
Linear Equations Module Contents

Module 5.7: nag sparse lin sys

Sparse Linear System Iterative Solvers

nag sparse lin sys provides procedures for the solution of sparse linear systems using
iterative methods.

Contents

Introduction . 5.7.3

Procedures

nag sparse gen lin sol . 5.7.7

General sparse linear system solver

Examples

Example 1: Iterative Solution of a Real, Non-symmetric Sparse System of Linear
Equations Using GMRES(m) . 5.7.17

Example 2: Iterative Solution of a Complex Non-Hermitian Sparse System of
Linear Equations Using CGS . 5.7.19

Additional Examples . 5.7.23

References . 5.7.24

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.1

Module Contents Linear Equations

5.7.2 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations Module Introduction

Introduction

This module contains procedures for the iterative solution of a system of linear equations

Ax = b (1)

with or without preconditioning. For this release, methods for those cases where A is
real non-symmetric or complex non-Hermitian are provided. The sparse matrix A may be
supplied explicitly (see the initialization procedures in the module nag sparse mat) or you
may supply a function to return the result of the multiplication of the sparse matrix by a
vector. If preconditioning is used, the preconditioner may be supplied explicitly (see the module
nag sparse prec) or you may supply a procedure to return the solution of the preconditioned
system for a given right-hand-side vector.

1 Background

For real non-symmetric and complex non-Hermitian matrices the following methods are
available:

restarted generalized minimum residual method (GMRES(m));

conjugate gradient squared method (CGS);

stabilized bi-conjugate gradient method of order ` (Bi-CGSTAB (`));

transpose-free quasi-minimal residual method (TFQMR).

1.1 Restarted Generalized Minimum Residual Method (GMRES(m))

The restarted generalized minimum residual method (GMRES(m)) (see Saad and Schultz [2],
Barrett et al. [1], Dias da Cunha and Hopkins [3]) starts from the residual r0 = b−Ax0, where
x0 is an initial estimate for the solution (often x0 = 0). An orthogonal basis for the Krylov
subspace, span{Akr0}, for k = 0, 1, 2, . . ., is generated explicitly: this is referred to as Arnoldi’s
method (see Arnoldi [4]). The solution is then expanded onto the orthogonal basis so as to
minimize the residual norm ‖b−Ax‖2. The lack of symmetry of A implies that the orthogonal
basis is generated by applying a ‘long’ recurrence relation, whose length increases linearly with
the iteration count. For all but the most trivial problems, computational and storage costs can
quickly become prohibitive as the iteration count increases. GMRES(m) limits these costs by
employing a restart strategy: every m iterations at most, the Arnoldi process is restarted from
rl = b−Axl, where the subscript l denotes the last available iterate. Each group of m iterations
is referred to as a ‘super-iteration’. The value of m is chosen in advance and is fixed throughout
the computation. Unfortunately, an optimum value of m cannot easily be predicted. A smaller
number of basis vectors than specified may be generated and used when the stability of the
solution process requires this.

1.2 Conjugate Gradient Squared Method (CGS)

The conjugate gradient squared method (CGS) (see Sonneveld [6], Barrett et al. [1], Dias da
Cunha and Hopkins [3]) is a development of the bi-conjugate gradient method where the non-
symmetric Lanczos method is applied to reduce the coefficients matrix to real tridiagonal form:
two bi-orthogonal sequences of vectors are generated starting from the residual r0 = b − Ax0,
where x0 is an initial estimate for the solution (often x0 = 0) and from the shadow residual r̂0

corresponding to the arbitrary problem AT x̂ = b̂, where b̂ can be any vector, but in practice
is chosen so that r0 = r̂0. In the course of the iteration, the residual and shadow residual

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.3

Module Introduction Linear Equations

ri = Pi(A)r0 and r̂i = Pi(A
T)r̂0 are generated, where Pi is a polynomial of order i, and bi-

orthogonality is exploited by computing the vector product ρi = (r̂i, ri) = (Pi(A
T)r̂0, Pi(A)r0) =

(r̂0, P
2
i (A)r0). Applying the ‘contraction’ operator Pi(A) twice, the iteration coefficients can still

be recovered without advancing the solution of the shadow problem, which is of no interest. The
CGS method often provides fast convergence; however, there is no reason why the contraction
operator should also reduce the once reduced vector Pi(A)r0: this may well lead to a highly
irregular convergence which may result in large cancellation errors.

