G13BGF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G13BGF accepts a series of new observations of an output time series and any associated input time series, for which a multi-input model is already fully specified, and updates the 'state set' information for use in constructing further forecasts.

The previous specification of the multi-input model will normally have been obtained by using G13BEF to estimate the relevant transfer function and ARIMA parameters. The supplied state set will originally have been produced by G13BEF (or possibly G13BJF), but may since have been updated by G13BGF.

2 Specification

SUBROUTINE G1	3BGF(STTF, NSTTF, MR, NSER, MT, PARA, NPARA, NNV,
1	XXYN, IXXYN, KZEF, RES, WA, IWA, IFAIL)
INTEGER	NSTTF, MR(7), NSER, MT(4,NSER), NPARA, NNV,
1	IXXYN, KZEF, IWA, IFAIL
real	STTF(NSTTF), PARA(NPARA), XXYN(IXXYN,NSER),
1	RES(NNV), WA(IWA)

3 Description

The multi-input model is specified in Section 3 of the document for G13BEF. The form of these equations required to update the state set is as follows:

$$z_{t} = \delta_{1} z_{t-1} + \delta_{2} z_{t-2} + \ldots + \delta_{p} z_{t-p} + \omega_{0} x_{t-b} - \omega_{1} x_{t-b-1} - \ldots - \omega_{q} x_{t-b-q}$$

the transfer models which generate input component values $z_{i,t}$ from one or more inputs $x_{i,t}$,

$$n_t = y_t - z_{1,t} - z_{2,t} - \dots - z_{m,t}$$

which generates the output noise component from the output y_t and the input components, and

$$\begin{array}{ll} w_t &= \nabla^d \nabla^D_s n_t - c \\ e_t &= w_t - \Phi_1 w_{t-s} - \Phi_2 w_{t-2 \times s} - \ldots - \Phi_P w_{t-P \times s} + \Theta_1 e_{t-s} + \Theta_2 e_{t-2 \times s} + \ldots + \Theta_Q e_{t-Q \times s} \\ a_t &= e_t - \phi_1 e_{t-1} - \phi_2 e_{t-2} - \ldots - \phi_n e_{t-n} + \theta_1 a_{t-1} + \theta_2 a_{t-2} + \ldots + \theta_q a_{t-q} \end{array}$$

the ARIMA model for the output noise which generates the residuals a_t .

The state set (as also given in Section 3 of the document for G13BEF) is the collection of terms

$$z_{n+1-k}, x_{n+1-k}, n_{n+1-k}, w_{n+1-k}, e_{n+1-k}$$
 and a_{n+1-k}

for k = 1 up to the maximum lag associated with each of these series respectively, in the above model equations. n is the latest time point of the series from which the state set has been generated.

The routine accepts further values of the series $y_t, x_{1,t}, x_{2,t}, \ldots, x_{m,t}$ for $t = n + 1, n + 2, \ldots, n + l$, and applies the above model equations over this time range, to generate new values of the various model components, noise series and residuals. The state set is reconstructed, corresponding to the latest time point n + l, the earlier values being discarded.

The set of residuals corresponding to the new observations may be of use in checking that the new observations conform to the previously fitted model. The components of the new observations of the output series which are due to the various inputs, and the noise component, are also optionally returned.

The parameters of the model are not changed in this routine.

[NP3390/19/pdf]

References 4

[1] Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control Holden–Day (Revised Edition)

5 **Parameters**

 $\text{STTF}(\text{NSTTF}) - real \operatorname{array}$ 1:

> On entry: the NSTTF values in the state set before updating as returned by G13BEF, G13BJF or a previous call to G13BGF.

On exit: the state set values after updating.

NSTTF — INTEGER 2:

On entry: the exact number of values in the state set array STTF as returned by G13BEF or G13BJF.

3: MR(7) — INTEGER array

On entry: the orders vector (p, d, q, P, D, Q, s) of the ARIMA model for the output noise component.

p, q, P and Q refer respectively to the number of autoregressive (ϕ), moving average (θ), seasonal autoregressive (Φ) and seasonal moving average (Θ) parameters.

d, D and s refer respectively to the order of non-seasonal differencing, the order of seasonal differencing, and the seasonal period.

NSER — INTEGER 4:

On entry: the total number of input and output series. There may be any number of input series (including none), but only one output series.

