
Partial Differential Equations (PDE’s) Module Contents

Module 13.3: nag pde parab 1d

Parabolic Partial Differential Equations
in One Space Variable

nag pde parab 1d provides procedures for the solution of linear or nonlinear parabolic
partial differential equations (PDEs), in one space variable with optional scope for coupled
ordinary differential equations (ODEs). The spatial discretisation is performed using
either a Chebyshev C0 collocation method or finite differences, and optional automatic
adaptive spatial remeshing. The module also provides procedures for the interpolation
of the solution obtained using these two methods.

Contents

Introduction . 13.3.3

Procedures

nag pde parab 1d fd . 13.3.5

Integrates a system of parabolic PDE’s in one space variable, coupled with ODE’s;
using finite differences for the spatial discretisation with optional automatic adaptive
spatial remeshing

nag pde interp 1d fd . 13.3.21

Interpolates the solution and first derivative of a system of PDE’s solved using finite
differences, at a set of user-specified points

nag pde parab 1d coll . 13.3.23

Integrates a system of parabolic PDE’s in one space variable, coupled with ODE’s;
using a Chebyshev C0 collocation method for the spatial discretisation

nag pde interp 1d coll . 13.3.37

Interpolates the solution and first derivative of a system of PDE’s solved using a
Chebyshev C0 collocation method, at a set of user-specified points

nag pde parab 1d cntrl init . 13.3.39

Initialization procedure for type nag pde parab 1d cntrl wp

Derived Types

nag pde parab 1d comm wp . 13.3.41

Communicates arrays for the underlying ODE solver between calls to the procedures
in nag pde parab 1d

nag pde parab 1d cntrl wp . 13.3.43

Control parameters for procedures nag pde parab 1d fd and nag pde parab 1d coll

Examples

Example 1: Elliptic-parabolic PDEs Solved Using Finite Difference Scheme and the BDF
Method . 13.3.49

Example 2: Elliptic-parabolic PDEs Solved Using Collocation Scheme and the BDF Method 13.3.55

Example 3: Coupled PDE/ODE System Solved Using Finite Difference Scheme and the
BDF Method . 13.3.61

Additional Examples . 13.3.67

References . 13.3.70

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.1

Module Contents Partial Differential Equations (PDE’s)

13.3.2 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Module Introduction

Introduction

This module provides two procedures nag pde parab 1d fd and nag pde parab 1d coll, for solving
parabolic equations in one-dimensional space. It also provides two procedures nag pde interp 1d fd

and nag pde interp 1d coll, for interpolation of the solutions and derivatives at a set of user-specified
points.

The procedures nag pde parab 1d fd and nag pde parab 1d coll solve systems of parabolic (and
possibly elliptic) equations:

n
∑

j=1

Pi,j(x, t, U,
∂U

∂x
, V)

∂Uj

∂t
+Qi(x, t, U,

∂U

∂x
, V, V̇) = x−m ∂

∂x
(xmRi(x, t, U,

∂U

∂x
, V)),

where i = 1, 2, . . . , n, a ≤ x ≤ b, with t ≥ t0 and n is the number of PDEs. There is optional scope to
include coupled differential algebraic systems:

Fi(t, V, V̇ , ξ, U
∗,
∂U∗

∂x
,R∗,

∂U∗

∂t
,
∂2U∗

∂x∂t
) = 0,

where i = 1, 2, . . . , p, a ≤ x ≤ b, with t ≥ t0 and p is the number of ODEs. The first equation defines
the PDE part and the second one generalizes the coupled ODE part of the problem. The PDE part may
include non-linear terms, but the time derivatives should occur linearly and a second order derivative
should normally be present. The procedures in this module can handle Cartesian, cylindrical polar and
spherical polar coordinate systems. The procedure nag pde parab 1d fd uses a finite difference spatial
discretisation while nag pde parab 1d coll uses collocation.

In the second equation, ξ represents a vector of nξ spatial coupling points at which the ODEs are coupled

to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U ∗,
∂U∗

∂x
,

R∗,
∂U∗

∂t
, and

∂2U∗

∂x∂t
are the functions U ,

∂U

∂x
, R,

∂U

∂t
, and

∂2U

∂x∂t
evaluated at these coupling points.

Each Fi may only depend linearly on time derivatives. Hence the coupled ODE part of the equations
may be written more precisely as:

F = G−AV̇ −B

(

U∗
t

U∗
xt

)

,

where F = [F1, . . . , Fp]
T , G is a vector of length p, A is a p by p matrix, B is a p by (nξ × n) matrix

and the entries in G, A and B may depend on t, ξ, U ∗,
∂U∗

∂x
, and V . In practice the user only needs to

supply a vector of information to define the ODEs and not the matrices A and B. (See Section 3.2 for
the specification of the optional user-supplied procedure ode coef).

This extended functionality allows for the solution of more complex and more general problems, such as
problems with periodic boundary conditions or integro-differential equations.

The procedure nag pde parab 1d fd also allows spatial remeshing. This facility can be very useful when
the nature of the solution in the spatial direction varies considerably over time.

In their first call the procedures nag pde parab 1d fd and nag pde parab 1d coll compute and store
a structure of the derived type nag pde parab 1d comm wp. This structure can then be passed to a
subsequent call to those procedures respectively.

The procedure nag pde interp 1d fd is an interpolation procedure for evaluating the solution and first
spatial derivative of a system of partial differential equations (possibly with coupled ordinary differential
equations) at a set of user-specified points. The solution must have been computed using a finite difference
scheme, for example using nag pde parab 1d fd.

The procedure nag pde interp 1d coll performs the same function for a solution obtained using
nag pde parab 1d coll.

Finally the procedure nag pde parab 1d cntrl init assigns default values to all the components of
a structure of the derived type nag pde parab 1d cntrl wp, which may be used to supply optional
parameters to nag pde interp 1d fd and nag pde interp 1d coll.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.3

Module Introduction Partial Differential Equations (PDE’s)

13.3.4 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

Procedure: nag pde parab 1d fd

1 Description

nag pde parab 1d fd integrates a system of n linear or nonlinear parabolic partial differential equations
(PDEs), and optionally coupled ODEs, in one space variable:

n
∑

j=1

Pi,j

∂Uj

∂t
+Qi = x−m ∂

∂x
(xmRi), i = 1, 2, ..., n, a ≤ x ≤ b, t ≥ t0, (1)

F = G−AV̇ −B

(

U∗
t

U∗
xt

)

, (2)

where (1) defines the PDE part which is discretised over a set of nη mesh points, and (2) generalizes the
coupled system of p ODEs which is discretised over a set of nξ coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points.

In (1), Pi,j and Ri depend on x, t, U ,
∂U

∂x
, and V ; Qi depends on x, t, U ,

∂U

∂x
, V and linearly on V̇ .

The vector U is the set of PDE solution values

U(x, t) = [U1(x, t), . . . , Un(x, t)]
T ,

and the vector
∂U

∂x
is the partial derivative with respect to x. The vector V is the set of ODE solution

values

V (t) = [V1(t), . . . , Vp(t)]
T ,

and V̇ denotes its derivative with respect to time.

In (2) F = [F1, . . . , Fp]
T , G is a vector of length p, A is a p by p matrix, B is a p by (nξ × n) matrix,

and the entries in G, A and B may depend on t, ξ, U ∗,
∂U∗

∂x
, and V . ξ represents the vector of the nξ

spatial coupling points and U ∗,
∂U∗

∂x
, R∗,

∂U∗

∂t
, and

∂2U∗

∂x∂t
are the functions U ,

∂U

∂x
, R,

∂U

∂t
, and

∂2U

∂x∂t
evaluated at these coupling points. (See the Module Introduction for more details.)

In practice the user only needs to supply a vector of information to define the ODEs and not the matrices
A and B. (See Section 3.2 for the specification of the optional user-supplied procedure ode coef).

The spatial discretisation is performed using finite differences, optionally with automatic adaptive spatial
remeshing; and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting
system is solved using a Backward Differentiation Formula (BDF) method or a Theta method (switching
between Newton’s method and functional iteration). The integration in time is from t0 to tout, over the
space interval a ≤ x ≤ b, where a = x1 and b = xnη are the leftmost and rightmost points of a mesh
x1, x2, . . . , xnη defined initially by the user and (possibly) adapted automatically during the integration
according to user-specified criteria. The co-ordinate system in space is defined by the following values
of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical polar co-ordinates and m = 2 for spherical
polar co-ordinates.

The PDE system which is defined by the functions Pi,j , Qi and Ri must be specified in the user-supplied
procedure pde coef. The initial (t = t0) values of the functions U(x, t) and V (t) must be specified in
a procedure init value supplied by the user. Note that init value will be called again following any
initial remeshing, and so U(x, t0) should be specified for all values of x in the interval a ≤ x ≤ b, and
not just the initial mesh points. The functions Ri which may be thought of as fluxes, are also used in
the definition of the boundary conditions. The boundary conditions must be specified in a procedure
bound cond provided by the user and must have the form:

βi(x, t)Ri(x, t, U, Ux, V) = γi(x, t, U, Ux, V, V̇), i = 1, 2, ..., n, (3)

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.5

nag pde parab 1d fd Partial Differential Equations (PDE’s)

where x = a or x = b. The function γi may depend linearly on V̇ . The algebraic-differential equation
system which is defined by the functions Fi must be specified in the user-supplied procedure ode coef

(See Section 3.2 and the Further Comments sections for more details).

Several options are available for controlling the operation of this procedure, for example the level of
printed output and algorithmic parameters, such as integration method and order, etc.. These options
are grouped together in the optional argument control, which is a structure of the derived type
nag pde parab 1d cntrl wp.

The problem as defined by (1), (2) and (3) is subject to some additional constraints. For details see the
Further Comments section.

2 Usage

USE nag pde parab 1d

CALL nag pde parab 1d fd(pde coef, bound cond, init value, t start, t end, x pde, &

u [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

nη ≥ 3 — (= SIZE(x pde)) the number of PDE mesh points in the interval [a, b];

nξ ≥ 0 — (0 or SIZE(x ode) if present) the number of ODE/PDE coupling points, if p = 0 then
nξ = 0 and if p > 0 then nξ ≥ 0;

0 ≤ nf ≤ nη − 2 — (0 or SIZE(x fix) if present) the number of fixed PDE mesh points;

p ≥ 0 — the number of coupled ODE (see the optional argument num ode);

n ≥ 1 — the number of PDEs in the system (SIZE(u) = n× nη + p).

3.1 Mandatory Arguments

pde coef — subroutine

The procedure pde coef, supplied by the user, must compute the functions Pi,j , Qi and Ri which

define the system of PDEs as in equation (1). The functions may depend on x, t, U ,
∂U

∂x
and V .

Qi may depend linearly on V̇ . The procedure pde coef is called approximatively midway between
each pair of mesh points in turn by nag pde parab 1d fd.

Its specification is:

subroutine pde coef(t, x, u, du dx, p, q, r, finish, v, vdot, i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: x

Input: the current value of the spatial variable x.

real(kind=wp), intent(in) :: u(:)

Shape: u has shape (n).

Input: u(i) contains the value of the component Ui(x, t), for i = 1, 2, . . . , n.

13.3.6 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

real(kind=wp), intent(in) :: du dx(:)

Shape: du dx has shape (n).

Input: du dx(i) contains the value of the component
∂Ui

∂x
(x, t), for i = 1, 2, . . . , n.

real(kind=wp), intent(out) :: p(:, :)

Shape: p has shape (n, n).

Output: p(i, j) must be set to the values of Pi,j(x, t, U,
∂U

∂x
, V), for i, j = 1, 2, . . . , n.

real(kind=wp), intent(out) :: q(:)

Shape: q has shape (n).

Output: q(i) must be set to the values of Qi(x, t, U,
∂U

∂x
, V, V̇), for i = 1, 2, . . . , n.

real(kind=wp), intent(out) :: r(:)

Shape: r has shape (n).

Output: r(i) must be set to the values of Ri(x, t, U,
∂U

∂x
, V), for i = 1, 2, . . . , n.

integer, intent(out) :: finish

Output: the user may use finish to control the integration procedure as follows:

if finish = 1 or −1, indicates normal exit from the user supplied procedure;

if finish = 2, indicates to the integrator that control should be passed
back immediately to the calling (sub)program with the error indicator set to
error%code = 205;

if finish = 3, indicates to the integrator that the current time step should be
abandoned and a smaller time step used instead. The user may wish to set
finish = 3 when a physically meaningless input or output value has been generated.
If the user consecutively sets finish = 3, then nag pde parab 1d fd returns to the
calling (sub)program with the error indicator set to error%code = 203;

if finish = any value other than 1, −1, 2 or 3, indicates an abnormal exit from
the user supplied procedure, and returns to the calling (sub)program with the error
indicator set to error%code = 207.

real(kind=wp), intent(in), optional :: v(:)

Shape: v has shape (p).

Input: v(i) contains the value of the component Vi(t), for i = 1, 2, . . . , p.

real(kind=wp), intent(in), optional :: vdot(:)

Shape: vdot has shape (p).

Input: vdot(i) contains the value of the component V̇i(t), for i = 1, 2, . . . , p.

Note: V̇i(t) for i = 1, 2, . . . , p may only appear linearly in Qj , for j = 1, 2, . . . , n.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

bound cond — subroutine

The procedure bound cond, supplied by the user, must compute the functions βi and γi which
define the boundary conditions as in equation (3).

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.7

nag pde parab 1d fd Partial Differential Equations (PDE’s)

Its specification is:

subroutine bound cond(t, u, du dx, bound, beta, gamma, finish, v, vdot, &

i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: u(:)

Shape: u has shape (n).

Input: u(i) contains the value of the component Ui(x, t) at the boundary specified by
bound, for i = 1, 2, . . . , n.

real(kind=wp), intent(in) :: du dx(:)

Shape: du dx has shape (n).

Input: du dx(i) contains the value of the component
∂Ui

∂x
(x, t) at the boundary specified

by bound, for i = 1, 2, . . . , n.

integer, intent(in) :: bound

Input: determines the position of the boundary conditions. If bound = 0, then the
procedure bound cond must set up the coefficients of the left-hand boundary x = a. Any
other value of bound indicates that the procedure bound cond must set up the coefficients
of the right-hand boundary x = b.

real(kind=wp), intent(out) :: beta(:)

Shape: beta has shape (n).

Output: beta(i) must be set to the values of βi(x, t) at the boundary specified by bound,
for i = 1, 2, . . . , n.

real(kind=wp), intent(out) :: gamma(:)

Shape: gamma has shape (n).

