Metallorganische Chemie und Katalyse der Übergangsmetalle

Nadia C. Mösch-Zanetti

Institut für Anorganische Chemie der Universität Göttingen

Inhalt

- 1. Historisches
- 2. Bindungsmodelle
 - 2.1 MO-Schemata für Komplexe mit σ und π -Liganden
 - 2.2 Die 18-Elektronenregel
 - 2.3 Isolobalanalogien
- 3. Ausgewählte Stoffklassen
 - 3.1 Carbonylkomplexe
 - 3.2 Alkyl-, Carben-, Carbinkomplexe
 - 3.3 Alken-, Alkinkomplexe
 - 3.4 Allylkomplexe
 - 3.5 Komplexe mit zyklischen π -Liganden
 - 3.5.1 Cyclopentadienyl-Komplexe
 - 3.5.2 Komplexe mit anderen zyklischen π -Liganden)

Inhalt

- 4. Elementarreaktionen metallorganischer Verbindungen
 - 4.1 Ligandensubstitutionsreaktionen (dissoziativ und assoziativ)
 - 4.2 Oxidative Addition und reduktive Eliminierung
 - 4.3 Insertionsreaktionen
 - 4.4 α und β -H-Eliminierungen
 - 4.5 Reaktivität an koordinierten Liganden (nukleophiler, elektrophiler Angriff)
- 5. Homogene Katalyse
 - 5.1 CO-Chemie: Hydroformylierung, Carbonylierung (Monsanto-Verfahren)
 - 5.2 Olefin-Chemie: Isomerisierung, Hydrierung, Metathese, Polymerisation, Oxidation (Wacker-Verfahren)

Empfohlene Lehrbücher

Organometallchemie Ch. Elschenbroich A. Salzer Teubner 1993

Moderne Anorganische Chemie E. Riedel (Hrsg.) deGruyter 2003

Organometallics 1 and 2 Manfred Bochmann Oxford Chemistry Primers 1994

Historisches

1760 Cadetsche Flüssigkeit

entdeckt durch Zufall von Louis-Claude Cadet de Gassicourt enthält u. a. Kakodyloxid [(CH₃)₂As]₂O erste metallorganische Verbindung H₃C As O As CH₃

1827 Zeisesches Salz

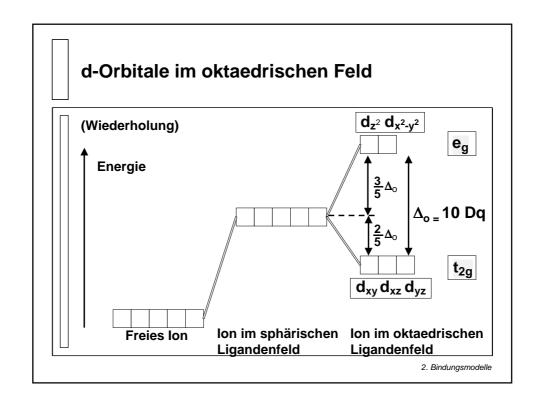
entdeckt durch Zufall von dänischen Pharmazeuten W. C. Zeise $K[PtCl_3(C_2H_4)]$

erster π-Ethen-Komplex

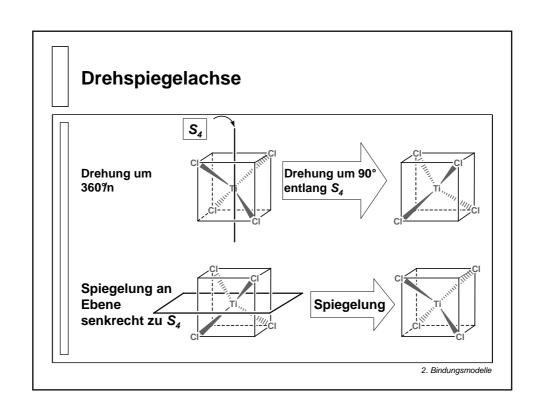
1890 L. Mond entdeckt Ni(CO)₄ erster binärer CO-Komplex

Mond-Verfahren zur Darstellung von reinem Nickel

1938 O. Roelen entdeckt die Cobalt-katalysierte Hydroformylierungen erster kommerziell genutzter Prozess mit einem löslichen Übergangsmetall-Katalysator → homogene Katalyse


1951 gleichzeitige Entdeckung des Ferrocens durch Kealy and Pauson (GB) und Miller (USA) erster Sandwich-Komplex

1955 J. Halpern beginnt mit Studien zum Mechanismus der homogenen Hydrierung von Olefinen


K. Ziegler, G. Natta entdecken die Polymerisation von Olefinen

1. Historisches

Symmetrieelemente					
Symmetrieelement	Symbol	Beispiel			
Spiegelebene	σ	CI///Pt NH3 3 0			
Inversionszentrum	i	[CI// ₁ , Pt NH3] 3 σ, 1 i			
Drehachsen	C _n	CO 1 C ₃ , 3 C ₂			
ldentität	Е	[00]			
Drehspiegelachsen	S _n	C ₁			

