Intel® C++ Compiler for Linux* Systems
User's Guide

Document Number: 253254-031

Table Of Contents

INtEl® C++ CoMPIlEr USEr'S GUITE........ccieeiiieieie e stieieseesteete e teeae e esae e aeeeesseesseeneesseensens 1
Disclaimer and Legal INfOrMatioN..........c.uuuiiiieeiis it r e s e e e e e e s s e e e e e e e s s snnsrneeee e e e annrnnnees 1
Welcome to the INeI® CH+ COMPIIETuiiiii e e s e e e e e s s s e e e e e e snsrnreees 1
What's NeW iN ThiS REIEASE.c..eiiiiiii ittt e e e nneeen 2
Features and BENETILSooiiiiii e 2
Product WED Sit€ @and SUPPOIceiee ittt e e e st e e e e e e s e e e e e e s e et eeeeeeessasntaneeeeeeesnnrnnnees 3
SYSIEM REQUIFEMIENTS ...eeiiiiiii ittt e ettt e e e e e e e a bbbttt e e e e e e e e aaa b beeeeeaeeeaannbbeeeeaaeeeanbbeeeaaaaaesaannns 3
FLEXIM* EIECIIONIC LICENSING ...teetiiaiiiiiiiiiitee ettt ettt e e e e ettt e e e e e e e s s aa b b et e e e e e e aanbbbeeeeaeeesannrnnees 3
R C] =1 To U] o] o= 11T] o LSO PPRTRP PP 4
HOW 10 USE ThiS DOCUMENT......eeiiieiiiiiitie ettt ettt e e e e e s et bttt e e e e e e e aanbbaeeeeaaeesaaanbbneeaeeesannrnnees 5

Compiler OptioNS QUICK REFEIENCEoceeiecee ettt ne e 6
N TS A @ 4o 1 SR 6
Options QUICK REFEIENCE GUIE......ciiiiiiiciiiiiie e st s e s e e e e e s e s e e e e e e s e saab e e e e e e e e anntnreeeaeeeaaannes 9
Compiler OptionNs CroSS REEIENCE.uiiiiii e e e e e ee e e s eanes 30
Default COMPIIEr OPLIONSttt e et et e e e s e e e et e e e e e e e e e s s s anbbeeeeaaeesaabaneaaaaesaaanne 37
Deprecated and Unsupported Compiler OPLIONScoioiiiiiiiiiieiae et a e e e e eaees 38

Volume I Building APPlICALTIONS..........ooiiiriiinirieie et 39
Building Applications from the Command LINEuuiiiieiiiiiiiiieee e ee e e e e e s s e e e e e e e e nnnes 41
2101 To TaTo 2N o] o] o= tu o] g TN I <o 11 o 1S -\ PEERR 43
107e] 10T o)1 F=1iTo] ¢ W@ o 11] o IS PR PP URPPT 67
[T 0124 Vo PP P PPPUPURPPT 82
[D]=T o 18 oo [g To TR TR UPPPUPURPPT 83
Creating and USING LIDFAIESuuiiiiie ittt ettt e sttt e e e e e e e s e ba b b e e e e e e e e s anbnneeaaaeeaaannes 87
[0 [ofosal @700 0] o T= 1] o] 1420 PP PP URPPT 95
(=T ao [N E= e[S @] 01 (0] 41 = Tg o] = PP PPPRPTTT 104

Volume I1: OptimiZing APPIICALIONScoiuieieiiieeerie ettt sre e 108
OPLMIZALION LEVEIS ...ttt e e e oot b et e e e e e e et bt e e e e e e e e e s annbbbeeeeaesaannnbbeeeaaaeens 108
Floating-point OPtIMIZALIONScoiii ittt e e e e ettt e e e e e s e bbbeeeeeaaeesanbbeeeaaeaaaaanne 110
Optimizing fOr SPECITIC PrOCESSOIS. ...cii ittt e e e e e e bbb e e e e e e e e e sbeeeaaaeeas 114
Interprocedural OPLIMIZALIONSuuiiiiiiie et e e e e e e e e s bbb e e e e e e e e annbbbeeeee e anneeeeeas 121
Profile-guided OPtIMIZALIONScoiii ittt e e e e e e s bbb b e e e e e e e e s anbbbeeaaeeeaannnes 131
High-level Language OptimizationNS (HLO)oiiuuiiiiieiie ittt e e e e sinbae e e e e e e e e nnes 150
LoV r= 11 L=Y I = (oo [ir= a1 11 o PSP 155
Optimization SUPPOIt FEATUIES........uiiiie e it e e e e s s e e e e e s s r e e e e s s s ae e e e e e e s s sntaaeeeeaeeseansnaneeeaeees 192

S = 1= 0o SR 202
(7] 10T o 1 1=T o I 0011 £ TS UT PR TOPTPPPRP 202
LGSV 1 (=S TSP UPPPPPPPRTT 203
DiagNOSHCS QNA IMESSAGESveteiiiiieiiiiititiie i e e e e e eete et e e e e e e s s et ebeeeaa e e s e s abbeeeeaaeaesaasnbbeeeeaaeeeaaannsbeeaeaaaaannes 207
T LE WY F= 11 g T I o = o PP PP RPPTRP 211
INtel® C++ INtHNSICS REFEIENCE ..o 243
INtEI® C++ ClasS LIDFAIESoeiiiiieiiiieet ettt 382

Intel® C++ Compiler User's Guide

Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,
copyright or other intellectual property right. Intel products are not intended for use in medical, life saving,
or life sustaining applications.

This User’s Guide as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment
by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

The software described in this User’s Guide may contain software defects which may cause the product to
deviate from published specifications. Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, 1386, 1486, iCOMP, Intel, Intel logo, Intel386,
Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel
NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III
Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2004.

Welcome to the Intel® C++ Compiler

Welcome to the Intel® C++ Compiler. Before you use the compiler, see System Requirements.

Most Linux* distributions include the GNU* C library, assembler, linker, and others. The Intel C++
Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section of this User's Guide to gain an overview of
the topics presented. For the latest information, visit the Intel Web site:

http://www.intel.com/software/products/compilers/clin/

See Getting Started for basic information on running the compiler.

Intel® C++ Compiler for Linux* Systems User's Guide

What's New in This Release

New features for this version of the Intel® C++ Compiler include:

* New Eclipse IDE integration

* New compiler options

* New predefined macros

* Support for exported templates

* Support for template Instantiation

* Invoking the compiler with icc and icpc

* New defaults for gcc interoperability options
* Support for thread-local storage

* Support for high-level optimization for C on [A-32
* Support for additional debug information

e Deprecated compiler options

For further information on New Features, see the Release Notes.

Features and Benefits

The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as profile-guided optimization, prefetch instruction
and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2), the Intel

C++ Compiler provides high performance.

Feature Benefit

High Performance Achieve a significant performance gain by using optimizations

Support for Streaming | Advantage of Intel microarchitecture
SIMD Extensions

Automatic vectorizer | Advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support Shared memory parallel programming

Floating-point Improved floating-point performance

optimizations

Data prefetching Improved performance due to the accelerated data delivery
Interprocedural Larger application modules perform better

optimizations

Profile-guided Improved performance based on profiling frequently-used functions
optimization

Processor dispatch Taking advantage of the latest Intel architecture features while

Intel® Pentium® processors (for IA-32-based systems only).

maintaining object code compatibility with previous generations of

Intel® C++ Compiler User's Guide

Product Web Site and Support

For the latest information about Intel® C++ Compiler, visit:
http://www.intel.com/software/products/compilers/clin/
For specific details on the Itanium® architecture, visit the web site at

http://www.intel.com/software/products/browse/itanium.htm

System Requirements

IA-32 Processor System Requirements

e A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium 4
processor recommended).

* 128 MB of RAM (256 MB recommended).

* 100 MB of disk space.

[tanium® Processor System Requirements

* A computer with an Itanium processor.
* 256 MB of RAM.
e 100 MB of disk space.

Software Requirements

See the Release Notes for a complete list of system requirements.

FLEXIm* Electronic Licensing

The Intel® C++ Compiler uses Macrovision's FLEXIm* licensing technology. The compiler requires a
valid license file in the / | i censes directory in the installation path. The default directory is
/opt/intel _cc_80/1icenses. The license files have a. | i ¢ file extension.

If you require a counted license, see Using the Intel® License Manager for FLEXIm* (f | ex_ug. pdf).

Intel® C++ Compiler for Linux* Systems User's Guide

Related Publications

The following documents provide additional information relevant to the Intel® C++ Compiler:

* ISO/IEC 9989:1990, Programming Languages--C

* ISO/IEC 14882:1998, Programming Languages--C++.

» The Annotated C++ Reference Manual, Special Edition, Ellis, Margaret; Stroustrup, Bjarne, Addison
Wesley, 1991. Provides information on the C++ programming language.

* The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing Company, One
Jacob Way, Reading, MA 01867.

» TheC Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W., Prentice Hall,
1988. Provides information on the K & R definition of the C language.

e C: AReference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall, 1991.
Provides information on the ANSI standard and extensions of the C language.

» Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel Corporation,
doc. number 243190.

* Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191.

* Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel Corporation,
doc. number 243192,

o Intel® [tanium® Assembler User's Guide.

e Intel® Itanium®-based Assembly Language Reference Manual.

e [tanium® Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

e [tanium® Architecture Software Developer's Manual Vol. 2: System Architecture, Intel Corporation,
doc. number 245318-001.

e [tanium® Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

* [tanium® Architecture Software Developer's Manual Vol. 4: Itanium® Processor Programmer's
Guide, Intel Corporation, doc. number 245319-001.

* Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.

» Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number 241618.

» Intel Architecture MMX(TM) Technology Programmer's Reference Manual, Intel Corporation, doc.

number 241618.
e Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc. number
242693.

e Pentium® II Processor Developer's Manual, Intel Corporation, doc. number 243502-001.
e Pentium® Processor Soecification Update, Intel Corporation, doc. number 242480.
* Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-005.

Most Intel documents are also available from the Intel Corporation Web site at
http://developer.intel.com/software/products/

Intel® C++ Compiler User's Guide

How to Use This Document

This User's Guide explains how to use the Intel® C++ Compiler. It provides information on how to get
started with the Intel C++ Compiler, how this compiler operates, and what capabilities it offers for high
performance. You learn how to use the standard and advanced compiler optimizations to gain maximum
performance of your application. This documentation assumes that you are familiar with the C++ standard
programming language and with the Intel processor architecture. You should also be familiar with the host
computer's operating system.

BNote

This document explains how information and instructions apply differently to each targeted architecture. If
there is no specific indication to either architecture, the description is applicable to both architectures.

Notation Conventions

Style Definition

This type |indicates an element of syntax, a reserved word, a keyword, a file name, or

style part of a program example (text appears in lowercase unless UPPERCASE is
required)

This type | indicates what you type as input

style

Thi s type | indicates an argument on a command line or an option's argument
style

[itens] indicates that the items enclosed in brackets are optional

{item| indicates a set of choices from which you must select one

item}

... (ellipses) | indicates that an argument can be repeated several times

Compiler Options Quick Reference

Conventions Used in the Options Quick Reference Tables

Convention Definition

[-] If an option includes "[-] " as part of the definition, then the option
can be used to enable or disable the feature. For example, the -
c99[-] option can be used as - 99 (enable c99 support) or - C99-

(disable ¢99 support).
[n] Indicates that the value N in [] can be omitted or have various values.
Values in {} with Used for option's version; for example, option - X{ K| W N| B| P} has
vertical bars these versions: - XK, - XW - XN, - XB, and - xP.
{n} Indicates that option must include one of the fixed values for n.
Words int hi s Indicate option's required argument(s). Arguments are separated by
styl e following an | comma if more than one are required.

option

New Options

Some compiler options are only available on certain systems. In the following table, these options are
indicated with labels as follows:

Label | Meaning

32 Option available on IA-32-based systems

i32em | Option available on Intel® Extended Memory 64 Technology (Intel® EM64T)
systems

164 Option available on Itanium®-based systems

* Ifno label is present, the option is available on all supported systems
* If "only" appears in the label, that option is only available on the identified system

Compiler Options Quick Reference

The compiler options listed in the following table are new to this release.

Option

Description

Default

-cxxlib-gcc=GCC-root-dir

Specifies the top-level location of
the gce binaries and libraries.

OFF

-debug [no]inline_debug info

Produces enhanced source position
information for inlined code.

OFF

-debug [no]variabl e_| ocati ons

Produces additional debug
information for scalar local variables
using a feature of the DWARF
object module format known as
location lists.

OFF

- debug ext ended

Turns on the three - debug options:

e -debug inline_info
e« -debug
vari abl e_| ocations

OFF

- export

Enable recognition of exported
templates. Supported in C++ mode
only.

OFF

-export _dir dir

Specifies a directory name for the
exported template search path.

OFF

-fabi -version

Directs the compiler to select a
specific ABI implementation.

OFF

-finline-functions

Inline any function at the compiler's
discretion. Same as - i p.

OFF

-fno- exceptions

The - f no- except i ons option
turns off exception handling table
generation, resulting in smaller code.
Any use of exception handling
constructs - try blocks, throw
statements will produce an error.
Exception specifications are parsed
but ignored. A preprocessor symbol
__EXCEPTI ONS is defined when
this option is not used. It is
undefined when this option is
present.

OFF

-fno-implicit-inline-tenplates

Do not emit code for implicit
instantiations of inline templates.
For C++ only.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-fno-implicit-tenpl ates

Never emit code for non-inline
templates which are instantiated
implicitly (i.e. by use); only emit
code for explicit instantiations. For
C++ only.

OFF

-ftl s-nmodel =nodel

Change thread-local storage model,
where nmodel can be the following:

« gl obal -dynanmi c
e local -dynanic
e initial-exec

* | ocal -exec

OFF

-go

Disable generation of symbolic
debug information.

OFF

-[no-] gl obal - hoi st

Enables [disables] hoisting and

speculative loads of global variables.

OFF

-i po[val ue]

Enables interprocedural
optimizations across files. The
optional val ue argument controls
the maximum number of link-time
compilations (or number of object
files) that are spawned. The default
for val ue is 1 when val ue is not
specified for small applications. It
will generate two or more object
files for large applications.

OFF

-i po_separate

Creates one object file for every
source file. This option overrides -
i po[val ue].

OFF

- ker nel
(164 only)

Generates code for inclusion in the
kernel. Prevents generation of
speculation as support may not be
available when code runs.
Suppresses software pipelining.

OFF

-MP

Add a phony target for each
dependency.

OFF

- MX ar get

Same as - MT, but quotes special
Make characters.

OFF

- MI't ar get

Change the default target rule for
dependency generation.

OFF

-Cs

Enable speed optimizations, but
disable some optimizations which
increase code size for small speed
benefit.

OFF

Compiler Options Quick Reference

Option Description Default
-Q ocation, gas, path Specifies the GNU assembler. OFF
-Qocation, gld, path Specifies the GNU linker. OFF
-reserve-kernel -regs Reserves registers f 12- f 15 and OFF
(164 only) f 32-f 127 for use by the kernel.
These will not be used by the
compiler.
- st d=gnu89 ISO C90 plus GNU extensions. ON
Includes some C99 features.
- st d=gnu++98 Same as - st d=gnu89. OFF
-[no] traceback Generate [do not generate] extra OFF

information in the object file that
allows the display of source file
traceback information at run time
when a severe error occurs.

Options Quick Reference Guide

Some compiler options are only available on certain systems. In the following table, these options are
indicated with labels as follows:

Label | Meaning

32 Option available on IA-32-based systems

i32em | Option available on Intel® Extended Memory 64 Technology (Intel® EM64T)
systems

164 Option available on Itanium®-based systems

* Ifno label is present, the option is available on all supported systems
» If"only" appears in the label, that option is only available on the identified system

Option Description Default
- A- Disables all predefined macros. | OFF
-[no] align Analyze and reorder memory OFF
(132 only) layout for variables and arrays.

- Anane[(val ue)] Associates a symbol nane with | OFF

the specified sequence of
val ue. Equivalent to an
#assert preprocessing
directive.

-alias_args[-] This option implies arguments -
may be aliased [not aliased]. alias_args-

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

- ansi

Equivalent to GNU* ANSI.

OFF

-ansi _alias[-]

-ansi _al i as directs the
compiler to assume that the
program adheres to the rules
defined in the ISO C Standard.
If your program adheres to these
rules, then this option will allow
the compiler to optimize more
aggressively. If it doesn't adhere
to these rules, then it can cause
the compiler to generate
incorrect code.

ansi _ali as-

-auto_il p32

Specifies that the application
cannot exceed a 32-bit address
space, which allows the
compiler to use 32-bit pointers
whenever possible. To use this
option, you must also specify -

i po[val ue] . Using the -

aut o_i | p32 option on
programs that can exceed 32-bit
address space (2**32) may
cause unpredictable results
during program execution. This
option has no effect on Intel®
EM64T systems unless the -
axP or - XP option is also used.

OFF

- ax{ K| W N| B| P}
(132, 132em)

Generates specialized code for
processor-specific codes K, WN,
B, and P while also generating
generic [A-32 code.

¢ K=Intel® Pentium® III
and compatible Intel
processors

¢ W= Intel Pentium 4 and
compatible Intel processors

e N=Intel Pentium 4 and
compatible Intel processors

e B=Intel Pentium M and
compatible Intel processors

e P=Intel Pentium 4
processor with Streaming
SIMD Extensions 3 (SSE3)

Only the - axWand - axP
options are available on Intel®
EMO64T.

OFF

10

Compiler Options Quick Reference

Option Description Default

-C Places comments in OFF
preprocessed source output.

-C Stops the compilation process OFF
after an object file has been
generated. The compiler
generates an object file for each
C or C++ source file or
preprocessed source file. Also
takes an assembler file and
invokes the assembler to
generate an object file.

-c99[-] Enables [disables] C99 support | OFF
for C programs.

-conpl ex_limted_range[-] Enables the use of "delete basic | OFF
algebraic expansions" of some
arithmetic operations involving
data of type _Conpl ex. This
can cause some performance
improvements in programs that
use _Conpl ex arithmetic, but
values at the extremes of the
exponent range may not
compute correctly. Default is -
conmplex_linmted range-

-create_pch fil enane Manual creation of precompiled | OFF
header (fi | enane. pchi).

-cxxl i b-gcc[=GCC-r oot - di r] Link using C++ run-time OFF
libraries provided with gcc. This
option is ON by default if your
gee version is 3.2, 3.3, or 3.4.
Use the optional argument,
=GCC-r oot - di r, to specify
the top-level location of the gcc
binaries and libraries.

-cxxlib-icc Link using C++ run-time OFF
libraries provided by Intel. This
option is ON by default if your
gcc version is less than 3.2.

-debug [no]inline_debug_info Produces enhanced source OFF
position information for inlined
code.

-debug [no]vari abl e_l ocati ons | Produces additional debug OFF

information for scalar local
variables using a feature of the
DWAREF object module format
known as location lists.

11

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

- debug ext ended

Turns on the three - debug
options:

e ~-debug inline_info
« -debug
vari abl e_| ocati ons

OFF

-dM

Output macro definitions in
effect after preprocessing (use
with - E).

OFF

- Dnane[=val ue]

Defines a macro nanme and
associates it with the specified
val ue. Equivalent to a

#def i ne preprocessor
directive.

OFF

-dryrun

Show driver tool commands, but
do not execute tools.

OFF

-dynam c-l i nkerfil enane

Selects a dynamic linker
(f i | enane) other than the
default.

OFF

Stops the compilation process
after the C or C++ source files
have been preprocessed, and
writes the results to stdout.

OFF

-EP

Preprocess to stdout omitting
#l i ne directives.

OFF

- export

Enable recognition of exported
templates. Supported in C++
mode only.

OFF

-export _dir dir

Specifies a directory name for
the exported template search
path.

OFF

-falias

Assume aliasing in program.

ON

-fabi -versi on=n

Directs the compiler to select a
specific ABI implementation.

OFF

12

Compiler Options Quick Reference

Option Description Default

-fast The - f ast option maximizes | OFF
speed across the entire program.
For Itanium-based systems, -
fast sets- O3, -i po, and -
stati c. For [A-32 and Intel®
EMG64T systems, - f ast sets -
B, -ipo,-static,and-xP.
Note that on IA-32 and Intel®
EMO64T systems, programs
compiled with the - XP option
will detect non-compatible
processors and generate an error
message during execution.

-fcode-asm Produce assembly file with OFF
optional code annotations.
Requires - S.

-ffnalias Assume aliasing within ON
functions.

-finline-functions Inline any function at the OFF
compiler's discretion. Same as -

ip.

-fm nshared Compilation is for the main OFF
executable. Absolute addressing
can be used and non-position
independent code generated for
symbols that are at least

protected.
-fno-alias Assume no aliasing in program. | OFF
-fno- conmon Enables the compiler to treat OFF

common variables as if they
were defined, allowing the use
of gpr el addressing of
common data variables.

-fno- exceptions The - f no- excepti ons OFF
option turns off exception
handling table generation,
resulting in smaller code. Any
use of exception handling
constructs - try blocks, throw
statements will produce an error.
Exception specifications are
parsed but ignored. A
preprocessor symbol
__EXCEPTI ONS is defined
when this option is not used. It
is undefined when this option is
present.

13

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default
-fno-fnalias Assume no aliasing within OFF
functions, but assume aliasing
across calls.
-fno-inmplicit-inline-tenplates | Do notemit code for implicit OFF
instantiations of inline
templates. For C++ only.
-fno-inplicit-tenpl ates Never emit code for non-inline | OFF
templates which are instantiated
implicitly (i.e. by use); only emit
code for explicit instantiations.
For C++ only.
-f[no-Jrtti Enable [disable] RTTI support. |-frtti
(132 and 164)
-fnsplit[-] Enables [disables] function OFF
splitting. Default is ON with -
pr of _use. To disable function
splitting when you use -
pr of _use, also specify -
fnsplit-.
-'f P Disable using the EBP register OFF
(132, i32em) as general purpose register.
-fpic, -fPIC For IA-32, this option generates | OFF
position independent code.
For Itanium-based systems, this
option generates code allowing
full symbol preemption.
-fp_port Round fp results at assignments | OFF
(132 only) and casts. Some speed impact.
- fpst kchk Generates extra code after every | OFF
(132 only) function call to assure the FP
stack is in the expected state.
-fr32 Use only lower 32 floating-point | OFF
(164 only) registers.
-fshort-enuns Allocate as many bytes as OFF
needed for enumerated types.
-fsource-asm Produce assemblable file with OFF
optional code annotations.
Requires - S.
-fsyntax-only Same as - synt ax. OFF

14

Compiler Options Quick Reference

Option

Description

Default

-ftl s-nmodel =nodel

Change thread-local storage
model, where nodel can be
the following:

« gl obal -dynamc
e local -dynanic
e initial-exec

« |ocal -exec

OFF

~ftz[-]
(i32em, i64)

Flushes denormal results to zero.

The option is turned ON with -
3.

OFF

-funsi gned-bitfields

Change default bitfield type to
unsi gned.

OFF

- funsi gned- char

Change default char type to
unsi gned.

OFF

-f[no] ver bose-asm

Produce assemblable file with
compiler comments.
Default: - f ver bose- asm

ON

-fvisibility-default=file

Space separated symbols listed
inthefil e argument will get
visibility set to def aul t .

OFF

-fvisibility-extern=file

Space separated symbols listed
inthefil e argument will get
visibility set to ext er n.

OFF

-fvisibility-hidden=file

Space separated symbols listed
inthefil e argument will get
visibility set to hi dden.

OFF

-fvisibility-internal =file

Space separated symbols listed
inthefil e argument will get
visibility set to i nt er nal

OFF

-fvisibility-protected=file

Space separated symbols listed
inthefil e argument will get
visibility set to pr ot ect ed.

OFF

-fvisibility=
[extern|defaul t|protected
| hi dden|i nternal]

Global symbols (common and
defined data and functions) will
get the visibility attribute given
by default. Symbol visibility
attributes explicitly set in the
source code or using the symbol
visibility attribute file options
will override the -
fvisibility setting.

OFF

15

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-fwritable-strings
(132 only)

Ensure that string literals are
placed in a writable data section.

OFF

-9

Generates symbolic debugging
information in the object code
for use by source-level
debuggers. The - g option
changes the default optimization
from - O2 to - Q0.

OFF

- go
(132 only)

Disable generation of symbolic
debug information.

OFF

- gcc- nane=nane

Use this option to specify the
location of g++ when compiler
cannot locate gcc C++ libraries.
For use with - cxxI i b- gcc
configuration. Use this option
when referencing a non-standard
gcc installation.

OFF

-gcc-versi on=nnn

This option provides compatible
behavior with gcc, where nnn
indicates the gcc version.

OFF

-[no-] gl obal - hoi st

Enables [disables] hoisting and
speculative loads of global
variables.

OFF

-H

Print "include" file order and
continue compilation.

OFF

-hel p

Prints compiler options
summary.

OFF

-idirafterdir

Add directory (di r) to the
second include file search path
(after - 1).

OFF

-ldirectory

Specifies an additional
di rectory tosearch for
include files.

OFF

-i _dynam c

Link Intel provided libraries
dynamically.