1.3 Stabilized Bi-Conjugate Gradient Method of Order ` (Bi-CGSTAB (`))

The stabilized bi-conjugate gradient method of order ` (Bi-CGSTAB (`)) (see van der Vorst [7],
Sleijpen and Fokkema [8], Dias da Cunha and Hopkins [3]) is similar to the CGS method
above. However, instead of generating the sequence {P 2

i (A)r0}, it generates the sequence
{Qi(A)Pi(A)r0} where the Qi(A) are polynomials chosen to minimize the residual after the
application of the contraction operator Pi(A). Two main steps can be identified for each
iteration: an OR (Orthogonal Residuals) step where a basis of order ` is generated by a Bi-
CG iteration and an MR (Minimum Residuals) step where the residual is minimized over the
basis generated, by a method akin to GMRES. For ` = 1, the method corresponds to the
Bi-CGSTAB method of van der Vorst [7]. For ` > 1, more information about complex
eigenvalues of the iteration matrix can be taken into account, and this may lead to improved
convergence and robustness. However, as ` increases, numerical instabilities may arise. For this
reason, a maximum value of ` = 10 is imposed, but probably ` = 4 is sufficient in most cases. A
smaller value of ` than specified may be used when the stability of the solution process requires
this.

1.4 Transpose-Free Quasi-Minimal Residual Method (TFQMR)

The transpose-free quasi-minimal residual method (TFQMR) (see Freund and Nachtigal [9],
Freund [10]) is conceptually derived from the CGS method. The residual is minimized over the
space of the residual vectors generated by the CGS iterations under the simplifying assumption
that residuals are almost orthogonal. In practice, this is not the case, but theoretical analysis
has proved the validity of the method. This has the effect of remedying the rather irregular
convergence behaviour with wild oscillations in the residual norm that can degrade the numerical
performance and robustness of the CGS method. In general, the TFQMR method can be
expected to converge at least as fast as the CGS method, in terms of number of iterations,
although each iteration involves a higher operation count. When the CGS method exhibits
irregular convergence, the TFQMR method can produce much smoother, almost monotonic
convergence curves. However, the close relationship between the CGS and TFQMR method
implies that the overall speed of convergence is similar for both methods. In some cases, the
TFQMR method may converge faster than the CGS method.

1.5 Preconditioning

Faster convergence can often be achieved using a preconditioner (see the module
nag sparse prec), where (1) is replaced by the modified system

Āx̄ = b̄. (2)

An unsuitable preconditioner or no preconditioning at all may result in a very slow rate or lack of
convergence. However, preconditioning involves a trade-off between the reduction in the number
of iterations required for convergence and the additional computational costs per iteration. A
left preconditioner M−1 can be used by the GMRES(m), CGS and TFQMR methods, such that
Ā = M−1A ∼ In in (2), where In is the identity matrix of order n; a right preconditioner M−1

5.7.4 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations Module Introduction

can be used by the Bi-CGSTAB (`) method, such that Ā = AM−1 ∼ In. These are formal
definitions, used only in the design of the algorithms; in practice, only the means to compute
the matrix–vector products v = Au and v = AHu (the latter only being required when an
estimate of ‖A‖1 or ‖A‖∞ is computed internally), and to solve the preconditioning equations
Mv = u are required.

2 Termination Criteria

The procedures provide a choice of termination criteria and the norms used in them. They
allow monitoring of the approximate solution and can return estimates of the norm of A and
the largest singular value of the preconditioned matrix Ā.

For each method, a sequence of solution iterates {xi} is generated such that, hopefully, the
sequence of the residual norms {‖ri‖} converges to a required tolerance. Note that, in general,
convergence, when it occurs, is not monotonic.

The first termination criterion

‖rk‖p ≤ τ (‖b‖p + ‖A‖p ‖xk‖p) (3)

is available for all four methods. In (3), p = 1, ∞ or 2 and τ denotes a user-specified tolerance
subject to max(10,

√
n)ε ≤ τ < 1, where ε is the machine precision. Facilities are provided for

the estimation of the norm of the matrix, ‖A‖1 or ‖A‖∞, when this is not known in advance, by
applying Higham’s method (see Higham [5]). Note that ‖A‖2 cannot be estimated internally.
This criterion uses an error bound derived from backward error analysis to ensure that the
computed solution is the exact solution of a problem as close to the original as the termination
tolerance requires. Termination criteria employing bounds derived from forward error analysis
are not used because any such criteria would require information about the condition number
κ(A), which is not easily obtainable.

The second termination criterion

‖r̄k‖2 ≤ τ (‖r̄0‖2 + σ1(Ā) ‖∆x̄k‖2) (4)

is available for all methods except TFQMR. In (4), σ1(Ā) = ‖Ā‖2 is the largest singular value
of the (preconditioned) iteration matrix Ā. This termination criterion monitors the progress
of the solution of the preconditioned system of equations and is less expensive to apply than
criterion (3) for the Bi-CGSTAB (`) method with ` > 1. Only the GMRES(m) method provides
facilities to estimate σ1(Ā) internally, when this is not supplied.