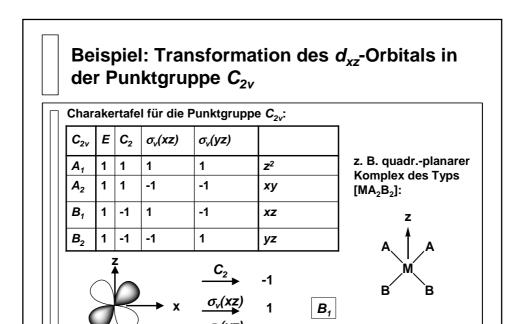
Punktgruppen

- aus den Symmetrieelementen ergeben sich die Symmetrieoperationen:
 - z. B. eine oder mehrere Drehungen um eine Achse $C_4^{(1)},\ C_4^{(2)},\ =\ C_2,\ C_4^{(3)},$
- die Summe aller Symmetrieoperationen für ein Molekül bildet eine Punktgruppe
- Punktgruppen werden mit dem sogenannten Schönflies-Symbol gekennzeichnet
 - z. B. C_{2v}, T_d, D₄
- die in den Punktgruppen enthaltenen Symmetrieoperationen sind in sogenannten Charaktertafeln tabelliert

2. Bindungsmodelle

Zuordnung der Punktgruppe: Beispiel *cis*-[MA₂B₂]

C _{2v}	E	C ₂	$\sigma_{_{\!\scriptscriptstyle V}}\!({\sf xz})$	$\sigma_{\rm v}({\sf yz})$	
A_1	1	1	1	1	z ²
A ₂	1	1	-1	-1	xy
B ₁	1	-1	1	-1	xz
B ₂	1	-1	-1	1	yz


z. B. quadr.-planarer Komplex des Typs [MA₂B₂]:

2. Bindungsmodelle

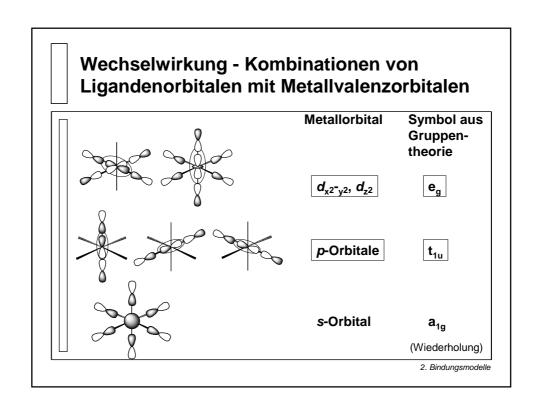
Symmetriesymbolik der irreduziblen Darstellungen

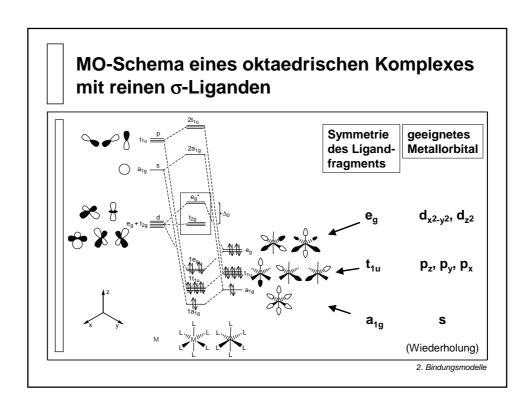
Symbol	A, a	eindimensional Darstellung, symmetrisch bzgl. Drehung
		um die Hauptachse, rotationssymmetrisch
	B, b	eindimensional Darstellung, antisymmetrisch bzgl.
		Drehung um die Hauptachse
	E, e	zweidimensionale Darstellung, zweifach entartet,
	,	in Molekülen mit einer Drehachse C, und n ≥ 3
	T, t	dreidimensionale Darstellung, dreifäch entartet
	-,-	in Molekülen mit mehr als einer C ₃ -Achse
		(Crasshushatahan für Mahvalaktranan-ustända
		(Grossbuchstaben für Mehrelektronenzustände
		Kleinbuchstaben für Orbitale)
Index,	1	symmetrisch bzgl. σ, oder einer C2-Achse senkrecht zur Hauptachse
unten	1 2	antisymmetrisch bzgl. σ_{ν} oder einer C_2 -Achse senkrecht zur Hauptachse
	g	symmetrisch bzgl. eines Symmetriezentrums i
	u	antisymmetrisch bzgl. eines Symmetriezentrums i
	-	a
Index,	•	symmetrisch bzgl. σ_{h} wenn kein Symmetriezentrum vorliegt
oben	••	antisymmetrisch bzgl. σ_h , wenn kein Symmetriezentrum vorliegt
	+	symmetrisch bzgl. σ, im linearen Molekül
	_	antisymmetrisch bzgl. σ,