OFF

-inline_debug info

Produces enhanced source
position information for inlined
code. It also provides enhanced
debug information useful for
function call traceback. To use
this option for debugging, you
must also specify - g.

OFF

16

Compiler Options Quick Reference

Option Description Default
-ip Enables interprocedural OFF
optimizations for single file
compilation.
-1 PF_fma[-] Enable [disable] the combining | OFF
(164 only) of floating-point multiplies and
add/subtract operations.
-1 PF_fltacc[-] Enable [disable] optimizations | OFF
(164 only) that affect floating-point
accuracy.
-1 PF_flIt_eval _net hod0 Floating-point operands OFF
(164 only) evaluated to the precision
indicated by the program.
-1 PF_fp_rel axed[-] Enable [disable] use of faster but | OFF
(164 only) slightly less accurate code
sequences for math functions,
such as divide and square root.
-1 PF_f p_specul ati onnode Enable floating-point OFF
(164 only) speculations with the following
node conditions:
o fast - speculate floating-
point operations
e saf e - speculate only when
safe
e strict -same as off
e of f - disables speculation
of floating-point operations
-ip_no_inlining Disables inlining that would OFF
result from the - i p
interprocedural optimization, but
has no effect on other
interprocedural optimizations.
-.i p_n o_pinlining Disable partial inlining. OFF
(132, i32em) Requires - i p or -
i po[val ue].
-ipo[n] Enables interprocedural OFF

optimizations across files. The
optional N argument controls
the maximum number of link-
time compilations (or number of
object files) that are spawned.
The default for val ue is 1
when val ue is not specified.

17

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-ipo_c

Generates a multifile object file
(i po_out . 0) that can be used
in further link steps.

OFF

-i po_obj

Forces the compiler to create
real object files when used with
-i po[val ue].

OFF

-ipo_S

Generates a multifile
assemblable file named

i po_out . s that can be used in
further link steps.

OFF

-i po_separate

Creates one object file for every
source file. This option
overrides - i po[val ue] .

OFF

-isystendir

Add directory di r to the start
of the system include path.

OFF

-ivdep_parall el
(164 only)

This option indicates there is
absolutely no loop-carried
memory dependency in the loop
where the IVDEP directive is
specified.

OFF

- Kc++

Compile all source or
unrecognized file types as C++
source files.

OFF

- ker nel
(164 only)

Generates code for inclusion in
the kernel. Prevents generation
of speculation as support may
not be available when code runs.
Suppresses software pipelining.

OFF

- Knopi ¢, - KNOPI C

Use f pi ¢ instead of this option.

ON for Itanium-

lines for each source file, based
on the #i ncl ude lines found
in the source file.

(164 only) based systems
OFF for [A-32
-KPIC, -Kpic Use f pi ¢ instead of this option. | OFF
-Ldirectory Instruct linker to search OFF
di rect ory for libraries.
-M Generates makefile dependency | OFF

18

Compiler Options Quick Reference

Option Description Default
- mar ch=cpu Generate code excusively fora | OFF
(132 only) given cpu. Values for cpu are:

e penti unpro - Intel
Pentium Pro processors

e pentiumi -Intel
Pentium II processors.

e pentiumii -Intel
Pentium III processors.

e penti un¥ - Intel Pentium
4 processors.

- nCpu=cpu Optimize for a specific cpu. For | ON
IA-32, cpu values are: penti umd
on [A-32

. penf[i um- Optimize for i tani une
Pentium processor. .
. L. on Itanium-
e penti unpro - Optimize based
for Pentium Pro, Pentium II
and Pentium III processors.
e penti umi - Optimize for
Pentium 4 processor
(Default).

Systems

The only option available on
Intel® EM64T systems is -
ncpu=pent i uny.

For Itanium-based Systems,
cpu values are:

* i tani um- Optimize for
Itanium processor.

e itani un® - Optimize for
Itanium 2 processor
(Default).

-MD Preprocess and compile. OFF
Generate output file (. d
extension) containing

dependency information.

-MFfile Generate makefile dependency | OFF
information in f i | . Must
specify - Mor - MM

- MG Similar to - M but treats missing | OFF
header files as generated files.

-W Similar to - M but does not OFF
include system header files.

19

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default
- MMVD Similar to - VD, but does not OFF
include system header files.
- Favors conformance to the OFF
ANSI C and IEEE 754 standards
for floating-point arithmetic.
-nmpl Improve floating-point precision | OFF
(speed impact is less than - np).
- WP Add a phony target for each OFF
dependency.
- nT el ax Pass - r el ax to the linker. ON
(164 only)
- mo- r el ax Do not pass - I el ax to the OFF
(164 only) linker.
- MX ar get Same as - MT, but quotes special | OFF
Make characters.
- mser ialize-volatile Impose strict memory access OFF
(164 only) ordering for volatile data object
references.
- mo- ser ialize-volatile The compiler may suppress both | OFF
(164 only) run-time and compile-time
memory access ordering for
volatile data object references.
Specifically, the . rel / . acq
completers will not be issued on
referencing loads and stores.
- MIt ar get Change the default target rule OFF
for dependency generation.
-nobss_init Places variables that are OFF
initialized with zeroes in the
DATA section. Disables
placement of zero-initialized
variables in BSS (use DATA).
-no_cpprt Do not link in C++ run-time OFF
libraries.
-nodefaul tlibs Do not use standard libraries
when linking.
- no- gcc Do not predefine the OFF
__G\NUC__,

—_GNUC_M NOR_, and
~ GNUC_PATCHLEVEL _
macros.

20

Compiler Options Quick Reference

Option Description Default

-nolib_inline Disables inline expansion of OFF
standard library functions.

-nostartfiles Do not use standard startup files | OFF
when linking.

-nostdi nc Same as - X. OFF

-nostdlib Do not use standard libraries and | OFF

startup files when linking.

-0 Same as - Ol on IA-32. Same as | OFF
- Q2 on Itanium-based systems.

-Q0 Disables optimizations. OFF

-1 Enable optimizations. Optimizes | ON

for speed. For Itanium compiler, | (i32)
- O1 turns off software
pipelining to reduce code size.

-2 Same as - Ol on IA-32. Same as | ON
- Oon Itanium-based systems. (164)
-8 Enable - O2 plus more OFF

aggressive optimizations that
may increase the compilation
time. Impact on performance is
application dependent, some
applications may not see a
performance improvement.

- Cbn Controls the compiler's inline OFF
expansion. The amount of inline
expansion performed varies with
the value of n as follows:

¢ 0: Disables inlining.

e 1: Enables (default) inlining
of functions declared with
the i nli ne keyword.
Also enables inlining
according to the C++
language.

e 2: Enables inlining of any
function. However, the
compiler decides which
functions to inline. Enables
interprocedural
optimizations and has the
same effect as - i p.

-ofile Name output fi | e. OFF

21

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

- opennp

Enables the parallelizer to
generate multi-threaded code
based on the OpenMP*
directives. The - opennp option
works with both - Q0 and any
optimization level of - OL, - O2,
and - G3.

OFF

-openmp_profile

The - opennp_profile
option enables analysis of
OpenMP* applications with
Thread Profiler, which is
required to use this option.

OFF

-opennp_report{0| 1] 2}

Controls the OpenMP
parallelizer's diagnostic levels.

OFF

- opennp_st ubs

Enables OpenMP programs to
compile in sequential mode. The
OpenMP directives are ignored
and a stub OpenMP library is
linked sequentially.

OFF

-opt _report

Generates an optimization report
directed to stderr, unless -

opt _report_fileis
specified.

OFF

-opt _report_filefilenane

Specifies the f i | enane for the
optimization report. It is not
necessary to invoke -

opt _report when this option
is specified.

OFF

-opt _report_|evellevel

Specifies the verbosity | evel
of the output. Valid | evel
arguments:

e nn
e ned
e max

Ifal evel is not specified,
m n is used by default.

OFF

22

Compiler Options Quick Reference

Option Description Default

- opt _report_phasenane Specifies the compilation nanme | OFF
for which reports are generated.
The option can be used multiple
times in the same compilation to
get output from multiple phases.
Valid nane arguments:

* i po: Interprocedural
Optimizer

* hl o: High Level Optimizer

* il o: Intermediate

Language Scalar Optimizer
e ecg: Code Generator
e onp: OpenMP*
o all: All phases

-opt _report_routinesubstring Specifies a routine OFF
subst ri ng. Reports from all
routines with names that include
subst ri ng as part of the
name are generated. By default,
reports for all routines are
generated.

-opt _report_help Displays all possible settings for | OFF
-opt _report_phase. No
compilation is performed.

-Gs Enable speed optimizations, but | OFF
disable some optimizations
which increase code size for
small speed benefit.

-p Same as - gp. OFF

-P,-F Stops the compilation process OFF
after C or C++ source files have
been preprocessed and writes
the results to files named
according to the compiler's
default file-naming conventions.

-paral | el Detects parallel loops capable of | OFF
being executed safely in parallel
and automatically generates
multithreaded code for these
loops.

23

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-par_report{0] 1] 2| 3}

Controls the auto-parallelizer's
diagnostic levels 0, 1, 2, or 3 as
follows:

e -par_reportO:no
diagnostic information is
displayed.

e -par_report 1:indicates
loops successfully auto-
parallelized (default).

e -par_report 2:loops
successfully and
unsccessfully auto-
parallelized.

e -par_report 3:same as
2 plus additional
information about any
proven or assumed
dependences inhibiting
auto-parallelization.

OFF

- par _threshol d[n]

Sets a threshold for the auto-
parallelization of loops based on
the probability of profitable
execution of the loop in parallel,
n=0 to 100. This option is used
for loops whose computation
work volume cannot be
determined at compile time.
Default: n=100.

OFF

- pc32
(132, 132em)

Set internal FPU precision to 24-
bit significand.

OFF

- pc64
(132, 132em)

Set internal FPU precision to 53-
bit significand.

OFF

- pc80
(132, i32em)

Set internal FPU precision to 64-
bit significand.

ON

- pch

Automatic processing for
precompiled headers.

OFF

-pch_dir dirnane

Directs the compiler to find
and/or create a file for
precompiled headers in

di rnane.

OFF

-prec_div
(132, i32em)

Disables the floating point
division-to-multiplication
optimization. Improves
precision of floating-point
divides.

OFF

24

Compiler Options Quick Reference

Option

Description

Default

-prefetch[-]
(132 only)

Enables [disables] the insertion
of software prefetching by the
compiler. Default: -
prefetch.

ON

-prof _dir dirnane

Specify the directory
(di r name) to hold profile
information (*. dyn, *. dpi).

OFF

-prof _file filenane

Specify the f i | ename for
profiling summary file.

OFF

-prof _format_32

By default, the Intel compiler
creates 64-bit profiling counters
(. dyn and . dpi). This option
creates 32-bit counters for
compatibility with the Intel C++
Compiler 7.0.

OFF

-prof __gen[x]

Instruments the program to
prepare for instrumented
execution and also creates a new
static profile information file

(. spi). With the X qualifier,
extra source position is collected
which enables code coverage
tools.

OFF

-prof _use

Uses dynamic feedback
information.

OFF

-Qnstall dir

Sets di r as root of compiler
installation.

OFF

-Q ocation,tool, path

Sets pat h as the location of the
tool specified by tool .

OFF

-Qoption,tool,list

Passes an argument | i st to
another t ool in the
compilation sequence, such as
the assembler or linker.

OFF

-gp

Compile and link for function
profiling with UNIX* pr of
t ool

OFF

-rcd
(132 only)

Disables changing of the FPU
rounding control. Enables fast
float-to-int conversions.

OFF

-reserve-kernel -regs
(164 only)

Reserves registers f 12- f 15
and f 32- f 127 for use by the
kernel. These will not be used
by the compiler.

OFF

25

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-[no]restrict

Enables/disables pointer
disambiguation with the
restrict qualifier.

OFF

Generates assemblable files with
. S suffix, then stops the
compilation.

OFF

-scal ar _rep[-]

The - scal ar_rep[-]
compiler option enables
[disables] scalar replacement
performed during loop
transformations.

OFF

- shar ed

Produce a shared object.

OFF

-shared-|i bcxa

Link Intel | i bcxa C++ library
dynamically.

OFF

-sox[-]
(132, 132em)

Enables [disables] the saving of
compiler options and version
information in the executable
file.

- SOX-

-static

Prevents linking with shared
libraries.

OFF

-static-libcxa

Link Intel | i bcxa C++ library
statically.

OFF

- st d=gnu89

ISO C90 plus GNU extensions.
Includes some C99 features.

ON

- st d=gnu++98

Same as - st d=gnu89.

OFF

-strict_ansi

Strict ANSI conformance
dialect.

OFF

- synt ax

Checks the syntax of a program
and stops the compilation
process after the C or C++
source files and preprocessed
source files have been parsed.
Generates no code and produces
no output files. Warnings and
messages appear on stderr.

OFF

-T file

Direct linker to read link
commands fromfil e.

OFF

-t check

The - t check compiler option
enables analysis of threaded
applications with Intel® Thread
Checker, which is required to
use this option.

OFF

26

Compiler Options Quick Reference

Option Description Default
-tppl Targets optimization for the OFF
(164 only) Itanium processor.
-t pp2 Targets optimization for the ON
(164 only) Itanium® 2 processor.
Generated code is compatible
with the Itanium processor.
-.t pp5 Targets the optimizations for the | OFF
(132 only) Pentium processor.
-t pp6 Targets the optimizations for the | OFF
(132 only) Pentium Pro, Pentium II and
Pentium III processors.
-t pp7 Targets optimizations for the ON
(132, i32em) Intel Pentium 4 processors.
-[no] traceback Tells the compiler to generate OFF
[not generate] extra information
in the object file to allow the
display of source file traceback
information at run time when a
severe error occurs.
- Uname Suppresses any definition of a OFF
macro namnme. Equivalent to a
#undef preprocessing
directive.
-unrolln Disable loop unrolling for n=0. | OFF
-unroll n Disable loop unrolling for n=0. | OFF
-use_asm Produce objects through OFF
assembler.
-use_msasm Accept the Microsoft* MASM- | OFF
(132 only) style inlined assembly format
instead of GNU-style.
-use_pch filenane Manual use of precompiled OFF
header (fi | enane. pchi).
-u synbol Pretend the synbol is OFF
undefined.
-V Display compiler version OFF
information.
-V Show driver tool commands and

execute tools.

27

Intel® C++ Compiler for Linux* Systems User's Guide

Option

Description

Default

-vec_report[n]
(132, 132em)

Controls the amount of
vectorizer diagnostic
information.

¢ n =0 no diagnostic
information

¢ n =1 indicates vectorized
loops (DEFAULT)

¢ n =2 indicates
vectorized/non-vectorized
loops

¢ n =3 indicates
vectorized/non-vectorized
loops and prohibiting data
dependence information

¢ n =4 indicates non-
vectorized loops

¢ n =15 indicates non-
vectorized loops and
prohibiting data

OFF

-W

Disable all warnings.

OFF

-val |

Enable all warnings.

OFF

-\Wori ef

Enable a mode in which a
shorter form of the diagnostic
output is used. When enabled,
the original source line is not
displayed and the error message
text is not wrapped when too
long to fit on a single line.

OFF

-Wheck

Performs compile-time code
checking for code that exhibits
non-portable behavior,
represents a possible unintended
code sequence, or possibly
affects operation of the program
because of a quiet change in the
ANSI C Standard.

OFF

-wn

Control diagnostics.

e n =0 displays errors (same
as - W)

e n =1 displays warnings and
errors (DEFAULT)

e n =2 displays remarks,
warnings, and errors

28

Compiler Options Quick Reference

Option Description Default

-wdL1[,L2,...] Disables diagnostics L1 OFF
through LN.

-well[,L2,...] Changes severity of diagnostics | OFF
L1 through LN to error.

-\Werror Force warnings to be reported as | OFF
erTors.

-wnn Limits the number of errors OFF

displayed prior to aborting
compilation to n.

-wrL1[, L2,...] Changes the severity of OFF
diagnostics L1 through LN to
remark.

-wwL1[, L2,...] Changes severity of diagnostics | OFF
L1 through LNto warning.

-W,o01[,02,...] Pass options 01, 02, etc. to the | OFF
linker for processing.

-W, 01[,02,...] Pass options 01, 02, etc. to the | OFF
preprocessor.

- W64 Print diagnostics for 64-bit OFF

(132em, 164) porting.

-X type All source files found OFF

subsequent to - X t ype will be
recognized as one of the
following t ypes:

e C -Csource file

e C++ - C++ source file

e c-header - C header file

e cpp-output -C
preprocessed file

e assenbl er -assemblable
file

e assenbler-wth-cpp-
Assemblable file that needs
to be preprocessed.

¢ none - Disable recognition
and revert to file extension.

-X Removes the standard OFF
directories from the list of
directories to be searched for
include files.

29

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description Default
-'X{ K| W N| B| P} Generates specialized code for OFF
(i32, i32em) processor-specific codes K, W N,

B, and P.

¢ K=Intel® Pentium® III
and compatible Intel
processors

¢ W= Intel Pentium 4 and
compatible Intel processors

e N=Intel Pentium 4 and
compatible Intel processors

e B=Intel Pentium M and
compatible Intel processors

e P=Intel Pentium 4
processor with Streaming
SIMD Extensions 3 (SSE3)

Only the - XWand - XP options
are available on Intel® EM64T.

-Xl'i nker val Pass val directly to the linker | OFF
for processing.

-Zp{ 1] 2| 4| 8| 16} Packs structures on 1, 2, 4, 8, or | OFF
16 byte boundaries.

Compiler Options Cross Reference

Linux* Windows* Description Linux
Default

-A ! QA- Remove all OFF
predefined macros.

- Anare[(val)] / QAname[(val)] Create an assertion OFF
name having value
val .

-ansi | Za Enable/disable ON
assumption of ANSI
conformance.

30

Compiler Options Quick Reference

Linux*

Windows*

Description

Linux
Default

- ax{ K| W N| B| P}

I Qax{ K| W N B| P}

Generates specialized
code for processor-
specific codes K, W N,
B, and P while also
generating generic [A-
32 code.

e K=Intel®
Pentium® III and
compatible Intel
processors

* W= Intel Pentium
4 and compatible
Intel processors

* N=Intel Pentium
4 and compatible
Intel processors

e B=Intel Pentium
M and compatible
Intel processors

* P =Intel Pentium
4 processor with
Streaming SIMD
Extensions 3
(SSE3)

OFF

/C

Don't strip comments.

OFF

/c

Compile to object
(. 0) only, do not link.

OFF

- Dnane[=val ue]

/ Dname[=val ue]

Define macro.

OFF

-E

IE

Preprocess to stdout.

OFF

_fp

1 Oy-

Use EBP-based stack
frame for all
functions.

OFF

! Zi

Produce symbolic
debug information in
object file. The - g
option changes the
default optimization
from - C2 to - O0.

OFF

I QH

Print include file
order.

OFF

-help

/ hel p

Print help message
listing.

OFF

31

Intel® C++ Compiler for Linux* Systems User's Guide

Linux*

Windows*

Description

Linux
Default

-ldirectory

/1directory

Add directory to
include file search
path.

OFF

-inline_debug_ info

/ Q@ nline_debug_info

Preserve the source
position of inlined
code instead of
assigning the call-site
source position to
inlined code.

OFF

/Qp

Enable single-file IP
optimizations (within
files).

OFF

-ip_no_inlining

/Q p_no_inlining

Optimize the behavior
of IP: disable full and
partial inlining
(requires - i p or -

i po[val ue]).

OFF

-i po[val ue]

/ Q po[val ue]

Enable multifile IP
optimizations
(between files).

OFF

-i po_obj

/ Q po_obj

Optimize the behavior
of IP: force generation
of real object files
(requires -

i po[val ue]).

OFF

-KPI C

Generate position
independent code
(same as - Kpi c).

OFF

- Kpi ¢

Generate position
independent code
(same as - KPI C).

OFF

Instruct linker to
produce map file.

OFF

I QM

Generate makefile
dependency
information.

OFF

/ Op[-]

Maintain floating-
point precision
(disables some
optimizations).

OFF

| Qorec

Improve floating-
point precision (speed
impact is less than -

np).

OFF

32

Compiler Options Quick Reference

Linux* Windows* Description Linux
Default

-nobss_init / Qnobss_ini t Disable placement of | OFF
zero-initialized
variables in BSS (use
DATA).

-nolib_inline /1a[-] Disable inline OFF
expansion of intrinsic
functions.

-0 /I 2 OFF

-ofile [Fefile or/Fofile Name output file. OFF

-Q0 /A Disable optimizations. | OFF

-0 / 0L Optimizes for speed. | OFF

-2 /I Q2 ON

-P | EP Preprocess to file. OFF

-pc32 [Qc 32 Set internal FPU OFF
precision to 24-bit
significand.

- pc64 /| Qc 64 Set internal FPU OFF
precision to 53-bit
significand.

-pc80 / Qc 80 Set internal FPU ON
precision to 64-bit
significand.

-prec_div /| Qorec_div Improve precision of | OFF
floating-point divides
(some speed impact).

-prof _dirdirectory [/ Qorof _dirdirectory | Specify directory for | OFF
profiling output files
(*. dyn and *. dpi).

-prof _filefilename |/ Qorof _filefilenanme | Specify file name for | OFF
profiling summary
file.

- prof _gen[x] / Qor of _genx Instrument program OFF
for profiling; with the
X qualifier, extra
information is
gathered.

-prof _use [Qor of _use Enable use of OFF

profiling information
during optimization.

33

Intel® C++ Compiler for Linux* Systems User's Guide

Linux*

Windows*

Description

Linux
Default

-Qnstall dir

NA

Set di r as root of
compiler installation.

OFF

-Qocation,str,dir

/@ ocation,tool, path

Setdi r asthe
location of tool
specified by st r.

OFF

-Qoption,str,opts

/[Qoption,tool,list

Pass options opts to
tool specified by str.

OFF

-ap,-p

NA

Compile and link for
function profiling
with UNIX* gprof
tool.

OFF

-rcd

[/ Qcd

Enable fast floating-
point-to-integer
conversions.

OFF

-restrict

[Qrestrict

Enable the restrict
keyword for
disambiguating
pointers.

OFF

/'S

Generates
assemblable files with
. S suffix, then stops
the compilation.

OFF

-sox[-]

[s0x

Enable [disable]
saving of compiler
options and version in
the executable.

- SOX-

- synt ax

| Zs

Perform syntax check
only.

OFF

-t pp5

! Gb

Optimize for Pentium
processor.

OFF

-t pp6

| G5

Optimize for Pentium
Pro, Pentium II and
Pentium III
processors.

OFF

-t pp7

e

Optimize for Pentium
4 processor.

OFF

34

Compiler Options Quick Reference

Linux*

Windows*

Description

Linux
Default

-[no] traceback

/[no]traceback

Generate [do not
generate] extra
information in the
object file that allows
the display of source
file traceback
information at run
time when a severe
€ITor occurs.

OFF

- Uname

/ Uname

Remove predefined
macro.

OFF

-unrol 10

/Qunroll0

Disable loop
unrolling.

OFF

-V

Qv

Display compiler
version information.

OFF

-w

[w

Display errors.

OFF

- W2

'\

Enable remarks,
warnings and errors.

-\VWori ef

/W

Produces less verbose
diagnostics.

OFF

/W

Control diagnostics.
Display errors (n=0).
Display warnings and
errors (n=1). Display
remarks, warnings,
and errors (n=2).

OFF

~wdLl[, L2, ...]

/ Qnd[t ag]

Disable diagnostics
L1 through LN.

OFF

~well[, L2, ...]

/ Qre[t ag]

Change severity of
diagnostics L1
through LN to error.

OFF

-wnn

/ Qwn[t ag]

Print a maximum of n
errors.

OFF

- W64

/ \Wp64

Print diagnostics for
64-bit porting.

OFF

-wrLl[, L2, .. .]

/ Qwr [t ag]

Change severity of
diagnostics L1

through LN to remark.

OFF

~waLl[, L2, ...]

I Qw(t ag]

Change severity of
diagnostics L1
through LN to
warning.

OFF

35

Intel® C++ Compiler for Linux* Systems User's Guide

2,4, 8, or 16 byte
boundaries.

Linux* Windows* Description Linux
Default
-X I'X Remove standard OFF
directories from
include file search
path.
-x{ K| WN B| P} I X{ KW N B| P} Generates specialized | OFF
code for processor-
specific codes K, W N,
B, and P while also
generating generic IA-
32 code.
« K=Intel®
Pentium® III and
compatible Intel
processors
* W= Intel Pentium
4 and compatible
Intel processors
* N=Intel Pentium
4 and compatible
Intel processors
* B=Intel Pentium
M and compatible
Intel processors
* P =Intel Pentium
4 processor with
Streaming SIMD
Extensions 3
(SSE3)
-Zp{ 1| 2| 4| 8| 16} I Zp[n] Packs structures on 1, | OFF

36

Compiler Options Quick Reference

Default Compiler Options

Some compiler options are only available on certain systems. In the following table, these options are
indicated with labels as follows:

Label | Meaning

32 Option available on IA-32-based systems

i32em | Option available on Intel® Extended Memory 64 Technology (Intel® EM64T)
systems

164 Option available on Itanium®-based systems

* Ifno label is present, the option is available on all supported systems
* If "only" appears in the label, that option is only available on the identified system

Option Description

-alias_args Enable C/C++ rule that function arguments may be
aliased.