Termination criterion (3) is the recommended choice, despite its additional costs per iteration
when using the Bi-CGSTAB (`) method with ` > 1. Also, if the norm of the initial estimate is
much larger than the norm of the solution, that is, if ‖x0‖ À ‖x‖, a dramatic loss of significant
digits could result in complete lack of convergence. The use of criterion (3) will enable the
detection of such a situation, and the iteration will be restarted at a suitable point. No such
restart facilities are provided for criterion (4).

Optionally, a vector w of user-specified weights can be used in the computation of the
vector norms in termination criterion (3), i.e., ‖v‖(w)

p = ‖v(w)‖p, where (v(w))i = wi vi, for
i = 1, 2, . . . , n. Note that the use of weights will increase the computational costs.

3 Choice of Iterative Method

In general, it is not possible to recommend one method in preference to another. GMRES(m)
is often used in the solution of systems arising from PDEs. On the other hand, it can easily

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.5

Module Introduction Linear Equations

stagnate when the size, m, of the orthogonal basis is too small, or the preconditioner is not good
enough. CGS can be the fastest method, but the computed residuals can exhibit instability
which may greatly affect the convergence and quality of the solution. Bi-CGSTAB (`) seems
robust and reliable, but it can be slower than the other methods: if a preconditioner is used
and ` > 1, Bi-CGSTAB (`) computes the solution of the preconditioned system x̄k = Mxk and
the preconditioning equations must be solved to obtain the required solution. The algorithm
employed limits to 10% or less, when no intermediate monitoring is requested, the number of
times the preconditioner has to be thus applied compared with the total number of applications
of the preconditioner. TFQMR can be viewed as a more robust variant of the CGS method: it
shares the CGS method speed but avoids the CGS fluctuations in the residual, which may give
rise to instability. Also, when the termination criterion (3) is used, the CGS, Bi-CGSTAB (`)
and TFQMR methods will restart the iteration automatically, when necessary, in order to solve
the given problem.

5.7.6 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations nag sparse gen lin sol

Procedure: nag sparse gen lin sol

1 Description

nag sparse gen lin sol is a generic procedure which uses an iterative method to compute
the solution x of Ax = b, where A is a real non-symmetric or complex non-Hermitian
n by n sparse matrix and b is a given right-hand-side vector. This procedure can
be used in two ways. Either A is supplied explicitly as a structure of derived type
nag sparse mat real wp/nag sparse mat cmplx wp or A is supplied implicitly via the
mandatory function argument mat vec, which returns Au or ATu for a given vector u.

2 Usage

USE nag sparse lin sys

EITHER
CALL nag sparse gen lin sol(a,b,x [, optional arguments])

(when the matrix A is supplied explicitly)

OR
CALL nag sparse gen lin sol(mat vec,b,x [, optional arguments])

(when the matrix A is supplied implicitly)

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.

Real / complex data

Real data: the arguments b and x are of type real(kind=wp), a and p (if
present) are of type nag sparse mat real wp.

Complex data: the arguments b and x are of type complex(kind=wp), a and p

(if present) are of type nag sparse mat cmplx wp.

Explicit / implicit sparse matrix

Explicit: a is supplied explicitly.

Implicit: a is not supplied, but mat vec is.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that
required by the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array
x must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the
supplied arrays.

n ≥ 1 — the order of the matrix A

3.1 Mandatory Arguments

One only of the arguments a or mat vec must be supplied.

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.7

nag sparse gen lin sol Linear Equations

EITHER
supply the sparse matrix explicitly by using

a — type(nag sparse mat real wp)/type(nag sparse mat cmplx wp), intent(in)

Input: a structure containing details of the representation of the sparse matrix A.

Constraints: mat vec must not be supplied if a is supplied. a must be as output from
a call to one of the procedures nag sparse mat init coo, nag sparse mat init csc,
nag sparse mat init csr or nag sparse mat init dia (see module nag sparse mat).

OR
supply the sparse matrix implicitly by using

mat vec — function

The function mat vec is used to perform the matrix vector multiplications, mat vec= Au

or mat vec= ATu, for the iterative method. The optional arguments i mat comm and
a mat comm may be used to supply information about the sparse matrix to this function.

Its specification is:

function mat vec(trans,u,i mat comm,a mat comm)

logical, intent(in) :: trans

Input: specifies whether Au or ATu is to be performed.

If trans = .false., the matrix-vector multiplication Au is performed;

if trans = .true., the transpose matrix-vector multiplication ATu is
performed.

real(kind=wp)/complex(kind=wp), intent(in) :: u(:)

Shape: u has shape (n).

Input: the vector u to be pre-multiplied by the sparse matrix.

integer, intent(in), optional :: i mat comm(:)

real(kind=wp)/complex(kind=wp), intent(in), optional :: a mat comm(:)

Input: you are free to use these arrays to supply information to this procedure.