Output: gamma(i) must be set to the values of γi(x, t, U,
∂U

∂x
, V, V̇) at the boundary specified

by bound, for i = 1, 2, . . . , n.

integer, intent(out) :: finish

Output: the user may use finish to control the integration procedure as follows:

if finish = 1 or −1, indicates normal exit from the user supplied procedure;

if finish = 2, indicates to the integrator that control should be passed
back immediately to the calling (sub)program with the error indicator set to
error%code = 205;

if finish = 3, indicates to the integrator that the current time step should be
abandoned and a smaller time step used instead. The user may wish to set
finish = 3 when a physically meaningless input or output value has been generated.
If the user consecutively sets finish = 3, then nag pde parab 1d fd returns to the
calling (sub)program with the error indicator set to error%code = 203;

if finish = any value other than 1, −1, 2 or 3, indicates an abnormal exit from
the user supplied procedure, and returns to the calling (sub)program with the error
indicator set to error%code = 207.

13.3.8 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

real(kind=wp), intent(in) :: v(:)

Shape: v has shape (p).

Input: v(i) contains the value of the component Vi(t), for i = 1, 2, . . . , p.

real(kind=wp), intent(in) :: vdot(:)

Shape: vdot has shape (p).

Input: vdot(i) contains the value of the component V̇i, for i = 1, 2, . . . , p.

Note: V̇i(t) for i = 1, 2, . . . , p may only appear linearly in γj , for j = 1, 2, . . . , n.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

init value — subroutine

The procedure init value, supplied by the user, must supply the initial (t = t0) values of U(x, t)
and V (t) for all values of x in the interval a ≤ x ≤ b.

Its specification is:

subroutine init value(x pde, u, x ode, v, i comm, r comm)

real(kind=wp), intent(in) :: x pde(:)

Shape: x pde has shape (nη).

Input: the current mesh. x pde(i) contains the value of the xi for i = 1, 2, . . . , nη.

real(kind=wp), intent(out) :: u(:, :)

Shape: x pde has shape (n, nη).

Output: u(i, j) must contain the value of component Ui(xj , t0), for i = 1, 2, . . . , n and
j = 1, 2, . . . , nη.

real(kind=wp), intent(in), optional :: x ode(:)

Shape: x ode has shape (nξ).

Input: x ode(i) contains the value of the ODE/PDE coupling point, ξi, for i = 1, 2, . . . , nξ.

real(kind=wp), intent(out), optional :: v(:)

Shape: v has shape (p).

Output: v(i) must contain the value of component Vi(t0), for i = 1, 2, . . . , p.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

t start — real(kind=wp), intent(inout)

Input: the initial value t0 of the independent variable t.

Output: the value of t corresponding to the solution value U . Normally t start = t end on exit.

Constraints: t start < t end.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.9

nag pde parab 1d fd Partial Differential Equations (PDE’s)

t end — real(kind=wp), intent(in)

Input: the final value of t to which the integration is to be carried out.

x pde(nη) — real(kind=wp), intent(inout)

Input: the initial mesh points in the spatial direction. x pde(1) must specify the left-hand boundary,
a, and x pde(nη) must specify the right-hand boundary, b.

Output: the final values of the mesh points.

Constraints: x pde(1) < x pde(2) < · · · < x pde(nη).

u(n× nη + p) — real(kind=wp), intent(inout)

Input: u(n × (j − 1) + i) contains the computed solution Ui(xj , t), for i = 1, 2, . . . , n and
j = 1, 2, . . . , nη, and u(n × nη + k) contains Vk(t), for k = 1, 2, . . . , p; evaluated on a previous
call to the procedure. The user does not need to initialialise u at the very first call of the procedure.

Output: u(n × (j − 1) + i) contains the computed solution Ui(xj , t), for i = 1, 2, . . . , n and
j = 1, 2, . . . , nη, while u(n × nη + k) contains Vk(t), for k = 1, 2, . . . , p; evaluated at the output
value of t = t start.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

first call — logical, intent(in), optional

Input: indicates whether the time integration is a continuation of a previous step or not:

if first call = .true., starts or restarts the integration in time;

if first call = .false., continues the integration after an earlier exit from the procedure. In
this case, only the parameter t end and the remeshing optional arguments n remesh, dx mesh,
t remesh, ratio mesh and bound int should be reset between calls to nag pde parab 1d fd.

Default: first call = .false..

ode coef — subroutine, optional

The procedure ode coef, supplied by the user, must evaluate the functions Fi, which define the
system of ODEs, as given in (2). If p is set to 0, ode coef should not be present.

Its specification is:

subroutine ode coef(t, v, vdot, x ode, ucp, ducp dx, rcp, ducp dt, &

d2ucp dtdx, f, finish, g in f, i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: v(:)

Shape: v has shape (p).

Input: v(i) contains the value of component Vi(t), for i = 1, 2, . . . , p.

real(kind=wp), intent(in) :: vdot(:)

Shape: vdot has shape (p).

Input: vdot(i) contains the value of component V̇i, for i = 1, 2, . . . , p.

real(kind=wp), intent(in) :: x ode(:)

Shape: x ode has shape (nξ).

Input: x ode(i) contains the value of the ODE/PDE coupling point, ξi, for i = 1, 2, . . . , nξ.

13.3.10 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

real(kind=wp), intent(in) :: ucp(:, :)

Shape: ucp has shape (n, nξ).

Input: ucp(i, j) contains the value of Ui(x, t) at the coupling point x = ξj , for i = 1, 2, . . . , n
and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: ducp dx(:, :)

Shape: ducp dx has shape (n, nξ).

Input: ducp dx(i, j) contains the value of
∂Ui

∂x
(x, t) at the coupling point x = ξj , for

i = 1, 2, . . . , n and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: rcp(:, :)

Shape: rcp has shape (n, nξ).

Output: rcp(i, j) contains the value of Ri at the coupling point x = ξj , for i = 1, 2, . . . , n
and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: ducp dt(:, :)

Shape: ducp dt has shape (n, nξ).

Output: ducp dt(i, j) contains the value of
∂Ui

∂t
(x, t) at the coupling point x = ξj , for

i = 1, 2, . . . , n and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: d2ucp dtdx(:, :)

Shape: d2ucp dtdx has shape (n, nξ).

Output: d2ucp dtdx(i, j) contains the value of
∂2Ui

∂x∂t
(x, t) at the coupling point x = ξj , for

i = 1, 2, . . . , n and j = 1, 2, . . . , nξ.

real(kind=wp), intent(out) :: f(:)

Shape: f has shape (p).

Output: f(i) must contain the ith component of F , for i = 1, 2, . . . , p; where F is defined
(see the optional argument g in f) as follows:

F = G−AV̇ −B

(

U∗
t

U∗
xt

)

,

or

F = −AV̇ −B

(

U∗
t

U∗
xt

)

.

The definition of F is determined by the input value of the optional argument g in f.

integer, intent(out) :: finish

Output: the user may use finish to control the integration procedure as follows:

if finish = 1 or −1, indicates normal exit from the user supplied procedure;

if finish = 2, indicates to the integrator that control should be passed
back immediately to the calling (sub)program with the error indicator set to
error%code = 205;

if finish = 3, indicates to the integrator that the current time step should be
abandoned and a smaller time step used instead. The user may wish to set
finish = 3 when a physically meaningless input or output value has been generated.
If the user consecutively sets finish = 3, then nag pde parab 1d fd returns to the
calling (sub)program with the error indicator set to error%code = 203;

if finish = any value other than 1, −1, 2 or 3, indicates an abnormal exit from
the user supplied procedure, and returns to the calling (sub)program with the error
indicator set to error%code = 207.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.11

nag pde parab 1d fd Partial Differential Equations (PDE’s)

logical, intent(in), optional :: g in f

Input: indicates which of forms of f is returned (see the argument description of f). If
g in f = .true., then the first equation above must be used; and if g in f = .false., then
the second equation above must be used.

Default: g in f = .false..

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

Constraints: ode coef must not be present unless num ode is present with a non zero value.

num ode — integer, intent(in), optional

Input: the number of coupled ODEs in the system, p.

Constraints: num ode ≥ 0.

Default: num ode = 0.

x ode(nξ) — real(kind=wp), intent(in), optional

Input: x ode(i), for i = 1, 2, . . . , nξ, must be set to the ODE/PDE coupling points ξi.

Constraints:

If nξ is set to 0, x ode should not be present;

x pde(1) ≤ x ode(1) < x ode(2) < · · · < x ode(nξ) ≤ x pde(nη).

comm ode — type(nag pde parab 1d comm wp), intent(inout), optional

Input: a structure containing data for the underlying ODE solver between consecutive calls to the
procedure.

Constraints:

if first call = .true., comm ode should be present if a further start is planned;

if first call = .false., this argument should be present and should be the same as returned
from the previous call.

Output: a structure containing information about the underlying ODE solver required for a further
call. This structure may be passed to nag pde parab 1d fd for the continuation of the time
integration.

Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private. The procedure allocates a certain amount of real(kind=wp) and integer elements of storage
to the structure (those dimensions may be accessed via the optional argument dim struct). If you
wish to deallocate this storage when the structure is no longer required, you must call the procedure
nag deallocate, as illustrated in Example 1 of this module document.

coord sys — character(len=1), intent(in), optional

Input: indicates which co-ordinate system (the index m) is being used:

if coord sys = 'C' or 'c', indicates Cartesian co-ordinates (m = 0);

if coord sys = 'P' or 'p', indicates cylindrical polar co-ordinates (m = 1);

if coord sys = 'S' or 's', indicates spherical polar co-ordinates (m = 2).

Constraints:

coord sys should be one of the following values 'C', 'c', 'P', 'p', 'S' or 's';

if coord sys is one of the following values 'P', 'p', 'S' or 's' (i.e., m > 0) then x pde(1)
should be ≥ 0.

Default: coord sys = 'C'.

13.3.12 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

rel loc tol(n× nη + p) — real(kind=wp), intent(in), optional

Input: the relative local error tolerance used in the local error test. The error test to be satisfied
is ‖ei/wi‖ < 1.0, where wi is,

wi = αi × |Ui|+ εi, i = 1, 2, . . . , n× nη + p;

the ei denotes the estimated local error for the i
th component of the coupled PDE/ODE system

and rel loc tol(i) = αi, for i = 1, 2, . . . , n× nη + p.

Constraints: rel loc tol(i) ≥ 0.0, for all i = 1, 2, . . . , n× nη + p.

Default: rel loc tol(i) = EPSILON(1.0 wp), for all i = 1, 2, . . . , n× nη + p.

abs loc tol(n× nη + p) — real(kind=wp), intent(in), optional

Input: the absolute local error tolerance used in the local error test; abs loc tol(i) = εi, for
i = 1, 2, . . . , n× nη + p.

Constraints: abs loc tol(i) ≥ 0.0, for all i = 1, 2, . . . , n × nη + p, and corresponding elements of
abs loc tol and rel loc tol (if present) cannot both be 0.

Default: abs loc tol(i) = EPSILON(1.0 wp), for all i = 1, 2, . . . , n× nη + p.

remesh — logical, intent(in), optional

Input: indicates whether or not spatial remeshing should be performed.

If remesh = .true., indicates that spatial remeshing should be performed as specified.

If remesh = .false., indicates that spatial remeshing should be suppressed.

Note: remesh should not be changed between consecutive calls to the procedure
nag pde parab 1d fd. Remeshing can be switched off or on at specified times by using appropriate
values for the optional arguments n remesh and t remesh at each call.

Default: remesh = .false..

x fix(nf) — real(kind=wp), intent(in), optional

Input: x fix(i), for i = 1, 2, . . . , nf , must contain the value of the x coordinate at the i
th fixed

mesh point.

Note: the end points x pde(1) and x pde(nη) are fixed automatically and hence should not be
specified as fixed points. the position of the fixed mesh points in the array x pde remain fixed
during remeshing, and so the number of mesh points between adjacent fixed points (or between
fixed points and end points) does not change. The user should take this in account when choosing
the initial mesh distribution.

Constraints:

if remesh is not present or = .false. (i.e., no remeshing), or nf = 0, then x fix should not
be present;

x fix(i) < x fix(i+ 1), for i = 1, 2, . . . , nf − 1;

each fixed mesh point must coincide with a user supplied initial mesh point, that is
x fix(i) = x pde(j), for some j, 2 ≤ j ≤ nη − 1.

n remesh — integer, intent(in), optional

Input: specifies the spatial remeshing frequency and criteria for the calculation and adoption of a
new mesh:

if n remesh < 0, indicates that a new mesh is adopted according to the optional argument
dx mesh below. The mesh is tested every ABS(n remesh) time steps;

if n remesh = 0, indicates that remeshing should take place just once at the end of the first
time step reached when t > t remesh (see below);

if n remesh > 0, indicates that remeshing will take place every n remesh time steps, with no
testing using dx mesh.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.13

nag pde parab 1d fd Partial Differential Equations (PDE’s)

Note: n remesh may be changed between consecutive calls to nag pde parab 1d fd to give greater
flexibility over the times of remeshing.

Constraints: n remesh should not be present unless remeshing is to be performed i.e., remesh is
present with value .true..

Default: n remesh = 0.

dx mesh — real(kind=wp), intent(in), optional

Input: determines whether a new mesh is adopted when n remesh is set less than zero. A possible
new mesh is calculated at the end of every |n remesh| time steps, but is adopted only if:

xnewi > xoldi + dx mesh× (xoldi+1 − xoldi)

or

xnewi < xoldi − dx mesh× (xoldi − xoldi−1)

dx mesh thus imposes a lower limit on the difference between one mesh and the next.

Constraints:

dx mesh should not be present unless remeshing is to be performed i.e., remesh is present with
value .true.,

dx mesh ≥ 0.0.

Default: dx mesh = 0.0.

t remesh — real(kind=wp), intent(in), optional

Input: specifies when remeshing will take place if n remesh is set to zero. Remeshing will occur
just once at the end of the first time step reached when t is greater than t remesh.

Note: t remesh may be changed between consecutive calls to nag pde parab 1d fd to force
remeshing at several specified times.

Constraints: t remesh should not be present unless remeshing is to be performed i.e., remesh is
present with value .true..

Default: t remesh = t end.

ratio mesh — real(kind=wp), intent(in), optional

Input: an input bound on the adjacent mesh ratio (greater than 1.0 and typically in the range 1.5
to 3.0). The remeshing procedures will attempt to ensure that

(xi − xi−1)/ratio mesh < xi+1 − xi < ratio mesh× (xi − xi−1).

Constraints:

if remesh is not present or = .false., i.e., no remeshing, then ratio mesh should not be
present,

ratio mesh > 1.0.

Default: ratio mesh = 1.5.

bound int — real(kind=wp), intent(in), optional

Input: an input bound on the sub-integral of the monitor function Fmon(x) over each space step.
The remeshing procedures will attempt to ensure that,
∫ xi+1

xi

Fmon(x)dx ≤ bound int

∫ xnη

x1

Fmon(x)dx,

(see Furzeland [10]). bound int gives the user more control over the mesh distribution, e.g.,
decreasing bound int allows more clustering. A typical value is 2.0/(nη − 1), but the user is
encouraged to experiment with different values. Its value is not critical and the mesh should be
qualitatively correct for all values in the range given below.

