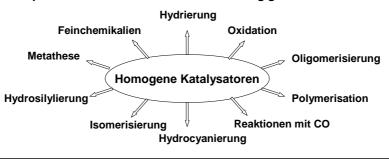

Rolle des Katalysators

5. Homogene Katalyse

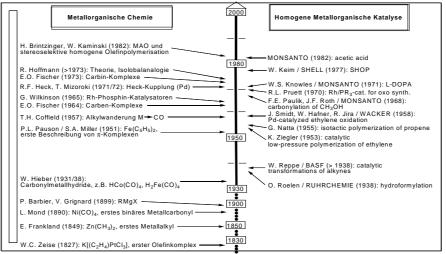
Katalytischer Kreislauf

5. Homogene Katalyse

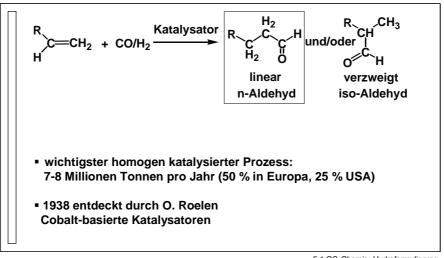

Homogen vs. heterogen

П		Homogen	Heterogen
		in gleicher Phase	fester Katalysator
	Aktivität	hoch	variabel
	Selektivität	hoch	variabel
	Reaktionsbed.	mild	drastisch
	Lebensdauer	variabel	lange
	Wiedergewinnung Kat.	aufwändig	entfällt
	Änderung sterischer und elektronischer Eigenschaften	möglich	nicht möglich
	Aufklärung der Mechanismen	möglich	praktisch unmöglich
	Katalysatorkosten	hoch	gering

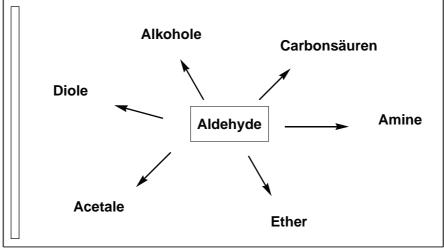
5. Homogene Katalyse


Homogen katalysierte Verfahren in der Technik

- in technischen Prozessen dominiert die heterogene Katalyse
- zunehmende Bedeutung der homogenen Katalyse (geschätzter Marktanteil ~ 15 %)
- homogen katalysierte Reaktionen haben in nahezu allen Grundoperationen industrieller Prozesse Einzug gehalten


5. Homogene Katalyse

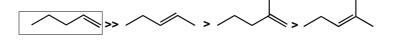
Parallele Entwicklung von metallorganischer Chemie und homogene Katalyse



5. Homogene Katalyse

Hydroformylierung (Oxo-Synthese)

Produkte aus Aldehyden

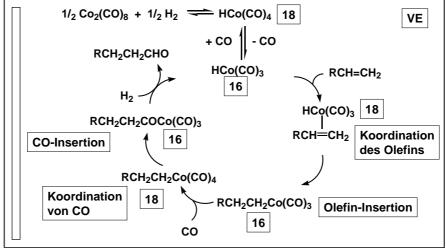


5.1 CO-Chemie: Hydroformylierung

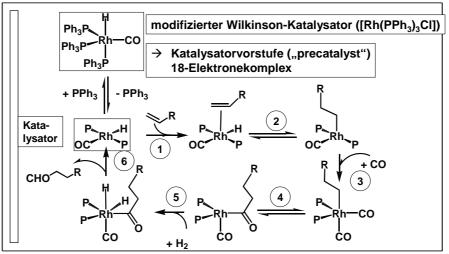
Katalysatoren für Hydroformylierung

- Metallcarbonylhydride der allg. Form: $[H_xM_y(CO)_zL_n]$
- Wichtigste Metalle: Cobalt und Rhodium

- Wichtigste Liganden: Phosphane (PR₃) und Phosphite (P(OR)₃)
- Reaktivität gegenüber Olefinen:



