, N, NORD
     CHARACTER
                       METHOD, WEIGHT
      .. Local Arrays .
                       C(LDC,3), H(NMAX), RES(NMAX), WK(7*(NMAX+2)),
     real
                       WT(NMAX), WWT(NMAX), X(NMAX), XORD(NMAX),
     +
                       Y(NMAX), YHAT(NMAX), YORD(NMAX)
     INTEGER
                       IWRK(NMAX)
      .. External Subroutines ..
     EXTERNAL
                       G10ACF, G10ZAF
      .. Executable Statements ..
     WRITE (NOUT,*) 'G10ACF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) N
     IF (N.LE.NMAX) THEN
        READ (NIN,*) METHOD, WEIGHT
         IF (WEIGHT.EQ.'U' .OR. WEIGHT.EQ.'u') THEN
            READ (NIN, *) (X(I), Y(I), I=1, N)
         ELSE
            READ (NIN,*) (X(I),Y(I),WT(I),I=1,N)
         END IF
        READ (NIN,*) U, TOL, MAXCAL, CRIT
        IFAIL = 0
*
```

```
IFAIL = 0
*
*
         Sort data, removing ties and weighting accordingly
*
         CALL G10ZAF(WEIGHT, N, X, Y, WT, NORD, XORD, YORD, WWT, RSS, IWRK, IFAIL)
         Fit cubic spline
*
*
         CALL G10ACF(METHOD, 'W', NORD, XORD, YORD, WWT, YHAT, C, LDC, RSS, DF,
                     RES, H, CRIT, RHO, U, TOL, MAXCAL, WK, IFAIL)
     +
*
         Print results
         WRITE (NOUT,*)
         WRITE (NOUT,99999) RSS
         WRITE (NOUT,99998) DF
         WRITE (NOUT, 99997) RHO
         WRITE (NOUT,99996)
         DO 20 I = 1, NORD
            WRITE (NOUT,99995) I, XORD(I), YORD(I), YHAT(I), H(I)
   20
         CONTINUE
      END IF
      STOP
*
99999 FORMAT (' Residual sum of squares = ',F10.2)
99998 FORMAT (' Degrees of freedom = ',F10.2)
99997 FORMAT (' RHO = ',F10.2)
99996 FORMAT (/'
                    Input data',16X,'Output results',/' I X ',
    + 'Y ',9X,'YHAT
                                    H')
99995 FORMAT (14,2F8.3,6X,2F8.3)
      END
```

9.2 Program Data

G10ACF Example Program Data 43 'D', 'U' 5.2 4.8 8.8 4.1 10.5 5.2 10.6 5.5 10.4 5.0 1.8 3.4 12.7 3.4 15.6 4.9 5.8 5.6 1.9 3.7 2.2 3.9 4.8 4.5 7.9 4.8 5.2 4.9 0.9 3.0 11.8 4.6 7.9 4.8 11.5 5.5 10.6 4.5 8.5 5.3 11.1 4.7 12.8 6.6 11.3 5.1 1.0 3.9 14.5 5.7 11.9 5.1 8.1 5.2 13.8 3.7 15.5 4.9 9.8 4.8 11.0 4.4 12.4 5.2 11.1 5.1 5.1 4.6 4.8 3.9 4.2 5.1 6.9 5.1 13.2 6.0 9.9 4.9 12.5 4.1 13.2 4.6 8.9 4.9 10.8 5.1 10000 0.001 40 12.0

9.3 Program Results

G10ACF Example Program Results

```
Residual sum of squares = 10.35
Degrees of freedom = 25.00
RHO = 2.68
```

	Input data		Output results	
I	Х	Y	YHAT H	
1	0.900	3.000	3.373 0.534	
2	1.000	3.900	3.406 0.427	
3	1.800	3.400	3.642 0.313	
4	1.900	3.700	3.686 0.313	
5	2.200	3.900	3.839 0.448	
6	4.200	5.100	4.614 0.564	
7	4.800	4.200	4.576 0.442	
8	5.100	4.600	4.715 0.189	
9	5.200	4.850	4.783 0.407	
10	5.800	5.600	5.193 0.455	
11	6.900	5.100	5.184 0.592	
12	7.900	4.800	4.958 0.530	
13	8.100	5.200	4.931 0.235	
14	8.500	5.300	4.845 0.245	
15	8.800	4.100	4.763 0.271	
16	8.900	4.900	4.748 0.292	
17	9.800	4.800	4.850 0.301	
18	9.900	4.900	4.875 0.277	
19	10.400	5.000	4.970 0.173	
20	10.500	5.200	4.977 0.154	
21	10.600	5.000	4.979 0.285	
22	10.800	5.100	4.970 0.136	
23	11.000	4.400	4.961 0.137	
24	11.100	4.900	4.964 0.284	
25	11.300	5.100	4.975 0.162	
26	11.500	5.500	4.975 0.186	
27	11.800	4.600	4.930 0.213	
28	11.900	5.100	4.911 0.220	
29	12.400	5.200	4.852 0.206	
30	12.500	4.100	4.857 0.196	
31	12.700	3.400	4.900 0.189	
32	12.800	6.600	4.932 0.193	
33	13.200	5.300	4.955 0.488	
34	13.800	3.700	4.797 0.408	
35	14.500	5.700	5.076 0.559	
36	15.500	4.900	4.979 0.445	
37	15.600	4.900	4.946 0.535	