13.3.14 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

Constraints:

if remesh is not present or = .false., i.e., no remeshing, then bound int should not be present,

0.1/(nη − 1) ≤ bound int ≤ 10.0/(nη − 1).

Default: bound int = 2.0/(nη − 1).

remesh fun — subroutine, optional

The procedure remesh fun, supplied by the user, must supply and evaluate a remesh monitor
function to indicate the solution behaviour of interest. If the optional argument remesh is not
present or if the user specifies remesh = .false., i.e., no remeshing, then remesh fun should not
be present.

Its specification is:

subroutine remesh fun(t, x pde, u, r, fmon, i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: x pde(:)

Shape: x pde has shape (nη).

Input: the current mesh. x pde(i) contains the value of the xi for i = 1, 2, . . . , nη.

real(kind=wp), intent(in) :: u(:, :)

Shape: u has shape (n, nη).

Input: u(i, j) contains the value of Ui(x, t) at x = x pde(j), for i = 1, 2, . . . , n and
j = 1, 2, . . . , nη.

real(kind=wp), intent(in) :: r(:, :)

Shape: r has shape (n, nη).

Input: r(i, j) contains the value of Ri(x, t, U,
∂U

∂x
, V) at x = x pde(j), for i = 1, 2, . . . , n

and j = 1, 2, . . . , nη.

real(kind=wp), intent(out) :: fmon(:)

Shape: fmon has shape (nη).

Output: fmon(i) must contain the value of the monitor function Fmon at mesh point
x = x pde(i), for i = 1, 2, . . . , nη.

Constraints: fmon(i) ≥ 0.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

control — type(nag pde parab 1d cntrl wp), intent(in), optional

Input: a structure containing scalar components; these are used to alter the default values of
those parameters which control the behaviour of the algorithm and the level of printed output.
The initialization of this structure and its use is described in the procedure document for
nag pde parab 1d cntrl init.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.15

nag pde parab 1d fd Partial Differential Equations (PDE’s)

dim struct(2) — integer, intent(out), optional

Output: the dimension of the real and integer arrays in the structure comm ode, are stored in
dim struct(1) and dim struct(2), respectively.

num time step — integer, intent(out), optional

Output: the number of steps taken in time.

num resid eval — integer, intent(out), optional

Output: the number of residual evaluations of the resulting ODE system used. One such evaluation
involves the PDE functions at all mesh points, as well as one evaluation of the functions in the
boundary conditions.

num jac eval — integer, intent(out), optional

Output: the number of Jacobian evaluations performed by the time integrator.

num time iter — integer, intent(out), optional

Output: the number of Newton iterations performed by the time integrator. Each iteration involves
residual evaluation of the resulting ODE system followed by a back substitution using the LU -
decomposition of the Jacobian matrix.

i comm(:) — integer, intent(in), optional

r comm(:) — real(kind=wp), intent(in), optional

Input: these arrays are not used by this procedure, but they are passed directly from the calling
(sub)program to the user supplied procedures pde coef, bound cond, init value, ode coef and/or
remesh fun, and hence may be used to pass information to them.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

304 Invalid presence of an optional argument.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

13.3.16 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

Failures (error%level = 2):

error%code Description

201 The underlying ODE solver cannot make any further progress from the current point
t = t start, with the given values of rel loc tol and abs loc tol.

The components of U contain the computed values at the current point t = t start.

202 In the underlying ODE solver, there were repeated error or corrector convergence test
failures on an attempted step, before completing the requested task.

The problem may have a singularity, or the error requirement may be inappropriate.
Integration was successful as far as t = t start.

203 In setting up the ODE system, the internal initialisation procedure was unable to
initialise the derivative of the ODE system.

This could be due to the fact that finish was repeatedly set to 3 in the user supplied
procedures pde coef, bound cond or ode coef, when the residual in the underlying
ODE solver was being evaluated.

204 In solving the ODE system a singular Jacobian has been encountered.

Check your problem formulation.

205 When evaluating the residual in the ODE system, finish was set to 2 in at least one
of the user supplied procedures pde coef, bound cond or ode coef.

Integration was successful as far as t = t start.

206 The value of rel loc tol and abs loc tol are so small that the procedure is unable
to start the integration in time.

207 In one of the user supplied procedures pde coef, bound cond or ode coef, finish
was set to an invalid value.

208 A serious error has occurred in an internal call to an integrator for stiff ODE
procedure. Check problem specification and all parameters and array dimensions.

Setting control%print level ode= 1 may provide more information. If the problem
persists, contact NAG.

209 An error occurred during Jacobian formulation of the ODE system.

A more detailed error description may be directed to the current advisory message
unit. If using the sparse matrix algebra option, the values of control%first piv jac

and control%rel piv thr may be inappropriate.

210 Some error weights wi became zero during the time integration (see description of
abs loc tol).

Pure relative error control (abs loc tol(i) = 0.0) was requested on a variable (the
ith) which has become zero. Integration was successful as far as t = t start.

211 The flux function Ri was detected as depending on time derivatives, which is not
permissible.

212 remesh has been changed between calls to the procedure nag pde parab 1d fd, which
is not permissible.

213 The remeshing process has produced zero or negative mesh-spacing. The user is
advised to check the user-supplied monitor procedure remesh fun and to try adjusting
the values of the optional arguments dx mesh, ratio mesh and bound init. Setting
control%print level remesh = 1 may provide more information.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.17

nag pde parab 1d fd Partial Differential Equations (PDE’s)

Warnings (error%level = 1):

error%code Description

101 The required task has been completed, but it is estimated that a small change in
rel loc tol and abs loc tol is unlikely to produce any change in the computed
solution.

Only applies when the user is not operating in one step mode, that is when
control%task 6= 2 or 5.

102 In solving the ODE system, the maximum number of steps specified in
control%num step max has been taken.

103 control%unit is different from its default value while no output is required
(control%print level remesh and control%print level ode have their default
value).

control%unit will not be used.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 3 of this module document.
The user may find other examples in the additional examples section (Examples 4, 6, 7 and 8).

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following example illustrates
the use of the optional argument control in order to solve a parabolic PDE using a finite difference
discretisation.

The value of control%print level ode = 1 generates warning messages from the PDE solver.

...

! Initialize control structure

CALL nag_pde_parab_1d_cntrl_init(control)

! Set required value

control%print_level_ode = 1

CALL nag_pde_parab_1d_fd(pde_coef, bound_cond, init_value, t_start, &

t_end, x_pde, u, control=control)

...

6 Further Comments

6.1 Additional Problem Constraints

The problem is subject to the following restrictions:

In (1), V̇j(t), for j = 1, 2, . . . , p, may only appear linearly in the functions Qi, for i = 1, 2, . . . , n,
with a similar restriction for γi in (3);

Pi,j and the flux Ri must not depend on any time derivatives;

t0 < tout, so that integration is in the forward direction;

the evaluation of the terms Pi,j , Qi and Ri is done approximately at the mid-points of the mesh
x pde(i), for i = 1, 2, . . . , nη, by calling the procedure pde coef for each mid-point in turn. Any
discontinuities in these functionsmust therefore be at one or more of the fixed mesh points specified
by x fix;

At least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
PDE problem;

13.3.18 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d fd

If m > 0 then x1 which is the left boundary point, must be non-negative. Furthermore, if m > 0
and x1 = 0.0, then it must be ensured that the PDE solution is bounded at this point. This can be
done either by specifying the solution at x = 0.0 or by specifying a zero flux there, that is βi = 1.0
and γi = 0.0.

6.2 Algorithmic Detail

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite-difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-
point formula which maintains second order accuracy. In total there are n × nη + p ODEs in the time
direction. This system is then integrated forwards in time using a Backward Differentiation Formula
(BDF) or a Theta method.

The adaptive special remeshing can be used to generate meshes that automatically follow the changing
time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using
fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with
travelling wavefronts or variable-width boundary layers for example will benefit from using a moving
adaptive mesh. The discrete time-step method used here (developed by Furzeland [10]) automatically
creates a new mesh based on the current solution profile at certain time-steps, and the solution is then
interpolated onto the new mesh and the integration continues.

The method requires the user to supply a procedure remesh fun which specifies in an analytical or
numerical form the particular aspect of the solution behaviour the user wishes to track. This so-called
monitor function is used by the routines to choose a mesh which equally distributes the integral of the
monitor function over the domain. A typical choice of monitor function is the second space derivative of
the solution value at each point (or some combination of the second space derivatives if there is more than
one solution component), which results in refinement in regions where the solution gradient is changing
most rapidly.

The user specifies the frequency of mesh updates together with certain other criteria such as adjacent
mesh ratios. Remeshing can be expensive and the user is encouraged to experiment with the different
options in order to achieve an efficient solution which adequately tracks the desired features of the
solution.

Note that unless the monitor function for the initial solution values is zero at all user-specified initial
mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing
criteria. The procedure init value will then be called again to determine the initial solution values at
the new mesh points (there is no interpolation at this stage) and the integration proceeds.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.19

nag pde parab 1d fd Partial Differential Equations (PDE’s)

13.3.20 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde interp 1d fd

Procedure: nag pde interp 1d fd

1 Description

This procedure interpolates in the spatial co-ordinate the solution and its first spatial derivative of
a system of partial differential equations on an interval [a; b]; at a set of user-specified points. The
solution must be computed using a finite difference scheme, and this procedure will normally be used in
conjunction with nag pde parab 1d fd.

2 Usage

USE nag pde parab 1d

CALL nag pde interp 1d fd(u, x pde, x interp, u interp [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

nη ≥ 3 — (= SIZE(x pde)) the number of PDE mesh points in the interval [a, b];

n ≥ 1 — the number of PDEs in the system (SIZE(u) = n× nη);

ninterp ≥ 1 — the number of interpolation points in the interval [a, b];

itype = 1 or 2 — specifies the interpolation to be performed:

if itype = 1, the solution at the interpolation points is computed,

if itype = 2, both the solution and its first derivative at the interpolation
points are computed.

3.1 Mandatory Arguments

u(n× nη) — real(kind=wp), intent(in)

Input: u(n × (j − 1) + i) must contain the computed solution Ui(xj) to be interpolated, for
i = 1, 2, . . . , n and j = 1, 2, . . . , nη.

x pde(nη) — real(kind=wp), intent(in)

Input: the initial mesh points in the spatial direction. x pde(1) must specify the left-hand boundary,
a, and x pde(nη) must specify the right-hand boundary, b.

Constraints: x pde(1) < x pde(2) < · · · < x pde(nη).

x interp(ninterp) — real(kind=wp), intent(in)

Input: must contain the spatial interpolation points.

Constraints: x pde(1) ≤ x interp(1) < x interp(2) < · · · < x interp(ninterp) ≤ x pde(nη).

u interp(n, ninterp, itype) — real(kind=wp), intent(out)

Output:

if itype = 1, u interp(i,j,1) contains the value of the solution Ui(xj) at the interpolation point
xj = x interp(j), for i = 1, 2, . . . , n and j = 1, 2, . . . , ninterp;

if itype = 2, u interp(i,j,1) and u interp(i,j,2) contain respectively the value of the

solution Ui(xj) and the derivative
∂Ui

∂x
(xj) at the interpolation point xj = x interp(j), for

i = 1, 2, . . . , n and j = 1, 2, . . . , ninterp.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.21

nag pde interp 1d fd Partial Differential Equations (PDE’s)

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

coord sys — character(len=1), intent(in), optional

Input: indicates which co-ordinate system (the index m) is being used:

if coord sys = 'C' or 'c', indicates Cartesian co-ordinates (m = 0);

if coord sys = 'P' or 'p', indicates cylindrical polar co-ordinates (m = 1);

if coord sys = 'S' or 's', indicates spherical polar co-ordinates (m = 2).

Constraints: coord sys should be one of the following values 'C', 'c', 'P', 'p', 'S' or 's'.

Default: coord sys = 'C'.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

5 Examples of Usage

Complete examples of the use of this procedure appear in Example 1 of this module document. The
user may find other examples in the additional examples section (Examples 4, 5 and 8).

13.3.22 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

Procedure: nag pde parab 1d coll

1 Description

nag pde parab 1d coll integrates a system of n linear or nonlinear parabolic partial differential
equations (PDEs), and optionally coupled in ODEs, in one space variable:

n
∑

j=1

Pi,j

∂Uj

∂t
+Qi = x−m ∂

∂x
(xmRi), i = 1, 2, ..., n, a ≤ x ≤ b, t ≥ t0, (4)

F = G−AV̇ −B

(

U∗
t

U∗
xt

)

, (5)

where (4) defines the PDE part which is discretised over a set of nb collocation points (break-points),
and (5) generalizes the coupled system of p ODEs which is discretised over a set of nξ coupling points at
which the ODEs are coupled to the PDEs. These points may or may not be equal to some of the PDE
spatial collocation points.

In (4), Pi,j and Ri depend on x, t, U ,
∂U

∂x
, and V ; Qi depends on x, t, U ,

∂U

∂x
, V and linearly on V̇ .

The vector U is the set of PDE solution values

U(x, t) = [U1(x, t), . . . , Un(x, t)]
T ,

and the vector
∂U

∂x
is the partial derivative with respect to x. The vector V is the set of ODE solution

values

V (t) = [V1(t), . . . , Vp(t)]
T ,

and V̇ denotes its derivative with respect to time.

In (5) F = [F1, . . . , Fp]
T , G is a vector of length p, A is a p by p matrix, B is a p by (nξ × n) matrix,

and the entries in G, A and B may depend on t, ξ, U ∗,
∂U∗

∂x
, and V . ξ represents a vector of nξ

spatial coupling points and U ∗,
∂U∗

∂x
, R∗,

∂U∗

∂t
, and

∂2U∗

∂x∂t
are the functions U ,

∂U

∂x
, R,

∂U

∂t
, and

∂2U

∂x∂t
evaluated at these coupling points (See the Module Introduction for more details).

In practice the user only needs to supply a vector of information to define the ODEs and not the matrices
A and B. (See Section 3.2 for the specification of the optional user-supplied procedure ode coef).