Industrielle Oxo-Prozesse


Aktiver Katalysator	CoH(CO)₄	CoH(CO) ₃ L	RhH(CO)₄	RhH(CO)L ₃	RhH(CO)I
		modifiziert		+ bis zu 500 eq. L	mod.
Firma	BASF	Shell	Ruhr- chemie	Union Carbide	Rhone Poulenc
Temp., ℃	150-180	160-200	100-140	60-120	110-130
Druck, bar	200-300	50-150	150-180	10-50	40-60
Kat.konz. %	0,1-1	0,6	10-4-0,01	0,01-0,1	0,001-1
Produkte	Aldehyde	Alkohole	Aldehyde	Aldehyde	Aldehyde
Nebenprod	viele	viele	wenige	wenige	wenige
n/i Verhält.	80:20	88:12	50:50	95:5	>95:<5

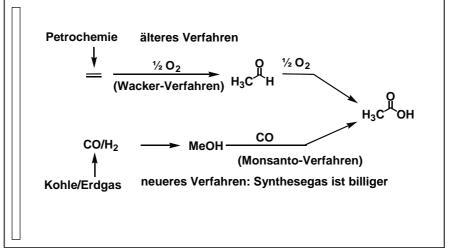
5.1 CO-Chemie: Hydroformylierung

Katalysezyklus für die unmodifizierte Cobalt-katalysierte Hydroformylierung (Heck und Breslow Zyklus)

Mechanismus der Hydroformylierung nach dem "low-pressure" Verfahren

5.1 CO-Chemie: Hydroformylierung

Produktverteilung bei der rhodiumkatalysierten Hydroformylierung von 1-Hexen


Überschuss PPh ₃ (mol)	H₂/CO Verhältnis	Temperatur ℃	n/i Verhältnis	Hydrier- und Isomerisie- rungsprod.
0	1	40	88:12	
3	1	25	92:8	
3	1	40	93:7	
0	1,25	25	91:9	
0	1,25	40	95:5	22 %
0	2,0	40	97:3	60 %
3	2,0	40	98,5:1,5	31 %

Vorteile der rhodiumkatalysierten Hydroformylierung

- Rhodium ist etwa 1000 mal aktiver als Cobalt
- große Überschüsse von PPh₃ erlauben hohe Selektivitäten zu Aldehyden und hohe Linearanteile und unterdrücken die Hydrierreaktion
- Gegenwart von PPh₃ erhöht die thermische Stabilität und verlängert seine Lebensdauer

5.1 CO-Chemie: Hydroformylierung

Carbonylierung von Methanol

5.1 CO-Chemie: Carbonylierung

Mechanismus der Methanol-Carbonylierung

5.1 CO-Chemie: Carbonylierung

Vorteile von Methyliodid und Rhodium

lodid: starkes Nukleophil

gute S_N2 Abgangsgruppe guter Ligand für Metalle in niedrigen Oxidationsstufen

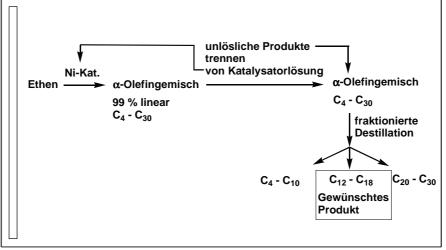
Methylgruppe: kein β-H-Atom

Rhodium: geschwindigkeitsbestimmender

Schritt (oxidative Addition) ist viel schneller als bei Cobalt

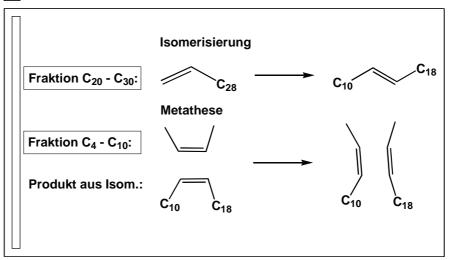
5.1 CO-Chemie: Carbonylierung

Katalysezyklus für die Herstellung von Acetaldehyd durch Ethenoxidation (Wacker-Verfahren)

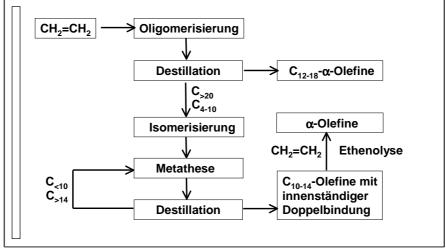

5.2 Olefin-Chemie: Oxidation von Ethen

Shell Higher Olefin Process (SHOP)