-ansi _alias Enable use of ANSI aliasing rules in optimizations; user

asserts that the program adheres to these rules.

-conpl ex_li m ted_range- | Disable the use of the basic algebraic expansions of some
complex arithmetic operations.

-falias Assume aliasing in program.

-ffnalias Assume aliasing within functions.

-friti Support for RTTL

-fverbose-asm Produce assembly file with compiler comments (requires
-S).

-ncpu=penti un? Optimizes for Intel® Pentium® 4 processor.

(132 only)

- epu=i t ani unk Optimizes for Intel® Itanium® 2 processor.

(164 only)

-0 Same as - O2 on [A-32. Same as - Oon Itanium-based
systems.

- pc80 Set internal floating-point precision to 64-bit significand.

(132, i32em)

-prefetch Enables the insertion of software prefetching by the
compiler.

- SOX- Disable saving of compiler options and version in the
executable.

37

Intel® C++ Compiler for Linux* Systems User's Guide

Option Description

- st d=gnu89 ISO C90 plus GNU extensions. Includes some C99
features.

-t pp2 Target optimization to the Itanium 2 processor.

(164 only)

-t pp7 Target optimization to the Pentium 4 2 processor.

(132 only)

-wl Display warnings and errors.

Deprecated and Unsupported Compiler Options

Deprecated Options

Occasionally, compiler options are marked as "deprecated." Deprecated options are still supported in the
current release, but are planned to be unsupported in future releases. The following options are deprecated
in this release of Intel® C++ Compiler:

* -Qansi

Deprecated options are not limited to this list.

Unsupported Options

Some Intel C++ Compiler options are no longer supported. If you use an unsupported option, the compiler
issues a warning, ignores the option, then proceeds with compilation. This version of the Intel C++
Compiler no longer supports the following compiler options:

e -axi

e -axM

e - Xi

e -XM

e -0f check

e ~-fdiv_check

Unsupported options are not limited to this list.

38

Volume I: Building Applications

Getting Started

You can Invoke the Compiler from a system command prompt, or you can use the compiler with the
Eclipse™* Integrated Development Environment.

Getting Help

¢ Documentation conventions are described in How to Use This Document.

* If you are using the compiler from the command line, you can execute i cCc - hel p for a summary

of command-line options.
* Ifyou need additional help in using the Intel C++ Compiler, see Product Web Site and Support.

Default Behavior of the Compiler

If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses the
following default settings:

* Produces executable output with filename a. out .

» Invokes options specified in a configuration file first. See Configuration Files.

* The location of shared objects is specified by the LD_LI BRARY_PATH environment variable.

* Sets 8 bytes as the strictest alignment constraint for structures.

» Displays error and warning messages.

* Performs standard optimizations using the default - O2 option. See Setting Optimization Levels.

e On operating systems that support characters in Unicode* (multi-byte) format, the compiler will
process file names containing these characters.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

Compilation Phases

To produce an executable file, the compiler performs by default the compile and link phases. When
invoked, the compiler driver determines which compilation phases to perform based on the file name
extension and the compilation options specified in the command line.

The compiler passes object files and any unrecognized file name to the linker. The linker then determines

whether the file is an object file (. 0) or a library (. a). The compiler driver handles all types of input files

correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in this diagram:

39

Intel® C++ Compiler for Linux* Systems User's Guide

Application Development Cycle

- .
Text Edlitor
Source
Phasze|:
Trans kticn ¢
Campiler

Y

Jazr
Library
Fhasze Il
Linking ™, ik (e
.
i
Phaszelll:
Execution
GMOaT14

40

Volume I: Building Applications

Building Applications from the Command Line

Invoking the Compiler
The ways to invoke Intel® C++ Compiler are as follows:

* Invoke directly: Running Compiler from the Command Line
e Use system make file: Running from the Command Line with make

Invoking the Compiler from the Command Line

There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. set the environment
2. invoke the compiler using i cC ori cpc

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations for the
various components. The Intel C++ Compiler installation includes shell scripts that you can use to set
environment variables. With the default compiler installation, these scripts are:

e J/opt/intel _cc_80/bin/iccvars.sh
e J/opt/intel _cc_80/bin/iccvars.csh

To run an environment script, enter one of the following on the command line:
pronpt >source /opt/intel _cc_80/bin/iccvars. sh

or

pronpt >source /opt/intel _cc_80/bin/iccvars. csh

If you want the script to run automatically when you start Linux*, add the same command to the end of
your startup file.

Sample .bash_profil e entry fori ccvars. sh

set environnent vars for Intel C++ conpiler
source /opt/intel _cc_80/bin/iccvars.sh

41

Intel® C++ Compiler for Linux* Systems User's Guide

Invoking the Compiler with icc or icpc
You can invoke the Intel C++ Compiler on the command line with eitheri cc ori cpc.

* When you invoke the compiler with i cc, the compiler builds C source files using C libraries and C
include files. If you use i cc with a C++ source file, it will be compiled as a C++ file. Use i cC to
link C object files.

* When you invoke the compiler with icpc the compiler builds C++ source files using C++ libraries
and C++ include files. If you use i cpc with a C source file, it will be compiled as a C++ file. Use
i cpc to link C++ object files.

Command-line Syntax

When you invoke the Intel C++ Compiler with i cc ori cpc, use the following syntax:

prompt >{icc|icpc} [options] filel [file2 . . .]
Argument Description
options Indicates one or more command-line options. The compiler recognizes one

or more letters preceded by a hyphen (-). This includes linker options. See
the Options Quick Reference

' Indicates one or more files to be processed by the compilation system. You
can specify more than one file. Use a space as a delimiter for multiple files.

—h —h
@ @
N

Example:

pronmpt >i cpc -prec_div -axP -Bstatic ny_sourcel.cpp my_source2. cpp

Invoking the Compiler from the Command Line with make

To run make from the command line using Intel® C++ Compiler, make sure that/ usr / bi n is in your
path. If you use a C shell, you can edit your . cshr ¢ file and add:

setenv PATH /usr/bin:<full path to Intel conpiler>

SNote

To use the Intel compiler, your makefile must include the setting CC=i cc. Use the same setting on the
command line to instruct the makefile to use the Intel compiler. If your makefile is written for gcc, the
GNU* C compiler, you will need to change those command line options not recognized by the Intel
compiler.

Then you can compile:

pronpt >make -f ny_nakefile

42

Volume I: Building Applications

Compiler Input Files

The Intel® C++ Compiler recognizes the file name extensions listed in the following table:

Filename Interpretation

filename. a Object library

filenane.i When you invoke the compiler with i cc, the . i files are treated as C
source files. The . i files are treated as C++ sources if you compile with
i cpc.

filenane.o Compiled object module

filename.s Assembly file

filenanme.so | Shared object file

filenane. S Assembly file that requires preprocessing

filenane.c C language source file

enane. C C++ language source file
enane. cc

enane. cpp
enane. cxx

Building Applications in Eclipse*

The Intel® C++ Compiler for Linux (IA-32 only) includes a compiler integration with Eclipse* and the
C/C++ Development Tools* (CDT). This functionality is an optional part of the compiler installation. For
more information about CDT, see http://www.eclipse.org/cdt/.

The Intel C++ Compiler integration with the Eclipse/CDT integrated development environment lets you
develop, build, and run your C/C++ projects in a visual, interactive environment.

This section includes the following topics:

» Starting Eclipse*

* Using Online Help in Eclipse*

* Creating a New Project

* Setting Properties

* Standard and Managed Make Files

43

Intel® C++ Compiler for Linux* Systems User's Guide

Starting Eclipse*
After you have installed the following:

* Intel® C++ Compiler for 32-bit applications

* Eclipse* integrated development environment
» Java* Runtime Environment (JRE)

* C/C++ Development Tools (CDT)

you can execute the i ccec shell script to start Eclipse from a directory where you have write permission.
With the default compiler installation, execute i ccec as follows:

pronmpt >/ opt/intel _cc_80/bin/iccec
You can also use i ccec to pass Eclipse-specific parameters, such as:

e -data <pat h> - sets the location for the Eclipse workspace
e -showl ocat i on - shows the location of the workspace in the Eclipse window title bar.

For example:

pronpt >/ opt/intel _cc_80/bin/iccec -data /cpp/eclipse -
show ocati on

From the Eclipse Help menu, select Help Contents> Workbench User's Guide >Tasks> Running
Eclipse for the complete list of Eclipse startup parameters.

44

Volume I: Building Applications

Using Online Help in Eclipse*

The Intel® C++ Compiler integration with Eclipse*/CDT* includes online help. From the Eclipse toolbar,
select Help > Help Contents.

Welcome...
Tips and Tricks...

@ Help Contents
Software Updates »

About Intel(R) Software Development Products

The Help Contents option lets you narrow your search for help information by presenting all the help
modules registered with Eclipse. Select I ntel(R) C++ Compiler for Linux* to open the Compiler User's
Guide (this document). The Help Contents may also include links to the Eclipse Workbench User Guide,
the C/C++ Development User Guide, and other similar documents.

[S ——— e]

EH' Edil Yiew Go Pookresres Took Window Heip

':Emlﬂ_h .- = . &u |1 & nupmzr.um.mm-lpnnuml:”ﬂ_ml ﬁ - m

Seacn | ssarch scops: Al topics
Conents || wtel{R) Cor Compiler for Lo e gl S

B Coschamer and Legal Infomalion |
[Weicoma 10 T IS} C++ Carpiler [
D Compilar Cptions Guack Refarercs
w Ul Users Guida |

0 Reference
B CiCes Development User Guids :
B 7 LANEL I o —

I«Qﬁ- P e | NPT Z7.0.0.1-1 0% Melpiop. . Sel.compiler helpin] 001 Aam I| Ilgl

45

Intel® C++ Compiler for Linux* Systems User's Guide

Selecting a Different Browser

If you want to select a different browser to view the Help Contents, open Windows > Preferences> Help
from the Eclipse toolbar. Check Custom Browser (user defined program), then complete the necessary
information in the Custom Browser command text box. Click OK to complete your browser selection.

- =l

b workbench Help

Aol The selectod web browser adapier delemmines the web browser used to dsplay
Busld Crder help documents. 1f only one browses adapier has been configured, the selesion

= = cannoi be changed.

b Debug

S p——

‘b insalUpdate 1 Morlla Adapter

b Team

Cissbam Brovwses command | kongquerod %1 ' | Browso... |
| Impon., || Expor.., J | 0K || Carcal

46

Creating a New Project

Volume I: Building Applications

To create a simple hel | owor | d project, follow these steps after starting Eclipse*:

1. Select Window > Open Per spective > C/C++ Development.
2. From the Eclipse File menu, select New > Project. The New Project wizard opens with the
Select dialog to specify the kind of project you want to create. In the left column, select C from
the list. In the right column, select Managed M ake C Project. Click Next to proceed.
See also Standard and Managed Make Files.

Select

C++

Simple

b dNew Project Bx

Create a new C project and let Eclipse create and manage the makefile

L]

=N

Standard Make C Project

8 Managed Make C Project

< Back

Mext =

Einish Cancel

L

-

3. Inthe Name text box of the Managed M ake C Project dialog, type hel | owor | d. Check the
Use Default Location box, if not already checked. Click Next to proceed.

hdNew Project

Managed Make C Project

Create a new Managed Make C project.

Bx

%

Name: | helloworld

Use Default Location

Location: |/opt/intel_cc_80/bin/workspace/helloworld | | Browse...

< Back Next =

Einish

Cancel

47

Intel® C++ Compiler for Linux* Systems User's Guide

4. From the Select a Target dialog, select Linux Executable Using Intel(R) C/C++ Compiler
from the Platfor m drop-down list. Check the Release and Debug configuration boxes. Click
Next to proceed.

haNew Project B
Select a Target
Select the platform and configurations you wish to deploy on
Platform: |Linux Executable Using Intel(R) C/C++ Compiler -

<Back | Next> Finish Cancel

5. The Additional Project Settings dialog lets you create dependencies between your new project
and other existing projects. There should not be any other existing projects at this point. Click
Finish to complete creation of your new hel | owor | d project.

halNew Project B
Additional Project Settings
Defined the inter-project dependencies, if any.

Referenced C/C++ Projects

= Projects

Referenced C/C++ Projects

< Back MNext = Einish Cancel

48

6.

7.

Volume I: Building Applications

If you are not currently in the C/C++ Development Per spective, you will see the Confirm

Per spective Switch dialog. Click Yesto proceed.

I

b Confiirm Perspective Switch

| Danat show this message again

ll; This kind of project Is assoclated with the CiC++ Development Perspective.
Do you want to switch to this perspective now?

Yes Mo

|
J

In the Navigator view, you should now see an entry for your hel | owor | d project.

[=y p——————

' Tasks |0 Harrel

(|82 isuirea
An sigine B mr yeulybe

| Coutine Make Targets

..-?_‘_

o

[T T Jomeen

e S

Tashw C-fuid Properdies

| e

The next step is Adding a C Source File.

49

Intel® C++ Compiler for Linux* Systems User's Guide

Adding a C Source File

After Creating a New Project, you can add source files, then build and run your completed project. Follow
these steps to add a hel | 0. ¢ source file to the hel | owor | d project.

1. From the Eclipse* File menu, select New > File. Enter hel | 0. ¢ in the File name text box of
the New File dialog. Click Finish to add the file to the hel | owor | d project.

Ravewrie LA
File

[,
Create a new file resource.

Enter or select the parent folder:

helloworld

W & %

= helloworld

File name: |hello.c

Einish Cancel

50

Volume I: Building Applications

Your Eclipse Preference settings in Window > Prefer ences > Wor kbench let you specify
Perform build automatically on resour ce modification. If this preference is checked,
Eclipse/CDT will attempt a build when hel | 0. ¢ is created. Since hel | 0. ¢ does not yet
include code, errors are indicated in the Tasks view and C-Build view near the bottom of the

screen. This is expected behavior, not a true error. Select Window > Show View > C/C++
Projectsto view the project files.

Elé Ede powijas Segih Erdltlmllﬂuu:num
=18 L RERIE =T TR R AL B

Em * % || Eheinc = B || 82 outne x

b helon- [amie]

=1 i

| sl oep

2 naskudr, ik

3 |.|._ [T — |

¥ Tanks 17 HEml R x
I_ |.r |: |m-r_._|!: E"""’;‘.' |l-|'-uhlr |!.;
[v] == [idhwioridi Emod § el b i
=] fprbicnlo ® b fenciion _sian’ helloweer
[4] I ;:J

.t.ﬂ:H Prope:is H.lﬂ“- Tashs C-fuidd Properiies

51

Intel® C++ Compiler for Linux* Systems User's Guide

3. Inthe Editor view, add your code for hel | 0. c. If you close hel | 0. ¢ in the Editor view,

you can open it by doulble-clicking on hel | 0. ¢ in the Navigator view.

LAriCe s Pewelnpmend - lisllox - Inielf Sofiare Bevelopoem Podiicés
Ede Ede hwigae Segech Propcl Sin iedow Heip
S A A FE| DR %m0 G A
= o roees + o« | R < Efie autieg x
Y= 5wl X O JCEXXS
E-ru sl vl bl b k| | & sodinh
T || * @ Releise | | B manvolE W
b B heloo- s printh Hello Eclpse Workd o |
B miakaile rurlsiniih,
) subur dap !
1 neabutn, ek
[& heloc
0 |.|L | Dtire Mk Tagets
@ Tanka 12 Herm ¥R - x
1]r || |l:h|ni-h- Iﬂmlm |II|F-|=|II|I|-]I-I-|
[v] == Tk ksl il Emi & el b i
=] fprbicnlo ® b fenciion _sian’ helloweer
T 51 i
C/C++ Progecis Mavigater | Tasks C-fuld Propesties i{
weae mer 81]

When your code is complete, save your file using File > Save, then proceed to Building a Project.

52

Building

a Project

Volume I: Building Applications

You can build your project by selecting Rebuild All from the Eclipse* Project menu.

Open Froject

Close Project

Rebuild Project

Rebuild All

Create Make Target...
Build Make Target...

Properties

See the Build results in the C-Build view.

=

=]

CHC++ Projects Masigalor

T+ Development - helloc - Imiel|R} Sottware Developenent Produces

|k EdN bawigats Sagrh Broject Bun findew Hdp

|B-E S| F S| Rr Dy | S| ey E g R
CiCes Projects = X 2= Outliee: =
- % WX Sinclude <stdio. e =] a2 e g
@ el d il mainiveid) o ik
b B Binaes & maedecid) ; im
-G Aokaso peintl Hedk Exlipse Word \n");
BolA hellon - [xaske) ! returre(d);
B hellovenetd - (xRS
N makefile
1 subsdrdep
N sl mk
| 0 haloc | =] -
|1| ||.|_ Curline HI]:III.I'QH!
W Bl [l konarl] [ll
make all Ll
ice 003 -wll -0b] -tpp? -unrcll -par_threshold 75 -wn 00 -2plé ¢ -0
hedle.o . hella.c
it -0 hellovrld hello.o
Buld complete for project helboword
| T |

Tasks C-Buld Properties

Wcable Inser a:1

The final step is Running a Project.

53

Intel® C++ Compiler for Linux* Systems User's Guide

Running a Project
After Building a Project, you can run your project by following these steps:

1. Select Run> Run As> C Local Application. When the C L ocal Application dialog appears,
click OK.

haC Local Application 1

Choose a local application to run

® helloworld - [x86le]

L —

2. On the Launch Debug Configuration Selection dialog, select GDB Debugger, then click OK.

hall 2unch Debug Configuration Selection

Choose a configuration to run

|

GDE Server

OK Cancel

L -

54

Volume I: Building Applications

After the executable runs, the output of hel | 0. ¢ appears in the Console view.

Epe H-H-H-E-uh'q-rmnmuq
<-@Aa d::sm|ﬁ+1~1+.¢ e [,

= ql:HFmpn: 22w K
"N pegrene ""d"d"""’“"" a2 « K
Emﬂum i ik wnid| U snboh

‘. Dt Make Tagets

Comaole [«ieminsieds jopifiniel_cc_ 82, Meleasshelowrkd (1404 10052 A =
'm -8 2

55

Intel® C++ Compiler for Linux* Systems User's Guide

Intel® C/C++ Error Parser

The Intel® C/C++ Error Parser lets you track compile-time errors in Eclipse*/CDT*. However, you must
enable the Error Parser to see the results:

1. On the Eclipse toolbar, select Window > Prefer ences.
2. On the Preferences dialog, select C/C++ > New M ake Projects.
3. Click the Error Parserstab. Check the Intel(R) C/C++ Error Parser selection to enable
this feature.
had =]
¥ Woskbeach Waw Make Projects
b Ani
i Alake Prgect Preleences
= A+ Sir the en parser for this pioject
Bailld Console SR
E/C++ Edner Wiake Buslcer | £ ror Parsers | Bisary Parves [Paths and Symbas |
Ciowde Tem plaies Emor Panermn
b Debug ¥ COT Visusl © Emor Parser | e
] COT GHU Assemblar Ene Parses o =
b Dby Bl cof GMu Unker Eme Parser |_l_
I el 4| COT GNU T+ Emor Parsar
b irsialliLindabe 1 sl S+ E i Parsis |_Eﬂtl'|‘_
f Tawam F] o G Make Emor Parser | Lmmsdec &
mmﬂuﬂ.” spply |
I . _Eiru:n... o | Cancdl |

4. Click OK to update your choices and close the dialog.

56

Volume I: Building Applications

Using the Intel C/C++ Error Parser

If you introduce an error into your hel | 0. ¢ program, such as:

#i ncl ude <xstdio. h>

then compile hel | 0. ¢, the error is reported in the Tasks view and a @ marker appears in the source file
at the line where the error was detected.

T+ Development - helloc - Imiel|R} Sottware Developenent Produces
Bl Edin Bavigabe Segrch Project fun indow Help
(e W B[F [ke yw || 7| % v || 8§ 8

| |cices Projects. w x|) hellag x 57 Dutline ®
B'_‘l _"i"_f'__E__E _____ Elginchude <xstdio.h ::_ _ﬂ_:'-l__f_lli _______ |
S| hellowortd it Fainiveid) o xsidoh
El
= @ Binases @ maedvcid) ; im
b4 hellowsdd - (eps] Peind Hello Eclipse Word.\n');
=@ Rolease retum(0l;

o catastmophic e could not cpen + hellag haloswoild

4] |0 | B3 | O
CiC++ Projects Madgator | Tasks C-Buld, Properies | Cormoke

I =% |hello.o| Emor 4 I

57

Intel® C++ Compiler for Linux* Systems User's Guide

Setting Properties

The Intel® C++ Compiler integration with Eclipse*/CDT* lets you specify compiler, linker, and archiver
options. Follow these steps to set options for your project:

1. Select your project in the C/C++ Projects view.

2. From the Eclipse toolbar, select Project > Properties> C/C++ Build.

3. Under Configuration settings, click an option category for C Compiler or Linker. In the example
that follows, the options in the Floating Point category are displayed.

ol o For bl Inwm rid _'l_i
trlu CAC++ Build
CeesmaM e
Estinal Tools. Balde i Bifed LOgIEING ;
Froject Raleences Plitlirm i) el Using | niei M) CiC++ Cormpiles | '-'I
Conliguaon |Aidiai |v| WManage_|

i.'lnllju:llr 1.|-Ilr||‘l|

— T € Congla [b prowe Finating-Point Consiency Gmp
B Caieral [Amind Foating Point Resuls [1p_poes
B Oaiimization || LmE COMPLEE Ranges [-comples_lmied_jsnge
B Precomplied Hesters 7] Check Floating Point Stack |ipsikcsk
E Preomennne
B 1oupmyr
B Compllatien Diagnestics
| T

| FoawgPon |
B Dwipal Fles
B Code Genention
B mumime
B Crenmuared Lise

= T Lishs
B Uiz
B Commarnd Lise

(st primas || apy |

I (= e)

4. Check the option(s) you want to add to your project compilations, then open other categories if
necessary.
5. Click OK to complete your selections.

To reset properties to their default setting, click Restor e Defaults. The Restor e Defaults button appears on
each property page, but the Restor e Defaults action applies to ALL property pages.

58

Volume I: Building Applications

Some properties use check boxes, while others use drop-down lists to specify a compiler option.

[] Show Startup Banner (-V)
[] Include Debug Information (-g)

Optimization Level |Maximize Speed (-O2) v

Warning Level Warnings and Errors (-wl) a4

Several options let you specify arguments. Click New to add an argument to the list. Enter a valid argument
for the option, then click OK.

v Bix

Undefine Preprocessor Definitions (-U)

__NO_MATH_INLINES|

Ok Cancel
L =

In this example, __NO_MATH_I NLI NESand __SI GNED_CHARS__ are specified as arguments for the -
U option.

Undefine Preprocessor Definitions (-U)

_ NO_MATH_INLINES

__SIGNED_CHARS__

Remove

Mowve Lip

Move Down

If you want to specify an option that is not available from the Properties dialog, use the Command Line
category. Enter the command line options in the Additional Options text box just as you would enter them
on the command line.

Additional Options |-E -march=pentium4

For a complete list of options listed on the Properties page, see Properties for Supported Options.

59

Intel® C++ Compiler for Linux* Systems User's Guide

Properties for Supported Options

The options listed in the following tables are supported under the corresponding Option Category.