The spatial discretisation is performed using a Chebyshev C0 collocation method (with Chebyshev
polynomial of degree d), and the method of lines is employed to reduce the PDEs to a system of ODEs.
The resulting system is solved using a backward differentiation formula method or a Theta method. The
integration in time is from t0 to tout, over the space interval a ≤ x ≤ b, where a = x1 and b = xnb are
the leftmost and rightmost of a user-defined set of break-points x1, x2, . . . , xnb . The co-ordinate system
in space is defined by the value of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical polar
co-ordinates and m = 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions Pi,j , Qi and Ri must be specified in a procedure
pde coef supplied by the user. The initial values of the functions U(x, t) and V (t) must be given at
t = t0. These values are calculated in a user-supplied procedure, init value. The functions Ri which
may be thought of as fluxes, are also used in the definition of the boundary conditions. The boundary
conditions must be specified in a procedure bound cond provided by the user, and must have the form:

βi(x, t)Ri(x, t, U,
∂U

∂x
, V) = γi(x, t, U,

∂U

∂x
V, V̇), i = 1, 2, . . . , n; (6)

where x = a or x = b. The functions γi may only depend linearly on V̇ . The algebraic-differential
equation system which is defined by the functions Fi must be specified in a procedure ode coef supplied
by the user.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.23

nag pde parab 1d coll Partial Differential Equations (PDE’s)

Several options are available for controlling the operation of this procedure, for example the level of
printed output and algorithmic parameters, such as integration method and order, etc.. These options
are grouped together in the optional argument control, which is a structure of the derived type
nag pde parab 1d cntrl wp.

The problem as defined by (4), (5) and (6) is subject to some additional constraints. For details see the
Further Comments section.

2 Usage

USE nag pde parab 1d

CALL nag pde parab 1d coll(pde coef, bound cond, init value, deg poly, t start, t end,

& x bkpts, u [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

nb ≥ 3 — (= SIZE(x bkpts)) the number of collocation points (break-points) in the interval [a, b];

nξ ≥ 0 — (0 or SIZE(x ode) if present) the number of ODE/PDE coupling points, if p = 0 then
nξ = 0 and if p > 0 then nξ ≥ 0;

p ≥ 0 — the number of coupled ODE (see the optional argument num ode);

n ≥ 1 — the number of PDEs in the system (SIZE(u) = n× ((nb − 1)× d+ 1) + p).

3.1 Mandatory Arguments

pde coef — subroutine

The procedure pde coef, supplied by the user, must compute the functions Pi,j , Qi and Ri which

define the system of PDEs as in equation (4). The functions may depend on x, t, U ,
∂U

∂x
and V ;

Qi may depend linearly on V̇ . The functions must be evaluated at a set of points.

Its specification is:

subroutine pde coef(t, x, u, du dx, p, q, r, finish, v, vdot, i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (d+ 1).

Input: contains a set of mesh points at which Pi,j , Qi and Ri are to be evaluated. x(1)
and x(d + 1) contain successive break-points from the user-supplied array x bkpts, the
elements of x will satisfy x(1) < x(2) < · · · < x(d+ 1).

real(kind=wp), intent(in) :: u(:, :)

Shape: u has shape (n, d+ 1).

Input: u(i, j) contains the value of the component Ui(x, t) where x = x(j), for i = 1, 2, . . . , n
and j = 1, 2, . . . , d+ 1.

13.3.24 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

real(kind=wp), intent(in) :: du dx(:, :)

Shape: du dx has shape (n, d+ 1).

Input: du dx(i, j) contains the value of the component
∂Ui

∂x
(x, t) where x = x(j), for

i = 1, 2, . . . , n and j = 1, 2, . . . , d+ 1.

real(kind=wp), intent(out) :: p(:, :, :)

Shape: p has shape (n, n, d+ 1).

Output: p(i, j, k) must be set to the values of Pi,j(x, t, U,
∂U

∂x
, V) where x = x(k), for

i, j = 1, 2, . . . , n and k = 1, 2, . . . , d+ 1.

real(kind=wp), intent(out) :: q(:, :)

Shape: q has shape (n, d+ 1).

Output: q(i, j) must be set to the values of Qi(x, t, U,
∂U

∂x
, V, V̇) where x = x(j), for

i = 1, 2, . . . , n and j = 1, 2, . . . , d+ 1.

real(kind=wp), intent(out) :: r(:, :)

Shape: r has shape (n, d+ 1).

Output: r(i, j) must be set to the values of Ri(x, t, U,
∂U

∂x
, V) where x = x(j), for

i = 1, 2, . . . , n and j = 1, 2, . . . , d+ 1.

integer, intent(out) :: finish

Output: the user may use finish to control the integration procedure as follows:

if finish = 1 or −1, indicates normal exit from the user supplied procedure;

if finish = 2, indicates to the integrator that control should be passed
back immediately to the calling (sub)program with the error indicator set to
error%code = 205;

if finish = 3, indicates to the integrator that the current time step should be
abandoned and a smaller time step used instead. The user may wish to set
finish = 3 when a physically meaningless input or output value has been generated.
If the user consecutively sets finish = 3, then nag pde parab 1d fd returns to the
calling (sub)program with the error indicator set to error%code = 203;

if finish = any value other than 1, −1, 2 or 3, indicates an abnormal exit from
the user supplied procedure, and returns to the calling (sub)program with the error
indicator set to error%code = 207.

real(kind=wp), intent(in), optional :: v(:)

Shape: v has shape (p).

Input: v(i) contains the value of the component Vi(t), for i = 1, 2, . . . , p.

real(kind=wp), intent(in), optional :: vdot(:)

Shape: vdot has shape (p).

Input: vdot(i) contains the value of the component V̇i(t) for i = 1, 2, . . . , p.

Note: V̇i(t) for i = 1, 2, . . . , p may only appear linearly in Qj , for j = 1, 2, . . . , n.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.25

nag pde parab 1d coll Partial Differential Equations (PDE’s)

bound cond — subroutine

The procedure bound cond, supplied by the user, must compute the functions βi, and γi which
define the boundary conditions as in equation (6).

Its specification is:

subroutine bound cond(t, u, du dx, bound, beta, gamma, finish, v, vdot, &

i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: u(:)

Shape: u has shape (n).

Input: u(i) contains the value of the component Ui(x, t), at the boundary specified by
bound, for i = 1, 2, . . . , n.

real(kind=wp), intent(in) :: du dx(:)

Shape: du dx has shape (n).

Input: du dx(i) contains the value of the component
∂Ui

∂x
(x, t), at the boundary specified

by bound, for i = 1, 2, . . . , n.

integer, intent(in) :: bound

Input: determines the position of the boundary conditions. If bound = 0, then the
procedure bound cond must set up the coefficients of the left-hand boundary x = a. Any
other value of bound indicates that the procedure bound cond must set up the coefficients
of the right-hand boundary x = b.

real(kind=wp), intent(out) :: beta(:)

Shape: beta has shape (n).

Output: beta(i) must be set to the values of βi(x, t) at the boundary specified by bound,
for i = 1, 2, . . . , n.

real(kind=wp), intent(out) :: gamma(:)

Shape: gamma has shape (n).

Output: gamma(i) must be set to the values of γi(x, t, U,
∂U

∂x
, V, V̇) at the boundary specified

by bound, for i = 1, 2, . . . , n.

integer, intent(out) :: finish

Output: the user may use finish to control the integration procedure as follows:

if finish = 1 or −1, indicates normal exit from the user supplied procedure;

if finish = 2, indicates to the integrator that control should be passed
back immediately to the calling (sub)program with the error indicator set to
error%code = 205;

if finish = 3, indicates to the integrator that the current time step should be
abandoned and a smaller time step used instead. The user may wish to set
finish = 3 when a physically meaningless input or output value has been generated.
If the user consecutively sets finish = 3, then nag pde parab 1d fd returns to the
calling (sub)program with the error indicator set to error%code = 203;

if finish = any value other than 1, −1, 2 or 3, indicates an abnormal exit from
the user supplied procedure, and returns to the calling (sub)program with the error
indicator set to error%code = 207.

13.3.26 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

real(kind=wp), intent(in), optional :: v(:)

Shape: v has shape (p).

Input: v(i) contains the value of the component Vi(t), for i = 1, 2, . . . , p.

real(kind=wp), intent(in), optional :: vdot(:)

Shape: vdot has shape (p).

Input: vdot(i) contains the value of the component V̇i, for i = 1, 2, . . . , p.

Note: V̇i(t) for i = 1, 2, . . . , p may only appear linearly in γj , for j = 1, 2, . . . , n.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

init value — subroutine

The procedure init value, supplied by the user, must compute the initial values of the PDE
components Ui(xj , t0), for i = 1, 2, . . . , n and j = 1, 2, . . . , (nb − 1)× d+ 1.

Its specification is:

subroutine init value(x, u, v, i comm, r comm)

real(kind=wp), intent(in) :: x(:)

Shape: x has shape ((nb − 1)× d+ 1).

Input: x(j) contains the value of the jth mesh point, for j = 1, 2, . . . , (nb − 1)× d+ 1.

real(kind=wp), intent(out) :: u(:, :)

Shape: u has shape (n, (nb − 1)× d+ 1).

Output: u(i, j) must be set to the initial value Ui(xj , t0), for i = 1, 2, . . . , n and j =
1, 2, . . . , (nb − 1)× d+ 1.

real(kind=wp), intent(out), optional :: v(:)

Shape: v has shape (p).

Output: v(i) must contain the value of component Vi(t0), for i = 1, 2, . . . , p.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

deg poly — integer, intent(in)

Input: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points, d.

Constraints: 1 ≤ deg poly ≤ 49.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.27

nag pde parab 1d coll Partial Differential Equations (PDE’s)

t start — real(kind=wp), intent(inout)

Input: the initial value t0 of the independent variable t.

Output: the value of t corresponding to the solution value U . Normally t start = t end on exit.

Constraints: t start < t end.

t end — real(kind=wp), intent(in)

Input: the final value of t to which the integration is to be carried out.

x bkpts(nb) — real(kind=wp), intent(in)

Input: the values of the break-points in the space direction. x bkpts(1) must specify the left-hand
boundary, a, and x bkpts(nb) must specify the right-hand boundary, b.

Constraints: x bkpts(1) < x bkpts(2) < · · · < x bkpts(nb).

u(n× ((nb − 1)× d+ 1) + p) — real(kind=wp), intent(inout)

Inputu(n × (j − 1) + i) contains the computed solution Ui(xj , t), for i = 1, 2, . . . , n and j =
1, 2, . . . , (nb − 1) × d + 1, and u(((nb − 1) × d + 1) × n + k) contains Vk(t), for k = 1, 2, . . . , p;
evaluated on a previous call to the procedure. The user does not need to initialialise u at the very
first call of the procedure.
Output: u(n × (j − 1) + i) contains the computed solution Ui(xj , t), for i = 1, 2, . . . , n; j =
1, 2, . . . , (nb − 1) × d + 1, and u(((nb − 1) × d + 1) × n + k) contains Vk(t), for k = 1, 2, . . . , p;
evaluated at the output value of t = t start.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

first call — logical, intent(in), optional

Input: indicates whether the time integration is a continuation of a previous step or not:

if first call = .true., starts or restarts the integration in time;

if first call = .false., continues the integration after an earlier exit from the procedure. In
this case, only the parameter t end should be reset between calls to nag pde parab 1d coll.

Default: first call = .false..

ode coef — subroutine, optional

The procedure ode coef, supplied by the user, must evaluate the functions Fi, which defines the
system of ODEs, as given in (5). If p is set to 0, ode coef should not be present.

Its specification is:

subroutine ode coef(t, v, vdot, x ode, ucp, ducp dx, rcp, ducp dt, &

d2ucp dtdx, f, finish, g in f, i comm, r comm)

real(kind=wp), intent(in) :: t

Input: the current value of the independent variable t.

real(kind=wp), intent(in) :: v(:)

Shape: v has shape (p).

Input: v(i) contains the value of component Vi(t), for i = 1, 2, . . . , p.

real(kind=wp), intent(in) :: vdot(:)

Shape: vdot has shape (p).

Input: vdot(i) contains the value of component V̇i, for i = 1, 2, . . . , p.

13.3.28 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

real(kind=wp), intent(in) :: x ode(:)

Shape: x ode has shape (nξ).

Input: x ode(i) contains the value of the ODE/PDE coupling point, ξ, for i = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: ucp(:, :)

Shape: ucp has shape (n, nξ).

Input: ucp(i, j) contains the value of Ui(x, t) at the coupling point x = ξj , for i = 1, 2, . . . , n
and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: ducp dx(:, :)

Shape: ducp dx has shape (n, nξ).

Input: ducp dx(i, j) contains the value of
∂Ui

∂x
(x, t) at the coupling point x = ξj , for

i = 1, 2, . . . , n and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: rcp(:, :)

Shape: rcp has shape (n, nξ).

Input: rcp(i, j) contains the value of Ri at the coupling point x = ξj , for i = 1, 2, . . . , n
and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: ducp dt(:, :)

Shape: ducp dt has shape (n, nξ).

Input: ducp dt(i, j) contains the value of
∂Ui

∂t
(x, t) at the coupling point x = ξj , for

i = 1, 2, . . . , n and j = 1, 2, . . . , nξ.

real(kind=wp), intent(in) :: d2ucp dtdx(:, :)

Shape: d2ucp dtdx has shape (n, nξ).

Input: d2ucp dtdx(i, j) contains the value of
∂2Ui

∂x∂t
(x, t) at the coupling point x = ξj , for

i = 1, 2, . . . , n and j = 1, 2, . . . , nξ.

real(kind=wp), intent(out) :: f(:)

Shape: f has shape (p).

Output: f(i) must contain the ith component of F , for i = 1, 2, . . . , p; where F is defined
(see the optional argument g in f) as follows:

F = G−AV̇ −B

(

U∗
t

U∗
xt

)

,

or

F = −AV̇ −B

(

U∗
t

U∗
xt

)

.

The definition of F is determined by the input value of the optional argument g in f.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.29

nag pde parab 1d coll Partial Differential Equations (PDE’s)

integer, intent(out) :: finish

Output: the user may use finish to control the integration procedure as follows:

if finish = 1 or −1, indicates normal exit from the user supplied procedure;

if finish = 2, indicates to the integrator that control should be passed
back immediately to the calling (sub)program with the error indicator set to
error%code = 205;

if finish = 3, indicates to the integrator that the current time step should be
abandoned and a smaller time step used instead. The user may wish to set
finish = 3 when a physically meaningless input or output value has been generated.
If the user consecutively sets finish = 3, then nag pde parab 1d fd returns to the
calling (sub)program with the error indicator set to error%code = 203;

if finish = any value other than 1, −1, 2 or 3, indicates an abnormal exit from
the user supplied procedure, and returns to the calling (sub)program with the error
indicator set to error%code = 207.

logical, intent(in), optional :: g in f

Input: indicates which of forms of f is returned (see the argument description of f). If
g in f = .true., then the first equation above must be used; and if g in f = .false., then
the second equation above must be used.

Default: g in f = .false..

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

Constraints: ode coef must not be present unless num ode is present with a non zero value.

num ode — integer, intent(in), optional

Input: the number of coupled ODEs in the system, p.