Constraints: a mat comm must be of the same type as u.

real(kind=wp)/complex(kind=wp) :: mat vec(SIZE(u))

Result: mat vec(i) must contain either
n

∑

j=1

aijuj when trans = .false. or
n

∑

j=1

ajiuj

when trans = .true., where aij is the entry in row i and column j of A.

Constraints: mat vec must be of the same type as u.

Constraints: a must not be supplied if mat vec is supplied; u, a mat comm and mat vec must
be of the same type as b.

b(n) — real(kind=wp)/complex(kind=wp), intent(in)

Input: right-hand-side vector, b.

5.7.8 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations nag sparse gen lin sol

x(n) — real(kind=wp)/complex(kind=wp), intent(inout)

Input: an initial approximation to the solution vector, x.

Output: the solution vector.

Constraints: x must be of the same type as b.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described
below may differ from the order in which they occur in the argument list.

method — character(len=1), intent(in), optional

Input: indicates the iterative method to be used.

If method = 'G' or 'g', restarted Generalized Minimum Residual method
(GMRES(m));

if method = 'C' or 'c', Conjugate Gradient Squared method (CGS);

if method = 'B' or 'b', Stabilized Biconjugate Gradient method of order ` (Bi-
CGSTAB(`));

if method = 'T' or 't', Transpose-Free Quasi-Minimal Residual method (TFQMR).

Default: method = 'G'.

Constraints: method = 'g', 'G', 'c', 'C', 'b', 'B', 't' or 'T'.

i mat comm(:) — integer, intent(in), optional

a mat comm(:) — real(kind=wp)/complex(kind=wp), intent(in), optional

Input: you are free to use these arrays to supply information to the procedure mat vec.

Constraints: i mat comm and a mat comm must not be present if a is supplied; a mat comm

must be of the same type as b.

p — type(nag sparse mat real wp)/type(nag sparse mat cmplx wp), intent(in), optional

Input: a structure containing details of the representation of the sparse preconditioning
matrix M .

Constraints: psolve must not be present if p is present; p must be of the same
type as a and p must be as output from a call to one of the procedures
nag sparse prec init jac, nag sparse prec init ssor or nag sparse prec init ilu

(see the module nag sparse prec).

i prec comm(:) — integer, intent(in), optional

a prec comm(:) — real(kind=wp)/complex(kind=wp), intent(in), optional

Input: you are free to use these arrays to supply information to the procedure psolve.

Constraints: i prec comm and a prec comm must not be supplied unless psolve is present;
a prec comm must be of the same type as b.

psolve — subroutine, optional

The procedure psolve is used to return the solution of the preconditioned system Mz = r

or MT z = r, when p is not supplied. The optional array arguments i prec comm and
a prec comm may be used to supply information about the preconditioned system.

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.9

nag sparse gen lin sol Linear Equations

Its specification is:

subroutine psolve(trans,r,z,i prec comm,a prec comm)

logical, intent(in) :: trans

Input: specifies whether the preconditioned system or its transpose is to be
solved.

If trans = .false., the preconditioned system Mz = r is solved;

if trans = .true., the transposed preconditioned system MT z = r is solved.

real(kind=wp)/complex(kind=wp), intent(in) :: r(:)

Shape: r has shape (n).

Input: the right-hand-side vector r of the preconditioned system.

real(kind=wp)/complex(kind=wp), intent(out) :: z(:)

Shape: z has shape (n).

Output: the solution vector z of the preconditioned system.

Constraints: z must be of the same type as r.

integer, intent(in), optional :: i prec comm(:)

real(kind=wp)/complex(kind=wp), intent(in), optional :: a prec comm(:)

Input: you are free to use these arrays to supply information to this procedure.

Constraints: a prec comm must be of the same type as r.

Constraints: p must not be present if psolve is present; r, z and a prec comm must be of
the same type as b.

term — integer, intent(in), optional

Input: selects the termination criterion to be used, as defined in the Introduction of this
module document.

If term = 1, termination criterion (3) is used;

if term = 2, termination criterion (4) is used.

Default: term = 1.

Constraints: term = 1 or 2; term = 2 cannot be used when method = 'T' or 't'.

norm — character(len=1), intent(in), optional

Input: specifies the matrix and vector norm to be used in the termination criterion when
term = 1. Ignored if term = 2.

If norm = '1', 'o' or 'O', the 1-norm, ‖A‖1 is used;

if norm = 'i' or 'I', the ∞-norm, ‖A‖∞ is used;

if norm = '2', 't' or 'T', the 2-norm, ‖A‖2 is used.

Default: norm = 'i' or 'I', the infinity norm.