Compiler Options

Option Use Option
Category Name
General Show startup banner -V
Include debug information -g
Optimization level -0
(default for Debug Config.)
-0
-2
(default for Release Config.)
-3
- f ast
Warning level -w0
- Wl (default)
- W2
Optimization Provide frame pointers -fp
Disable prefetch insertion -prefetch
Enable interprocedural optimization for single file -ip
compilation
Disable intrinsic inline expansion -nolib_inline
Inline function expansion -0
- bl
-2
Optimize for Intel® processor -t pp5
-t pp6
-t pp7 (default)
Parallelization -parall el
Precompiled Automatic Processing for Precompiled Headers - pch
Headers
Preprocessor gce compatibility options -cxxlib-icc
-cxxlib-gcc

60

Volume I: Building Applications

Option Use Option
Category Name
- f abi -version
-gcc-version
Additional include directories -1
Ignore standard include path - X
Preprocessor definitions -D
Do not predefine _ GNUC_, _ GNUC_M NOR _, - no-gcc
_GNUC_PATCHLEVEL _ macros
Undefine preprocessor definitions -uU
Undefine all preprocessor definitions - A-
Language Enable use of ANSI aliasing rules in optimizations | -ansi _al i as
Disable C99 support -c99-
Recognize the r est ri ct keyword -restrict
Process OpenMP* directives -opennp
- opennp_st ubs
Compilation Treat warnings as errors -\eérror
Diagnostics
Allow usage messages -Wheck
Enable equivalent of GNU* ANSI - ansi

Strict ANSI conformance dialect

-strict_ans

OpenMP report

-opennp_reportO

-opennp_reportl

-opennp_report2

Auto-parallelizer report

-par _reportO

-par_reportl

- par _report2

- par_report3

Vectorizer report

-vec_reportO

-vec_reportl

-vec_report2

-vec_report3

-vec_report4

-vec_reportb

61

Intel® C++ Compiler for Linux* Systems User's Guide

Option Use Option
Category Name
Data Disable argument aliasing -alias_args-
Assume no aliasing in program -fno-alias
Allow gpr el addressing of common data variables | - f no- conmon
Allocate as many bytes as needed for enumerated -fshort-enuns
types
Change default bitfield type to unsi gned -funsigned-bitfields
Change default char type to unsi gned - funsi gned- char
Store string literals in a writable section -fwitabl e-strings
Disable placement of zero-initialized variables in -nobss_init
.bss - use .data
Default symbol visibility -fvisibility=extern
-fvisibility=default
-fvisibility=protected
-fvisibility=hidden
-fvisibility=internal
Structure member alignment -Zpl
-Zp2
-Zp4
-Zp8
-Zpl6 (default)
Floating Point | Improve floating-point consistency -
Round floating-point results -fp_port
Limit Conpl ex range -conplex_limted_range
Check floating-point stack - f pst kchk
Output Files Generate assembler source file -S
Code Generate position-independent code -fpic
Generation
Use Intel® processor extensions -axK
-axN
-axB
-axP
Require Intel® processor extensions - XK
-xN

62

Volume I: Building Applications

Option Use Option
Category Name
-xB
-xP
Run- Generate traceback information -traceback
time

Library Options

Libraries | Maximize speed across entire program -fast
Enable interprocedural optimization for single file compilation | - i p
Link with static libraries -static
Link Intel® | i bcxa C++ library statically -static-1ibcxa
Link with dynamic libraries -i _dynanmi c
Use no C++ libraries -no_cpprt
Use no system libraries -nodefaul tlibs
gee compatibility options -cxxlib-icc

-cxxl i b-gcc

-f abi -versi on

-gcc-version

Process OpenMP directives -opennp

-opennp_st ubs

Additional libraries -1
Search directory for libraries -L
Archiver options -r

63

Intel® C++ Compiler for Linux* Systems User's Guide

Standard and Managed Makefiles

When you create a new Intel C project in Eclipse*/CDT*, you can select either Standard M ake C Project
or Managed M ake C Project.

hdNew Project B x

Select o0
Create a new C project and let Eclipse create and manage the makefile I\

Standard Make C Project

C++ B Managed Make C Project

Simple

= Back MNext = Einish Cancel

L -

* Select Standard Make C Project if your project already includes a makefile.
» Use Managed Make C Project to build a makefile using Intel compiler-specific options assigned
from property pages.

Exporting Makefiles

If you created a Managed Make C Project, you can use Eclipse* to build a makefile that includes Intel
compiler options. See Setting Properties. When your project is complete, you can export your makefile and
project source files to another directory, then build your project from the command line using make.

Exporting makefiles
To export your makefile:

1. Select your project in the Eclipse C/C++ Projects view.
2. From the Eclipse File menu, select Export to launch the Export Wizard.

64

Volume I: Building Applications

3. On the Select dialog of the Export Wizard, select File system, then click Next.

[~ T ~ * |
Select y,
Export resources to the local file system u

Select an export destination:

;% Team Project Set
,?’ Zip file

< Back Next = Einish Cancel

4. On the File system dialog, check both the helloworld and Release directories in the left-hand pane.
Be sure all the project sources in the right-hand pane are also checked.

ﬂNote

You may deselect some files in the right-hand pane, such as the hel | 0. 0 object file and

hel | owor | d executable. However, you must also select Create directory structurefor filesin the
Options section to successfully create the export directory. This also applies to project files in the

hel | owor | d directory.

65

Intel® C++ Compiler for Linux* Systems User's Guide

5. Use the Browse button to target the export to an existing directory. Eclipse can also create a new
directory for full paths entered in the To directory text box. If, for example, you specified
/ cpp/ export as the export directory, Eclipse creates two new sub-directories:

 /[cpp/export/helloworld
e« /cpp/export/hell oworl d/ Rel ease

W i
File system D l
Export esources 1o the bocal file system. -
= [@ hellowaord [# = hello.o

B Reease [1 halloword
[= makelds
] =] subdir.dep
¥l E subdr.mk
Select Types..|| SelectAll || peselect Al
To directory: | [T [*]| Bowse. |
Chptions
[T Cveraaite existing files wahoul waming
%) Create directory structune Tor files
(1 Create pnly salected directones
< ﬁacl |_.,L: Eiresh Cancel |

L -

6. Click Finish to complete the export.

Running make

In a terminal window, change to the / cpp/ expor t/ hel | owor | d/ Rel ease directory, then run make
by typing:

make cl ean all

You should see the following output:

rm-rf hello.o hel | owor | d

icc -2 -wl -Obl -tpp7 -unroll -par_threshol d75 -wn100 -Zpl6 -c
-0 hello.o ../hello.c

icc -0 helloworld hello.o

66

Volume I: Building Applications

Compilation Options

This section describes the Intel® C++ Compiler options that determine the compilation process and output.
By default, the compiler converts source code directly to an executable file. Appropriate options allow you
to control the process by directing the compiler to produce:

* Preprocessed files (. i) with the - P option.
* Assembly files (. S) with the - S option.

* Object files (. 0) with the - C option.

* Executable files (. out) by default.

You can also name the output file or designate a set of options that are passed to the linker. If you specify a
phase-limiting option, the compiler produces a separate output file representing the output of the last phase
that completes for each primary input file.

Preprocessor Options

This section describes the options you can use to direct the operations of the preprocessor. Preprocessing
performs such tasks as macro substitution, conditional compilation, and file inclusion.

Option Description
- Associates a symbol name with the specified sequence of
Anane[(val ues,...)] |val ues .Equivalentto an#assert preprocessing directive.
- A Causes all predefined macros and assertions to be inactive.
-C Preserves comments in preprocessed source output.
- Dnarre[(val ue)] Defines the macro name and associates it with the specified
val ue . The default (- Dnane) defines a macro with a
val ue ofl.
-E Directs the preprocessor to expand your source module and

write the result to standard output.

- EP Directs the preprocessor to expand your source module and
write the result to standard output. Does not include #1 i ne
directives in the output.

-P Directs the preprocessor to expand your source module and
store the result ina . i file in the current directory.

- Unane Suppresses any automatic definition for the specified macro
nane .

67

Intel® C++ Compiler for Linux* Systems User's Guide

Preprocessing Only

Using

Using

Using

Use the - E, - P or - EP option to preprocess your source files without compiling them. When using these
options, only the preprocessing phase of compilation is activated.

-E
When you specify the - E option, the compiler's preprocessor expands your source module and writes the
result to St dout . The preprocessed source contains #| i ne directives, which the compiler uses to

determine the source file and line number. For example, to preprocess two source files and write them to
st dout , enter the following command:

pronpt >i cpc -E progl.cpp prog2.cpp

P

When you specify the - P option, the preprocessor expands your source module and directs the output to a

. i file instead of st dout . Unlike the - E option, the output from - P does not include #| i ne number
directives. By default, the preprocessor creates the name of the output file using the prefix of the source file
name with a . i extension. You can change this by using the - of i | € option. For example, the following
command creates two files named pr 0ogl. i and pr og2. i , which you can use as input to another
compilation:

prompt >i cpc -P progl. cpp prog2.cpp

&Caution

When you use the - P option, any existing files with the same name and extension are overwritten.
-EP

Using the - EP option directs the preprocessor to not include #l i ne directives in the output. - EP is
equivalent to - E - P.

pronpt >i cpc - EP progl. cpp prog2.cpp
Preserving Comments in Preprocessed Source Output

Use the - Coption to preserve comments in your preprocessed source output. Comments following
preprocessing directives, however, are not preserved.

Preprocessing Directive Equivalents

You can use the - A, - D, and - U options as equivalents to preprocessing directives:

* - Aisequivalent to a#assert preprocessing directive
» - Disequivalent to a #def i ne preprocessing directive
* - Uisequivalent to a #undef preprocessing directive

68

Volume I: Building Applications

Using -A

Use the - A option to make an assertion. Syntax: - Anane[(val ue)].

Argument | Description

name Indicates an identifier for the assertion

val ue Indicates a val ue for the assertion. If a val ue is specified, it should be
quoted, along with the parentheses delimiting it.

For example, to make an assertion for the identifier f r ui t with the associated values or ange and
banana use the following command:

prompt >i cpc - A'fruit(orange, banana)" progl. cpp
Using -D

Use the - Doption to define a macro. Syntax: - Dnane[=val ue] .

Argument | Description

name The name of the macro to define.

val ue Indicates a value to be substituted for name. If you do not enter a value, name is
set to 1. The value should be quoted if it contains non-alphanumerics.

For example, to define a macro called SI ZE with the value 100 use the following command:
pronpt >i cpc - DSI ZE=100 progl. cpp
The - D option can also be used to define functions. For example:
pronpt >i cpc -D'f (x)=x" progl.cpp
Using -U

Use the - U option to remove (undefine) a pre-defined macro. Syntax: - Unane.

Argument | Description

name The name of the macro to undefine.

BNote

If you use - Dand - U in the same compilation, the compiler processes the - D option before - U, rather than
processing them in the order they appear on the command line.

69

Intel® C++ Compiler for Linux* Systems User's Guide

Predefined Macros

The Intel® C++ Compiler supports the predefined macros listed in the following table. The compiler also
includes predefined macros specified by the ISO/ANSI standard. See Conformance to the C Standard.

is specified during compilation.

Macro Name Value Architecture
__BASE FILE__ Name of source file Both
__cpluspl us 1 Both
__EDG__ 1 Both
__EDG VERSI ON__ 303 Both
__ELF__ 1 Both
___EXCEPTI ONS Defined when - f no- IA-32 only
except i ons is not used.
__GNuUC__ 2 - if gce version is less than 3.2 | Both
3 - if gcc version is 3.2, 3.3, or
34
_gnu_linux__ 1 Both
__GNUC_M NOR__ 95 - if gee version is less than Both
3.2
2 - if gee version is 3.2
3 - if gec version is 3.3
4 - if gcc version is 3.4
__ GNUC_PATCHLEVEL_ 0 Both
__ GXX_ABI _VERSI ON 102 Both
__ 1386 1 IA-32 only
_1386__ 1 IA-32 only
i 386 1 IA-32 only
__ia6b4 1 Itanium
architecture only
__ia64__ 1 Itanium
architecture only
i a64 1 Itanium
architecture only
__INTEL_COWPI LER 810 Both
__INTEL_COWPI LER BUI LD _DATE | YYYYMVDD Both
__INTEL_CXXLIB_I CC 1 when - cxxl i b_i cc option | Both

70

Macro Name Value Architecture
__INTEL_RTTI __ 1 when-fno-rtti isnot Both
specified.
__INTEL_STRI CT_ANSI 1 when-strict_ansi is Both
specified.
_I NTEGRAL_MAX _BI TS 64 Itanium
architecture only
__itanium __ 1 Itanium
architecture only
i nux 1 Both
__linux__ 1 Both
[i nux 1 Both
__LONG DOUBLE_SI ZE 80 IA-32 only
__LONG_MAX__ 9223372036854775807L Itanium
architecture only
__l p64 1 Itanium
architecture only
__LP64__ 1 Itanium
architecture only
_LP64 1 Itanium
architecture only
__NO INLINE__ 1 Both
__NO_NMATH_I NLI NES 1 Both
__NO _STRI NG_I NLI NES 1 Both
__OPTIM ZE__ 1 Both
__PIC__ 1 when - f PI Cis used. Both
__pic__ 1 when - f Pl Cis used. Both
PGO| NSTRUMENT 1 when - pr of _gen[x] is Both
used.
__PTRDI FF_TYPE__ i nt Both
on [A-32
| ong
on [tanium
architecture
__REAQ STER _PREFI X (no value) Both
__SIGNED_CHARS 1 Both

Volume I: Building Applications

71

Intel® C++ Compiler for Linux* Systems User's Guide

Macro Name Value Architecture
__SIZE TYPE unsi gned Both

on [A-32

unsi gned | ong

on Itanium

architecture
_unix 1 Both
_unix__ 1 Both
uni x 1 Both
__USER LABEL_PREFI X (no value) Both
__VERSI ON__ "Intel® C++ gee 3.0 mode" Both
__ WCHAR T 1 Both
__ WCHAR TYPE I ong int Both

on [A-32

i nt

on Itanium

architecture
__ WNT_TYPE__ unsi gned i nt Both

Suppress Macro Definition

Use the - Uname option to suppress any macro definition currently in effect for the specified name. The -
U option performs the same function as an #undef preprocessor directive. You can use the - no- gcc
option to disable the _ GNUC_M NOR__, GNUC_M NOR__,and __ GNUC_PATCHLEVEL___ macros.

Customizing the Compilation Environment

For IA-32 and the Intel® Itanium® architecture, you will need to set a compilation environment. To

customize the environment used during compilation, you can specify:

* Environment Variables -- the paths where the compiler and other tools can search for specific files.

» Configuration Files -- the options to use with each compilation.

* Response Files -- the options and files to use for individual projects.

¢ Include Files -- the names and locations of source header files.

72

Volume I: Building Applications

Environment Variables

You can customize your environment by specifying paths where the compiler can search for special files
such as libraries and include files.

* LD LI BRARY_PATH -- specifies the location for shared objects.
» PATH -- specifies the directories the system searches for binary executable files.

* | CCCFG-- specifies the configuration file for customizing compilations when invoking the compiler
using i cc.
* | CPCCFG-- specifies the configuration file for customizing compilations when invoking the

compiler using i cpc.

e Several environment variables are supported to specify the location for temporary files. The compiler
searches for the following variables in the order specified: TMP, TMPDI R, and TEMP. If none of these
variables are found, temporary files are stored in/ t np.

* | A32ROO0T (IA32-based systems) -- points to the directory containing the bi n, 1 i b, i ncl ude and
substitute header directories.

* | A64ROOT (Itanium®-based systems) -- points to the directory containing the bi n, | i b, i ncl ude
and substitute header directories.

GNU* Environment Variables
The Intel C++ Compiler supports the following GNU environment variables:

e CPATH -- Path to include directory for C/C++ compilations

e C_I NCLUDE_PATH -- Path include directory for C compilations

* CPLUS_| NCLUDE_PATH -- Path include directory for C++ compilations.

* LI BRARY_PATH -- The value of LI BRARY_PATH s a colon-separated list of directories, much like
PATH.

» DEPENDENCI ES_QOUTPUT -- If this variable is set, its value specifies how to output dependencies
for Make based on the non-system header files processed by the compiler. System header files are
ignored in the dependency output.

e SUNPRO_DEPENDENCI ES -- This variable is the same as DEPENDENCI ES_OUTPUT, except that
system header files are not ignored.

Compilation Environment Options

The Intel® C++ Compiler installation includes shell scripts that you can use to set environment variables.
See Invoking the Compiler from the Command Line for more information.

Configuration Files

You can decrease the time you spend entering command-line options and ensure consistency by using the
configuration file to automate often-used command-line entries. You can insert any valid command-line
option into the configuration file. The compiler processes options in the configuration file in the order they
appear followed by the command-line options that you specify when you invoke the compiler.

ff—t_)Note

Options in the configuration file will be executed every time you run the compiler. If you have varying
option requirements for different projects, see Response Files.

73

Intel® C++ Compiler for Linux* Systems User's Guide

How to Use Configuration Files

The following example illustrates a basic configuration file. After you have written the . cf g file, simply
ensure it is in the same directory as the compiler's executable file when you run the compiler. The text
following the pound (#) character is recognized as a comment. The configuration file isi cc. cf g.

Sanple configuration file.
Define preprocessor macro MY_PROJECT.

- DMY_PROJECT

Additional directories to be searched
for INCLUDE files, before the default.

-1 /project/include

Specifying the Location with ICCCFG
You can use the | CCCFGenvironment variable to specify the location of your configuration file:
| CCCFG=/ cpp/ confi g/ ny_options.cfg

Each time you invoke the compiler with i cc, my_opt i ons. cf g is used as your configuration file. The
| CPCCFG environment variable is supported for invoking the compiler with i cpc.

See Environment Variables.

Response Files

Use response files to specify options used during particular compilations. Response files are invoked as an
option on the command line. Options in a response file are inserted in the command line at the point where
the response file is invoked.

Sample Response Files

response file: responsel.txt
conmpile with these options

- axP
- pch

end of responsel file

response file: response2.txt
conpile with these options

_n'pl
-strict_ans

end of response2 file

74

Volume I: Building Applications

Use response files to decrease the time spent entering command-line options and to ensure consistency by
automating command-line entries. Use individual response files to maintain options for specific projects to
avoid editing the configuration file when changing projects.

Any number of options or file names can be placed on a line in the response file. Several response files can
be referenced in the same command line.

The syntax for using response files is as follows:

pronpt >i cpc @ esponsel. txt sourcel.cpp @ esponse2.txt source2.cpp

SNote

An "at" sign (@ must precede the name of the response file on the command line.

Include Files

Include directories are searched in the default system areas and whatever is specified by the -
I di rect ory option. For multiple search directories, multiple - | di r ect ory commands must be used.
The compiler searches directories for include files in the following order:

* directory of the source file that contains the include
e directories specified by the - | option

How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default system areas. You can use the - X
option with the - | option to prevent the compiler from searching the default path for include files and
direct it to use an alternate path.

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default path, do the
following:

prompt>icpc -X -1/alt/include prog.cpp
See also Searching for Include Files.

Searching for Include Files

By default, the compiler searches for the standard include files in the directories specified in the CPATH,
C_| NCLUDE_PATH, and CPLUS_| NCLUDE_PATH environment variables. You can indicate the location
of include files in the configuration file.

75

Intel® C++ Compiler for Linux* Systems User's Guide

How to Specify an Include Directory

Use the - | di r ect or y option to specify an additional directory in which to search for include files. For
multiple search directories, multiple - | di r ect or y commands must be used. Included files are brought
into the program with a #i ncl ude preprocessor directive. The compiler searches directories for include
files in the following order:

» directory of the source file that contains the include

» directories specified by the - | option

» directories specified in the CPATH, C_I NCLUDE_PATH, and CPLUS_| NCLUDE_PATH
environment variables

How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default path specified by the environment
variables.

You can use the - X option with the - | option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default path, do the
following:

prompt >i cpc -X -1/alt/include source.cpp

Controlling Compilation

If no errors occur during processing, you can use the output files from a particular phase as input to a
subsequent compiler invocation. The following table describes the options to control the output:

Option Input Output

-P e Source files Preprocessed files (. i files).

-E e Source files Preprocesses source file and directs output to st dout .
-EP ¢ Source files Preprocesses source file, directs output to st dout , and

omits line numbers.

-C * Source files Compile to object only (. 0), do not link.
e Preprocessed
files
-S * Source files Generate assemblable files with . S suffix and stops the
* Preprocessed compilation process.
files

76

Volume I: Building Applications

Option Input Output
-syntax | e Source files Emits diagnostic list of syntax errors to sdt out . There is
« Preprocessed no output for source files free of syntax errors.
files

(Default) | e

Source files
Preprocessed
files
Assemblable
files

Object files

Executable file (. out files).

e Libraries

Controlling Compilation Flow

Option

Description

-C

Stops the compilation process after an object file has been generated.
The compiler generates an object file for each C or C++ source file or
preprocessed source file. Also takes an assembler file and invokes the
assembler to generate an object file.

-Kpic,-KPI C

Generate position-independent code.

-l nane

Link with a library indicated in nanme.

-nobss_init

Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been
preprocessed and writes the results to files named according to the
compiler's default file-naming conventions.

-S Generates assemblable file only (with . S suffix), then stops the
compilation.

-sox[-] Enables [disables] the saving of compiler options and version

information in the executable file. Default is - SOX- .

-Zp{ 1] 2| 4| 8] 16}

Packs structures on 1, 2, 4, 8, or 16 byte boundaries.

Controlling Compilation Output

Option | Description

- Produces an assembly file with the specified file nanme, or the default file name if
oname | name is not specified.

-S Generates assemblable file only (with . S suffix), then stops the compilation.

77

Intel® C++ Compiler for Linux* Systems User's Guide

Specifying Alternate Tools and Paths

You can direct the compiler to specify alternate tools for preprocessing, compilation, assembly, and
linking. Further, you can invoke options specific to your alternate tools on the command line. The
following sections explain how to use - Q ocat i on and - Qopt i on to do this.

How to Specify an Alternate Component

Use - Q ocat i on to specify an alternate path for a tool. This option accepts two arguments using the
following syntax:

pronpt >i cpc -Q ocation, tool, path

tool | Description

Cpp | Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm | Specifies the assembler.

I d | Specifies the linker.

gas | Specifies the GNU assembler.

gl d | Specifies the GNU linker.

pat h is the complete path to the tool.

How to Pass Options to Other Programs

Use - Qopt i on to pass an option specified by opt | i st toat ool , where opt | i st is a comma-
separated list of options. The syntax for this command is the following:

pronpt >i cpc - Qoption,tool,optlist

tool | Description

Cpp | Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm | Specifies the assembler.

I d | Specifies the linker.

opt | i st indicates one or more valid argument strings for the designated program. If the argument is a
command-line option, you must include the hyphen. If the argument contains a space or tab character, you
must enclose the entire argument in quotation characters (""). You must separate multiple arguments with
commas. The following example directs the linker to create a memory map when the compiler produces the
executable file from the source.

pronpt >i cpc - Qoption,link, -map, proto. map proto.cpp

78

Volume I: Building Applications

The - Qopti on, | i nk option in the preceding example is passing the - map option to the linker. This is
an explicit way to pass arguments to other tools in the compilation process. Also, you can use the -
Xl i nker val to pass values (val) to the linker.

Monitoring Data Settings

The options described here provide monitoring of Intel compiler-generated code.
Specifying Structure Tag Alignments

You can specify an alignment constraint for structures and unions in two ways:

* Place a pack pragma in your source file, or
* Enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Flushing Denormal Values to Zero for Itanium-based Systems Only

Option - f t z flushes denormal results to zero when the application is in the gradual underflow mode. Use
this option if the denormal values are not critical to application behavior. Flushing the denormal values to
zero with - f t Z may improve performance of your application. The default status of - f t z is OFF. By
default, the compiler lets results gradually underflow.

The - f t z switch only needs to be used on the source containing function mai n() . The effect of the - f t z
switch is to turn on FTZ mode for the process started by nmai n() . The initial thread and any threads
subsequently created by that process will operate in FTZ mode.

f)Note

The - O3 option turns - ft Z ON. Use - f t z- to disable flushing denormal results to zero.
Allocation of Zero-initialized Variables

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_i ni t option, you can place any variables that are explicitly initialized with zeros in the DATA
section if required.

79

Intel® C++ Compiler for Linux* Systems User's Guide

Precompiled Header Files

The Intel® C++ Compiler supports precompiled header (PCH) files to significantly reduce compile times
using the following options:

e -pch

e ~-create_pch fil enane
e -use_pch fil enane

e =-pch_dir dirnane

&Caution

Depending on how you organize the header files listed in your sources, these options may increase compile
times. See Organizing Source Files to learn how to optimize compile times using the PCH options.

-pch

The - pch option directs the compiler to use appropriate PCH files. If none are available, they are created
assour cefil e. pchi . This option supports multiple source files, such as the ones shown in Example 1:

Example 1 command line:
pronmpt >i cpc - pch sourcel. cpp source2.cpp

Example 1 output when .pchi files do not exist:
"sourcel.cpp": creating preconpiled header file "sourcel.pchi”
"source2.cpp": creating preconpiled header file "source2.pchi"

Example 1 output when .pchi files do exist:
"sourcel. cpp": using preconpil ed header file
"source2. cpp": using preconpil ed header file

ff—t_)Note

The - pch option will use PCH files created from other sources if the headers files are the same. For
example, if you compile sour cel. cpp using - pch, then sour cel. pchi is created. If you then
compile sour ce2. cpp using - pch, the compiler will use sour cel. pchi if it detects the same

headers.

'sourcel. pchi"
"source2. pchi "

-create_pch

Use the - create_pch fil ename option if you want the compiler to create a PCH file called
fi | enane. Note the following regarding this option:

* Thefil ename parameter must be specified.

* Thefil ename parameter can be a full path name.

e The full pathto f i | ename must exist.

e The. pchi extension is not automatically appended to f i | enane.

e This option cannot be used in the same compilation as - use_pch fi |l enane.

e The-create_pch fil ename option is supported for single source file compilations only.

80

Volume I: Building Applications

Example 2 command line:
prompt >i cpc -create_pch /pch/source32. pchi source.cpp

Example 2 output:
"source.cpp": creating preconpiled header file "/pch/source32. pchi"

-use_pch filename

This option directs the compiler to use the PCH file specified by f i | enane. It cannot be used in the same
compilation as - cr eat e_pch fil ename. The - use_pch fil enane option supports full path
names and supports multiple source files when all source files use the same . pchi file.

Example 3 command line:
prompt >i cpc -use_pch /pch/source32. pchi source.cpp

Example 3 output:
"source.cpp": using preconpiled header file /pch/source32. pchi

-pch_dir dirname

Use the - pch_di r di r nane option to specify the path (di r nane) to the PCH file. You can use this
option with - pch, - create_pch fil enane,and-use_pch fil enane.