Constraints: num ode ≥ 0.

Default: num ode = 0.

x ode(nξ) — real(kind=wp), intent(in), optional

Input: x ode(i), for i = 1, 2, . . . , nξ, must be set to the ODE/PDE coupling points ξi.

Constraints:

If nξ is set to 0, x ode should not be present;

x bkpts(1) ≤ x ode(1) < x ode(2) < · · · < x ode(nξ) ≤ x bkpts(nb).

comm ode — type(nag pde parab 1d comm wp), intent(inout), optional

Input: a structure containing data for the underlying ODE solver between consecutive calls to the
procedure.

Constraints:

if first call = .true., comm ode should be present if a further start is planned;

if first call = .false., this argument should be present and should be the same as returned
from the previous call;

if an interpolation of the solution, using the procedure nag pde interp 1d coll is planned
by the user, comm ode should be present.

13.3.30 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

Output: a structure containing informations about the underlying ODE solver needed for a further
call. So this structure may be passed to nag pde parab 1d coll for the continuation of the time
integration; and to nag pde parab 1d coll to interpolate the solution.

Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private. The procedure allocates a certain amount of real(kind=wp) and integer elements of storage
to the structure (those dimensions may be accessed via the optional argument dim struct). If you
wish to deallocate this storage when the structure is no longer required, you must call the procedure
nag deallocate, as illustrated in Example 1 of this module document.

coord sys — character(len=1), intent(in), optional

Input: indicates which co-ordinate system (the index m) is being used:

if coord sys = 'C' or 'c', indicates Cartesian co-ordinates (m = 0);

if coord sys = 'P' or 'p', indicates cylindrical polar co-ordinates (m = 1);

if coord sys = 'S' or 's', indicates spherical polar co-ordinates (m = 2).

Constraints:

coord sys should be one of the following values 'C', 'c', 'P', 'p', 'S' or 's';

if coord sys is one of the following values 'P', 'p', 'S', 's' (i.e., m > 0) then x bkpts(1)
should be ≥ 0.

Default: coord sys = 'C'.

x mesh((nb − 1)× d+ 1) — real(kind=wp), intent(out), optional

Output: the mesh points chosen by the procedure in the spatial direction. The values of x mesh

will satisfy x mesh(1) < x mesh(2) < · · · < x mesh((nb − 1)× d+ 1).

rel loc tol(n× ((nb − 1)× d+ 1) + p) — real(kind=wp), intent(in), optional

Input: the relative local error tolerance used in the local error test. The error test to be satisfied
is ‖ei/wi‖ < 1.0, where wi is,

wi = αi × |Ui|+ εi, i = 1, 2, . . . , ;n× ((nb − 1)× d+ 1) + p;

the ei denotes the estimated local error for the i
th component of the coupled PDE/ODE system

and rel loc tol(i) = αi, for i = 1, 2, . . . , n× ((nb − 1)× d+ 1) + p.

Constraints: rel loc tol(i) ≥ 0.0, for all i = 1, 2, . . . , n× ((nb − 1)× d+ 1) + p.

Default: rel loc tol(i) = EPSILON(1.0 wp), for all i = 1, 2, . . . , n× ((nb − 1)× d+ 1) + p.

abs loc tol(n× ((nb − 1)× d+ 1) + p) — real(kind=wp), intent(in), optional

Input: the absolute local error tolerance used in the local error test; abs loc tol(i) = εi, for
i = 1, 2, . . . , n× ((nb − 1)× d+ 1) + p.

Constraints: abs loc tol(i) ≥ 0.0, for all i = 1, 2, . . . , n× ((nb−1)×d+1)+p, and corresponding
elements of abs loc tol and rel loc tol (if present) cannot both be 0.

Default: abs loc tol(i) = EPSILON(1.0 wp), for all i = 1, 2, . . . , n× ((nb − 1)× d+ 1) + p.

control — type(nag pde parab 1d cntrl wp), intent(in), optional

Input: a structure containing scalar components; these are used to alter the default values of
those parameters which control the behaviour of the algorithm and the level of printed output.
The initialization of this structure and its use is described in the procedure document for
nag pde parab 1d cntrl init.

dim struct(2) — integer, intent(out), optional

Output: the dimension of the real and integer arrays in the structure comm ode, are stored in
dim struct(1) and dim struct(2), respectively.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.31

nag pde parab 1d coll Partial Differential Equations (PDE’s)

num time step — integer, intent(out), optional

Output: num time step contains the number of steps taken in time.

num resid eval — integer, intent(out), optional

Output: num resid eval contains the number of residual evaluations of the resulting ODE system
used. One such evaluation involves the PDE functions at all mesh points, as well as one evaluation
of the functions in the boundary conditions.

num jac eval — integer, intent(out), optional

Output: num jac eval contains the number of Jacobian evaluations performed by the time
integrator.

num time iter — integer, intent(out), optional

Output: num time iter contains the number of Newton iterations performed by the time
integrator. Each iteration involves residual evaluation of the resulting ODE system followed by
a back substitution using the LU -decomposition of the Jacobian matrix.

i comm(:) — integer, intent(in), optional

r comm(:) — real(kind=wp), intent(in), optional

Input: these arrays are not used by this procedure, but they are passed directly from the calling
(sub)program to the user supplied procedures pde coef, bound cond, init value and/or ode coef,
and hence may be used to pass information to them.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

304 Invalid presence of an optional argument.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The underlying ODE solver cannot make any further progress, from the current point
t = t start, with the given values of rel loc tol and abs loc tol.

The components of U contain the computed values at the current point t = t start.

202 In the underlying ODE solver there were repeated error or corrector convergence test
failures on an attempted step, before completing the requested task.

13.3.32 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

The problem may have a singularity, or the error requirement may be inappropriate.
Integration was successful as far as t = t start.

203 In setting up the ODE system, the internal initialisation procedure was unable to
initialise the derivative of the ODE system.

This could be due to the fact that finish was repeatedly set to 3 in the user supplied
procedures pde coef, bound cond or ode coef, when the residual in the underlying
ODE solver was being evaluated.

204 In solving the ODE system a singular Jacobian has been encountered.

Check your problem formulation.

205 When evaluating the residual in the solving the ODE system, finish was set to 2 in
at least one of the user supplied procedures pde coef, bound cond or ode coef.

Integration was successful as far as t = t start.

206 The value of rel loc tol and abs loc tol are so small that the procedure is unable
to start the integration in time.

207 In one of the user supplied procedures pde coef, bound cond or ode coef, finish
was set to an invalid value.

208 A serious error has occurred in an internal call to a stiff ODE integrator. Check
problem specification and all parameters and array dimensions.

Setting control%print level ode= 1 may provide more information. If the problem
persists, contact NAG.

209 An error occurred during Jacobian formulation of the ODE system.

A more detailed error description may be directed to the current advisory message
unit. If using the sparse matrix algebra option, the values of control%first piv jac

and control%rel piv thr may be inappropriate.

210 Some error weights wi became zero during the time integration (see description of
abs loc tol).

Pure relative error control (abs loc tol(i) = 0.0) was requested on a variable (the
ith) which has become zero. Integration was successful as far as t = t start.

211 The flux function Ri was detected as depending on time derivatives, which is not
permissible.

Warnings (error%level = 1):

error%code Description

101 The required task has been completed, but it is estimated that a small change in
rel loc tol and abs loc tol is unlikely to produce any change in the computed
solution.

Only applies when the user is not operating in one step mode, that is when
control%task 6= 2 or 5.

102 In solving the ODE system, the maximum number of steps specified in
control%num step max has been taken.

103 control%unit is different from its default value while no output is required
(control%print level ode has its default value).

control%unit will not be used.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.33

nag pde parab 1d coll Partial Differential Equations (PDE’s)

5 Examples of Usage

Complete examples of the use of this procedure appear in Example 2 of this module document. The
user may find other examples in the additional examples section (Examples 5 and 9).

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following example illustrates
the use of the optional argument control in order to solve a parabolic PDE using a collocation method.

The value of control%print level ode = 1 generates warning messages from the PDE solver.

...

! Initialize control structure

CALL nag_pde_parab_1d_cntrl_init(control)

! Set required value

control%print_level_ode = 1

CALL nag_pde_parab_1d_coll(pde_coef, bound_cond, init_value, deg_poly, &

t_start, t_end, x_bkpts, u, control=control)

...

6 Further Comments

6.1 Additional Problem Constraints

The routine is designed to solve parabolic systems (possibly including elliptic equations) with second-
order derivatives in space. The parameter specification allows the user to include equations with only
first-order derivatives in the space direction but there is no guarantee that the method of integration
will be satisfactory for such systems. The position and nature of the boundary conditions are critical in
defining a stable problem.

The problem is subject to the following restrictions:

in (4), V̇j(t), for j = 1, 2, . . . , p, may only appear linearly in the functions Qi, for i = 1, 2, . . . , n,
with similar restrictions for γi in (6);

t0 < tout, so that integration is in the forward direction;

Pi,j , Qi and the flux Ri must not depend on any time derivatives;

the evaluation of the functions Pi,j , Qi and Ri is done at both the break-points and internally
selected points for each element in turn, that is Pi,j , Qi and Ri are evaluated twice at each break-
point. Any discontinuities in these functions must therefore be at one or more of the break-points
x1, x2, . . . , xnb ;

at least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
problem;

if m > 0 and x1 = 0.0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x = 0.0 or
by specifying a zero flux there, that is βi = 1.0 and γi = 0.0.

6.2 Algorithmic Detail

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the
mesh points. This ODE system is obtained by approximating the PDE solution between each pair of
break-points by a Chebyshev polynomial of degree d. The interval between each pair of break-points
is treated by nag pde parab 1d coll as an element, and on this element, a polynomial and its space
and time derivatives are made to satisfy the system of PDEs at (d− 1) spatial points, which are chosen
internally by the code, and at the break-points. In the case of just one element, the break-points are the
boundaries. The user-defined break-points and the internally selected points together define the mesh.
The smallest value that d can take is one, in which case, the solution is approximated by piecewise linear

13.3.34 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d coll

polynomials between consecutive break-points and the method is similar to an ordinary finite element
method.

In total there are (nb − 1)× d+ 1 mesh points in the spatial direction, and n× ((nb − 1)× d+ 1) ODEs
in the time direction; one ODE at each break-point for each PDE component and (d − 1) ODEs for
each PDE component between each pair of break-points. The system is then integrated forwards in time
using a backward differentiation formula method.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.35

nag pde parab 1d coll Partial Differential Equations (PDE’s)

13.3.36 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde interp 1d coll

Procedure: nag pde interp 1d coll

1 Description

This procedure interpolates in the spatial co-ordinate the solution and its first spatial derivative of a
system of partial differential equations on an interval [a; b]; at a set of user-specified points. The solution
must be computed using a Chebyshev C0 collocation method, and this procedure will normally be used
in conjunction with the procedure nag pde parab 1d coll.

2 Usage

USE nag pde parab 1d

CALL nag pde interp 1d coll(u, x bkpts, deg poly, comm ode, x interp, u interp &

[, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

nb ≥ 3 — (= SIZE(x bkpts)) the number of collocation points (break-points) in the interval [a, b];

n ≥ 1 — the number of PDEs in the system (SIZE(u) = n× ((nb − 1)× d+ 1));

ninterp ≥ 1 — the number of interpolation points in the interval [a, b];

itype = 1, or 2 — specifies the interpolation to be performed:

if itype = 1, the solution at the interpolation points is computed,

if itype = 2, both the solution and its first derivative at the interpolation
points are computed.

3.1 Mandatory Arguments

u(n× ((nb − 1)× d+ 1)) — real(kind=wp), intent(in)

Input: u(n× (j − 1) + i) contains the computed solution Ui(xj) to be interpolated, as returned by
the procedure nag pde parab 1d coll, for i = 1, 2, . . . , n and j = 1, 2, . . . , (nb − 1)× d+ 1.

x bkpts(nb) — real(kind=wp), intent(in)

Input: the values of the break-points in the space direction. x bkpts(1) must specify the left-hand
boundary, a, and x bkpts(nb) must specify the right-hand boundary, b.

Constraints: x bkpts(1) < x bkpts(2) < · · · < x bkpts(nb).

deg poly — integer, intent(in)

Input: the degree d of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points.

Constraints: 1 ≤ deg poly ≤ 49.

comm ode — type(nag pde parab 1d comm wp), intent(in)

Input: a structure containing data returned as an optional argument (which should therefore be
present) from the procedure nag pde parab 1d coll.

Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private. If you wish to deallocate this storage when the structure is no longer required, you must
call the procedure nag deallocate, as illustrated in Example 1 of this module document.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.37

nag pde interp 1d coll Partial Differential Equations (PDE’s)

x interp(ninterp) — real(kind=wp), intent(in)

Input: must contain the spatial interpolation points.

Constraints: x bkpts(1) ≤ x interp(1) < x interp(2) < · · · < x interp(ninterp) ≤ x bkpts(nb).
When itype = 2, x interp(i) 6= x bkpts(j), for any i = 1, 2, . . . , ninterp and j = 1, 2, . . . , nb.

u interp(n, ninterp, itype) — real(kind=wp), intent(out)

Output:

if itype = 1, u interp(i,j,1) contains the value of the solution Ui(xj) at the interpolation point
xj = x interp(j), for i = 1, 2, . . . , n and j = 1, 2, . . . , ninterp;

if itype = 2, u interp(i,j,1) and u interp(i,j,2) contain respectively the value of the

solution Ui(xj) and the derivative
∂Ui

∂x
(xj) at the interpolation point xj = x interp(j), for

i = 1, 2, . . . , n and j = 1, 2, . . . , ninterp.

3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

13.3.38 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) nag pde parab 1d cntrl init

Procedure: nag pde parab 1d cntrl init

1 Description

nag pde parab 1d cntrl init assigns default values to the components of a structure of the derived
type nag pde parab 1d cntrl wp.

2 Usage

USE nag pde parab 1d

CALL nag pde parab 1d cntrl init(control)

3 Arguments

3.1 Mandatory Argument

control — type(nag pde parab 1d cntrl wp), intent(out)

Output: a structure containing the default values of those parameters which control the behaviour
of the algorithm and level of printed output. A description of its components is given in the
document for the derived type nag pde parab 1d cntrl wp.

4 Error Codes

None.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 to 3 of this module document.
The user may find other examples in the additional examples section (Examples 4, 5, 6, 7, 8 and 9).

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.39

nag pde parab 1d cntrl init Partial Differential Equations (PDE’s)

13.3.40 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Type nag pde parab 1d comm wp

Derived Type: nag pde parab 1d comm wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag pde parab 1d comm dp. For single precision the name is nag pde parab 1d comm sp. Please read
the Users’ Note for your implementation to check which precisions are available.