Constraints: norm = '1', 'o', 'O', 'i', 'I', '2', 't' or 'T'; a norm must be present
when norm = '2', 't' or 'T'.

5.7.10 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations nag sparse gen lin sol

wt(n) — real(kind=wp), intent(in), optional

Input: a vector of user-supplied weights used in the computation of vector norms for the
termination criterion when term = 1. Ignored if term = 2.

Default: wt(i) = 1.0, for i = 1, 2, . . . , n.

a norm — real(kind=wp), intent(in), optional

Input: the value of ‖A‖p to be used in the termination criterion when term = 1. Ignored
if term = 2.

Default: the corresponding norm, ‖ A ‖1 or ‖ A ‖∞, is estimated internally when norm =
'i', 'I', '1', 'o' or 'O'.

Constraints: a norm> 0.0; a norm must be present if term= 1 and norm = '2', 't' or 'T'.

a norm out — real(kind=wp), intent(out), optional

Output: the internal estimate of ‖A‖1 or ‖A‖∞ used in the termination criterion when
term = 1.

Constraints: a norm out must not be present when either a norm is present, term = 2 or
(term = 1 and norm = '2', 't' or 'T').

sigma — real(kind=wp), intent(in), optional

Input: the value of the largest singular value to be used in the termination criterion when
term = 2. Ignored if term = 1.

Default: this is estimated internally when method = 'G' or 'g' and term = 2.

Constraints: sigma > 0.0.

If term= 2 and method='C', 'c', 'B' or 'b', a norm must be present;

if term= 2 and method='T' or 't', an error will be raised (see term).

sigma out — real(kind=wp), intent(out), optional

Output: the internal estimate of the largest singular value used in the termination criterion
when method='G' or 'g' and term = 2.

Constraints: sigma out must not be present unless sigma is not present, term = 2 and
method='G' or 'g'.

restart — integer, intent(in), optional

Input: the dimension of the restart subspace when the method is GMRES(m).

Default: restart = 20.

Constraints: restart> 0. Only used when method='G' or 'g', otherwise it will be
ignored.

l order — integer, intent(in), optional

Input: the order, `, of the polynomial Bi-CGSTAB(`) method.

Default: l order = 4.

Constraints: 0 < l order ≤ min(n, 10). Only used when method = 'B' or 'b', otherwise
it will be ignored.

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.11

nag sparse gen lin sol Linear Equations

tol — real(kind=wp), intent(in), optional

Input: determines the tolerance, τ , used for the termination criterion, with
τ = max(tol, 10ε,

√
nε) where ε is EPSILON(1.0 wp).

Default: τ = max(
√
ε,
√
nε).

Constraints: 0.0 < tol < 1.0.

max iter — integer, intent(in), optional

Input: the maximum number of iterations allowed.

Default: max iter = max(500,
√
n).

Constraints: max iter ≥ 1.

num iter — integer, intent(out), optional

Output: the number of iterations performed.

resid norm — real(kind=wp), intent(out), optional

Output: the value of the residual norm on termination.

stop rhs — real(kind=wp), intent(out), optional

Output: the final value of the right-hand-side of the chosen termination criterion.

monit — integer, intent(in), optional

Input: the frequency at which a monitoring step is executed: if method = 'CGS' or
'TFQMR', a monitoring step is executed every monit iterations; otherwise a monitoring
step is executed every monit super-iterations (groups of up to m or ` super-iterations
for GMRES(m) or Bi-CGSTAB(`) respectively). Note that there are some additional
computational costs involved in monitoring the solution and residual vectors when the
Bi-CGSTAB(`) method is used with ` > 1.

Default: monit=0 (i.e., no monitoring is performed).

Constraints: 0 ≤ monit ≤ max iter.

unit — integer, intent(in), optional

Input: specifies the Fortran unit number to which all output produced by
nag sparse gen lin sol is sent.

Default: unit= the default output unit number for the implementation.

Constraints: unit ≥ 0. Only used when monit is present and > 0.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module
document nag error handling (1.2). You are recommended to omit this argument if you
are unsure how to use it. If this argument is supplied, it must be initialized by a call to
nag set error before this procedure is called.

5.7.12 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations nag sparse gen lin sol

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The iterative procedure has failed to converge within the maximum number
of iterations.

The last available iterates are returned.

202 Algorithmic breakdown.

The last available iterates are returned, but it is likely that these are
completely inaccurate.

Warnings (error%level = 1):

error%code Description

101 An argument (restart) has been supplied when it is not required.

Execution continues, but this argument is not referenced.

102 An argument (l order) has been supplied when it is not required.

Execution continues, but this argument is not referenced.

103 An argument (norm) has been supplied when it is not required.

Execution continues, but this argument is not referenced.

104 An argument (sigma) has been supplied when it is not required.

Execution continues, but this argument is not referenced.