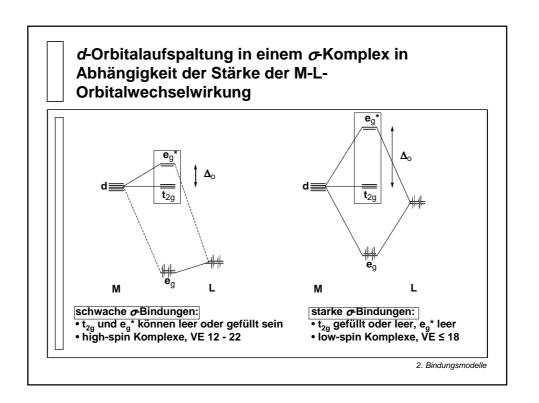
2. Bindungsmodelle

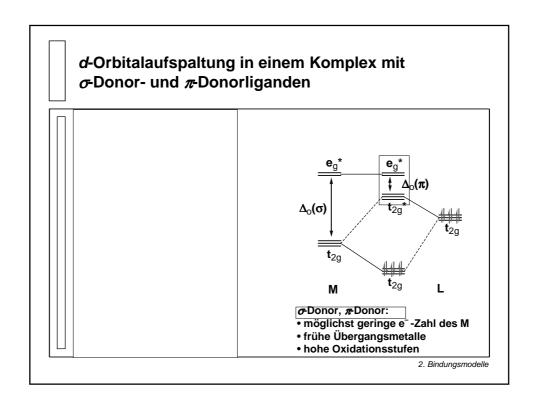
Charaktertafel für reguläres Oktaeder

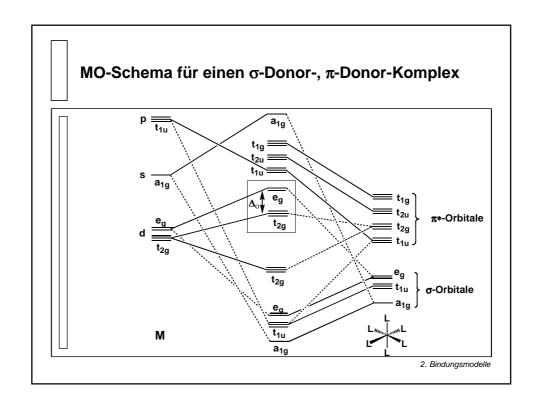
 d_{xz}

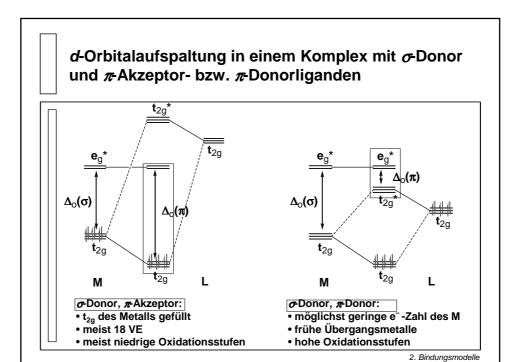

Oh	E	8C ₃	6C ₂	6C ₄	3C ₂	i	6S ₄	8S ₆	$3\sigma_{h}$	$6\sigma_d$	
A _{1g}	1	1	1	1	1	1	1	1	1	1	
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1	
E_g	2	-1	0	0	2	2	0	-1	2	0	z^2 , $x^2 - y^2$
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1	xy, xz, yz
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1	
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1	
E _u	2	-1	0	0	2	-2	0	1	-2	0	
T _{1u}	3	0	-1	1	-1	-3	-1	0	1	1	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1	


Molekülorbital-Theorie


Grundgedanke


es wird für jedes Metallvalenzorbital eine
Überprüfung durchgeführt, ob und wenn ja mit
welcher Kombination der Ligandenorbitale eine
Wechselwirkung stattfinden kann


(Wiederholung)



Vorteile der MO-Theorie

gegenüber der Valenzbindungstheorie

→ 19- und höhere Elektronenkomplexe lassen sich erklären

gegenüber der Ligandenfeldtheorie

- → Aussage bezüglich bindenden und antibindenden Charakter
- → Erklärung für die spektrochemische Reihe

Deutung der spektrochemischen Reihe

high-spin Komplexe

σ-Donoren

 $H_2O < OH^- < NH_3 < RNH_2 < py, Cl^- < Br^- < SCN^- <$

 $SO_3H^- < CH_3^-, C_6H_5^- < H^-, PR_3 < C_2H_4 < CN^-$

 π -Akzeptoren

low-spin Komplexe