1 Description

The derived type nag pde parab 1d comm wp is used to communicate data needed by the underlying
ODE solver. The procedures nag pde parab 1d fd and nag pde parab 1d coll returns a structure of
this type suitable for passing to:

the same procedures respectively (to continue the time integration);

the interpolation procedure nag pde interp 1d coll, only in the case of the Chebyshev C0

collocation method.

On a first call to the procedure nag pde parab 1d fd or nag pde parab 1d coll, storage is dynamically
allocated to the pointer components of the structure. For details of the amount of storage allocated see
the description of the optional argument comm ode in the procedure document for nag pde parab 1d fd

or nag pde parab 1d coll.

If you wish to deallocate the storage when the structure is no longer required, you must call the generic
deallocation procedure nag deallocate, which is described in the module document nag lib support

(1.1).

The procedure nag pde parab 1d fd or nag pde parab 1d coll checks whether the structure has already
had storage allocated to it in a previous call. If it has, that storage is deallocated before allocating
the storage required for the new call, only if the optional argument first call is present and set
to .true.(see the description of the optional argument first call in the procedure document for
nag pde parab 1d fd or nag pde parab 1d coll).

The components of this type are private.

2 Type Definition

type nag pde parab 1d comm wp

private

.

.

.

end type nag pde parab 1d comm wp

3 Components

In order to reduce the risk of accidental data corruption the components of this type are private and
may not be accessed directly.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.41

Type nag pde parab 1d comm wp Partial Differential Equations (PDE’s)

13.3.42 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Type nag pde parab 1d cntrl wp

Derived Type: nag pde parab 1d cntrl wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag pde parab 1d cntrl dp. For single precision the name is nag pde parab 1d cntrl sp. Please read
the Users’ Note for your implementation to check which precisions are available.

1 Description

A structure of type nag pde parab 1d cntrl wp is used to supply a number of optional parameters, for
example the level of printed output, or various algorithmic parameters.

If this structure is supplied then it must be initialized prior to use by calling the procedure
nag pde parab 1d cntrl init, which assigns default values to all the structure components. You may
then assign required values to selected components of the structure (as appropriate).

2 Type Definition

The public components are listed below; components are grouped according to their function. A full
description of the purpose of each component is given in Section 3.

type nag pde parab 1d cntrl wp

! Printing parameters

integer :: unit

integer :: print level ode

integer :: print level remesh

!

! Algorithm choice

logical :: l2 norm

character :: matrix type

integer :: task

logical :: method bdf

integer :: bdf max ord

logical :: bdf newton it

logical :: bdf petzold test

real(kind=wp) :: theta

logical :: theta newton it

logical :: theta switch

real(kind=wp) :: t crit

real(kind=wp) :: step size min

real(kind=wp) :: step size max

real(kind=wp) :: step size init

integer :: num step max

logical :: mod newton it

real(kind=wp) :: first piv jac

real(kind=wp) :: rel piv thr

end type nag pde parab 1d cntrl wp

3 Components

3.1 Printing Parameters

unit — integer

Specifies the Fortran unit number to which all output produced by the procedures
nag pde parab 1d fd or nag pde parab 1d coll is sent.

Default: unit = the default Fortran output unit number for your implementation.

Constraints: unit ≥ 0.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.43

Type nag pde parab 1d cntrl wp Partial Differential Equations (PDE’s)

print level ode — integer

the level of diagnostic information required from the procedure nag pde parab 1d fd or
nag pde parab 1d coll and the underlying ODE solver. The following output is sent to the Fortran
unit number defined by the optional argument unit:

if print level ode ≤ −1, no ouput is generated;

if print level ode = 0, only warning messages from the PDE solver are generated;

if print level ode = 1, the output from the underlying ODE solver is generated. This output
contains details of Jacobian entries, the nonlinear iteration and the time integration during
the computation of the ODE system;

if print level ode ≥ 2, the similar output to that produced when print level ode = 1 is
generated in greater detail. Inexperienced users are advised to set print level ode = 0.

Default: print level ode = −1.

print level remesh — integer

the level of print information regarding the adaptive remeshing. The following output is sent to
the Fortran unit number defined by the optional argument unit:

if print level remesh = 0, no output is generated;

if print level ode = 1, brief summary of mesh characteristics;

if print level ode = 2, more detailed information, including old and new mesh points, mesh
sizes and monitor function values.

Constraints:

print level remesh should not be different from the default value unless remeshing is to be
performed i.e., remesh is present with value .true.,

0 ≤ print level remesh ≤ 2.

Default: print level remesh = 0.

3.2 Algorithm Options

l2 norm — logical

indicates the type of norm to be used for the error test to be satisfied:

if l2 norm = .false., maximum norm,

if l2 norm = .true., average L2 norm.

Default: l2 norm = .false..

Note: if Unorm denotes the norm of the vector U of length n×nη+ p, then the average L2 norm is:

Unorm =

√

√

√

√

1

n× nη + p

n×nη+p
∑

i=1

(Ui/wi)2,

while the maximum norm is:

Unorm = max
i
|Ui/wi|.

See the description of the optional arguments rel loc tol and abs loc tol for the formulation of
the weight vector w = {wi}i=1,2,...(n×nη+p).

13.3.44 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Type nag pde parab 1d cntrl wp

matrix type — character(len=1)

the type of the matrix algebra required. The possible choices are:

if matrix type = 'F' or 'f', full matrix procedures to be used,

if matrix type = 'B' or 'b', banded matrix procedures to be used,

if matrix type = 'S' or 's', sparse matrix procedures to be used.

Constraints: matrix type = 'F', 'f', 'B', 'b', 'S', or 's'.

Default: matrix type = 'b'.

Note: the user is recommended to use the banded option when no coupled ODEs are present (i.e.,
num ode = p = 0).

task — integer

specifies the task to be performed by the underlying ODE integrator. The permitted values of task
and their meanings are detailed below:

if task = 1, normal computation of output values U at t = t end (by overshooting and
interpolation);

if task = 2, one step and return;

if task = 3, stop at first internal integration point at or beyond t = t end;

if task = 4, normal computation of output values U at t = t end but without overshooting
t = tcrit, where tcrit is described under the component t crit;

if task = 5, take one step in the time direction and return, without passing tcrit, where tcrit
is described under the component t crit.

Constraints: 1 ≤ task ≤ 5.

Default: task = 1.

method bdf — logical

selects the ODE integration method to be used:

if method bdf = .true., a BDF method is used;

if method bdf = .false., a Theta method is used.

Default: method bdf = .true..

Note: if method bdf = .true., then theta, theta newton it and theta switch are not used. If
method bdf = .false., then bdf max ord, bdf newton it and bdf petzold test are not used.

bdf max ord — integer

specifies the maximum order of the BDF integration formula to be used.
Constraints: 1 ≤ bdf max ord ≤ 5.

Default: bdf max ord = 5.

bdf newton it — logical

specifies what method is to be used to solve the system of non-linear equations arising on each step
of the BDF method:

if bdf newton it = .true., a modified Newton iteration is used;

if bdf newton it = .false., a functional iteration is used.

Default: bdf newton it = .true..

Note: if method bdf = .false., i.e., a functional iteration is selected and the integrator encounters
difficulty, then there is an automatic switch to the modified Newton iteration.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.45

Type nag pde parab 1d cntrl wp Partial Differential Equations (PDE’s)

bdf petzold test — logical

specifies whether or not the Petzold error test is to be employed. The Petzold error test results in
extra overhead but is more suitable when algebraic equations are present, such as Pi,j = 0.0, for

j = 1, 2, . . . , n; for some i or when there is no V̇i(t) dependence in the coupled ODE system.

If bdf petzold test = .true., then the Petzold test is used;

if bdf petzold test = .false., then the Petzold test is not used.

Default: bdf petzold test = .true..

theta — real(kind=wp)

specifies the value of Theta to be used in the Theta integration method.
Constraints: 0.51 ≤ theta ≤ 0.99.

Default: theta = 0.55.

theta newton it — logical

specifies what method is to be used to solve the system of non-linear equations arising on each step
of the Theta method.

If theta newton it = .true., then a modified Newton iteration is used;

if theta newton it = .false., then a functional iteration is used.

Default: theta newton it = .true..

theta switch — logical

specifies whether or not the integrator is allowed to switch automatically between modified Newton
and functional iteration methods in order to be more efficient.

If theta switch = .true., then switching is allowed;

if theta switch = .false., then switching is not allowed.

Default: theta switch = .true..

t crit — real(kind=wp)

specifies a point in the time direction, tcrit, beyond which integration must not be attempted. The
use of tcrit is described under the component task. A value of 0.0 for t crit, say, should be
specified even if task subsequently specifies that tcrit will not be used.
Default: t crit = 0.0.

step size min — real(kind=wp)

specifies the minimum absolute step size to be allowed in the time integration.
Default: step size min = 0.0.

step size max — real(kind=wp)

specifies the maximum absolute step size to be allowed in the time integration.
Default: step size max = 0.0.

step size init — real(kind=wp)

specifies the initial step size to be attempted by the integrator. If step size ini = 0.0, then the
initial step size is calculated internally.
Default: step size init = 0.0.

num step max — integer

specifies the maximum number of steps to be attempted by the integrator in any one call. If
num step max = 0, then no limit is imposed.
Default: num step max = 0.

13.3.46 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Type nag pde parab 1d cntrl wp

mod newton it — logical

specifies what method is to be used to solve the non-linear equations at the initial point to initialise

the value of U ,
∂U

∂t
, V , and V̇ .

If mod newton it = .true., a modified Newton iteration is used;

if mod newton it = .false., a functional iteration is used.

Default: mod newton it = .true..

first piv jac — real(kind=wp)

governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie
in the range 0.0 ≤ first piv jac(29) ≤ 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability.
Default: first piv jac = 0.1.

Note: if first piv jac lies outside this range then default value is used. If the procedure regards
the Jacobian matrix as numerically singular then increasing first piv jac towards 1.0 may help,
but at the cost of increasing fill-in.

rel piv thr — real(kind=wp)

is used as a relative pivot threshold during subsequent Jacobian decompositions (See component
first piv jac) below which an internal error is invoked. rel piv thr must be greater than zero,
otherwise the default value is used. If rel piv thr is greater than 1.0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular
(see component first piv jac).
Default: rel piv thr = 0.0001.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.47

Type nag pde parab 1d cntrl wp Partial Differential Equations (PDE’s)

13.3.48 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 1

Example 1: Elliptic-parabolic PDEs Solved Using

Finite Difference Scheme and the BDF Method

The example below, given in Dew and Walsh [5], consists of an elliptic-parabolic pair of PDEs. The
problem was originally derived from a single third-order in space PDE. The elliptic equation is

1

r

∂

∂r

(

r2 ∂U1

∂r

)

= 4α

(

U2 + r
∂U2

∂r

)

and the parabolic equation is

(1− r2)
∂U2

∂t
=
1

r

∂

∂r

(

r

(

∂U2

∂r
− U2U1

))

where (r, t) ∈ [0, 1]× [0, 1]. The boundary conditions are given by

U1 =
∂U2

∂r
= 0 at r = 0,

and

∂

∂r
(rU1) = 0 and U2 = 0 at r = 1.

The first of these boundary conditions implies that the flux term in the second PDE,

(

∂U2

∂r
− U2U1

)

,

is zero at r = 0.

The initial conditions at t = 0 are given by;

U1 = 2αr and U2 = 1.0, for r ∈ [0, 1].

The value α = 1 was used in the problem definition. A mesh of 20 points was used with a circular mesh
spacing to cluster the points towards the right-hand side of the spatial interval, r = 1.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nag_pde_parab_1d_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE pde_coef(t,x,u,du_dx,p,q,r,finish,v,vdot,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t, x

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (IN) :: du_dx(:), u(:)

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.49

Example 1 Partial Differential Equations (PDE’s)

REAL (wp), INTENT (OUT) :: p(:,:), q(:), r(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), v(:), vdot(:)

! .. Local Scalars ..

REAL (wp) :: alpha

! .. Executable Statements ..

alpha = r_comm(1)

finish = 1

q(1) = 4.0_wp*alpha*(u(2)+x*du_dx(2))

q(2) = 0.0_wp

r(1) = x*du_dx(1)

r(2) = du_dx(2) - u(1)*u(2)

p(1,1:2) = 0.0_wp

p(2,1) = 0.0_wp

p(2,2) = 1.0_wp - x*x

END SUBROUTINE pde_coef

SUBROUTINE bound_cond(t,u,du_dx,bound,beta,gamma,finish,v,vdot,i_comm, &

r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: bound

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (OUT) :: beta(:), gamma(:)

REAL (wp), INTENT (IN) :: du_dx(:), u(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), v(:), vdot(:)

! .. Executable Statements ..

finish = 1

IF (bound==0) THEN

beta(1:2) = (/ 0.0_wp, 1.0_wp/)

gamma(1) = u(1)

gamma(2) = -u(1)*u(2)

ELSE

beta(1:2) = (/ 1.0_wp, 0.0_wp/)

gamma(1:2) = -u(1:2)

END IF

END SUBROUTINE bound_cond

SUBROUTINE init_value(x_pde,u,x_ode,v,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), x_ode(:)

REAL (wp), INTENT (OUT) :: u(:,:)

REAL (wp), OPTIONAL, INTENT (OUT) :: v(:)

REAL (wp), INTENT (IN) :: x_pde(:)

! .. Local Scalars ..

INTEGER :: npts_pde

REAL (wp) :: alpha

! .. Executable Statements ..

13.3.50 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 1

alpha = r_comm(1)

npts_pde = SIZE(x_pde)

u(1,1:npts_pde) = 2.0_wp*alpha*x_pde(1:npts_pde)

u(2,1:npts_pde) = 1.0_wp

END SUBROUTINE init_value

END MODULE nag_pde_parab_1d_ex01_mod

PROGRAM nag_pde_parab_1d_ex01

! Example Program Text for nag_pde_parab_1d

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_pde_parab_1d, ONLY : nag_pde_parab_1d_comm_wp => &

nag_pde_parab_1d_comm_dp, nag_pde_parab_1d_cntrl_wp => &

nag_pde_parab_1d_cntrl_dp, nag_pde_parab_1d_cntrl_init, &

nag_pde_parab_1d_fd, nag_pde_interp_1d_fd, nag_deallocate

USE nag_pde_parab_1d_ex01_mod, ONLY : pde_coef, bound_cond, init_value, &

wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, MAX, REAL, SIN, SQRT

! .. Parameters ..

INTEGER, PARAMETER :: itype = 1, ninterp = 6, npde = 2, npts_pde = 20

REAL (wp), PARAMETER :: x_interp(ninterp) = (/ 0.0_wp, 0.4_wp, 0.6_wp, &

0.8_wp, 0.9_wp, 1.0_wp/)

! .. Local Scalars ..