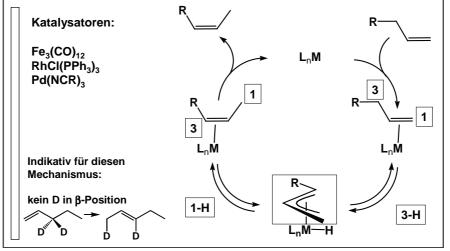
- Oligomerisierung von Ethen zur Herstellung von α -Olefinen mittlerer Kettenlänge (C $_{12}$ C $_{20}$)
- Bedeutung zur Herstellung von Waschmitteln, Weichmachern, Schmierölen
- 1979 bei Shell in Geismar (USA) erstmals in Betrieb
- 600'000 t/a
- Reaktionsbedingungen: 80 140 ℃, ~ 80 bar
- Lösungsmittel: Alkandiole α-Olefin unlöslich


5.2 Olefin-Chemie: SHOP-Prozess

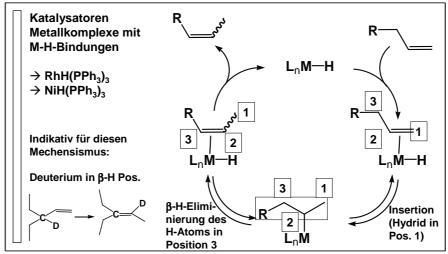
SHOP-Prozess: Oligomerisierung


5.2 Olefin-Chemie: SHOP-Prozess

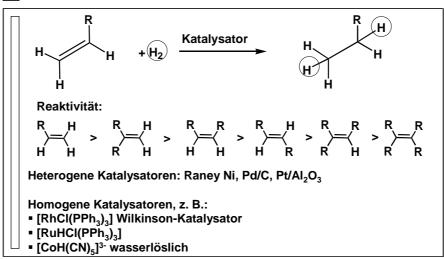
SHOP-Prozess: Isomerisierung und Metathese


5.2 Olefin-Chemie: SHOP-Prozess

SHOP-Prozess: Blockschema des SHOP-Verfahrens


5.2 Olefin-Chemie: SHOP-Prozess

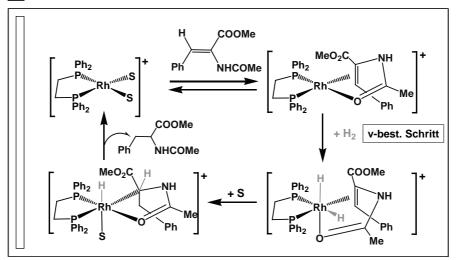
Doppelbindungsisomerie in Olefinen: der 1,3-H-Shift (Allyl-Mechanismus)


5.2 Olefin-Chemie: Doppelbindungsisomerie

Doppelbindungsisomerie: der 1,2-H-Shift (Alkyl-Mechanismus)

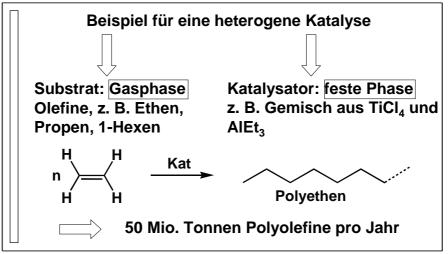
5.2 Olefin-Chemie: Doppelbindungsisomerie

Hydrierung von Olefinen



5.2 Olefin-Chemie: Hydrierung

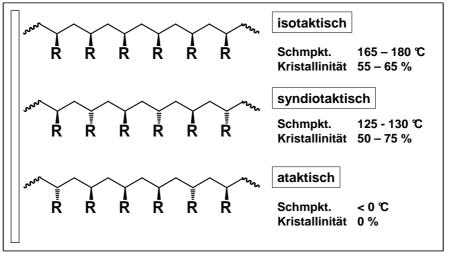
Hydrierung mit dem Wilkinson-Katalysator


5.2 Olefin-Chemie: Hydrierung

Hydrierung mit kationischen Rhodium-Katalysatoren

5.2 Olefin-Chemie: Hydrierung

Olefin-Polymerisation: Ziegler-Natta-Katalyse



5.2 Olefin-Chemie: Polymerisation

Regioselektivität bei substituierten Olefinen

5.2 Olefin-Chemie: Polymerisation

Stereoselektivität bei substituierten Olefinen

5.2 Olefin-Chemie: Polymerisation