105 An argument (a norm) has been supplied when it is not required.

Execution continues, but this argument is not referenced.

106 An argument (wt) has been supplied when it is not required.

Execution continues, but this argument is not referenced.

107 The required accuracy determined by tol has not been achieved.

However, an acceptable accuracy may have been obtained.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module
document.

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.13

nag sparse gen lin sol Linear Equations

6 Description of Printed Output

This section describes the intermediate printout produced by nag sparse gen lin sol. The
frequency of printed output is controlled by monit.

When monit is present and > 0, the following output is produced every monit iterations:

Monitoring at iteration no. the iteration count.
Residual norm the current value of the residual norm.
Solution vector the current value of the solution xi, i = 1, 2, . . . , n.
Residual vector the current value of the residual ri, i = 1, 2, . . . , n.

After the solution has converged, the final results are printed.

Final Results

Number of iterations for convergence the final iteration count.
Residual norm the final residual norm.
Right hand side of termination criterion final value of the right-hand-side.
1-norm of matrix A the estimate of the 1-norm of A.
Solution vector the solution xi, i = 1, 2, . . . , n.
Residual vector the residual ri, i = 1, 2, . . . , n.

7 Further Comments

7.1 Algorithmic Detail

GMRES(m) can estimate internally the maximum singular value σ1 of the iteration matrix,
using σ1 ∼ ‖T‖1 where T is the upper triangular matrix obtained by QR factorization of the
upper Hessenberg matrix generated by the Arnoldi process. The costs of this computation are
negligible when compared to the overall costs.

Loss of orthogonality in the GMRES(m) method, or of bi-orthogonality in the Bi-CGSTAB (`)
method may degrade the solution and speed of convergence. For both methods, the algorithms
employed include checks on the basis vectors so that the number of basis vectors used for a
given super-iteration may be less than the value specified in the input parameter restart or
l order. Also, the CGS, Bi-CGSTAB (`) and TFQMR methods will automatically restart the
computation from the last available iterates when the stability of the solution process requires
this.

When termination criterion (3) is available, it involves only the residual (or norm of the residual)
produced directly by the iteration process. This may differ from the norm of the true residual
r̃k = b−Axk, particularly when the norm of the residual is very small. Also, if the norm of the
initial estimate of the solution is much larger than the norm of the exact solution, convergence
can be achieved despite very large errors in the solution. On the other hand, termination
criterion (4) is cheaper to use and inspects the progress of the actual iteration. Termination
criterion (3) should be preferred in most cases, despite its slightly larger costs.

Additional matrix-vector products are necessary for the computation of ‖A‖1 or ‖A‖∞, when
this is required by the termination criterion employed and has not been supplied.

7.2 Timing

The number of operations performed for each iteration is likely to be principally determined
by the computation of the matrix-vector products v = Au and by the solution of the

5.7.14 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations nag sparse gen lin sol

preconditioning equation Mz = r in the calling program. Each of these operations is performed
once every iteration.

The number of the remaining operations for each iteration is approximately proportional to n.

7.3 Accuracy

On successful completion, the termination criterion is satisfied to within the user-specified
tolerance. The number of iterations required to achieve a prescribed accuracy cannot easily
be determined at the outset, as it can depend dramatically on the conditioning and spectrum
of the preconditioned matrix of the coefficients Ā = M−1A (GMRES(m), CGS and TFQMR
methods) or Ā = AM−1 (Bi-CGSTAB (`) method).

If the termination criterion ‖rk‖p ≤ τ (‖b‖p + ‖A‖p ‖xk‖p) is used and ‖x0‖ À ‖xk‖, then
the required accuracy cannot be obtained due to loss of significant digits. The iteration is
restarted automatically at some suitable point, x0 = xk and the computation begins again. For
particularly badly scaled problems, more than one restart may be necessary. This does not apply
to the GMRES(m) method which, self-restarts every super-iteration. Naturally, restarting adds
to computational costs: it is recommended that the iteration should start from a value x0 which
is as close to the true solution x̃ as can be estimated. Otherwise, the iteration should start from
x0 = 0.