INTEGER :: i, it, num_jac_eval, num_resid_eval, num_time_iter, &

num_time_step

REAL (wp) :: acc, alpha, hx, pi, piby2, t_end, t_start

LOGICAL :: first_call

CHARACTER (1) :: coord_sys

TYPE (nag_pde_parab_1d_comm_wp) :: comm_ode

TYPE (nag_pde_parab_1d_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp) :: abs_loc_tol(npde*npts_pde), rel_loc_tol(npde*npts_pde), &

r_comm(1), u(npde*npts_pde), u_interp(npde,ninterp,itype), &

x_pde(npts_pde)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’ Example Program Results for nag_pde_parab_1d_ex01 ’

pi = nag_pi(0.0_wp)

piby2 = 0.5_wp*pi

! Set initial conditions

alpha = 1.0_wp

acc = MAX(SQRT(EPSILON(alpha)),1.0E-4_wp)

hx = piby2/REAL((npts_pde-1),kind=wp)

t_start = 0.0_wp

t_end = 0.1E-4_wp

first_call = .TRUE.

coord_sys = ’P’

r_comm(1) = alpha

rel_loc_tol = acc

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.51

Example 1 Partial Differential Equations (PDE’s)

abs_loc_tol = acc

! Set spatial mesh points

x_pde(1) = 0.0_wp

x_pde(npts_pde) = 1.0_wp

DO i = 2, npts_pde - 1

x_pde(i) = SIN(hx*REAL((i-1),kind=wp))

END DO

WRITE (nag_std_out,999) acc, alpha

WRITE (nag_std_out,998) (x_interp(i),i=1,6)

! Initialize the structure control and set required control parameters

CALL nag_pde_parab_1d_cntrl_init(control)

control%l2_norm = .TRUE.

DO it = 1, 5

t_end = 10.0_wp*t_end

CALL nag_pde_parab_1d_fd(pde_coef,bound_cond,init_value,t_start,t_end, &

x_pde,u,first_call=first_call,comm_ode=comm_ode,coord_sys=coord_sys, &

rel_loc_tol=rel_loc_tol,abs_loc_tol=abs_loc_tol,control=control, &

num_time_step=num_time_step,num_resid_eval=num_resid_eval, &

num_jac_eval=num_jac_eval,num_time_iter=num_time_iter,r_comm=r_comm)

first_call = .FALSE.

! Interpolate at required spatial points

CALL nag_pde_interp_1d_fd(u,x_pde,x_interp,u_interp, &

coord_sys=coord_sys)

WRITE (nag_std_out,996) t_end, u_interp(1,1:ninterp,1)

WRITE (nag_std_out,995) u_interp(2,1:ninterp,1)

END DO

! Free structure comm_ode allocated by NAG fl90

CALL nag_deallocate(comm_ode)

! Print integration statistics

WRITE (nag_std_out,997) num_time_step, num_resid_eval, num_jac_eval, &

num_time_iter

999 FORMAT (//’ Accuracy requirement = ’,E12.5/’ Parameter ALPHA =’, &

’ ’,E12.3/)

998 FORMAT (’ T / X ’,6F8.4/)

997 FORMAT (’ Number of integration steps in time ’, &

I4/’ Number of residual evaluations of resulting ODE sys’,’tem’, &

I4/’ Number of Jacobian evaluations ’,’ ’, &

I4/’ Number of iterations of nonlinear solve’,’r ’,I4/)

996 FORMAT (1X,F6.4,’ U(1)’,6F8.4)

995 FORMAT (8X,’U(2)’,6F8.4/)

END PROGRAM nag_pde_parab_1d_ex01

13.3.52 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 1

2 Program Data

None.

3 Program Results

Example Program Results for nag_pde_parab_1d_ex01

Accuracy requirement = 0.10000E-03

Parameter ALPHA = 0.100E+01

T / X 0.0000 0.4000 0.6000 0.8000 0.9000 1.0000

0.0001 U(1) 0.0000 0.8008 1.1988 1.5990 1.7958 1.8483

U(2) 0.9997 0.9995 0.9994 0.9988 0.9664 -0.0000

0.0010 U(1) 0.0000 0.7982 1.1940 1.5841 1.7179 1.6735

U(2) 0.9969 0.9952 0.9937 0.9483 0.6389 -0.0000

0.0100 U(1) 0.0000 0.7676 1.1238 1.3548 1.3639 1.2834

U(2) 0.9627 0.9495 0.8752 0.5545 0.2914 -0.0000

0.1000 U(1) 0.0000 0.3910 0.5011 0.5302 0.5126 0.4749

U(2) 0.5470 0.4303 0.2999 0.1482 0.0726 -0.0000

1.0000 U(1) 0.0000 0.0005 0.0006 0.0006 0.0006 0.0005

U(2) 0.0007 0.0005 0.0003 0.0002 0.0001 -0.0000

Number of integration steps in time 35

Number of residual evaluations of resulting ODE system 159

Number of Jacobian evaluations 9

Number of iterations of nonlinear solver 85

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.53

Example 1 Partial Differential Equations (PDE’s)

13.3.54 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 2

Example 2: Elliptic-parabolic PDEs Solved Using

Collocation Scheme and the BDF Method

The problem consists of a fourth-order PDE which can be written as a pair of second-order elliptic-
parabolic PDEs for U1(x, t) and U2(x, t),

0 =
∂2U1

∂x2
− U2,

∂U2

∂t
=

∂2U2

∂x2
+ U2

∂U1

∂x
− U1

∂U2

∂x
;

where −1 ≤ x ≤ 1 and t ≥ 0. The boundary conditions are given by

∂U1

∂x
= 0 and U1 = 1 at x = −1, and

∂U1

∂x
= 0 and U1 = −1 at x = 1.

The initial conditions at t = 0 are given by

U1 = − sin
πx

2
and U2 =

π2

4
sin

πx

2
.

The absence of boundary conditions for U2(x, t) does not pose any difficulties provided that the derivative

flux boundary conditions are assigned to the first PDE which has the correct flux,
∂U1

∂x
. The conditions

on U1(x, t) at the boundaries are assigned to the second PDE by setting β2 = 0.0 in the boundary
condition equation (6) (see the procedure nag pde parab 1d coll document) and placing the Dirichlet
boundary conditions on U1(x, t) in the function γ2.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nag_pde_parab_1d_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE pde_coef(t,x,u,du_dx,p,q,r,finish,v,vdot,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIZE

! .. Scalar Arguments ..

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (IN) :: du_dx(:,:), u(:,:), x(:)

REAL (wp), INTENT (OUT) :: p(:,:,:), q(:,:), r(:,:)

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.55

Example 2 Partial Differential Equations (PDE’s)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), v(:), vdot(:)

! .. Local Scalars ..

INTEGER :: nptl

! .. Executable Statements ..

nptl = SIZE(x)

finish = 1

q(1,1:nptl) = u(2,1:nptl)

q(2,1:nptl) = u(1,1:nptl)*du_dx(2,1:nptl) - du_dx(1,1:nptl)*u(2,1:nptl &

)

r(1,1:nptl) = du_dx(1,1:nptl)

r(2,1:nptl) = du_dx(2,1:nptl)

p(1,1,1:nptl) = 0.0_wp

p(1,2,1:nptl) = 0.0_wp

p(2,1,1:nptl) = 0.0_wp

p(2,2,1:nptl) = 1.0_wp

END SUBROUTINE pde_coef

SUBROUTINE bound_cond(t,u,du_dx,bound,beta,gamma,finish,v,vdot,i_comm, &

r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: bound

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (OUT) :: beta(:), gamma(:)

REAL (wp), INTENT (IN) :: du_dx(:), u(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), v(:), vdot(:)

! .. Executable Statements ..

finish = 1

beta(1:2) = (/ 1.0_wp, 0.0_wp/)

gamma(1) = 0.0_wp

IF (bound==0) THEN

gamma(2) = u(1) - 1.0_wp

ELSE

gamma(2) = u(1) + 1.0_wp

END IF

END SUBROUTINE bound_cond

SUBROUTINE init_value(x,u,v,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIN, SIZE

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

REAL (wp), INTENT (OUT) :: u(:,:)

REAL (wp), OPTIONAL, INTENT (OUT) :: v(:)

REAL (wp), INTENT (IN) :: x(:)

! .. Local Scalars ..

INTEGER :: npts_pde

REAL (wp) :: piby2

! .. Executable Statements ..

13.3.56 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 2

piby2 = r_comm(1)

npts_pde = SIZE(x)

u(1,1:npts_pde) = -SIN(piby2*x(1:npts_pde))

u(2,1:npts_pde) = -piby2*piby2*u(1,1:npts_pde)

END SUBROUTINE init_value

END MODULE nag_pde_parab_1d_ex02_mod

PROGRAM nag_pde_parab_1d_ex02

! Example Program Text for nag_pde_parab_1d

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_pde_parab_1d, ONLY : nag_pde_parab_1d_comm_wp => &

nag_pde_parab_1d_comm_dp, nag_pde_parab_1d_cntrl_wp => &

nag_pde_parab_1d_cntrl_dp, nag_pde_parab_1d_cntrl_init, &

nag_pde_parab_1d_coll, nag_pde_interp_1d_coll, nag_deallocate

USE nag_pde_parab_1d_ex02_mod, ONLY : pde_coef, bound_cond, init_value, &

wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC REAL

! .. Parameters ..

INTEGER, PARAMETER :: deg_poly = 3, itype = 1, ninterp = 6, npde = 2, &

npts_bk = 10

INTEGER, PARAMETER :: nel = npts_bk - 1

INTEGER, PARAMETER :: npts = nel*deg_poly + 1

REAL (wp), PARAMETER :: x_interp(ninterp) = (/ -1.0_wp, -0.6_wp, &

-0.2_wp, 0.2_wp, 0.6_wp, 1.0_wp/)

! .. Local Scalars ..

INTEGER :: i, it, num_jac_eval, num_resid_eval, num_time_iter, &

num_time_step

REAL (wp) :: acc, pi, piby2, t_end, t_start

LOGICAL :: first_call

TYPE (nag_pde_parab_1d_comm_wp) :: comm_ode

TYPE (nag_pde_parab_1d_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp) :: abs_loc_tol(npde*npts), rel_loc_tol(npde*npts), r_comm(1), &

u(npde*npts), u_interp(npde,ninterp,itype), x_bkpts(npts_bk)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’ Example Program Results for nag_pde_parab_1d_ex02 ’

pi = nag_pi(0.0_wp)

piby2 = 0.5_wp*pi

! Set initial conditions and accuracy

t_start = 0.0_wp

acc = 1.0E-4_wp

t_end = 0.1E-4_wp

first_call = .TRUE.

r_comm(1) = piby2

rel_loc_tol = acc

abs_loc_tol = acc

! Set the break-points

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.57

Example 2 Partial Differential Equations (PDE’s)

DO i = 1, npts_bk

x_bkpts(i) = -1.0_wp + 2.0_wp*REAL((i-1),kind=wp)/REAL((npts_bk-1), &

kind=wp)

END DO

WRITE (nag_std_out,999) deg_poly, nel

WRITE (nag_std_out,998) acc, npts

WRITE (nag_std_out,997) x_interp(1:ninterp)

! Initialize the structure control and set required control parameters

CALL nag_pde_parab_1d_cntrl_init(control)

control%l2_norm = .TRUE.

DO it = 1, 5

t_end = 10.0_wp*t_end

CALL nag_pde_parab_1d_coll(pde_coef,bound_cond,init_value,deg_poly, &

t_start,t_end,x_bkpts,u,first_call=first_call,comm_ode=comm_ode, &

rel_loc_tol=rel_loc_tol,abs_loc_tol=abs_loc_tol,control=control, &

num_time_step=num_time_step,num_resid_eval=num_resid_eval, &

num_jac_eval=num_jac_eval,num_time_iter=num_time_iter,r_comm=r_comm)

first_call = .FALSE.

! Interpolate at required spatial points

CALL nag_pde_interp_1d_coll(u,x_bkpts,deg_poly,comm_ode,x_interp, &

u_interp)

WRITE (nag_std_out,996) t_end, u_interp(1,1:ninterp,1)

WRITE (nag_std_out,995) u_interp(2,1:ninterp,1)

END DO

! Free structure comm_ode allocated by NAG fl90

CALL nag_deallocate(comm_ode)

! Print integration statistics

WRITE (nag_std_out,994) num_time_step, num_resid_eval, num_jac_eval, &

num_time_iter

999 FORMAT (’ Polynomial degree =’,I4,’ No. of elements = ’,I4)

998 FORMAT (’ Accuracy requirement = ’,E9.3,’ Number of points = ’,I5/)

997 FORMAT (’ T / X ’,6F8.4/)

996 FORMAT (1X,F6.4,’ U(1)’,6F8.4)

995 FORMAT (8X,’U(2)’,6F8.4/)

994 FORMAT (’ Number of integration steps in time ’, &

I4/’ Number of residual evaluations of resulting ODE sys’,’tem’, &

I4/’ Number of Jacobian evaluations ’,’ ’, &

I4/’ Number of iterations of nonlinear solve’,’r ’,I4/)

END PROGRAM nag_pde_parab_1d_ex02

2 Program Data

None.

13.3.58 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 2

3 Program Results

Example Program Results for nag_pde_parab_1d_ex02

Polynomial degree = 3 No. of elements = 9

Accuracy requirement = 0.100E-03 Number of points = 28

T / X -1.0000 -0.6000 -0.2000 0.2000 0.6000 1.0000

0.0001 U(1) 1.0000 0.8090 0.3090 -0.3090 -0.8090 -1.0000

U(2) -2.4850 -1.9957 -0.7623 0.7623 1.9957 2.4850

0.0010 U(1) 1.0000 0.8085 0.3088 -0.3088 -0.8085 -1.0000

U(2) -2.5597 -1.9913 -0.7606 0.7606 1.9913 2.5597

0.0100 U(1) 1.0000 0.8051 0.3068 -0.3068 -0.8051 -1.0000

U(2) -2.6961 -1.9481 -0.7439 0.7439 1.9481 2.6961

0.1000 U(1) 1.0000 0.7951 0.2985 -0.2985 -0.7951 -1.0000

U(2) -2.9021 -1.8339 -0.6338 0.6338 1.8339 2.9021

1.0000 U(1) 1.0000 0.7939 0.2972 -0.2972 -0.7939 -1.0000

U(2) -2.9233 -1.8247 -0.6120 0.6120 1.8247 2.9233

Number of integration steps in time 15

Number of residual evaluations of resulting ODE system 154

Number of Jacobian evaluations 7

Number of iterations of nonlinear solver 40

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.59

Example 2 Partial Differential Equations (PDE’s)

13.3.60 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 3

Example 3: Coupled PDE/ODE System Solved Using

Finite Difference Scheme and the BDF Method

This problem consists of a simple coupled system of one PDE and one ODE.