5: MT(4,NSER) — INTEGER array

On entry: the transfer function model orders b, p and q of each of the input series. The data for input series i are held in column i. Row 1 holds the value b_i , row 2 holds the value q_i and row 3 holds the value p_i . For a simple input, $b_i = q_i = p_i = 0$.

Row 4 holds the value r_i , where $r_i = 1$ for a simple input and $r_i = 2$ or 3 for a transfer function input. When $r_i = 1$ any non-zero contents of rows 1, 2 and 3 of column *i* are ignored. The choice of $r_i = 2$ or $r_i = 3$ is an option for use in model estimation and does not affect the operation of this routine.

Constraint: MT(4,i) = 1,2 or 3 for i = 1, 2, ..., NSER-1.

PARA(NPARA) — *real* array 6:

On entry: estimates of the multi-input model parameters as returned by G13BEF. These are in order, firstly the ARIMA model parameters: p values of ϕ parameters, q values of θ parameters, P values of Φ parameters and Q values of Θ parameters. These are followed by the transfer function model parameter values $\omega_0, \omega_1, \ldots, \omega_{q_1}, \delta_1, \delta_2, \ldots, \delta_{p_1}$ for the first of any input series and similarly for each subsequent input series. The final component of PARA is the value of the constant c.

NPARA — INTEGER 7:

On entry: the exact number of ϕ , θ , Φ , Θ , ω , δ and c parameters. (c must be included whether its value was previously estimated or was set fixed.)

8: NNV — INTEGER

On entry: the number of new observation sets being used to update the state set, each observation set consisting of a value of the output series and the associated values of each of the input series at a particular time point.

[NP3390/19/pdf]

Input/Output

Input

Input

Input

Input

Input

Input

Input

G13BGF is called.

10: IXXYN — INTEGER

Constraint: IXXYN \geq NNV.

11: KZEF — INTEGER

On entry: KZEF must not be set to 0, if the values of the input component series z_t and the values of the output noise component n_t are to overwrite the contents of XXYN on exit, and must be set to 0 if XXYN is to remain unchanged on exit.

On entry: the NNV new observation sets being used to update the state set. Column i contains the values of input series i. Column NSER contains the values of the output series. Consecutive rows

If KZEF $\neq 0$, the columns of XXYN hold the corresponding values of the input component series

On entry: the first dimension of the array XXYN as declared in the (sub)program from which

12: RES(NNV) - real array

On exit: the values of the residual series a_t corresponding to the new observations of the output series.

- 13: WA(IWA) real array
- 14: IWA INTEGER

On entry: the dimension of the array WA as declared in the (sub)program from which G13BGF is called.

Constraint: IWA \geq NNV + 2 × NSTTF + max(NNV,NSTTF) + max(NNV,ncc), where $ncc = 4 \times (p + q + P + Q)$.

15: IFAIL — INTEGER

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

 $\mathrm{IFAIL}=1$

On entry, NSTTF is not consistent with the orders in arrays MR and MT.

IFAIL = 2

On entry, NPARA is not consistent with the orders in arrays MR and MT.

IFAIL = 3

On entry, IXXYN is too small.

IFAIL = 4

On entry, IWA is too small.

IFAIL = 5

On entry, one of the r_i , stored in MT(4,i), for i = 1, 2, ..., NSER-1 does not equal 1, 2 or 3.

[NP3390/19/pdf]

XXYN(IXXYN,NSER) — *real* array

correspond to increasing time sequence.

On exit: if KZEF = 0, XXYN remains unchanged.

 \boldsymbol{z}_t and the output noise component $\boldsymbol{n}_t,$ in that order.

9:

Input/Output

Input

Output

Workspace

Input/Output

Input

Input

7 Accuracy

The computations are believed to be stable.

8 Further Comments

The time taken by the routine is approximately proportional to NNV \times NPARA.

9 Example

The example uses the data described in G13BEF in which 40 observations of an output time series and a single input series were processed. In this example a model which included seasonal differencing of order 1 was used. The 10 values of the state set and the 5 final values of PARA then obtained are used as input to this program, together with the values of 4 new observations and the transfer function orders of the input series. The model used is $\phi_1 = 0.5158$, $\Theta_1 = 0.9994$, $\omega_0 = 8.6343$, $\delta_1 = 0.6726$, c = -0.3172.