Example 4 command line:
prompt >i cpc -pch -pch_dir /pch source32.cpp

Example 4 output:
"source32.cpp": creating preconpiled header file /pch/source32. pchi

Organizing Source Files

If many of your source files include a common set of header files, place the common headers first, followed
by the #pr agma hdr st op directive. This pragma instructs the compiler to stop generating PCH files.
For example, if sour cel. cpp, sour ce2. cpp, and sour ce3. cpp all include common. h, then place
#pragma hdr st op after common. h to optimize compile times.

#i ncl ude "conmmon. h"
#pragma hdr st op
#1 ncl ude "nonconmon. h"

When you compile using the - pch option:

pronpt >i cpc -pch sourcel.cpp source2.cpp source3.cpp

the compiler will generate one PCH file for all three source files:

"sourcel.cpp": creating preconpiled header file "sourcel.pchi”
"source2. cpp": using preconpil ed header file "sourcel. pchi"

"source3. cpp": using preconpil ed header file "sourcel. pchi"

81

Intel® C++ Compiler for Linux* Systems User's Guide

If you don't use #pr agma hdr st op, a different PCH file is created for each source file if different
headers follow conmon. h, and the subsequent compile times will be longer. #pr agma hdr st op has no
effect on compilations that do not use these PCH options.

Linking

This topic describes the options that let you control and customize the linking with tools and libraries and
define the output of the | d linker. See the | d man page for more information on the linker.

Option Description
-Ldirectory Instruct the linker to search di r ect ory for libraries.
-Qoption, tool, |ist |Passesan argument list to another program in the compilation

sequence, such as the assembler or linker.

-shared Instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable.

-shared-1ibcxa - shar ed- | i bcxa has the opposite effect of - st at i c-

| i bcxa. When it is used, the Intel-provided | i bcxa C++
library is linked in dynamically, allowing the user to override the
static linking behavior when the - St at i ¢ option is used. Note:
By default, all C++ standard and support libraries are linked

dynamically.

-i _dynam ¢ Specifies that all Intel-provided libraries should be linked
dynamically.

-static Causes the executable to link all libraries statically, as opposed to
dynamically.

When - st ati ¢ is not used:

e [lib/ld-1inux.so.2 islinked in
e all other libs are linked dynamically

When - st at i ¢ is used:

e /lib/ld-1inux.so. 2 isnotlinked in
e all other libs are linked statically

-static-1ibcxa By default, the Intel-provided | i bcxa C++ library is linked in
dynamically. Use - st ati c- | i bcxa on the command line to
link | i bcxa statically, while still allowing the standard libraries
to be linked in by the default behavior.

-Bstatic This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

82

Volume I: Building Applications

Option Description

- Bdynam ¢ This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

Suppressing Linking

Use the - C option to suppress linking. For example, entering the following command produces the object
filesfilel.oandfil e2. o:

prompt>icpc -c filel.cpp file2.cpp

Fl

~—+ Note

The preceding command does not link these files to produce an executable file.

Debugging

This section describes the basic command-line options that you can use as tools to debug your compilation
and to display and check compilation errors. This section includes topics on:

* Preparing for Debugging

* Parsing for Syntax Only

* Optimizations and Debugging
* Options for Debug Information

Debuggers

The Intel® Debugger is included with the Intel® C++ Compiler, but installation is optional. The Intel
Debugger (i db) includes an environment script, i dbvar s. sh, which you need to run before executing
i db:

pronpt >source /opt/intel idb_80/bin/idbvars. sh

See the "Intel Debugger (IDB) Manual" (i db_debugger _manual . ht m) for complete information on
using the Intel Debugger.

You can also use the GNU Debugger (gdb) to debug programs compiled with the Intel C++ Compiler.

83

Intel® C++ Compiler for Linux* Systems User's Guide

Preparing for Debugging
Use the - g option to direct the compiler to generate code to support symbolic debugging. For example:
pronpt >i cpc -g prog.cpp

The compiler does not support the generation of debugging information in assembly files. If you specify the
- g option, the resulting object file will contain debugging information, but the assembly file will not.

f)Note

The - g option changes the default optimization from - O2 to - C0.

Parsing for Syntax Only

Use the - synt ax option to stop processing source files after they have been parsed for C++ language
errors. This option provides a method to quickly check whether sources are syntactically and semantically
correct. The compiler creates no output file. In the following example, the compiler checks pr 0g. cpp.
and displays diagnostic information to the standard error output:

pronpt >i cpc -syntax prog.cpp
Optimizations and Debugging

This topic describes the command-line options that you can use to debug your compilation and to display
and check compilation errors. The options that enable you to get debug information while optimizing are as

follows:

Option Description

-0 Disables optimizations. Enables the - f p option.

-g Generates symbolic debugging information and line numbers in the object
code for use by the source-level debuggers. Turns off - O2 and makes -
Q0 the default unless - OL, - O2, or - OB is explicitly specified in the
command line together with - g.

-fp Disable using the EBP register as general purpose register.

IA-32 only

Option Effect on -fp

-0, - @2, or- @B | Disables - f p.

-Q0 Enables - f p.

84

Volume I: Building Applications

Combining Optimization and Debugging

The - Q0 option turns off all optimizations so you can debug your program before any optimization is
attempted. To get the debug information, use the - g option. The compiler lets you generate code to support
symbolic debugging while - O1, - O2, or - O3 is specified on the command line along with -g, which
produces symbolic debug information in the object file.

Note that if you specify the - OL, - O2, or - O3 option with the - g option, some of the debugging
information returned may be inaccurate as a side-effect of optimization.

It is best to make your optimization and/or debugging choices explicit:

* Ifyou need to debug your program excluding any optimization effect, use the - Q0 option, which
turns off all the optimizations.

* Ifyou need to debug your program with optimization enabled, then you can specify the - OL, - O2, or
- O3 option on the command line along with - g.

BNote

The - g option slows down the program when - OL, - O2, or - O3 is not specified. In this case - g turns on -
Q0 which is what slows the program down. If both - Q2 and - g are specified, the code should run nearly
the same speed as if - g were not specified.

Refer to the following table for the summary of the effects of using the - g option with the optimization

options.

These Produce these results

options

-g Debugging information produced, - Q0 enabled (optimizations disabled), -
f p enabled for [A-32-targeted compilations.

-g -al Debugging information produced, - OL optimizations enabled.

-g - Debugging information produced, - O2 optimizations enabled.

-g -@ -fp | Debugging information produced, - O3 optimizations enabled, - f p enabled
for IA-32-targeted compilations.

Debugging and Assembling

The assembly file is generated without debugging information, but if you produce an object file,it will
contain debugging information. If you link the object file and then use the GDB debugger on it, you will
get full symbolic representation.

85

Intel® C++ Compiler for Linux* Systems User's Guide

Options for Debug Information

The Intel® C++ Compiler provides basic debugging information and new features for enhanced debugging
of optimized code. The basic debugging switches are listed in the following table.

Option Description

-debug al | These options are equivalent to - g. They turn on production of basic debug
-debug ful'l |information. They are off by default.

- debug none | This option turns off production of debug information. This option is on by
default.

The Intel C++ Compiler improves debuggability of optimized code through enhanced support for:

» tracebacks
* variable locations
* breakpoints and stepping

The options described in the following table control emission of enhanced debug information. They must
be used in conjunction with the - g option.

Option Description

-debug inline_info This option produces enhanced source position
information for inlined code. This leads to greater
accuracy when reporting the source location of any
instruction. It also provides more information to
debuggers for function call traceback. The Intel
debugger, i db, has been enhanced to use the richer
debug information to show simulated call frames for
inlined functions. This option is off by default.

-debug vari abl e_| ocati ons | This option produces additional debug information for
scalar local variables using a feature of the DWARF
object module format known as "location lists." The
runtime locations of local scalar variables are specified
more accurately using this feature, i.e. whether at a
given position in the code, a variable value is found in
memory or a machine register. The Intel debugger is
able to process location lists and display values of local
variables at runtime with improved accuracy. This
option is off by default.

- debug ext ended This option turns on the - debug options described
previously:

e -debug inline_info
e -debug variable_ | ocations

86

Volume I: Building Applications

ﬂNote

When the compiler needs to choose between optimization and quality of debug information, optimization is
given priority.

Creating and Using Libraries

The Intel® C++ Compiler uses the GNU* C Library, Dinkumware* C++ Library, and the Standard C++
Library. These libraries are documented at the following Internet locations:

* GNU C Library -- http://www.gnu.org/software/libc/manual/
* Dinkumware C++ Library -- http://www.dinkumware.com/htm_cpl/lib_cpp.html
* Standard C++ Library -- http://gcc.gnu.org/onlinedocs/libstdc++/documentation.html

Creating Libraries

Libraries are simply an indexed collection of object files that are included as needed in a linked program.
Combining object files into a library makes it easy to distribute your code without disclosing the source. It
also reduces the number of command-line entries needed to compile your project.

Static Libraries

Executables generated using static libraries are no different than executables generated from individual
source or object files. Static libraries are not required at runtime, so you do not need to include them when
you distribute your executable. At compile time, linking to a static library is generally faster than linking to
individual source files.

To build a static library:

1. use the - C option to generate object files from the source files

pronpt >i cpc -c¢ nmy_sourcel.cpp nmy_source2.cpp ny_source3. cpp
2. use the GNU ar tool to create the library file from the object files

prompt>ar rc ny_lib.a my_sourcel.o my_source2.0 my_source3.o
3. compile and link your project with your new library

prompt >i cpc main.cpp nmy_lib.a

If your library file and source files are in different directories, use the - Ldi r option to indicate where
your library is located:

prompt >i cpc -L/cpp/libs main.cpp nmy_lib.a
If you are using Interprocedural Optimization, see Creating a Library from IPO Objects using Xi ar .
Shared Libraries

Shared libraries, also referred to as dynamic libraries or Dynamic Shared Objects (DSO), are linked
differently than static libraries. At compile time, the linker insures that all the necessary symbols are either
linked into the executable, or can be linked at runtime from the shared library. Executables compiled from
shared libraries are smaller, but the shared libraries must be included with the executable to function
correctly. When multiple programs use the same shared library, only one copy of the library is required in
memory.

87

Intel® C++ Compiler for Linux* Systems User's Guide

To build a shared library:

1. usethe-f Pl Cand - c options to generate object files from the source files
prompt >icpc -fPIC -c ny_sourcel.cpp ny_source2.cpp
my_sour ce3. cpp

2. use the - shar ed option to create the library file from the object files
prompt >i cpc -shared ny_lib.so my_sourcel.o my_source2.0
my_source3. o

3. compile and link your project with your new library
pronpt >i cpc main.cpp ny_lib.so

See also Intel® Shared Libraries and Compiling for Non-shared Libraries.

Default Libraries

The following libraries are supplied with the Intel® C++ Compiler:

Library Description
|'i bgui de. a For OpenMP* implementation
I i bgui de. so

l'i bgui de_stats.a | OpenMP static library for the parallelizer tool with performance
l'i bgui de_stats. so | gatistics and profile information

l'i bonpstub. a Library that resolves references to OpenMP subroutines when
OpenMP is not in use
l'ibsvmi.a Short vector math library
libirc.a Intel support library for PGO and CPU dispatch
l'ibinf.a Intel math library
l'i binf.so
l'ibcprts.a Dinkumware* C++ Library
libcprts.so
libcprts.so.5
bunwi nd. a Unwinder library

li
| i bunwi nd. so
i bunwi nd. so.5

l'ibcxa. a Intel run time support for C++ features
l'i bcxa. so
i bcxa.so.5
| i bcxaguard. a Used for interoperability support with the - cxx| i b- gcc option.
: i bcxaguard. so See gce Interoperability.
i

bcxaguard. so. 5

88

Volume I: Building Applications

When you invoke the - cxx| i b- gcc option, the following replacements occur:

e libcprtsisreplaced with | i bst dc++ from the gcc* distribution (3.2 or newer)
e« libcxaandlibunw nd are replaced by | i bgcc from the gec distribution (3.2 or newer)

&Caution

The Linux* system libraries and the compiler libraries are not built with the - al i gn option. Therefore, if
you compile with the - al i gn option and make a call to a compiler distributed or system library, and have
| ong | ong, doubl e, orl ong doubl e types in your interface, you will get the wrong answer due to
the difference in alignment. Any code built with - al i gn cannot make calls to libraries that use these
types in their interfaces unless they are built with - al i gn (in which case they will not work without -

al i gn).

Math Libraries

The Intel math library, | i bi nf . a, contains optimized versions of math functions found in the standard C
run-time library. The functions in | i bi nf . a are optimized for program execution speed on Intel®
Pentium® III and Pentium 4 processors. The Itanium® compiler also includes a | i bi nf . a designed to
optimize performance on Itanium-based systems. The Intel math library is linked by default.

See Managing Libraries and Intel Math Library.

Intel® Shared Libraries

By default, the Intel® C++ Compiler links Intel-provided C++ libraries dynamically. The GNU* and
Linux* system libraries are also linked dynamically.

Options for Shared Libraries

Option Description

-i_dynam ¢ | Use the - i _dynami ¢ option to link Intel-provided C++ libraries
dynamically (default). This has the advantage of reducing the size of the
application binary, but it also requires the libraries to be on the systems
where the application runs.

-shared The - shar ed option instructs the compiler to build a Dynamic Shared
Object (DSO) instead of an executable. For more details, refer to the | d man
page documentation.

-fpic Use the - f pi ¢ option when building shared libraries. It is required for the
compilation of each object file included in the shared library.

See also Linking.

89

Intel® C++ Compiler for Linux* Systems User's Guide

Managing Libraries

The LD_LI BRARY_PATH environment variable contains a colon-separated list of directories in which the
linker will search for library (. @) files. If you want the linker to search additional libraries, you can add
their names to LD_LI BRARY_PATH, to the command line, or to a response file (see Note). In each case,
the names of these libraries are passed to the linker before the names of the Intel libraries that the driver
always specifies.

Fl

~—+# Note

Response files are processed at the location they appear on the command line. If libraries are specified in
the response file, references from object files seen after the response file will not be resolved in those
libraries.

Modifying LD_LIBRARY_PATH

If you want to add a directory, / | i bs for example, to the LD LI BRARY_PATH, you can do either of the
following:

« command line: pr onpt >export LD_LI BRARY_PATH=/ | i bs: $LD_LI BRARY_PATH
e startup file export LD LI BRARY_PATH=/ | i bs: $LD_LI BRARY_PATH

To compile fi | e. cpp and link it with the library nyl i b. a, enter the following command:
prompt >icpc file.cpp nylib.a
The compiler passes file names to the linker in the following order:

1. the object file
2. any objects or libraries specified on the command line, in a response file, or in a configuration file
3. the Intel® Math Library, | i bi nf. a

Compiling for Non-shared Libraries

This section includes information on:

* Global Symbols and Visibility Attributes
* Symbol Preemption
* Specifying Symbol Visibility Explicitly
» Other Visibility-related Command-line Options

90

Volume I: Building Applications

Global Symbols and Visibility Attributes

A global symbol is one that is visible outside the compilation unit (single source file and its include files) in
which it is declared. In C/C++, this means anything declared at file level without the St at i ¢ keyword.
For example:

int x = 5; /1 global data definition
extern int vy; /1 gl obal data reference
int five() /1 gl obal function definition

{ return 5; }
extern int four(); // global function reference

A complete program consists of a main program file and possibly one or more shareable object (.so) files
that contain the definitions for data or functions referenced by the main program. Similarly, shareable
objects might reference data or functions defined in other shareable objects. Shareable objects are so called
because if more than one simultaneously executing process has the shareable object mapped into its virtual
memory, there is only one copy of the read-only portion of the object resident in physical memory. The
main program file and any shareable objects that it references are collectively called the components of the
program.

Each global symbol definition or reference in a compilation unit has a visibility attribute that controls how
(or if) it may be referenced from outside the component in which it is defined. There are five possible
values for visibility:

* EXTERNAL - The compiler must treat the symbol as though it is defined in another component. For
a definition, this means that the compiler must assume that the symbol will be overridden
(preempted) by a definition of the same name in another component. See Symbol Preemption. If a
function symbol has external visibility, the compiler knows that it must be called indirectly and can
inline the indirect call stub.

* DEFAULT - Other components can reference the symbol. Furthermore, the symbol definition may be
overridden (preempted) by a definition of the same name in another component.

* PROTECTED - Other components can reference the symbol, but it cannot be preempted by a
definition of the same name in another component.

e HIDDEN - Other components cannot directly reference the symbol. However, its address might be
passed to other components indirectly (for example, as an argument to a call to a function in another
component, or by having its address stored in a data item reference by a function in another
component).

e INTERNAL - The symbol cannot be referenced outside its defining component, either directly or
indirectly.

Static local symbols (in C/C++, declared at file scope or elsewhere with the keyword static) usually have
HIDDEN visibility--they cannot be referenced directly by other components (or, for that matter, other
compilation units within the same component), but they might be referenced indirectly.

SNote

Visibility applies to references as well as definitions. A symbol reference's visibility attribute is an assertion
that the corresponding definition will have that visibility.

91

Intel® C++ Compiler for Linux* Systems User's Guide

Symbol Preemption

Sometimes you may need to use some of the functions or data items from a shareable object, but may wish
to replace others with your own definitions. For example, you may want to use the standard C runtime
library shareable object, | i bc. s0, but to use your own definitions of the heap management routines

mal | oc() and free(). Inthis case it is important that calls to mal | oc() and free() within

I i bc. so call your definition of the routines and not the definitions presentin| i bc. so. Your definition
should override, or preempt, the definition within the shareable object.

This feature of shareable objects is called symbol preemption. When the runtime loader loads a
component, all symbols within the component that have default visibility are subject to preemption by
symbols of the same name in components that are already loaded. Since the main program image is always
loaded first, none of the symbols it defines will be preempted.

The possibility of symbol preemption inhibits many valuable compiler optimizations because symbols with
default visibility are not bound to a memory address until runtime. For example, calls to a routine with
default visibility cannot be inlined because the routine might be preempted if the compilation unit is linked
into a shareable object. A preemptable data symbol cannot be accessed using GP-relative addressing
because the name may be bound to a symbol in a different component; the GP-relative address is not
known at compile time.

Symbol preemption is a very rarely used feature that has drastic negative consequences for compiler
optimization. For this reason, by default the compiler treats all global symbol definitions as non-
preemptable (i.e., protected visibility). Global references to symbols defined in other compilation units are
assumed by default to be preemptable (i.e., default visibility). In those rare cases when you need all global
definitions, as well as references, to be preemptable, specify the - f pi ¢ option to override this default.

Specifying Symbol Visibility Explicitly

You can explicitly set the visibility of an individual symbol using the vi Si bi | i ty attribute on a data or
function declaration. For example:

int i __attribute _ ((ViSIb ity("default")));
void __attribute__ ((visibility("hi dden"))) x () {...}
extern void y() _attribute ((visibilty("protected");

The vi si bi | i ty declaration attribute accepts one of the five keywords:

e external

e default

* protected
e hidden

e internal

The value of the vi si bi | i ty declaration attribute overrides the default set by the-fvi sibility,-
f pi c, or - f no- conmon attributes.

92

Volume I: Building Applications

If you have a number of symbols for which you wish to specify the same vi si bi | i ty attribute, you can
set the visibility using one of the five command line options:

 -fvisibility-external =file
e -fvisibility-default=file
e -fvisibility-protected=file
e -fvisibility-hidden=file
e -fvisibility-internal =file

where f i | e is the pathname of a file containing a list of the symbol names whose visibility you wish to
set. The symbol names in the file are separated by white space (blanks, TAB characters, or newlines). For
example, the command line option:

-fvisibility-protected=prot.txt

where file pr ot . t Xt contains:

bcd

sets protected visibility for symbols a, b, ¢, d, and e. This has the same effect as
__attribute_ ((visibility=("protected")))

on the declaration for each of the symbols. Note that these two ways to explicitly set visibility are mutually
exclusive--youmayuse __attribute((visibilty())) onthe declaration, or specify the symbol
name in a file, but not both.

You can set the default visibility for symbols using one of the command line options:

e -fvisibility=externa

o -fvisibility=default

e -fvisibility=protected
o -fvisibility=hidden

e -fvisibility=interna

This option sets the visiblity for symbols not specified in a visibility list file and that do not have
__attribute_ ((visibilty())) in their declaration. For example, the command line options:

-fvisibility=protected -fvisibility-defaul t=prot.txt

where file pr ot . t Xt is as previously described, will cause all global symbols except a, b, ¢, d, and e to
have protected visibility. Those five symbols, however, will have default visibility and thus be
preemptable.

93

Intel® C++ Compiler for Linux* Systems User's Guide

Other Visibility-related Command-line Options

-fminshared

-fpic

The - f m nshar ed option specifies that the compilation unit will be part of a main program component
and will not be linked as part of a shareable object. Since symbols defined in the main program cannot be
preempted, this allows the compiler to treat symbols declared with default visibility as though they have
protected visibility (i.e., - f m nshar ed implies - f vi si bi | i t y=pr ot ect ed). Also, the compiler
need not generate position-independent code for the main program. It can use absolute addressing, which
may reduce the size of the global offset table (GOT) and may reduce memory traffic.

The - f pi ¢ option specifies full symbol preemption. Global symbol definitions as well as global symbol
references get default (i.e., preemptable) visibility unless explicitly specified otherwise.

-fno-common

Normally a C/C++ file-scope declaration with no initializer and without the ext er n or st at i ¢ keyword
int i;

is represented as a common symbol. Such a symbol is treated as an external reference, except that if no
other compilation unit has a global definition for the name, the linker allocates memory for it. The - f no-
common option causes the compiler to treat what otherwise would be common symbols as global
definitions and to allocate memory for the symbol at compile time. This may permit the compiler to use
the more efficient GP-relative addressing mode when accessing the symbol.

94

Volume I: Building Applications

gcc* Compatibility

C language object files created with the Intel® C++ Compiler are binary compatible with the GNU gcc*
compiler and glibc*, the GNU C language library. You can use the Intel compiler or the gcc compiler to
pass object files to the linker. However, to correctly pass the Intel libraries to the linker, use the Intel
compiler. See Linking and Default Libraries for more information.

