X04CBF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

X04CBF prints a real matrix stored in a two-dimensional array.

2 Specification

```
SUBROUTINE X04CBF(MATRIX, DIAG, M, N, A, LDA, FORMAT, TITLE,

LABROW, RLABS, LABCOL, CLABS, NCOLS, INDENT,

IFAIL)

INTEGER M, N, LDA, NCOLS, INDENT, IFAIL

real A(LDA,*)

CHARACTER*1 MATRIX, DIAG, LABROW, LABCOL

CHARACTER*(*) FORMAT, TITLE, RLABS(*), CLABS(*)
```

3 Description

X04CBF prints a *real* matrix, or part of it, using a format specifier supplied by the user. The matrix is output to the unit defined by X04ABF.

4 References

None.

5 Parameters

1: MATRIX — CHARACTER*1

Input

On entry: indicates the part of the matrix to be printed, as follows:

MATRIX = 'G' (General), the whole of the rectangular matrix.

MATRIX = 'L' (Lower), the lower triangle of the matrix, or the lower trapezium if the matrix has more rows than columns.

MATRIX = 'U' (Upper), the upper triangle of the matrix, or the upper trapezium if the matrix has more columns than rows.

Constraint: MATRIX must be one of 'G', 'L', 'U'.

2: DIAG — CHARACTER*1

Input

On entry: unless MATRIX = 'G', DIAG must specify whether the diagonal elements of the matrix are to be printed, as follows:

DIAG = 'B' (Blank), the diagonal elements of the matrix are not referenced and not printed.

DIAG = 'U' (Unit diagonal), the diagonal elements of the matrix are not referenced, but are assumed all to be unity, and are printed as such.

DIAG = 'N' (Non-unit diagonal), the diagonal elements of the matrix are referenced and printed.

If MATRIX = 'G', then DIAG need not be set.

Constraint: If MATRIX \neq 'G', then DIAG must be one of 'B', 'U' or 'N'.

[NP3390/19/pdf] X04CBF.1

3: M — INTEGER

4: N — INTEGER

On entry: the number of rows and columns of the matrix, respectively, to be printed.

If either of M or N is less than 1, X04CBF will exit immediately after printing TITLE; no row or column labels are printed.

5: A(LDA,*) - real array

Input

The second dimension of the array A must be at least max(1,N).

On entry: the matrix to be printed. Only the elements that will be referred to, as specified by parameters MATRIX and DIAG, need be set.

6: LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which X04CBF is called.

Constraint: LDA \geq M.

7: $FORMAT - CHARACTER^*(*)$

Input

On entry: a valid Fortran format code. This may be any format code allowed on the system, whether it is standard Fortran or not. FORMAT is used to print elements of the matrix A. It may or may not be enclosed in brackets. Examples of valid values for FORMAT are '(F11.4)', '1PE13.5', 'G14.5'.

In addition, there are two special codes which force X04CBF to choose its own format code:

FORMAT = ' ' means that X04CBF will choose a format code such that numbers will be printed with either an F8.4, an F11.4 or a 1PE13.4 format. The F8.4 code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 1.0. The F11.4 code is chosen if the sizes of all the matrix elements to be printed lie between 0.001 and 9999.9999. Otherwise the 1PE13.4 code is chosen.

FORMAT = '*' means that X04CBF will choose a format code such that numbers will be printed to as many significant digits as are necessary to distinguish between neighbouring machine numbers. Thus any two numbers that are stored with different internal representations should look different on output. Whether they do in fact look different will depend on the run-time library of the Fortran compiler in use.

Constraint: the character length of FORMAT must be ≤ 80 .

8: TITLE — CHARACTER*(*)

Input

On entry: a title to be printed above the matrix. If TITLE =', no title (and no blank line) will be printed.

If TITLE contains more than NCOLS characters, the contents of TITLE will be wrapped onto more than one line, with the break after NCOLS characters.

Any trailing blank characters in TITLE are ignored.

9: LABROW — CHARACTER*1

Input

On entry: indicates the type of labelling to be applied to the rows of the matrix, as follows:

If LABROW = 'N', X04CBF prints no row labels.

If LABROW = 'I', X04CBF prints integer row labels.

If LABROW = 'C', X04CBF prints character labels, which must be supplied in array RLABS.

Constraint: LABROW must be one of 'N', 'I' or 'C'.

X04CBF.2 [NP3390/19/pdf]

10: RLABS(*) — $CHARACTER^*(*)$

Input

On entry: if LABROW = 'C', RLABS must be dimensioned at least of length M and must contain labels for the rows of the matrix, otherwise RLABS may be dimensioned of length 1.

Labels are right justified when output, in a field which is as wide as necessary to hold the longest row label. Note that this field width is subtracted from the number of usable columns, NCOLS.

11: LABCOL — CHARACTER*1

Input

On entry: indicates the type of labelling to be applied to the columns of the matrix, as follows:

If LABCOL = 'N', X04CBF prints no column labels.

If LABCOL = 'I', X04CBF prints integer column labels.