The following are computed and printed out: the updated state set, the residuals a_t and the values of the components z_t and the output noise component n_t corresponding to the new observations.

9.1 Program Text

```
G13BGF Example Program Text
*
     Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
     INTEGER
                      NSERMX, NPMAX, NSTTFM, NNVMAX, IXXYN, IWA
     PARAMETER
                      (NSERMX=2, NPMAX=10, NSTTFM=20, NNVMAX=40,
                       IXXYN=NNVMAX, IWA=160)
     +
     INTEGER
                      NIN, NOUT
                      (NIN=5,NOUT=6)
     PARAMETER
      .. Local Scalars ..
     INTEGER
                       I, IFAIL, J, KZEF, NNV, NPARA, NSER, NSTTF
      .. Local Arrays ..
                       PARA(NPMAX), RES(NNVMAX), STTF(NSTTFM), WA(IWA),
     real
                       XXYN(IXXYN,NSERMX)
     +
     INTEGER
                       MR(7), MT(4,NSERMX)
      .. External Subroutines ..
     EXTERNAL
                       G13BGF
      .. Executable Statements ..
     WRITE (NOUT,*) 'G13BGF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) NSTTF, NSER, NNV, KZEF
     IF (NSTTF.GT.O .AND. NSTTF.LE.NSTTFM .AND. NSER.GT.O .AND.
         NSER.LE.NSERMX .AND. NNV.GT.O .AND. NNV.LE.NNVMAX) THEN
        READ (NIN,*) (MR(I),I=1,7)
        DO 20 I = 1, 4
            READ (NIN,*) (MT(I,J),J=1,NSER)
  20
        CONTINUE
        NPARA = 0
        DO 40 I = 1, NSER
            NPARA = NPARA + MT(2,I) + MT(3,I)
  40
        CONTINUE
        NPARA = NPARA + MR(1) + MR(3) + MR(4) + MR(6) + NSER
        READ (NIN,*) (STTF(I),I=1,NSTTF)
        IF (NPARA.LE.NPMAX) THEN
            READ (NIN,*) (PARA(I),I=1,NPARA)
            DO 60 I = 1, NNV
               READ (NIN,*) (XXYN(I,J),J=1,NSER)
```

```
60
            CONTINUE
            IFAIL = 0
*
            CALL G13BGF(STTF,NSTTF,MR,NSER,MT,PARA,NPARA,NNV,XXYN,IXXYN,
     +
                         KZEF, RES, WA, IWA, IFAIL)
            WRITE (NOUT,*)
            WRITE (NOUT, *) 'The updated state set'
            WRITE (NOUT, 99999) (STTF(I), I=1, NSTTF)
            WRITE (NOUT, *)
            WRITE (NOUT, *) 'The residuals (after differencing)'
            DO 80 I = 1, NNV
               WRITE (NOUT, 99998) I, RES(I)
   80
            CONTINUE
            WRITE (NOUT, *)
            WRITE (NOUT,*) 'The values of z(t) and n(t)'
            DO 100 I = 1, NNV
               WRITE (NOUT, 99998) I, (XXYN(I,J), J=1, NSER)
  100
            CONTINUE
         END IF
      END IF
      STOP
99999 FORMAT (1X,6F10.4)
99998 FORMAT (1X, I4, 2F10.4)
      END
```

9.2 Program Data

```
G13BGF Example Program Data
  10
       2
            4
                1
   1
       0
            0
                0 1 1 4
       0
   1
   0
       0
   1
       0
   3
       0
 6.0530 184.4749 -80.0885 -75.1704 -76.9481 -81.4749 0.7776 -2.6190
-2.3054 -1.1963
 0.5158 0.9994
                 8.6343 0.6726 -0.3172
 5.9410 96.0000
 5.3860 95.0000
 5.8110 80.0000
 6.7160 88.0000
```

9.3 Program Results

```
G13BGF Example Program Results

The updated state set

6.7160 158.3155 -80.3412 -74.9035 -80.7814 -70.3155

0.8416 -2.0333 -5.8201 10.2810

The residuals (after differencing)

1 1.4586

2 -2.4674

3 -4.7714

4 13.2830
```

The values of z(t) and n(t) 1 176.3412 -80.3412 2 169.9035 -74.9035 3 160.7814 -80.7814 4 158.3155 -70.3155