The Intel C++ Compiler provides many of the language extensions provided by the GNU C compiler, gcc,
and the GNU C++ compiler, g++.

gcc Extensions to the C Language

GNU C includes several, non-standard features not found in ISO standard C. This version of the Intel C++
Compiler supports most these extensions (listed in the following table). See http://www.gnu.org for more

information.
gcc Language Extension Intel GNU Description and Examples
Support

Statements and Declarations in Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Expressions Statement-Exprs.html#Statement%20Exprs

Locally Declared Labels Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Local-Labels.html#Local%20Labels

Labels as Values Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Labels-as-
Values.html#Labels%20as%20Values

Nested Functions No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Nested-Functions.html#Nested%20Functions

Constructing Function Calls No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Constructing-
Calls.html#Constructing%20Calls

Naming an Expression's Type Yes http://gcc.gnu.org/onlinedocs/gec-3.2/gec/
Naming-Types.html#Naming%20Types

Referring to a Type with typeof Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Typeof.html#Typeof

Generalized Lvalues Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Lvalues.html#Lvalues

Conditionals with Omitted Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Operands Conditionals.html#Conditionals

Double-Word Integers Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Long-Long.html#Long%20Long

Complex Numbers Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Complex.html#Complex

95

Intel® C++ Compiler for Linux* Systems User's Guide

gcc Language Extension Intel GNU Description and Examples
Support

Hex Floats Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Hex-Floats.html#Hex%20Floats

Arrays of Length Zero Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gcc/
Zero-Length.html#Zero%?20Length

Arrays of Variable Length Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Variable-Length.html#Variable%20Length

Macros with a Variable Number | Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

of Arguments. Variadic-Macros.html#Variadic%20Macros

Slightly Looser Rules for Escaped | No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Newlines Escaped-
Newlines.html#Escaped%20Newlines

String Literals with Embedded Yes http://gce.gnu.org/onlinedocs/gec-3.3/gec/

Newlines Multi-line-Strings.html#Multi-line%20Strings

Non-Lvalue Arrays May Have Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Subscripts Subscripting.html#Subscripting

Arithmetic on void-Pointers Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Pointer-Arith.html#Pointer%20Arith

Arithmetic on Function-Pointers | Yes http://gce.gnu.org/onlinedocs/gec-3.4.0/gec/
Pointer-Arith.html#Pointer%20Arith

Non-Constant Initializers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Initializers.html#Initializers

Compound Literals Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Compound-
Literals.html#Compound%20Literals

Designated Initializers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Designated-Inits.html#Designated%201Inits

Cast to a Union Type Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Cast-to-Union.html#Cast%20t0%20Union

Case Ranges Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Case-Ranges.html#Case%20Ranges

Mixed Declarations and Code Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Mixed-
Declarations.html#Mixed%20Declarations

Declaring Attributes of Functions | Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Function-
Attributes.html#Function%20Attributes

Attribute Syntax Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Attribute-Syntax.html#Attribute%20Syntax

96

Volume I: Building Applications

gcc Language Extension Intel GNU Description and Examples
Support
Prototypes and Old-Style No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Function Definitions Function-
Prototypes.html#Function%20Prototypes
C++ Style Comments Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
C---Comments.html#C++%20Comments
Dollar Signs in Identifier Names | Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Dollar-Signs.html#Dollar%20Signs
ESC Character in Constants Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Character-
Escapes.html#Character%20Escapes
Specifying Attributes of Variables | Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Variable-
Attributes.html#Variable%20Attributes
Specifying Attributes of Types Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Type-Attributes.html#Type%20Attributes
Inquiring on Alignment of Types | Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
or Variables Alignment.html#Alignment
Inline Function is As Fast As a Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Macro Inline.html#Inline
Assembler Instructions with C Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Expression Operands Extended-Asm.html#Extended%20Asm
Controlling Names Used in Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Assembler Code Asm-Labels.html#Asm%?20Labels
Variables in Specified Registers Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Explicit-Reg-
Vars.html#Explicit%20Reg%20Vars
Alternate Keywords Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Alternate-
Keywords.html#Alternate%20Keywords
Incomplete enum Types Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Incomplete-
Enums.html#Incomplete%20Enums
Function Names as Strings Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Function-Names.html#Function%20Names
Getting the Return or Frame Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Address of a Function Return-Address.html#Return%20Address
Using Vector Instructions No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Through Built-in Functions

Vector-
Extensions.html#Vector%20Extensions

97

Intel® C++ Compiler for Linux* Systems User's Guide

gcc Language Extension Intel GNU Description and Examples
Support

Other built-in functions provided | Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

by GCC Other-Builtins.html#Other%20Builtins

Built-in Functions Specific to No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Particular Target Machines Target-Builtins.html#Target%20Builtins

Pragmas Accepted by GCC No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/

Pragmas.html#Pragmas
Unnamed struct/union fields Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
within structs/unions Unnamed-Fields.html#Unnamed%20Fields

g++* Extensions to the C++ Language

GNU C++ includes several, non-standard features not found in ISO standard C++. This version of the Intel
C++ Compiler supports many of these extensions (listed in the following table). See http://www.gnu.org

for more information.

g++ Language Intel GNU Description and Examples
Extension Support
Minimum and Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Maximum operators in Min-and-Max.html#Min%20and%20Max
C++
When is a Volatile No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Object Accessed? Volatiles.html#Volatiles
Restricting Pointer Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Aliasing Restricted-Pointers.html#Restricted%20Pointers
Vague Linkage Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Vague-Linkage.html#Vague%?20Linkage
Declarations and No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Definitions in One C---Interface.html#C++%20Interface
Header
Where's the Template? | extern http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
template Template-
supported Instantiation.html#Template%20Instantiation
Extracting the function | No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
pointer from a bound Bound-member-
pointer to member functions.html#Bound%20member%20functions
function
C++-Specific Variable, | Yes http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Function, and Type C---Attributes.html#C++%20Attributes
Attributes
Java Exceptions No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/
Java-Exceptions.html#Java%20Exceptions

98

Volume I: Building Applications

g++ Language Intel GNU Description and Examples

Extension Support

Deprecated Features No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gec/
Deprecated-Features.html#Deprecated%20Features

Backwards No http://gcc.gnu.org/onlinedocs/gec-3.4.0/gec/

Compatibility Backwards-

Compatibility. html#Backwards%20Compatibility

SNote

The Intel C++ Compiler supports gcc-style inline ASM if the assembler code uses AT&T* System V/386
syntax. See http://www.gnu.org/software/binutils/manual/gas-2.9.1/html_node/as_196.html for more
information.

gcc* Interoperability

C++ compilers are interoperable if they can link object files and libraries generated by one compiler with

object files and libraries generated by the second compiler, and the resulting executable runs successfully.

The Intel® C++ Compiler has made significant improvements towards interoperability and is highly
compatible with the GNU gcc* compiler. This section describes features of the Intel C++ Compiler that
provide interoperability with gcc. These features include:

* Compiler Options for Interoperability
* Predefined Macros for Interoperability

See gcc Compatibility for a detailed list of compatibility features.

Compiler Options for Interoperability
The Intel® C++ Compiler options that affect gcc* interoperability include:

* -gcc-nane

e -gcc-version

e -cxxlib-gcc

e -cxxlib-icc

« -fabi-version

* -no-gcc (see Predefined Macros for Interoperability)

-gcc-name option

The - gcc- name=namne option, used with - cxx| i b- gcc, lets you specify the location of gec if the
compiler cannot locate the gcc C++ libraries. Use this option when referencing a non-standard gec
installation.

99

Intel® C++ Compiler for Linux* Systems User's Guide

-gcc-version option

The - gcc- ver si on=nnn option provides compatible behavior with gce, where nnn indicates the gec
version. The - gcc- ver si on option is ON by default, and the value of nnn depends on the version of
gcc installed on your system. This option selects the version of gcc with which you achieve ABI

interoperability.
Installed Version of gcc | Default Value of -gcc-version
older than version 3.2 not set
3.2 320
33 330
3.4 340

-cxxlib-gcc option

The - cxxl i b- gcc[=GCC-r oot - di r] option lets you to build your applications using the C++
libraries and header files included with the gcc compiler. They include:

* | i bstdc++ standard C++ header files
* | i bstdc++ standard C++ library
* | ibgcc C++ language support

Use the optional argument, =GCC- r oot - di r, to specify the top-level location for the gcc binaries and
libraries.

BNote

The Intel C++ Compiler is compatible with gec 3.2, 3.3, and 3.4. The - cxxI i b- gcc option is ON by
default if you are using gcc 3.2, 3.3, or 3.4.

When you compile and link your application using the - cxxI i b- gcc option, the resulting C++ object
files and libraries can interoperate with C++ object files and libraries generated by gcc 3.2. This means that
third-party C++ libraries built with gcc 3.2 will work with C++ code generated by the Intel Compiler.

The - cxxl i b- gcc option can only be used on Linux distributions that include gec 3.2. This is required
for C++ ABI conformance.

By default, the Intel C++ Compiler uses headers and libraries included with the product. If you are linking
with code compiled with g++, which was compiled against gnu C++ headers, then differences in the
headers might cause incompatibilities that result in run-time errors.

100

Volume I: Building Applications

If you build one shared library against the Intel C++ libraries, build a second shared library against the gnu
C++ libraries, and use both libraries in a single application, you will have two C++ run-time libraries in
use. Since the application might use symbols from both libraries, the following problems may occur:

e partially initialized libraries
e lost |/ Ooperations from data put in unaccessed buffers
e other unpredictable results, such as jumbled output

The Intel C++ Compiler does not support more than one run-time library in one application.

&Warning

If you successfully compile your application using more than one run-time library, the resulting program
will likely be very unstable, especially when new code is linked against the shared libraries.

You should use the - cxx| i b- gcc option if your application includes source files generated by g++ and
source files generated by the Intel C++ Compiler. This option directs the Intel compiler to use the g++
header and library files to build one set of run-time libraries. As a result, your program should run
correctly.

-cxxlib-icc option

The - cxxl i b-i cc option directs the Intel compiler to use the C++ run-time libraries and C++ header
files included with the Intel compiler. They include:

e |ibcprts standard C++ headers
* |ibcprts standard C++ library
* libcxaandlibunwi nd C++ language support

f)Note

The - cxxl i b-i cc option is ON by default if are using a gcc version less than 3.2.

-fabi-version

The - f abi - ver si on=n option directs the compiler to select a specific ABI implementation. By default,
the Intel compiler uses the ABI implementation that corresponds to the installed version of gcc. Both gec
3.2 and 3.3 are not fully ABI-compliant.

Value of n | Description

n=0 Select most recent ABI implementation

n=1 Select g++ 3.2 compatible ABI implementation
n=2 Select most conformant ABI implementation

See http://www.codesourcerey.com for more information on ABI conformance.

101

Intel® C++ Compiler for Linux* Systems User's Guide

See Specifying Alternate Tools and Paths for information on using - @ ocat i on to specify the location of
the GNU assembler and linker.

Predefined Macros for Interoperability

The Intel® C++ Compiler and gee* support the following predefined macros:
e _ GNUC __
e GNUC_ M NOR__
e _ GNUC PATCHLEVEL__

You can specify the - N0- gcc option to undefine these macros. If you need gcc interoperability (-
cxxl i b-gcc), donot use the - N0- gcc compiler option.

ZEEVVarmng

Not defining these macros results in different paths through system header files. These alternate paths may
be poorly tested or otherwise incompatible.

See also Predefined Macros and GNU Environment Variables.

gcc* Built-in Functions

This version of the Intel® C++ compiler supports the following gcc* built-in functions:

__builtin_abs
__builtin_labs
builtin_cos
__builtin_cosf
__builtin_fabs
builtin_fabsf
__builtin_nmenmcmp
__builtin_nencpy
__builtin_sin
__builtin_sinf
__builtin_sqgrt
builtin_sqrtf
__builtin_strcnp
__builtin_strlen
__builtin_strncnp
__builtin_abort
builtin_prefetch
__builtin_constant _p
__builtin_printf
__builtin_fprintf
builtin_fscanf
__builtin_scanf
builtin_fputs
__builtin_nenset
__builtin_strcat
__builtin_strcpy
__builtin_strncpy
__builtin_exit
__builtin_strchr
builtin_strspn
builtin_strcspn

Volume I: Building Applications

__builtin_strstr
__builtin_strpbrk
__builtin_strrchr
builtin_strncat
__builtin_alloca
__builtin_ffs
__builtin_index
__builtin_rindex
__builtin_bcnp
__builtin_bzero
__builtin_sinl
__builtin_cosl
builtin_sqrtl
__builtin_fabsl
__builtin_frame_address (I A-32 only)
builtin_return_address (1A-32 only)

For more information on gcc built-in functions, see http://gcc.gnu.org/onlinedocs/gcc-3.4.1/gec/Other-
Builtins.html#Other%20Builtins

gcc* Function Attributes
This version of the Intel® C++ Compiler supports the following gec* function attributes:
e noi nline - prevents a function from being inlined

* always_i nl i ne -inlines the function even if no optimization is specified
e used - code - must be emitted for the function even if the function is not referenced

Example
int round_sqgrt(int) _ attribute__ ((always_inline));

In this example, the function r ound_sqrt () is inlined even if no optimization is specified.

Thread-local Storage

The Intel® C++ Compiler supports the storage class keyword __t hr ead, which can be used in variable
definitions and declarations. Variables defined and declared this way are automatically allocated locally to
each thread:

__thread int i;
__thread struct state s;

extern __thread char *p;

ff—t_)Note

The __t hr ead keyword is only recognized when the GNU compatibility version is 3.3 or higher. You
may need to specify the - gcc- ver si on=330 compiler option to enable thread-local storage.

See also http://gcc.gnu.org/onlinedocs/gec/Thread-Local.html.

103

Intel® C++ Compiler for Linux* Systems User's Guide

Language Conformance

Conformance Options

Option Description

- ansi Equivalent to GNU* ANSI

-strict_ansi | Strict ANSI conformance dialect

Conformance to the C Standard

You can set the Intel® C++ Compiler to accept either

* ANSI conformance equivalent to GNU* ANSI with the - ansi option, or
» Strict ANSI conformance dialect with the - St ri ct _ansi option

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language compilation
(ISO/IEC 9899:1990). This standard requires that conforming C compilers accept minimum translation
limits. This compiler exceeds all of the ANSI/ISO requirements for minimum translation limits.

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies in
accordance with this standard:

The compiler includess predefined macros in addition to those required by the standard.

Macro Value
__DATE _ The date of compilation as a string literal in the form Mym dd
yyvyy.
__FILE _ A string literal representing the name of the file being compiled.
__LINE__ The current line number as a decimal constant.
__STDC__ The name __STDC___ is defined when compiling a C translation unit.
__STDC_HOSTED__ | The integer 1.
__TIME__ The time of compilation as a string literal in the form hh: mm ss.

104

Volume I: Building Applications

C99 Support
The following C99 features are supported in this version of the Intel C++ Compiler:

* restricted pointers (r est ri ct keyword, available with - r estri ct). See Note.
* variable-length Arrays

* flexible array members

e complex number support (_Conpl ex keyword)
* hexadecimal floating-point constants

e compound literals

* designated initializers

* mixed declarations and code

* macros with a variable number of arguments

e inline functions (i nl i ne keyword)

e boolean type (_Bool keyword)

SNote

The -restri ct option enables the recognition of the r est ri ¢t keyword as defined by the ANSI

standard. By qualifying a pointer with the r est ri ct keyword, the user asserts that an object accessed via

the pointer is only accessed via that pointer in the given scope. It is the user’s responsibility to use the

restrict keyword only when this assertion is true. In these cases, the use of r est ri ct will have no

effect on program correctness, but may allow better optimization.
These features are not supported:

 #pragma STDC FP_CONTRACT
 #pragma STDC FENV_ACCESS

e #pragma STDC CX_LI M TED_RANGE
* | ong doubl e (128-bit representations)

Conformance to the C++ Standard

The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++

language.

Exported Templates

The Intel® C++ Compiler supports exported templates using the following options:

Option Description
- export Enable recognition of exported templates. Supported in C++ mode
only.

-export_dir dir | Specifies a directory name to be placed on the exported template
search path. The directories are used to find the definitions of
exported templates and are searched in the order in which they are
specified on the command-line. The current directory is always the
first entry on the search path.

105

Intel® C++ Compiler for Linux* Systems User's Guide

Exported templates are templates declared with the expor t keyword. Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is unique because its definition does not need to be present in a translation unit that uses
that template. For example, the following C++ program consists of two separate translation units:

/1 filel.cpp
#i ncl ude <stdi o. h>
static void trace() { printf("File 1\n"); }
export tenplate<class T> T const& min(T const& T const&);
int main() {
trace();
return mn(2, 3);

/1 file2.cpp
#i ncl ude <stdio. h>
static void trace() { printf("File 2\n"); }

export tenplate<class T> T const& mn(T const &, T const &b) {
trace();
return a<b? a: b;

}

Note that these two files are separate translation units: one is not included in the other. That allows the two
functions t r ace() to coexist (with internal linkage).

Usage
pronpt >i cpc -export -export _dir /usr2/export/ -c filel.cpp
pronpt >i cpc -export -export _dir /usr2/export/ -c file2.cpp

pronpt >i cpc -export -export _dir /usr2/export/ filel.o file2.0
Template Instantiation

The Intel® C++ Compiler supports ext er n template, which lets you specify that a template in a specific
translation unit will not be instantiated because it will be instantiated in a different translation unit or
different library. The compiler now includes additional support for:

* inlinetemplate -- instantiates the compiler support data for the class (i.e. the vtable) for a class
without instantiating its members.

* static template -- instantiates the static data members of the template, but not the virtual tables or
member functions.

106

You can now use the following options to gain more control over the point of template instantiation:

Volume I: Building Applications

Option

Description

-fno-inmplicit-tenpl ates

Never emit code for non-inline templates which
are instantiated implicitly (i.e. by use). only
emit code for explicit instantiations.

-fno-implicit-inline-tenplates

Do not emit code for implicit instantiations of
inline templates either. The default is to handle
inlines differently so that compilations, with
and without optimization, will need the same
set of explicit instantiations.

107

Volume I1: Optimizing Applications

Optimization Levels

This section discusses the command-line options - Q0, - OL, - 2, and - O3. The - Q0 option disables
optimizations. Each of the other three turns on several compiler capabilities. To specify one of these
optimizations, take into consideration the nature and structure of your application as indicated in the more
detailed description of the options. In general terms - OL, - O2, and - O3 optimize as follows:

e - Ol -- code size and locality
e -2 -- code speed; this is the default option
* - (B -- enables - O2 with more aggressive optimizations.

These options behave similarly on IA-32 and Itanium® architectures, with some specifics that are detailed
in the sections that follow.

Setting Optimization Levels

The following table details the effects of the - OO0, - OL, - O2, - O3, and - f ast options. The table first
describes the characteristics shared by both IA-32 and Itanium® architectures and then explicitly describes
the specifics (if any) of the - On options’ behavior on each architecture.

Option | Effect

-0 Disables optimizations.

-O1 Optimizes to favor code size and code locality. Disables loop unrolling. May
improve performance for applications with very large code size, any branches, and
execution time not dominated by code within loops. In most cases, - O2 is
recommended over - OL.

I A-32 systems: Disables intrinsics inlining to reduce code size.

Itanium-based systems: Disables software pipelining and global code scheduling.

-2, - O| ON by default. Optimizes for code speed. This is the generally recommended
optimization level.
Itanium-based systems: Enables software pipelining.

-8 Enables - O2 optimizations and more aggressive optimizations such as loop and
memory access transformations. The - O3 optimizations may slow down code in
some cases compared to - O2 optimizations. Recommended for applications that
have loops that heavily use floating-point calculations and process large data sets.
I A-32 systems: In conjunction with - ax{ K| W N| B| P} and - x{ K| W N| B| P}
options, this option causes the compiler to perform more aggressive data
dependency analysis than for - O2. This may result in longer compilation times.

108

Volume II: Optimizing Applications

Option

Effect

-f ast

The - f ast option enhances execution speed across the entire program by
including the following options that can improve run-time performance:

e - (B (maximum speed and high-level optimizations.

* -i po (enables interprocedural optimizations across files)

e -static (prevents linking with shared libraries)

e - XP (specific optimization for Intel Pentium 4 processor with

Streaming SIMD Extensions 3). The - f ast option does not include
- XP when compiling on Itanium®-based systems.

To override one of the options set by - f ast , specify that option after the - f ast
option on the command line. To target - f ast optimizations for a specific
processor, use one of the - X options. For example:

pronpt >i cpc -fast -xWsource_file.cpp

The options set by - f ast may change from release to release.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your program:

Option

Description

-0

Disables optimizations. Enables the - f p option.

-np

Restricts optimizations that cause some minor loss or gain of precision in
floating-point arithmetic to maintain a declared level of precision and to
ensure that floating-point arithmetic more nearly conforms to the ANSI
and IEEE*standards.

Specifying the - g option turns off the default - O2 option and makes -
Q0 the default unless - OL, - O2, or - OB is explicitly specified in the
command line together with - g.

-nol i b_i nl'i ne | Disables inline expansion of intrinsic functions.

109

Intel® C++ Compiler for Linux* Systems User's Guide

ﬂNote

You can turn off all optimizations for specific functions by using #pr agma opt i nmi ze. In the following
example, all optimization is turned off for function f 0o() :

#pragma optim ze("", off)
foo(){

Valid second arguments for #pr agna opti m ze are "on" or "of f ." With the "on" argument, f 00()
is compiled with the same optimization as the rest of the program. The compiler ignores first argument
values.

Floating-point Optimizations

Floating-point Arithmetic Precision

There are several compiler options that affect floating-point computations. In general, the options discussed
here let you decide between performance and accuracy. To achieve greater performance, it may be
necessary to sacrifice some degree of floating-point accuracy.

See also Floating-point Arithmetic Options for [tanum®-based Systems.
Options for 1A-32 and Itanium®-based Systems
-mp Option

The - np option restricts some optimizations to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards. Floating point intermediate
results are kept in full 10-byte internal precision. All spills and reloads of the X87 floating-point registers
utilize this internal format to prevent accidental loss of precision.

For most programs, specifying this option adversely affects performance. If you are not sure whether your
application needs this option, try compiling and running your program both with and without it to evaluate
the effects on performance versus precision. Alternatives to - np include - XN (for the Intel® Pentium 4
processor or newer) and - np1.

* user variables declared as floating-point types are not assigned to registers.

* whenever an expression is spilled (moved from a register to memory), it is spilled as 80 bits
(extended precision), not 64 bits (double precision).

* floating-point arithmetic comparisons conform to the IEEE 754 specification except for NaN
behavior.

» the exact operations specified in the code are performed. For example, division is never changed to
multiplication by the reciprocal.

» the compiler performs floating-point operations in the order specified without re-association.

» the compiler does not perform the constant-folding optimization on floating-point values. Constant
folding also eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For
example, code that adds 0.0 to a number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are also maintained.

110

Volume II: Optimizing Applications

» floating-point operations conform to ANSI C. When assignments to type f | oat and doubl e are
made, the precision is rounded from 80 bits (extended) down to 32 bits (float) or 64 bits (double).
When you do not specify - np, the extra bits of precision are not always rounded before the variable
is reused.

* setsthe - nol i b_i nl i ne option, which disables inline functions expansion.

-mpl Option

Use the - np1 option to improve floating-point precision. - "p1 disables fewer optimizations and has less
impact on performance than - np. -mp1 prevents the compiler from performing optimizations which
change NAN comparison semantics. It also causes all values used in comparisons to be truncated to
declared precision prior to use in the comparison. It also makes sure to use library routines which give
better precision results compared to the X87 transcendental instructions.

-complex_limited_range

This option enables the use of the basic algebraic expansions of some complex arithmetic operations. At the
loss of some exponent range, the - conpl ex_| i mi t ed_r ange option can allow for some performance
improvement in programs which utilize complex arithmetic. By default, the compiler disables this option
by using - conpl ex_| i nmited_range-.

Options for 1A-32 Only

&Caution

A change of the default precision control or rounding mode (for example, by using the - pc32 flag or by
user intervention) may affect the results returned by some of the mathematical functions.

-prec_div Option

With some optimizations, the Intel® C++ Compiler changes floating-point division computations into
multiplication by the reciprocal of the denominator. For example, A/B is computed as A x (1/B) to improve
the speed of the computation. However, for values of B greater than 2'*°, the value of 1/B is "flushed"
(changed) to 0. When it is important to maintain the value of 1/B, use - pr ec_di v to disable the floating-
point division-to-multiplication optimization. The result of - pr ec_di Vv is greater accuracy with some loss
of performance.

-pcn Option

Use the - pcn option to enable floating-point significand precision control. Some floating-point algorithms
are sensitive to the accuracy of the significand or fractional part of the floating-point value. For example,
iterative operations like division and finding the square root can run faster if you lower the precision with
the - pcn option. Set N to one of the following values to round the significand to the indicated number of
bits:

* - pc32:24-bit significand (single precision)
* - pc64: 53-bit significand (double precision)
* - pc80: 64-bit significand (long double precision)

The default value for n is 80, indicating long double precision. This option allows full optimization. Using
this option does not have the negative performance impact of using the - Qp option because only the

fractional part of the floating-point value is affected. The range of the exponent is not affected. The - pcn

111

Intel® C++ Compiler for Linux* Systems User's Guide

option causes the compiler to change the floating-point precision control when the mai n() function is
compiled. The program that uses - pch must use mai n() as its entry point, and the file containing
mai n() must be compiled with - pcn.

-rcd Option

The Intel compiler uses the - r cd option to improve the performance of code that requires floating-point-
to-integer conversions. The optimization is obtained by controlling the change of the rounding mode. The
system default floating point rounding mode is round-to-nearest. This means that values are rounded during
floating point calculations. However, the C language requires floating point values to be truncated when a
conversion to an integer is involved. To do this, the compiler must change the rounding mode to truncation
before each floating-point-to-integer conversion and change it back afterwards. The - r cd option disables
the change to truncation of the rounding mode for all floating point calculations, including floating point-
to-integer conversions. Turning on this option can improve performance, but floating point conversions to
integer will not conform to C semantics.

-fp_port Option

The - f p_port option rounds floating-point results at assignments and casts. An impact on speed may
result.

-fpstkchk Option

When a function call returns a floating-point value, the return value should be placed at the top of the FP
stack. If the return value is unused, the compiler pops the value off the stack to keep the FP stack in the
correct state. However, if the application leaves out the function's prototype or incorrectly prototypes the
function, then the return value may remain on the stack. This may result in the FP stack filling up and
eventually overflowing.

Generally, when the FP stack overflows, a NaN value is put into FP calculations, and the program's results
differ. Unfortunately, the overflow point can be far away from the point of the actual bug. The -

f pchkst k option places code that would access violate immediately after an incorrect call occurred, thus
making it easier to locate these issues.

Floating-point Arithmetic Options for Itanium®-based Systems

The following options enable you to control the compiler optimizations for floating-point computations on
Itanium®-based systems:

o -ftz[-]
e -IPF_fma[-]
e -IPF_fp_specul ati onnmode

-1 PF_flt _eval nethodO
-1 PF_fltacc[-] (Default:- | PF_fltacc-)
e -IPF_fp_relaxed[-]

Flush Denormal Results to Zero

Use the - f t z option to flush denormal results to zero.

112

Volume II: Optimizing Applications

Contraction of FP Multiply and Add/Subtract Operations

-1 PF_fma[-] enables [disables] the contraction of floating-point multiply and add/subtract operations
into a single operation. Unless - np is specified, the compiler contracts these operations whenever possible.
The - mp option disables the contractions. Use - | PF_f ma and - | PF_f ma- to override the default
compiler behavior. For example, a combination of - mp and - | PF_f ma enables the compiler to contract
operations (on Itanium®-based systems only):

pronmpt >i cpc -np -1 PF_frma prog. cpp
FP Speculation

-1 PF_f p_specul at i onnode sets the compiler to speculate on floating-point operations in one of the
following nodes:

o fast: sets the compiler to speculate on floating-point operations

» saf e: enables the compiler to speculate on floating-point operations only when it is safe
e strict: disables the speculation of floating-point operations.

o of f: disables the speculation on floating-point operations.

“~/Note
-1 PF_f p_specul ati onsaf e is the default when - Q0 is specified.