If LABCOL = 'C', X04CBF prints character labels, which must be supplied in array CLABS.

Constraint: LABCOL must be one of 'N', 'I', 'C'.

12: $CLABS(*) - CHARACTER^*(*)$

Input

On entry: if LABCOL = 'C', CLABS must be dimensioned at least of length N and must contain labels for the columns of the matrix, otherwise CLABS may be dimensioned of length 1.

Labels are right-justified when output. Any label that is too long for the column width, which is determined by FORMAT, is truncated.

13: NCOLS — INTEGER

Input

On entry: the maximum output record length. If the number of columns of the matrix is too large to be accommodated in NCOLS characters, the matrix will be printed in parts, containing the largest possible number of matrix columns, and each part separated by a blank line.

NCOLS must be large enough to hold at least one column of the matrix using the format specifier in FORMAT. If a value less than 0 or greater than 132 is supplied for NCOLS, then the value 80 is used instead.

14: INDENT — INTEGER

Input

On entry: the number of columns by which the matrix (and any title and labels) should be indented. The effective value of NCOLS is reduced by INDENT columns. If a value less than 0 or greater than NCOLS is supplied for INDENT, the value 0 is used instead.

15: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, MATRIX \neq 'G', 'L' or 'U'.

IFAIL = 2

On entry, MATRIX = 'L' or 'U', but DIAG \neq 'N', 'U' or 'B'.

[NP3390/19/pdf] X04CBF.3

```
IFAIL = 3
```

On entry, LDA < M.

IFAIL = 4

On entry, variable FORMAT is more than 80 characters long.

IFAIL = 5

The code supplied in FORMAT cannot be used to output a number. FORMAT probably has too wide a field width or contains an illegal edit descriptor.

IFAIL = 6

On entry, either LABROW or LABCOL \neq 'N', 'I' or 'C'.

IFAIL = 7

The quantity NCOLS – INDENT – LABWID (where LABWID is the width needed for the row labels), is not large enough to hold at least one column of the matrix.

7 Accuracy

Not applicable.

8 Further Comments

X04CBF may be used to print a vector, either as a row or as a column. The following code fragment illustrates possible calls.

9 Example

This example program calls X04CBF twice, first to print a 3 by 5 rectangular matrix, and then to print a 5 by 5 upper triangular matrix; various options for labelling and formatting are illustrated.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
* X04CBF Example Program Text

* Mark 14 Release. NAG Copyright 1989.

* .. Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)
```

X04CBF.4 [NP3390/19/pdf]

```
INTEGER
                   NMAX, LDA
  PARAMETER
                   (NMAX=5,LDA=NMAX)
   .. Local Scalars ..
                   I, IFAIL, INDENT, J, NCOLS
  INTEGER
   .. Local Arrays ..
                   A(LDA, NMAX)
  real
  CHARACTER*7
                  CLABS(NMAX), RLABS(NMAX)
   .. External Subroutines ..
  EXTERNAL
                   X04CBF
   .. Data statements ..
                   CLABS/'Un', 'Deux', 'Trois', 'Quatre', 'Cinq'/
  DATA
                   RLABS/'Uno', 'Duo', 'Tre', 'Quattro', 'Cinque'/
  DATA
   .. Executable Statements ...
  WRITE (NOUT,*) 'XO4CBF Example Program Results'
  WRITE (NOUT,*)
  Generate an array of data
  DO 40 J = 1, NMAX
     DO 20 I = 1, LDA
         A(I,J) = 10*I + J
20
     CONTINUE
40 CONTINUE
  NCOLS = 80
  INDENT = 0
   IFAIL = 0
  Print 3 by 5 rectangular matrix with default format and integer
  row and column labels
  CALL X04CBF('General',' ',3,5,A,LDA,' ','Example 1:','Integer',
               RLABS, 'Integer', CLABS, NCOLS, INDENT, IFAIL)
  WRITE (NOUT,*)
  Print 5 by 5 upper triangular matrix with user-supplied format
  and row and column labels
  CALL XO4CBF('Upper', 'Non-unit', 5, 5, A, LDA, 'F8.2', 'Example 2:',
               'Character', RLABS, 'Character', CLABS, NCOLS, INDENT,
  STOP
  END
```

9.2 Program Data

None.

9.3 Program Results

XO4CBF Example Program Results

```
Example 1:
                       2
                                  3
            1
      11.0000
                 12.0000
                            13.0000
1
                                       14.0000
                                                   15.0000
2
      21.0000
                 22.0000
                            23.0000
                                        24.0000
                                                   25.0000
3
      31.0000
                 32.0000
                            33.0000
                                       34.0000
                                                   35.0000
```

[NP3390/19/pdf] X04CBF.5

Example 2:					
	Un	Deux	Trois	Quatre	\mathtt{Cinq}
Uno	11.00	12.00	13.00	14.00	15.00
Duo		22.00	23.00	24.00	25.00
Tre			33.00	34.00	35.00
Quattro				44.00	45.00
Cinque					55.00

X04CBF.6 (last) [NP3390/19/pdf]