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.15

nag sparse gen lin sol Linear Equations

5.7.16 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations Example 1

Example 1: Iterative Solution of a Real, Non-symmetric

Sparse System of Linear Equations Using GMRES(m)

Solve a real, non-symmetric sparse system of linear equations Ax = b. This example calls the
procedures nag sparse mat init coo and nag sparse gen lin sol.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred
to Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sparse_lin_sys_ex01

! Example Program Text for nag_sparse_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sparse_mat, ONLY : nag_sparse_mat_init_coo, &

nag_sparse_mat_real_wp => nag_sparse_mat_real_dp, nag_deallocate

USE nag_sparse_lin_sys, ONLY : nag_sparse_gen_lin_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n, nnz, num_iter

REAL (wp) :: resid_norm

TYPE (nag_sparse_mat_real_wp) :: a

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: col(:), row(:)

REAL (wp), ALLOCATABLE :: b(:), value(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_sparse_lin_sys_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, nnz

ALLOCATE (row(nnz),col(nnz),value(nnz),b(n),x(n))

DO i = 1, nnz

READ (nag_std_in,*) value(i), row(i), col(i)

END DO

READ (nag_std_in,*) b

CALL nag_sparse_mat_init_coo(a,n,value,row,col)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Method: GMRES’

WRITE (nag_std_out,*)

x = 0.0_wp

CALL nag_sparse_gen_lin_sol(a,b,x,resid_norm=resid_norm, &

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.17

Example 1 Linear Equations

num_iter=num_iter)

WRITE (nag_std_out,*) ’ Solution’

WRITE (nag_std_out,’(10F7.1)’) x

WRITE (nag_std_out,’(2x,’’residual norm . . . =’’,1PE9.1)’) resid_norm

WRITE (nag_std_out,’(2x,’’number of iterations =’’,I4)’) num_iter

CALL nag_deallocate(a)

DEALLOCATE (row,col,value,b,x)

END PROGRAM nag_sparse_lin_sys_ex01

2 Program Data

Example Program Data for nag_sparse_lin_sys_ex01

8 24 : n, nnz

-3. 5 7 : value(1), row(1), col(1)

-4. 4 3

4. 2 1

-1. 7 5

2. 2 5

-7. 3 3

2. 8 6

2. 3 6

3. 4 1

3. 8 8

5. 4 4

-1. 5 2

2. 1 1

8. 5 5

5. 6 3

1. 1 8

2. 6 6

-5. 7 3

5. 4 7

-3. 2 2

6. 7 7

-1. 8 2

-1. 1 4

-6. 6 1 : value(nnz), row(nnz), col(nnz)

6. 8. -9. 46. 17. 21. 22. 34. : b(1:n)

3 Program Results

Example Program Results for nag_sparse_lin_sys_ex01

Method: GMRES

Solution

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

residual norm . . . = 2.1E-14

number of iterations = 8

5.7.18 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations Example 2

Example 2: Iterative Solution of a Complex Non-Hermitian

Sparse System of Linear Equations Using CGS

Solve a complex non-Hermitian sparse system of linear equations Ax = b with a supplied
function to perform the matrix-vector multiply. This example calls the single procedure
nag sparse gen lin sol.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred
to Section 5.2 of the Essential Introduction for further information.

MODULE sparse_lin_sys_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

COMPLEX (wp), PARAMETER :: zero = (0.0_wp,0.0_wp)

CONTAINS

FUNCTION mat_vec(trans,u,i_mat_comm,a_mat_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC CONJG, DOT_PRODUCT, SIZE

! .. Scalar Arguments ..

LOGICAL, INTENT (IN) :: trans

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_mat_comm(:)

COMPLEX (wp), OPTIONAL, INTENT (IN) :: a_mat_comm(:)

COMPLEX (wp), INTENT (IN) :: u(:)

! .. Function Return Value ..

COMPLEX (wp) :: mat_vec(SIZE(u))

! .. Local Scalars ..

INTEGER :: i, k1, k2, n, nnz

! .. Executable Statements ..

nnz = SIZE(a_mat_comm)

n = SIZE(u)

! Compute matrix vector product.

IF (.NOT. trans) THEN

DO i = 1, n

k1 = i_mat_comm(i+nnz)

k2 = i_mat_comm(i+nnz+1) - 1

mat_vec(i) = DOT_PRODUCT(CONJG(a_mat_comm(k1:k2)),u(i_mat_comm(&

k1:k2)))

END DO

ELSE

mat_vec = zero

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.19

Example 2 Linear Equations

DO i = 1, n

k1 = i_mat_comm(i+nnz)

k2 = i_mat_comm(i+1+nnz) - 1

mat_vec(i_mat_comm(k1:k2)) = mat_vec(i_mat_comm(k1:k2)) + &

u(i)*a_mat_comm(k1:k2)

END DO

END IF

END FUNCTION mat_vec

END MODULE sparse_lin_sys_ex02_mod

PROGRAM nag_sparse_lin_sys_ex02

! Example Program Text for nag_sparse_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE sparse_lin_sys_ex02_mod, ONLY : mat_vec, wp, zero

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sparse_lin_sys, ONLY : nag_sparse_gen_lin_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

INTEGER :: i, n, nnz

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: i_mat_comm(:)

COMPLEX (wp), ALLOCATABLE :: b(:), value(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_sparse_lin_sys_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, nnz

ALLOCATE (value(nnz),b(n),x(n),i_mat_comm(nnz+n+1))

! The sparse matrix is given row by row in increasing

! row order (Compressed Sparse Row format).