FP Operations Evaluation

-1 PF_flt_eval _nmet hodO directs the compiler to evaluate the expressions involving floating-point
operands in the precision indicated by the variable types declared in the program.

Controlling Accuracy of the FP Results

-1 PF_fltacc[-] enables [disables] optimizations that affect floating-point accuracy. By default (-
| PF_f I t acc-) the compiler may apply optimizations that reduce floating-point accuracy. You may use -
| PF_f I tacc or- np to improve floating-point accuracy, but at the cost of disabling some optimizations.

-1 PF_f p_rel axed[-] enables [disables] use of faster but slightly less accurate code sequences for
math functions, such as divide and square root. As compared to strict IEEE* precision, using this option
slightly reduces the accuracy of floating-point calculations performed by these functions, usually limited to
the least significant digit.

113

Intel® C++ Compiler for Linux* Systems User's Guide

Optimizing for Specific Processors

Processor Optimization for IA-32 only

The - t pp{ 5] 6] 7} options optimize your application's performance for a specific Intel processor. The
resulting binary will also run on the other processors listed in the table. The Intel® C++ Compiler includes
gee*-compatible versions of the - t pp options. These options are listed in the gcc* Version column.

Option | gcc* Version Optimizes for

-tpp5 | -ncpu=pentium Intel® Pentium® processors

-t pp6 | - mcpu=pent i unpro | Intel Pentium Pro, Intel Pentium I, and Intel Pentium 111
processors

-tpp7 |-ncpu=pentiunmd Intel Pentium 4 processors, Intel Pentium M processors,
and Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3)

BNote

The - t pp7 option is ON by default.
Example

The following invocations all result in a compiled binary optimized for Pentium 4. The same binary will
also run on Pentium, Pentium Pro, Pentium II, and Pentium III processors.

pronpt >i cpc prog. cpp
pronpt >i cpc -t pp7 prog.cpp
pronpt >i cpc - ntpu=penti umd prog.cpp
Processor Optimization (Itanium®-based Systems only)

The - t pp{ 1| 2} options optimize your application's performance for a specific Intel® Itanium®
processor. The resulting binary will also run on the processors listed in the table. The Intel® C++ Compiler
includes gcc*-compatible versions of the - t pp options. These options are listed in the gcc* Version
column.

Option | gcc* Version Optimizes for

-tppl | -ncpu=itani um | Itanium processors

-tpp2 | -ncpu=itani un® | Itanium 2 processors

BNote

The - t pp2 option is ON by default.

114

Example

Volume II: Optimizing Applications

The following invocations all result in a compiled binary optimized for the Intel Itanium 2 processor. The
same binary will also run on Intel Itanium processors.

pronpt >i cpc prog. cpp

pronpt >i cpc -tpp2 prog. cpp

pronpt >i cpc -ntpu=itani un2 prog.cpp

Processor-specific Optimization (IA-32 only)

The - x{ K| W N| B| P} options target your program to run on a specific Intel processor by generating

specialized and optimized code. The resulting code might contain unconditional use of features that are not
supported on other processors.

Option

Specific Optimization for...

-xK

Intel® Pentium® IIT and compatible Intel processors.

-xW

Intel Pentium 4 and compatible Intel processors.

-xN

Intel Pentium 4 and compatible Intel processors. Programs compiled with this option
will detect non-compatible processors and generate an error message during
execution. This option also enables new optimizations in addition to Intel
processor-specific optimizations.

-xB

Intel Pentium M and compatible Intel processors. Programs compiled with this
option will detect non-compatible processors and generate an error message during
execution. This option also enables new optimizations in addition to Intel
processor-specific optimizations.

-xP

Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). Programs
compiled with this option will detect non-compatible processors and generate an
error message during execution. This option also enables new optimizations in
addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do not specify the -
x{ K| W N B| P} option.

Example

The following invocation compiles pr og. cpp for Intel Pentium 4 and compatible processors. The

resulting binary might not execute correctly on Pentium, Pentium Pro, Pentium II, Pentium III, or Pentium
with MMX technology processors, or on x86 processors not provided by Intel Corporation.

pronpt >i cpc - xW prog. cpp

115

Intel® C++ Compiler for Linux* Systems User's Guide

&Caution

If a program compiled with - X{ K| W N| B| P} is executed on a non-compatible processor, it might fail
with an illegal instruction exception, or display other unexpected behavior. Executing programs compiled
with - XN, - XB, or - XP on unsupported processors (see table) will display the following run-time error:

Fatal Error : This programwas not built to run on the processor in your
system

Automatic Processor-specific Optimizations (IA-32 only)

The - ax{ K| W N| B| P} options direct the compiler to find opportunities to generate separate versions of
functions that take advantage of features that are specific to the specified Intel processor. If the compiler
finds such an opportunity, it first checks whether generating a processor-specific version of a function is
likely to result in a performance gain. If this is the case, the compiler generates both a processor-specific
version of a function and a generic version of the function. The generic version will run on any [A-32
processor.

At run time, one of the versions is chosen to execute, depending on the Intel processor in use. In this way,
the program can benefit from performance gains on more advanced Intel processors, while still working
properly on older IA-32 processors.

The disadvantages of using - ax{ K| W N| B| P} are:

* The size of the compiled binary increases because it contains processor-specific versions of some of
the code, as well as a generic version of the code.
» Performance is affected slightly by the run-time checks to determine which code to use.

BNote

Applications that you compile with this option will execute on any IA-32 processor. If you specify both the
- X and - ax options, the - X option forces the generic code to execute only on processors compatible with
the processor type specified by the - X option.

Option | Optimizes Your Code for...

-axK | Intel Pentium III and compatible Intel processors.

-axW | Intel Pentium 4 and compatible Intel processors.

-axN | Intel Pentium 4 and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axB | Intel Pentium M and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axP | Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). This option
also enables new optimizations in addition to Intel processor specific-optimizations.

116

Volume II: Optimizing Applications

Example
The following compilation will generate a single executable that includes:
* ageneric version for use on any [A-32 processor
» aversion optimized for Intel Pentium III processors, as long as there is a likely performance benefit

» aversion optimized for Intel Pentium 4 processors, as long as there is a likely performance benefit

prompt >i cpc - axKW prog. cpp
Manual CPU Dispatch (IA-32 only)

Use __decl spec(cpu_specific) and__decl spec(cpu_di spat ch) in your code to generate
instructions specific to the Intel processor on which the application is running, and also to execute correctly
on other IA-32 processors.

ﬂNote

Manual CPU dispatch cannot be used to recognize Intel® Itanium® processors. The syntax of these
extended attributes is as follows:

 cpu_specific(cpuid)
e cpu_dispatch(cpuid-list)

The values for cpui d and cpui d- | i st are shown in the following tables:

Processor Values for cpui d
x86 processors not provided by Intel Corporation generic

Intel® Pentium® processors pentium

Intel Pentium processors with MMX™ Technology penti um mx
Intel Pentium Pro processors pentiumpro
Intel Pentium II processors pentiumii

Intel Pentium III processors pentiumiii
Intel Pentium I1I (exclude xmm registers) pentium.iii_no_xnmregs
Intel Pentium 4 processors pentium 4

Intel Pentium M processors pentiumm

Intel Pentium 4 processor with Streaming SIMD pentium 4_sse3
Extensions 3 (SSE3).

Values for cpui d- | i st

cpuid

cpuid-list, cpuid

117

Intel® C++ Compiler for Linux* Systems User's Guide

The attributes are not case sensitive. The body of a function declared with
__decl spec(cpu_di spat ch) must be empty, and is referred to as a stub (an empty-bodied function).

Use the following guidelines to implement automatic processor dispatch support:

1.

118

Stub for cpu_di spat ch must havea cpui d defined in cpu_speci fi ¢ elsewhere

If the cpu_di spat ch stub for a function f contains the cpui d p, then a cpu_speci fic
definition of f with cpui d p must appear somewhere in the program; otherwise an unresolved
external error is reported. A cpu_speci fi ¢ function definition need not appear in the same
translation unit as the corresponding cpu_di spat ch stub, unless the cpu_speci f i ¢ function is
declared st at i c. The inline attribute is disabled for all cpu_speci fi ¢ and cpu_di spat ch
functions.

Must have a stub for cpu_speci fi ¢ function

If a function f is defined as __decl spec(cpu_specific(p)),thenacpu_di spat ch stub
must also appear for f within the program; and p must be in the cpui d- | i st of that stub;
otherwise, that cpu_speci f i ¢ definition cannot be called nor generate an error condition.
Overrides command line settings

When a cpu_di spat ch stub is compiled, its body is replaced with code that determines the
processor on which the program is running, then dispatches the "best" cpu_speci fi c
implementation available as defined by the cpui d- | i st. The cpu_speci fi ¢ function optimizes
to the specified Intel processor regardless of command-line option settings.

Volume II: Optimizing Applications

Processor Dispatch Example

Here is an example of how these features can be used:

#i ncl ude <mmintrin. h>
/* Pentium processor function does not use intrinsics to add
two arrays. */

__decl spec(cpu_specific(pentium)
void array_sunm(int *r, int *a, int *b,size_t |)

for (; length > 0; I|--)
*resul t++ = *a++ + *b++;

}

/* 1mplenmentation for a Pentium processor with MW technol ogy
uses

an MW instruction intrinsic to add four el enents

si mul t aneously. */

__decl spec(cpu_specific(pentium MVX))
void array_sun(int *r,int const *a, int *b, size t I|)
{
_ B4 *mmx_result = (__nb4 *)result;
__nB4 const *mmx_a = n64 const *)
__nmb4 const *mmx_b = nb64 const *)

[a;
(__ b;

for (; length > 3; length -= 4)

*mrx_resul t++ = _nm add_pi 16(*mmx_a++, *mx_b++) ;

/* The follow ng code, which takes care of excess elenents,
i s not

needed if the array sizes passed are known to be nultiples
of four. */

result = (unsigned short *)mx_r;
a = (unsigned short const *)mmx_a;
b = (unsigned short const *)nmmx_b;

for (; length > 0; I|--)
*resul t++ = *a++ + *b++;

}

__decl spec(cpu_di spatch(pentium pentium MVX))
void array_sum (int *r,int const *a, int *b, size t |))

{

/* Enmpty function body informs the conpiler to generate the
CPU-di spatch function listed in the cpu_dispatch clause. */

}

Processor-specific Runtime Checks, IA-32 Systems

The Intel® C++ Compiler optimizations take effect at run time. For IA-32 systems, the compiler enhances
processor-specific optimizations by inserting a code segment in the program that performs the run-time
checks described here.

119

Intel® C++ Compiler for Linux* Systems User's Guide

Check for Supported Processor with -xN, -xB, or -xP

To prevent execution errors, the compiler inserts code in the program to check for proper processor usage.
Programs compiled with options - XN, - XB, or - XP will check at run time whether they are being executed
on the Intel® Pentium® 4 processor, Intel Pentium M processor, or the Intel Pentium 4 processor with
Streaming SIMD Extensions 3 (SSE3), respectively, or a compatible Intel processor. If the program is not
executed on one of these processors, the program terminates with an error.

Example

To optimize the program pr og. cpp for the Intel Pentium 4 processor with Streaming SIMD Extensions 3
(SSE3), issue the following command:

pronpt >i cpc - xP prog. cpp
The resulting executable aborts if it is executed on a processor that does not support the Intel Pentium 4

processor with Streaming SIMD Extensions 3 (SSE3), such as the Intel Pentium III or Intel Pentium 4
processor.

If you intend to run your programs on multiple IA-32 processors, do not use the - X{ } options that
optimize for processor-specific features; consider using - ax{ } to attain processor specific performance
and portability among different processors.

Setting FTZ and DAZ Flags

Previously, the values of the flags flush-to-zero (FTZ) and denormals-as-zero (DAZ) for IA-32 processors
were off by default. However, even at the cost of losing IEEE compliance, turning these flags on
significantly increases the performance of programs with denormal floating-point values in the gradual
underflow mode run on the most recent IA-32 processors. Hence, for the Intel Pentium III, Pentium 4,
Pentium M, Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3), and compatible IA-32
processors, the compiler's default behavior is to turn these flags on. The compiler inserts code in the
program to perform a run-time check for the processor on which the program runs to verify it is one of the
afore-listed Intel processors.

Examples

* Executing a program on a Pentium III processor enables FTZ, but not DAZ.

* Executing a program on an Intel Pentium M processor or Intel Pentium 4 processor with Streaming
SIMD Extensions 3 (SSE3) enables both FTZ and DAZ.

These flags are only turned on by Intel processors that have been validated to support them.
For non-Intel processors, you can set the flags manually with the following macros:

Enable FTZ: _MM SET_FLUSH ZERO MODE(_MM FLUSH ZERO ON)

Enable DAZ: _MM SET_DENORMALS_ZERO MODE(_MM DENORMALS_ZERO ON)

The prototypes for these macros are in xnmi ntri n. h (FTZ) and prmi ntri n. h (DAZ).

120

Volume II: Optimizing Applications

Interprocedural Optimizations

Use - i p and - i po to enable interprocedural optimizations (IPO), which enable the compiler to analyze
your code to determine where you can benefit from the optimizations listed in tables that follow.

IA-32 and Itanium®-based applications

Optimization Affected Aspect of Program
Inline function expansion Calls, jumps, branches, and loops
Interprocedural constant propagation Arguments, global variables, and return values

Monitoring module-level static variables | Further optimizations and loop invariant code

Dead code elimination Code size

Propagation of function characteristics | Call deletion and call movement

Multifile optimization The same aspects as - i p, but across multiple files

| A-32 applications only

Optimization Affected Aspect of Program

Passing arguments in registers | Calls and register usage

Loop-invariant code motion Further optimizations and loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural optimizer. For
function calls that the compiler believes are frequently executed, the compiler might decide to replace the
instructions of the call with code for the function itself.

With - i p, the compiler performs inline function expansion for calls to procedures defined within the
current source file. However, when you use - i po to specify multifile IPO, the compiler performs inline
function expansion for calls to procedures defined in separate files.

To disable the IPO optimizations, use the - G0 option.

&Caution

The - i p and - i po options can in some cases significantly increase compile time and code size.

-auto_ilp32 for Itanium-based Systems

On Itanium-based systems, the - aut 0_i | p32 option requires interprocedural analysis over the whole
program. This optimization allows the compiler to use 32-bit pointers whenever possible as long as the

application does not exceed a 32-bit address space. Using the - aut o_i | p32 option on programs that

exceed 32-bit address space might cause unpredictable results during program execution.

121

Intel® C++ Compiler for Linux* Systems User's Guide

Because this optimization requires interprocedural analysis over the whole program, you must use the -
aut o_i | p32 option with the - i po option.

IPO Compilation Model

For the topics in this section, the term IPO generally refers to multi-file IPO.

When you use the -i po option, the compiler collects information from individual program modules of a
program. Using this information, the compiler performs optimizations across modules. In order to do this,
the - i po option is applied to both the compilation phase and the link phase.

One of the main benefits of IPO is that it enables more inlining. For information on inlining and the
minimum inlining criteria, see Criteria for Inline Function Expansion and Controlling Inline Expansion of
User Functions. Inlining and other optimizations are improved by profile information. For a description of
how to use IPO with profile information for further optimization, see Example of Profile-Guided
Optimization.

Compilation Phase

When using IPO, as each source file is compiled, the compiler stores an intermediate representation (IR) of
the source code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of IPO. Generating
mock files instead of real object files reduces the time spent in the IPO compilation phase. Each mock
object file contains the IR for its corresponding source file, but no real code or data. These mock objects
must be linked using the - i po option or the Xi | d tool. (See Creating a Multifile IPO Executable with
xild.)

f)Note

Failure to link "mock" objects with the - i po option or Xi | d will result in linkage errors. There are
situations where mock object files cannot be used. See Compilation with Real Object Files for more
information.

Linkage Phase

When you invoke the linker, adding - i po to the command line causes the compiler to be invoked a final
time before the linker. The compiler performs IPO across all object files that have an IR. The compiler first
analyzes all of the summary information, and then finishes compiling the pieces of the application for
which it has IR. Having global information about the application while it is compiling individual pieces can
improve the quality of optimization.

SNote

The compiler does not support multifile IPO for static libraries (. a files). See Compilation with Real
Object Files for more information.

When you use the - i po option, the compiler attempts to detect a whole program automatically. If a whole
program is detected, the interprocedural constant propagation, stack frame alignment, data layout and
padding of common blocks perform more efficiently, while more dead functions get deleted. This option is
safe.

122

Volume II: Optimizing Applications

Command Line for Creating an IPO Executable

The command line options to enable IPO for compilations targeted for both the IA-32 and Itanium®
architectures are identical. To produce mock object files containing intermediate representation (IR),
compile your source files with - i po as follows:

pronmpt >i cpc -ipo -c a.cpp b.cpp c.cpp

This produces a. 0, b. 0, and c. 0 object files. These files contain Intel compiler IR corresponding to the
compiled source files a. cpp, b. cpp, and c. cpp. Using - C to stop compilation after generating . 0 files
is required.

You can now optimize interprocedurally by adding - i po to your link command line. The following
example produces an executable named app:

pronpt >i cpc -oapp -ipo a.0 b.o c.o

This command invokes the compiler on the objects containing IR and creates a new list of object(s) to be
linked. The command then calls GCC | d to link the specified object files and produce app, as specified by
the - 0 option. IPO is applied only to the object files that contain IR; otherwise the object file passes to link
stage.

f)Note

For the above step, you can use the Xi | d tool instead of i cpc.
The two steps described above can be combined, as shown in the following:

prompt >i cpc -ipo -oapp a.f b.f c.f
Generating Multiple IPO Object Files

For the most part, [PO generates a single object file for the link-time compilation. This can be clumsy for
very large applications, perhaps even making it impossible to use - i po on the application. The compiler
provides two ways to avoid this problem. The first way is a size-based heuristic, which automatically
causes the compiler to generate multiple object files for large link-time compilations. The second way is
using one of two explicit command line controls that tell the compiler to do multi-object IPO:

e -i poN, where N indicates the number of object files to generate.
* -ipo_separ at e, which tells the compiler to generate a separate IPO object file for each source
file.

These options are alternatives to the - i po option, that is, they indicate an IPO compilation. Explicitly
requesting a multi-object [PO compilation turns the size-based heuristic off.

The number of files generated by the link-time compilation is invisible unless either the -i po_c or -
i po_S option is used. In this case the compiler appends a number to the file name. For example, consider
this example:

pronpt >i cpc -ipo_separate -ipo_c a.o b.o c.o

123

Intel® C++ Compiler for Linux* Systems User's Guide

Here, a. 0, b. 0, and c. 0 all contain IR, so the compiler will generate i po_out . 0, i po_out 1. o,
i po_out?2.o0,andi po_out 3. 0.

The first object file contains global symbols. The other object files correspond to the source files.
This naming convention is also applied to user-specified names. For example:

pronpt >i cpc -ipo_separate -ipo_c -0 appl.o a.o b.o c.o

This will generate appl . o, appl 1. o, appl 2. 0, and appl 3. o.

Capturing Intermediate Outputs of IPO

The - i po_c and - i po_S options are useful either for analyzing the effects of IPO, or when using IPO on
modules that do not make up a complete program.

Use the - i po_c option to optimize across files and produce an object file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized object file.
The default name for this file is i po_out . 0. You can use the - 0 option to specify a different name. For
example:

prompt >i cpc -tpp6 -ipo_c -ofilenane a.cpp b.cpp c.cpp

Use the - i po_S option to optimize across files and produce an assembly file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized assembly
file. The default name for this file is i po_out . S. You can use the - 0 option to specify a different name.
For example:

prompt >i cpc -tpp6 -ipo_S -ofilenane a.cpp b.cpp c.cpp

The - i po_c and - i po_S options generate multiple outputs if multi-object IPO is being used. The name
of the first file is taken from the value of the - 0 option. The name of subsequent files is derived from this

file by appending a numeric value to the file name. For example, if the first object file is named f 00. 0, the
second object file will be named f 001. 0.

The compiler generates a message indicating the name of each object or assembly file it is generating.
These files can be added to the real link step to build the final application.

Creating a Multifile IPO Executable Using xild

Use the Intel linker, Xi | d, instead of step 2 in Command Line for Creating an IPO Executable. The xi | d
linker performs the following steps:

1. Invokes the compiler to perform IPO if objects containing | R are found.
2. Invokes GCC linker, | d, to link the application.

124

Volume II: Optimizing Applications

The command-line syntax for Xi | d is the same as that of the GCC linker:
pronmpt >xi | d [<options>] <LINK conmmandl i ne>
where:

* [<options>] (optional) may include any GCC linker options or options supported only by Xi | d.
* <Ll NK_conmandl i ne> is your linker command line containing a set of valid arguments to the | d.

To create app using IPO, use the option - of i | ename as shown in the following example:
pronmpt>xild -oapp a.0 b.o c.o

Xi | d calls the compiler to perform IPO for objects containing | R and creates a new list of object(s) to be
linked. Then xi | d calls | d to link the object files that are specified in the new list and produce app.

]
</ Note

The - i po option can reorder object files and linker arguments on the command line. Therefore, if your
program relies on a precise order of arguments on the command line, - i po can affect the behavior of your
program.

The Xi | d command supports the - i po, -i poN, and - i po_separ at e options.
Usage Rules
You must use the Intel linker Xi | d to link your application if:

* Your source files were compiled with the - i po option
e You normally would invoke the GCC linker (I d) to link your application.

The xild Options

The additional options supported by Xi | d may be used to examine the results of IPO. These options are
described in the following table.

-gipo_fa[file.s] Produces an assembly listing for the IPO compilation. You can
specify an optional name for the listing file, or a directory (with
the backslash) in which to place the file. The default listing
nameisi po_out.s.

-qi po_fo[file.o] Produces an object file for the IPO compilation. You can
specify an optional name for the object file, or a directory (with
the backslash) in which to place the file. The default object file
name is i po_out . o.

-i po_f code-asm Adds code bytes to the assembly listing.

-i po_fsource-asm Adds high-level source code to the assembly listing.

125

Intel® C++ Compiler for Linux* Systems User's Guide

-i po_fverbose-asm Enables and disables, respectively, inserting comments
-i po_f nover bose- asm| containing version and options used in the assembly listing for
xild.

If the xi | d invocation leads to an IPO multi-object compilation (either because the application is big, or
because the user explicity asked for multiple objects), the first . s file takes its name from the - i po_f a
option. The compiler derives the names of subsequent . S files by appending a number to the name, for
example, f 00. s and f 001. s for - qi po_f af 00. s. The same is true for the - gi po_f o0 option.

Code Layout and Multi-Object IPO

One of the optimizations performed during an IPO compilation is code layout. [PO analysis determines a
layout order for all of the routines for which it has IR. If a single object is being generated, the compiler
generates the layout simply by compiling the routines in the desired order.

For a multi-object IPO compilation, the compiler must tell the linker about the desired order. The compiler
first puts each routine in a named text section (the first routine in . t ext 00001, the second in

.t ext 00002, and so forth). It then generates a linker script that tells the linker to first link contributions
from . t ext 00001, then . t ext 00002. This happens transparently when the same invocation is used for
both the link-time compilation and the final link.

However, the linker script must be taken into account by the user if - i po_c or - i po_Sis used. With
these switches, the IPO compilation and actual link are done by different invocations. When this occurs, the
compiler will issue an informational message indicating that it is generating an explicit linker script,

i po_l ayout. script.

Wheni po_| ayout . scri pt is generated, the typical response is to modify your link command to use
this script:

--script=ipo_layout.script

If your application already requires a custom linker script, you can place the necessary contents of

i po_l ayout. scri pt in your script. The layout-specific content of i po_| ayout . scri pt is at the
beginning of the description of the . t ext section. For example, to describe the layout order for 12
routines:

.text:

(.text00001) *(.text00002) *(.text00003) *(.text00004) *(.text00005)
(.text00006) *(.text00007) *(.text00008) *(.text00009) *(.text00010)
(.t

* %kt

ext 00011) *(.text 00012)

For applications that already require a linker script, you can add this section of the . t ext section
description to the customized linker script. If you add these lines to your linker script, it is desirable to add
additional entries to account for future development. This is harmless, since the “*(...)” syntax makes these
contributions optional.

If you choose to not use the linker script your application will still build, but the layout order will be
random. This may have an adverse affect on application performance, particularly for large applications.

126

Volume II: Optimizing Applications

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To force the compiler to
produce real object files instead of "mock" ones with IPO, you must specify - i po_obj in addition to -

i po.
Use of - i po_obj is necessary under the following conditions:

* The objects produced by the compilation phase of - i po will be placed in a static library without the
use of Xi ar . The compiler does not support multifile IPO for static libraries, so all static libraries are
passed to the linker. Linking with a static library that contains "mock" object files will result in
linkage errors because the objects do not contain real code or data. Specifying - i po_obj causes the
compiler to generate object files that can be used in static libraries.

* Alternatively, if you create the static library using Xi ar , then the resulting static library will work as
a normal library.

* The objects produced by the compilation phase of - i po might be linked without the - i po option
and without the use of xi ar .

* You want to generate an assembly listing for each source file (using - S) while compiling with - i po.
If you use - i po with - S, but without - i po_obj , the compiler issues a warning and an empty
assembly file is produced for each compiled source file.