(V1)
2 ∂U1

∂t
− xV1V̇1

∂U1

∂x
=

∂2U1

∂x2
,

V̇1 = V1U1 +
∂U1

∂x
+ 1 + t;

for t ∈ [10−4, 0.1× 2i], for i = 1, 2, . . . , 5, x ∈ [0, 1].

The left boundary condition at x = 0 is

∂U1

∂x
= −V1e

t.

The right boundary condition at x = 1 is

∂U1

∂x
= −V1V̇1

The initial conditions at t = 10−4 are defined by the exact solution:

V1 = t, and U1(x, t) = et(1−x) − 1.0, x ∈ [0, 1],

and the coupling point is at ξ1 = 1.0.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE nag_pde_parab_1d_ex03_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE pde_coef(t,x,u,du_dx,p,q,r,finish,v,vdot,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t, x

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (IN) :: du_dx(:), u(:)

REAL (wp), INTENT (OUT) :: p(:,:), q(:), r(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), v(:), vdot(:)

! .. Executable Statements ..

finish = 1

q(1) = -x*du_dx(1)*v(1)*vdot(1)

r(1) = du_dx(1)

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.61

Example 3 Partial Differential Equations (PDE’s)

p(1,1) = v(1)*v(1)

END SUBROUTINE pde_coef

SUBROUTINE bound_cond(t,u,du_dx,bound,beta,gamma,finish,v,vdot,i_comm, &

r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EXP

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: bound

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (OUT) :: beta(:), gamma(:)

REAL (wp), INTENT (IN) :: du_dx(:), u(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), v(:), vdot(:)

! .. Executable Statements ..

finish = 1

beta(1) = 1.0_wp

IF (bound==0) THEN

gamma(1) = -v(1)*EXP(t)

ELSE

gamma(1) = -v(1)*vdot(1)

END IF

END SUBROUTINE bound_cond

SUBROUTINE init_value(x_pde,u,x_ode,v,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EXP, SIZE

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:), x_ode(:)

REAL (wp), INTENT (OUT) :: u(:,:)

REAL (wp), OPTIONAL, INTENT (OUT) :: v(:)

REAL (wp), INTENT (IN) :: x_pde(:)

! .. Local Scalars ..

INTEGER :: npts_pde

REAL (wp) :: t_start

! .. Executable Statements ..

t_start = r_comm(1)

npts_pde = SIZE(x_pde)

u(1,1:npts_pde) = EXP(t_start*(1.0_wp-x_pde(1:npts_pde))) - 1.0_wp

v(1) = t_start

END SUBROUTINE init_value

SUBROUTINE ode_coef(t,v,vdot,x_ode,ucp,ducp_dx,rcp,ducp_dt,d2ucp_dtdx,f, &

finish,g_in_f,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

INTEGER, INTENT (OUT) :: finish

REAL (wp), INTENT (IN) :: t

13.3.62 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 3

LOGICAL, OPTIONAL, INTENT (IN) :: g_in_f

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (IN) :: d2ucp_dtdx(:,:), ducp_dt(:,:), ducp_dx(:,:), &

rcp(:,:), ucp(:,:), v(:), vdot(:), x_ode(:)

REAL (wp), INTENT (OUT) :: f(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

! .. Executable Statements ..

IF (g_in_f) THEN

f(1) = vdot(1) - v(1)*ucp(1,1) - ducp_dx(1,1) - 1.0_wp - t

finish = 1

ELSE

f(1) = vdot(1)

finish = -1

END IF

END SUBROUTINE ode_coef

SUBROUTINE exact_sol(t,x_pde,exact_u)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EXP, SIZE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: t

! .. Array Arguments ..

REAL (wp), INTENT (OUT) :: exact_u(:)

REAL (wp), INTENT (IN) :: x_pde(:)

! .. Local Scalars ..

INTEGER :: npts_pde

! .. Executable Statements ..

npts_pde = SIZE(x_pde)

exact_u(1:npts_pde) = EXP(t*(1.0_wp-x_pde(1:npts_pde))) - 1.0_wp

END SUBROUTINE exact_sol

END MODULE nag_pde_parab_1d_ex03_mod

PROGRAM nag_pde_parab_1d_ex03

! Example Program Text for nag_pde_parab_1d

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_pde_parab_1d, ONLY : nag_pde_parab_1d_comm_wp => &

nag_pde_parab_1d_comm_dp, nag_pde_parab_1d_cntrl_wp => &

nag_pde_parab_1d_cntrl_dp, nag_pde_parab_1d_cntrl_init, &

nag_pde_parab_1d_fd, nag_deallocate

USE nag_pde_parab_1d_ex03_mod, ONLY : pde_coef, bound_cond, init_value, &

ode_coef, exact_sol, wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC REAL

! .. Parameters ..

INTEGER, PARAMETER :: npde = 1, npts_ode = 1, npts_pde = 21, num_ode = 1

INTEGER, PARAMETER :: neqn = npde*npts_pde + num_ode

! .. Local Scalars ..

INTEGER :: i, it, num_jac_eval, num_resid_eval, num_time_iter, &

num_time_step

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.63

Example 3 Partial Differential Equations (PDE’s)

REAL (wp) :: acc, t_end, t_start

LOGICAL :: first_call

TYPE (nag_pde_parab_1d_comm_wp) :: comm_ode

TYPE (nag_pde_parab_1d_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp) :: abs_loc_tol(neqn), exact_u(npde*npts_pde), &

rel_loc_tol(neqn), r_comm(1), u(neqn), x_ode(npts_ode), x_pde(npts_pde)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’ Example Program Results for nag_pde_parab_1d_ex03 ’

! Set initial conditions and accuracy

t_end = 0.0_wp

first_call = .TRUE.

acc = 1.0E-4_wp

t_start = 1.0E-4_wp

r_comm(1) = t_start

rel_loc_tol = acc

abs_loc_tol = acc

WRITE (nag_std_out,997) acc, npts_pde

! Set spatial mesh points

DO i = 1, npts_pde

x_pde(i) = REAL((i-1),kind=wp)/REAL((npts_pde-1),kind=wp)

END DO

x_ode(1) = 1.0_wp

WRITE (nag_std_out,999) x_pde(1), x_pde(5), x_pde(9), x_pde(13), &

x_pde(21)

! Initialize the structure control and set required control parameters

CALL nag_pde_parab_1d_cntrl_init(control)

control%matrix_type = ’F’

DO it = 1, 5

t_end = 0.1_wp*(2.0_wp**it)

CALL nag_pde_parab_1d_fd(pde_coef,bound_cond,init_value,t_start,t_end, &

x_pde,u,first_call=first_call,ode_coef=ode_coef,num_ode=num_ode, &

x_ode=x_ode,comm_ode=comm_ode,rel_loc_tol=rel_loc_tol, &

abs_loc_tol=abs_loc_tol,control=control,num_time_step=num_time_step, &

num_resid_eval=num_resid_eval,num_jac_eval=num_jac_eval, &

num_time_iter=num_time_iter,r_comm=r_comm)

first_call = .FALSE.

CALL exact_sol(t_end,x_pde,exact_u)

WRITE (nag_std_out,998) t_start

WRITE (nag_std_out,995) u(1), u(5), u(9), u(13), u(21), u(22)

WRITE (nag_std_out,994) exact_u(1), exact_u(5), exact_u(9), &

exact_u(13), exact_u(21), t_start

END DO

! Free structure comm_ode allocated by NAG fl90

13.3.64 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Example 3

CALL nag_deallocate(comm_ode)

! Print integration statistics

WRITE (nag_std_out,996) num_time_step, num_resid_eval, num_jac_eval, &

num_time_iter

999 FORMAT (’ X ’,5F9.3/)

998 FORMAT (’ T = ’,F6.3)

997 FORMAT (//’ Simple coupled PDE using BDF ’/’ Accuracy require’, &

’ment =’,E10.3,’ Number of points = ’,I4/)

996 FORMAT (’ Number of integration steps in time = ’,I6/’ Number o’, &

’f function evaluations = ’,I6/’ Number of Jacobian eval’,’uations =’, &

I6/’ Number of iterations = ’,I6/)

995 FORMAT (1X,’App. sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3)

994 FORMAT (1X,’Exact sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3/)

END PROGRAM nag_pde_parab_1d_ex03

2 Program Data

None.

3 Program Results

Example Program Results for nag_pde_parab_1d_ex03

Simple coupled PDE using BDF

Accuracy requirement = 0.100E-03 Number of points = 21

X 0.000 0.200 0.400 0.600 1.000

T = 0.200

App. sol. 0.222 0.174 0.128 0.084 0.001 ODE sol. = 0.200

Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

T = 0.400

App. sol. 0.493 0.379 0.273 0.175 0.002 ODE sol. = 0.400

Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

T = 0.800

App. sol. 1.229 0.901 0.622 0.383 0.008 ODE sol. = 0.798

Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

T = 1.600

App. sol. 3.959 2.610 1.629 0.917 0.027 ODE sol. = 1.594

Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

T = 3.200

App. sol. 23.472 11.976 5.886 2.665 0.074 ODE sol. = 3.184

Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 19

Number of function evaluations = 187

Number of Jacobian evaluations = 6

Number of iterations = 50

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.65

Example 3 Partial Differential Equations (PDE’s)

13.3.66 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Additional Examples

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag pde parab 1d ex04

Parabolic equation solved using finite difference scheme and remeshing with the BDF method:

This example uses Burgers Equation, a common test problem for remeshing algorithms, given by

∂U

∂t
= −U

∂U

∂x
+ ε

∂2U

∂x2
;

for x ∈ [0, 1] and t ∈ [0, 1], where ε is a small constant.

The initial and boundary conditions (of Dirichlet type) are given by the exact solution

U(x, t) =
0.1 exp(−A) + 0.5 exp(−B) + exp(−C)

exp(−A) + exp(−B) + exp(−C)
;

where

A=
50

ε
(x− 0.5 + 4.95t),

B=
250

ε
(x− 0.5 + 0.75t),

C=
500

ε
(x− 0.375).

nag pde parab 1d ex05

Elliptic-parabolic PDEs solved using collocation scheme and the BDF method:

The problem consists of a fourth-order PDE which can be written as a pair of second-order elliptic-
parabolic PDEs for U1(x, t) and U2(x, t),

0 =
∂2U1

∂x2
− U2,

∂U2

∂t
=

∂2U2

∂x2
+ U2

∂U1

∂x
− U1

∂U2

∂x
;

where −1 ≤ x ≤ 1 and t ≥ 0. The boundary conditions are given by

∂U1

∂x
= 0 and U1 = 1 at x = −1, and

∂U1

∂x
= 0 and U1 = −1 at x = 1.

The initial conditions at t = 0 are given by

U1 = − sin
πx

2
and U2 =

π2

4
sin

πx

2
.

The absence of boundary conditions for U2(x, t) does not pose any difficulties provided that the

derivative flux boundary conditions are assigned to the first PDE which has the correct flux,
∂U1

∂x
.

The conditions on U1(x, t) at the boundaries are assigned to the second PDE by setting β2 = 0.0
in the boundary condition equation (6) (see the procedure nag pde parab 1d coll document) and
placing the Dirichlet boundary conditions on U1(x, t) in the function γ2.

nag pde parab 1d ex06

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.67

Additional Examples Partial Differential Equations (PDE’s)

Coupled PDE/ODE system solved using finite difference scheme and remeshing:

This problem consists of a simple coupled system of one PDE and one ODE.

(V1)
2 ∂U1

∂t
− xV1V̇1

∂U1

∂x
= ε

∂2U1

∂x2
,

V̇1 = V1U1 + ε
∂U1

∂x
+ 1 + t,

for t ∈ [10−4, 0.2], x ∈ [0, 1], where ε is a small constant.

The left boundary condition at x = 0 is

∂U1

∂x
= −

V1

ε
exp

(

t

ε

)

.

The right boundary condition at x = 1 is

ε
∂U1

∂x
= −V1V̇1

The initial conditions at t = 10−4 are defined by the exact solution:

V1 = t, and U1(x, t) = exp{
t(1− x)

ε
} − 1.0, x ∈ [0, 1],

and the coupling point is at ξ1 = 1.0.

This example has been derived from the Example 3 by adding a small diffusive term. To capture
the steep gradient of the solution in the neighbourhood of x = 0, as ε −→ 0 (see Figure 1), the
remeshing process has been used.

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

with eps = 0.04
with eps = 0.06
with eps = 0.08

with eps = 0.1
with eps = 1.0

Figure 1. Solution at t = 0.2.

13.3.68 Module 13.3: nag pde parab 1d [NP3506/4]

Partial Differential Equations (PDE’s) Additional Examples

nag pde parab 1d ex06

Figure 2 shows the mesh distribution on the interval [0; 1] which becomes finer in the neighbourhood
of x = 0, as ε −→ 0.

initial mesh

eps = 1.0

eps = 0.1

eps = 0.08

eps = 0.06

eps = 0.04

0 0.2 0.4 0.6 0.8 1

Figure 2. Distribution of mesh points after the remeshing process.

Notice that as ε −→ 0 the problem becomes more difficult to solve and the number of integration
steps in time increases quite rapidly.

nag pde parab 1d ex07

Coupled PDE/ODE system solved using finite difference scheme and the Theta method:

This is the same example as the third example, but this one is solved using the Theta method to
solve the ODE system.

nag pde parab 1d ex08

Parabolic equation solved using finite difference scheme and remeshing with the Theta method:
This is the same example as the fourth example, but this one is solved using the Theta method to
solve the ODE system.

nag pde parab 1d ex09

Elliptic-parabolic PDEs solved using collocation scheme and the Theta method:

This is the same example as the fifth example, but this one is solved using the Theta method to
solve the ODE system.

[NP3506/4] Module 13.3: nag pde parab 1d 13.3.69

References Partial Differential Equations (PDE’s)

References

[1] Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (ed J C Mason and M G Cox) Chapman and Hall 59–72

[2] Mikhlin S G and Smolitsky K L (1967) Approximate Methods for the Solution of Differential and

Integral Equations Elsevier

[3] Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

[4] Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in
one space variable SIAM J. Sci. Statist. Comput. 11 (1) 1–32

[5] Dew P M and Walsh J (1981) A set of library routines for solving parabolic equations in one space
variable ACM Trans. Math. Software 7 295–314

[6] Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178–206

[7] Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a
channel by a suction at porous walls Fluid Dynamics Research 4

[8] Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

[9] Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in
simulation and optimisation of large systems Proc. IMA Conf. Simulation and Optimization (ed A
J Osiadcz) Clarendon Press, Oxford 35–50

[10] Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research
Centre, Chester

13.3.70 Module 13.3: nag pde parab 1d [NP3506/4]