! i_mat_comm and value are used to store the sparse matrix

! information to be passed to the mat_vec function as follows:

! . SIZE(value) = nnz

! . SIZE(i_mat_comm) = nnz+n+1

! value(i) and i_mat_comm(i), for i = 1,..,nnz contain the

! . value and column index for entry i

! i_mat_comm (nnz+i) j=1,..,n contains the index of first entry of row j

! i_mat_comm (nnz+n+1) = nnz+1

DO i = 1, nnz

READ (nag_std_in,*) value(i), i_mat_comm(i)

END DO

READ (nag_std_in,*) i_mat_comm(nnz+1:)

READ (nag_std_in,*) b

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Method CGS with user supplied mat_vec’

WRITE (nag_std_out,*)

5.7.20 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations Example 2

x = zero

CALL nag_sparse_gen_lin_sol(mat_vec,b,x,method=’C’, &

i_mat_comm=i_mat_comm,a_mat_comm=value)

! Output results

WRITE (nag_std_out,*) ’ Solution’

WRITE (nag_std_out,’(3X,’’(’’,F4.1,’’,’’,F4.1,’’)’’)’) x

DEALLOCATE (b,x,value,i_mat_comm)

END PROGRAM nag_sparse_lin_sys_ex02

2 Program Data

Example Program Data for nag_sparse_lin_sys_ex02

7 18 : n, nnz

(2. ,-1.) 2 : value(1), i_mat_comm(1) containing col(1)

(-1. , 4.) 4

(5. , 1.) 5

(1. ,-2.) 1

(-3. , 2.) 3

(2. ,-6.) 6

(7. , 2.) 7

(-3. ,-2.) 2

(6. ,-3.) 6

(-1. , 4.) 1

(4. ,-3.) 3

(5. , 4.) 4

(-5. ,-6.) 6

(6. , 3.) 3

(4. ,-6.) 4

(7. , 6.) 7

(-1. , 7.) 1

(6. , 7.) 6 : value(nnz), i_mat_comm(nnz) containing col(nnz)

1 4 8 10

12 14 17 19 : i_mat_comm(nnz+1:nnz+n+1) containing pntrb(1:n+1)

(12.0,-42.0) (43.0, 54.0) (-19.0, 16.0) (8.0,-22.0)

(-8.0, 45.0) (114.0, 55.0) (-23.0,-26.0) : b(1:n)

3 Program Results

Example Program Results for nag_sparse_lin_sys_ex02

Method CGS with user supplied mat_vec

Solution

(1.0,-3.0)

(-2.0, 4.0)

(3.0,-5.0)

(-4.0, 6.0)

(5.0,-7.0)

(-6.0, 1.0)

(7.0,-2.0)

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.21

Example 2 Linear Equations

5.7.22 Module 5.7: nag sparse lin sys [NP3506/4]

Linear Equations Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The
following additional examples, associated with this module, are available.

nag sparse lin sys ex03

Iterative solution of a complex, non-Hermitian sparse system of linear equations using
incomplete LU preconditioned Bi-CGSTAB(`).

nag sparse lin sys ex04

Iterative solution of a real, non-symmetric sparse system of linear equations using TFQMR
with a supplied matrix-vector multiply function.

[NP3506/4] Module 5.7: nag sparse lin sys 5.7.23

References Linear Equations

References

[1] Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo
R, Romine C and van der Vorst H (1994) Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods SIAM, Philadelphia

[2] Saad Y and Schultz M (1986) GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869

[3] Dias da Cunha R and Hopkins T (1994) PIM 1.1 — the the parallel iterative method
package for systems of linear equations user’s guide — Fortran 77 version Technical Report

Computing Laboratory, University of Kent at Canterbury, Kent CT2 7NZ, UK

[4] Arnoldi W (1951) The principle of minimized iterations in the solution of the matrix
eigenvalue problem Quart. Appl. Math. 9 17–29

[5] Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

[6] Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM

J. Sci. Statist. Comput. 10 36–52

[7] van der Vorst H (1989) Bi-CGSTAB, A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644

[8] Sleijpen G L G and Fokkema D R (1993) BiCGSTAB(`) for linear equations involving
matrices with complex spectrum ETNA 1 11–32

[9] Freund R W and Nachtigal N (1991) QMR: a Quasi-Minimal Residual Method for Non-
Hermitian Linear Systems Numer.Math. 60 315–339

[10] Freund R W (1993) A Transpose-Free Quasi-Mimimal Residual Algorithm for Non-
Hermitian Linear Sytems SIAM J.Sci.Comput. 14 470–482

5.7.24 Module 5.7: nag sparse lin sys [NP3506/4]