Implementing the .il Files with Version Numbers

An TPO compilation consists of two parts: the compile phase and the link phase. In the compile phase, the
compiler produces an intermediate language (IL) version of the users’ code. In the link phase, the compiler
reads the IL and completes the compilation, producing a real object file or executable.

Generally, different compiler versions produce IL based on different definitions, and therefore the ILs from
different compilations can be incompatible. Intel® C++ Compiler assigns a unique version number with
each compiler’s IL definition. If a compiler attempts to read IL in a file with a version number other than its
own, the compilation proceeds, but the IL is discarded and not used in the compilation. The compiler then
issues a warning message about an incompatible IL detected and discarded.

IL in Libraries: More Optimizations

The IL produced by the Intel compiler is stored in a file with a . i | suffix. Then the . i | file is placed in
the library. If this library is used in an IPO compilation invoked with the same compiler as produced the IL
for the library, the compiler can extract the . i | file from the library and use it to optimize the program.
For example, it is possible to inline functions defined in the libraries into your source code.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of objects, the library
manager will insert the objects into a named library to be used in subsequent link steps.

prompt>xiar cru user.a a.o b.o

The above command creates a library named user . a that contains the a. 0 and b. 0 objects.

127

Intel® C++ Compiler for Linux* Systems User's Guide

If, however, the objects have been created using - i po - C, then the objects will not contain a valid object
but only the intermediate representation (I R) for that object file. For example:

pronmpt >icpc -ipo -c a.cpp b.cpp

will produce a. 0 and b. 0 that only contains | Rto be used in a link time compilation. The library manager
will not allow these to be inserted in a library.

In this case, you must use the Intel library tool Xi | d - ar . This program will invoke the compiler on the
I Rsaved in the object file and generate a valid object that can be inserted in a library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xi | d.

Using -ip with -Qoption Specifiers
You can adjust the Intel® C++ Compiler's optimization for a particular application by experimenting with
memory and interprocedural optimizations. Enter the - Qopt i on option with the applicable keywords to

select particular inline expansions and loop optimizations. The option must be entered with an - i p or -
i po specification, as follows:

-i p[-Qoption,tool, opts]

where t 0ol is C++(c) and opt s are - Qopt i on specifiers (see below). Also refer to Criteria for Inline
Function Expansion to see how these specifiers may affect the inlining heuristics of the compiler.

-Qoption Specifiers
If you specify - i p or - i po without any - Qopt i on qualification, the compiler does the following:
* Expands functions in line
* Propagates constant arguments
e Passes arguments in registers

¢ Monitors module-level static variables

You can refine interprocedural optimizations by using the following - Qopt i on specifiers. To have an
effect, the - Qopt i on option must be entered with either - i p or - i po also specified, as in this example:

-ip -Qoption,f,ip_specifier

128

Volume II: Optimizing Applications

where i p_speci fi er isone of the - Qopt i on specifiers described in the following table:

-Qoption Specifiers Description

-ip_args_in_regs=0 Disables the passing of arguments in registers. By
default, external functions can pass arguments in
registers when called locally. Normally, only static
functions can pass arguments in registers, provided
the address of the function is not taken and the
function does not use a variable number of
arguments.

-i p_ni nl _max_st at s=n Sets the valid number of intermediate language
statements for a function that is expanded in line. The
number N is a positive integer. The number of
intermediate language statements usually exceeds the
actual number of source language statements. The
default value for n is 230.

-ip_ninl _mn_stats=n Sets the valid mi n number of intermediate language
statements for a function that is expanded in line. The
number N is a positive integer. The default value for
ip_ninl_mn_statsis:

IA-32 compiler:i p_ninl _nmn_stats=7
Itanium® compiler:i p_ninl _mn_stats =15

-i p_ninl _max_t ot al _st at s=n | Sets the maximum increase in size of a function,
measured in intermediate language statements, due to
inlining. The number n is a positive integer. The
default value for n is 2000.

The following command activates procedural and interprocedural optimizations on Sour ce. cpp and sets
the maximum increase in the number of intermediate language statements to five for each function:

prompt >i cpc -ip -Qoption,c,-ip_ninl_max_stats=5 source.cpp

129

Intel® C++ Compiler for Linux* Systems User's Guide

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options shown in the
following summary:

Option Description

-ip_no_inlining |Thisoption is only useful if- i p is also specified. In this case, -

i p_no_i nl i ni ng disables inlining that would result from the -
i p interprocedural optimizations, but has no effect on other
interprocedural optimizations.

-i p_no_pi nlini ng | Disables partial inlining; can be used if - i p or - i po[val ue] is
also specified.

Criteria for Inline Function Expansion

Once the criteria are met, the compiler picks the routines whose inline expansion will provide the greatest
benefit to program performance. The inlining heuristics used by the compiler differ, based on whether or
not you use profile-guided optimizations (- pr of _use). When you use profile-guided optimizations with
-ipor-ipo[val ue], the compiler uses the following heuristics:

e The default heuristic focuses on the most frequently executed call sites, based on the profile
information gathered for the program.
* By default, the compiler will not inline functions with more than 230 intermediate statements. You
can change this value by specifying the option - Qopt i on, c, -
i p_ni nl _max_st at s=new_val ue. Note: there is a higher limit for functions declared by the
userasinlineor__inline.
* The default inline heuristic will stop inlining when direct recursion is detected.
* The default heuristic will always inline very small functions that meet the minimum inline criteria.
* Default for Itanium®-based applications: i p_ni nl _ni n_st at s=15.
* Default for [A-32 applications: i p_ni nl _m n_st at s=7. This limit can be
modified with the option - Qopti on, ¢, -i p_ni nl _m n_st at s=new_val ue.

If you do not use profile-guided optimizations with - i p or - i po[val ue], the compiler uses less
aggressive inlining heuristics:

* Inline a function if the inline expansion will not increase the size of the final program.
* Inline a function if it is declared with the i nl i ne or __i nl i ne keywords.

130

Volume II: Optimizing Applications

Profile-guided Optimizations

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most frequently
executed. By knowing these areas, the compiler is able to use feedback from a previous compilation to be
more selective in optimizing the application. For example, the use of PGO often enables the compiler to
make better decisions about function inlining, thereby increasing the effectiveness of interprocedural
optimizations.

Instrumented Program

Profile-guided optimization creates an instrumented program from your source code and special code from
the compiler. Each time this instrumented code is executed, the instrumented program generates a dynamic
information file. When you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to optimize the execution of
the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of IPO and PGO vary.
This is due to each program having a different profile and different opportunities for optimizations. The
guidelines provided here help you determine if you can benefit by using IPO and PGO.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to predict at compile
time. An example is code that is heavy with error-checking in which the error conditions are false most of
the time. The "cold" error-handling code can be placed such that the branch is rarely mispredicted.
Eliminating the interleaving of "hot" and "cold" code improves instruction cache behavior. For example,
the use of PGO often enables the compiler to make better decisions about function inlining, thereby
increasing the effectiveness of interprocedural optimizations.

PGO Phases
The PGO methodology requires three phases:

* Phase 1: Instrumentation compilation and linking with - pr of _gen[X]
* Phase 2: Instrumented execution by running the executable
* Phase 3: Feedback compilation with - pr of _use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your code are the
most heavily used. If the data set provided to your program is very consistent and it elicits a similar
behavior on every execution, then PGO can probably help optimize your program execution. However,
different data sets can elicit different algorithms to be called. This can cause the behavior of your program
to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide noticeable
benefits. You have to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles.

When using - pr of _gen[x] with the X qualifier, extra source position is collected which enables code
coverage tools, such as the Intel® C++ Compiler Code-coverage Tool. Without such tools, - pr of _genx
does not provide better optimization and may slow parallel compile times.

131

Intel® C++ Compiler for Linux* Systems User's Guide

Basic PGO Options

Option Description

- prof _gen[x] | Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution.

- prof _use Instructs the compiler to produce a profile-optimized executable and
merges available dynamic information (. dyn) files into a pgopt i . dpi
file.

In cases where your code behavior differs greatly between executions, you have to ensure that the benefit
of the profile information is worth the effort required to maintain up-to-date profiles. In the basic profile-
guided optimization, the following options are used in the phases of the PGO:

Generating Instrumented Code

The - pr of _gen[x] option instruments the program for profiling to get the execution count of each basic
block. It is used in Phase 1 of the PGO to instruct the compiler to produce instrumented code in your object
files in preparation for instrumented execution. Parallel make is automatically supported for - pr of _genx
compilations.

Generating a Profile-optimized Executable

The - pr of _use option is used in Phase 3 of the PGO to instruct the compiler to produce a profile-
optimized executable and merges available dynamic-information (. dyn) files into a pgopti . dpi file.

f)Note

The dynamic-information files are produced in Phase 2 when you run the instrumented executable.

If you perform multiple executions of the instrumented program, - pr of _use merges the dynamic-
information files again and overwrites the previous pgopt i . dpi file.

Disabling Function Splitting (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by - pr of _use in Phase 3 to
improve code locality by splitting routines into different sections: one section to contain the cold or very
infrequently executed code and one section to contain the rest of the code (hot code).

Youcanuse - f nspl i t- to disable function splitting for the following reasons:

* Most importantly, to get improved debugging capability. In the debug symbol table, it is difficult to
represent a split routine, that is, a routine with some of its code in the hot code section and some of
its code in the cold code section.

* The-fnsplit- option disables the splitting within a routine but enables function grouping, an
optimization in which entire routines are placed either in the cold code section or the hot code
section. Function grouping does not degrade debugging capability.

* Another reason can arise when the profile data does not represent the actual program behavior, that
is, when the routine is actually used frequently rather than infrequently.

132

Volume II: Optimizing Applications

Example of Profile-guided Optimization
The three basic phases of PGO are:

* Instrumentation Compilation and Linking
* Instrumented Execution
* Feedback Compilation

Instrumentation Compilation and Linking

Use - pr of _gen to produce an executable with instrumented information. Use also the - pr of _di r
option as recommended for most programs, especially if the application includes the source files located in
multiple directories. - pr of _di r ensures that the profile information is generated in one consistent place.
For example:

pronpt >i cpc -prof _gen -prof _dir /profdata -c al.cpp a2.cpp a3.cpp
pronpt >i cpc al.o a2.0 a3.0

In place of the second command, you could use the linker directly to produce the instrumented program.

Instrumented Execution
Run your instrumented program with a representative set of data to create a dynamic information file.
pronpt >./ a. out

The resulting dynamic information file has a unique name and . dyn suffix every time you run a. 0. The
instrumented file helps predict how the program runs with a particular set of data. You can run the program
more than once with different input data.

Feedback Compilation

Compile and link the source files with - pr of _use to use the dynamic information to optimize your
program according to its profile:

prompt >i cpc -prof_use -ipo al.cpp a2.cpp a3.cpp

Besides the optimization, the compiler produces a pgopt i . dpi file. You typically specify the default
optimizations (- O2) for phase 1, and specify more advanced optimizations with - i po for phase 3. This
example used - O2 in phase 1 and - Q2 - i po in phase 3.

ff—t_)Note

The compiler ignores the - i po options with - pr of _gen[x] . With the x qualifier, extra information is
gathered.

133

Intel® C++ Compiler for Linux* Systems User's Guide

PGO Environment Variables

The following table describes environment values to determine the directory to store dynamic information
files or whether to overwrite pgopt i . dpi . Refer to your operating system documentation for instructions
on how to specify environment values.

Profile-guided Optimization Environment Variables

Variable Description

PROF_DI R Specifies the directory in which dynamic information files are
created. This variable applies to all three phases of the profiling
process.

PROF_NO_CLOBBER | Alters the feedback compilation phase slightly. By default, during the
feedback compilation phase, the compiler merges the data from all
dynamic information files and creates a new pgopt i . dpi file if

. dyn files are newer than an existing pgopt i . dpi file. When this
variable is set, the compiler does not overwrite the existing

pgopti . dpi file. Instead, the compiler issues a warning and you
must remove the pgopt i . dpi file if you want to use additional
dynamic information files.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file to look up profile summary information. By default, this
prevents you from:

* using the profile summary file (. dpi) if you move your application sources

* sharing the profile summary file with another user who is building identical application sources that
are located in a different directory

Source Relocation

To enable the movement of application sources, as well as the sharing of profile summary files, use
pr of mer ge with the - src_ol d and - sr c_newoptions. For example:

pronpt >prof merge -prof _dir <pl> -src_old <p2> -src_new <p3>
where:

* <pl> is the full path to dynamic information file (. dpi).
* <p2>is the old full path to source files.
e <p3>is the new full path to source files.

This command will read the pgopt i . dpi file. For each function represented in the pgopt i . dpi file,
whose source path begins with the <p2> prefix, pr of mer ge replaces that prefix with <p3>. The
pgopti . dpi file is updated with the new source path information.

You can execute pr of mer ge more than once on a given pgopt i . dpi file. You may need to do this if
the source files are located in multiple directories. For example:

134

Volume II: Optimizing Applications

pronmpt >prof merge -prof _dir -src_old /src/prog_1 -src_new /src/prog_2
pronpt >prof merge -prof _dir -src_old /proj_1 -src_new /proj_2

In the values specified for - sr ¢_ol d and - sr c_new, uppercase and lowercase characters are treated as
identical. Likewise, forward slash (/) and backward slash (\) characters are treated as identical.

Because the source relocation feature of pr of mer ge modifies the pgopt i . dpi file, you may wish to
make a backup copy of the file prior to performing the source relocation.

PGO API Support Overview

Profile Information Generation Support lets you control of the generation of profile information during the
instrumented execution phase of profile-guided optimizations. Normally, profile information is generated
by an instrumented application when it terminates by calling the standard exi t () function. The functions
described in this section may be necessary in assuring that profile information is generated in the following
situations:

* when the instrumented application exits using a non-standard exit routine
* when instrumented application is a non-terminating application where exi t () is never called

* when you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #i ncl ude <pgouser. h> at
the top of any source file where the functions may be used.

The compiler sets a def i ne for PGO_INSTRUMENT when you compile with either - pr of _gen or -
pr of _genx.

Dumping Profile Information
voi d _PGOPTI _Prof Dunp(void);
Description

This function dumps the profile information collected by the instrumented application. The profile
information is recorded in a . dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application.
Normally, PGOPTI _Pr of _Dunp should be called just once. It is also possible to use this function in
conjunction with _PGOPTI _Pr of _Reset () to generate multiple . dyn files (presumably from multiple
sets of input data).

135

Intel® C++ Compiler for Linux* Systems User's Guide

Example

/1 Selectively collect profile information for the portion
/1 of the application involved in processing input data.

i nput _data = get _input_data();
whi | e(i nput _dat a)
_PGOPTI _Prof _Reset();
process_dat a(i nput _data);

_PGOPTI _Prof _Dump();
i nput _data = get_input_data();

Resetting the Dynamic Profile Counters
voi d _PGOPTI _Prof Reset(void);
Description
This function resets the dynamic profile counters.
Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of the
instrumented application. See the example under PGOPTI _Pr of _Dunp() .

Dumping and Resetting Profile Information
void PGOPTI _Prof Dunmp_And_Reset (void);
Description

This function may be called more than once. Each call will dump the profile information to a new . dyn
file. The dynamic profile counters are then reset, and execution of the instrumented application continues.

Recommended Usage

Periodic calls to this function allow a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided optimization. The
direct use of this function allows your application to control precisely when the profile information is
generated.

136

Volume II: Optimizing Applications

Interval Profile Dumping

void _PGOPTI _Set Interval Prof Dump(int interval);

Description

This function activates Interval Profile Dumping and sets the approximate frequency at which dumps will
occur. Thei nt er val parameter is measured in milliseconds and specifies the time interval at which
profile dumping will occur. For example, ifi nt er val is set to 5000, then a profile dump and reset will
occur approximately every 5 seconds. The interval is approximate because the time check controlling the
dump and reset is only performed upon entry to any instrumented function in your application.

]
Z_4Note

* Setting i nt erval to zero or a negative number will disable interval profile dumping.

Setting i nt er val to a very small value may cause the instrumented application to spend nearly all
of its time dumping profile information. Be sure to seti nt er val to a large enough value so that the
application can perform actual work and collect substantial profile information.

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping. Note
that an alternative method of initiating Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_I NTERVAL, to the desired i nt er val value prior to starting the application. The intention
of Interval Profile Dumping is to allow a non-terminating application to be profiled with minimal changes
to the application source code.

Environment Variable
PROF_DUMP_| NTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented application.
See the Recommended Usage of PGOPTI _Set I nterval _Prof Dunp for more information.

Code-coverage Tool

The Intel® C++ Compiler Code-coverage Tool can be used for both IA-32 and Itanium® architectures in a
number of ways to improve development efficiency, reduce defects, and increase application performance.
The major features of the Intel compiler Code-coverage Tool are:

* Visual presentation of the application's code coverage information with a code-coverage coloring
scheme

» Display of the dynamic execution counts of each basic block of the application

» Differential coverage or comparison of the profiles of the application's two runs

137

Intel® C++ Compiler for Linux* Systems User's Guide

Command-line Syntax
The syntax for this tool is as follows:
codecov [-codecov_option]

where - codecov_opt i on is a tool option. If you do not use any option, the tool will provide the top-
level code coverage for your whole program.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description Default

-hel p Prints all the options of the code-coverage tool.

-spi file | Setsthe path name of the static profile information file pgopti . spi
. Spi .

-dpi file | Setsthe path name of the dynamic profile information file pgopti . dpi
.dpi.

-prj Sets the project name.

-counts Generates dynamic execution counts.

-nopartial | Treats partially covered code as fully covered code.

-conp Sets the filename that contains the list of files of interest.

-ref Finds the differential coverage with respect to ref dpi_file.

- demang Demangles both function names and their arguments.

- mane Sets the name of the web-page owner.

- maddr Sets the email address of the web-page owner.

- bcol or Sets the html color name or code of the uncovered blocks. | #f fff 99

-fcol or Sets the html color name or code of the uncovered #ffccece
functions.

- pcol or Sets the html color name or code of the partially covered #f af ad2
code.

-ccol or Sets the html color name or code of the covered code. #HEEEFES

- ucol or Sets the html color name or code of the unknown code. #HEEEFES

138

Volume II: Optimizing Applications

Visual Presentation of the Application's Code Coverage

Based on the profile information collected from running the instrumented binaries when testing an
application, the Intel compiler creates HTML files using a code-coverage tool. These HTML files indicate
portions of the source code that were or were not exercised by the tests. When applied to the profile of the
performance workloads, the code-coverage information shows how well the training workload covers the
application's critical code. High coverage of performance-critical modules is essential to taking full
advantage of profile-guided optimizations.

The code-coverage tool can create two levels of coverage:

* Top level -- for a group of selected modules
* Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected. The following
options are provided:

* You can select the modules of interest
* For the selected modules, the tool generates a list with their coverage information. The information
includes the total number of functions and blocks in a module and the portions that were covered.

* By clicking on the title of columns in the reported tables, the lists may be sorted in ascending or
descending order based on:

* basic block coverage
» function coverage
e function name.

The example that follows shows a top-level coverage summary for a project. By clicking on a module name
(for example, SAMPLE. C), the browser will display the coverage source view of that particular module.

=J Intel® Compilets code-cowerage information for Sanpke_Project - Microsolt nternet Explores & -_, =10] =j
Ble Bt Yew Faworkes Took Hep
sk v = D [0 A Dtewch Wfrotes SiHede 3| - 281 - 5]
suskdnmss [] D liToverageljai|comple | saiple sargle SICO0E_CONERALE. HTFL | e
=
gl Fsvareted by Intail Gompiars Coverage Summary of Sample_Project
il oo reag fos'
Filus Functions Blocks
total cvnd wncvrd curg® tedal ownd uncurd | curg total oend wecurd curg®
3 1 1 BRET 19§ 14 23 1M XN L= I
i |
. . L] L . =
Covered Filez in Sample_Project Uncoyvered Filez in Sample_Project
Functlans Blacks Functinns Blncks
Hanes Hanh
tatal curd urg®: iotal oerd oergls intal indal
SEMPLEL G 7 T a8 a0 20 4m SAMPIE] G 7 =0
SAWPLEC 5 4 @00 34 23 ETEA
-- intel garansted by Jntald ‘WabePaga Senan
s - gl o Lokel
intgl, seversted by lnial@ Sompiers Web-Page Qunn
ardicorarage el Ll
& =l
& [T R vy Compuer &

139

Intel® C++ Compiler for Linux* Systems User's Guide

Browsing the Frames

The coverage tool creates frames that facilitate browsing through the code to identify uncovered code. The
top frame displays the list of uncovered functions while the bottom frame displays the list of covered
functions. For uncovered functions, the total number of basic blocks of each function is also displayed. For
covered functions, both the total number of blocks and the number of covered blocks as well as their ratio
(that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function were
covered. The block coverage rate of that function is thus 66.67%. These lists can be sorted based on the
coverage rate, number of blocks, or function names. Function names are linked to the position in source
view where the function body starts. So, just by one click, the user can see the least-covered function in the
list and by another click the browser displays the body of the function. The user can then scroll down in the
source view and browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as well as the
list of covered functions. The lists are reported in two distinct frames that provide easy navigation of the
source code. The lists can be sorted based on:

* the number of blocks within uncovered functions
» the block coverage in the case of covered functions
* the function names.

This example shows the coverage source view of SAMPLE. C.

‘H [rkal & Compiless code-coversge information for O COVERAGE | IL32 COMPILER) SAMPLE\ SASFLES\ SASFLE, - Miorosolt Tntermet Explope =t |
e [wen rovomes Iok pen E3
bk - =+ - @ A Doenon [Hreecie Freta]34 S B - |
sigress [) Dl ier agliatyecsiiersaspie e By Conde Converingelll_COVERACE [ALZ COMPILEN_SAMPLE SAVILES_SAMLE_CHTML x|
2y wold £i (iRt @) =
. 109 4
£} (2 intgl 11) LE Lfnome) 1] ¢ 03] 0
i2) princt |1 or D\Rr"):
E
urnvared funciinne b !
14} 1
15)
blpcks funaction 16) wold £ {imT a)
B g® 1T
18) AT jfno=e 1) || £ moe= O3] O
19y prinef (M1 oe O\ EM):

203 1
21]

23) wold g1 (int)
4 o

=l 24
;l 2Ry ine 4, k;
covered funclions 25
2T foe (f = O 3 « m: 3 4% [
&) E e
COYREFIR functimn 20y 1 —
8467 (8 I2 0
313
83.33 (s} fl 329 wold ¢ CiRL)
w00 CRA ol EXT |
100,00 (15/15) maie 3 iae b,k
35y
35 for () = 0:) <omp § e O
37 El e
38 1
ELLN
;_l ETy) -
il I [S conpider "

140

Volume II: Optimizing Applications

Setting the Coloring Scheme for the Code Coverage
The tool provides a visible coloring distinction of the following coverage categories:

e covered code

e uncovered basic blocks
e uncovered functions

* partially covered code
e unknown.

The default colors that the tool uses for presenting the coverage information are shown in the table that
follows.

This color Means

Covered code | The portion of code colored in this color was exercised by the tests. The
default color can be overridden with the - ccol or option.

Uncovered Basic blocks that are colored in this color were not exercised by any of the
basic block tests. They were, however, within functions that were executed during the
tests. The default color can be overridden with the - bcol or option.

Uncovered Functions that are colored in this color were never called during the tests. The
function default color can be overridden with the - f col or option.
Partially More than one basic block was generated for the code at this position. Some

covered code | of the blocks were covered while some were not. The default color can be
overridden with the - pcol or option.

Unknown No code was generated for this source line. Most probably, the source at this
position is a comment, a header-file inclusion, or a variable declaration. The
default color can be overridden with the - ucol or option.

The default colors can be customized to be any valid HTML color by using the options mentioned for each
coverage category in the preceding table.

For code-coverage colored presentation, the coverage tool uses the following heuristic. Source characters
are scanned until reaching a position in the source that is indicated by the profile information as the
beginning of a basic block. If the profile information for that basic block indicates that a coverage category
changes, then the tool changes the color corresponding to the coverage condition of that portion of the
code, and the coverage tool inserts the appropriate color change in the HTML files.

BNote

You need to interpret the colors in the context of the code. For instance, comment lines that follow a basic
block that was never executed would be colored in the same color as the uncovered blocks. Another
example is the closing brackets in C/C++ applications.

141

Intel® C++ Compiler for Linux* Systems User's Guide

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel compiler Code-coverage Tool is efficient coverage analysis of an
application' s subset of modules. This analysis is accomplished based on the selected option - conp of the
tool's execution.

You can generate the profile information for the whole application, or a subset of it, and then divide the
covered modules into different components and use the coverage tool to obtain the coverage information of
each individual component. If only a subset of the application modules is compiled with the - pr of _genx
option, then the coverage information is generated only for those modules that are involved with this
compiler option, thus avoiding the overhead incurred for profile generation of other modules.

To specify the modules of interest, use the tool's - conp option. This option takes the name of a file as its
argument. That file must be a text file that includes the name of modules or directories you would like to
analyze:

codecov -prj Project_Name -conp conmponentl

f.rj Note

Each line of the component file should include one, and only one, module name.

Any module of the application whose full path name has an occurrence of any of the names in the
component file will be selected for coverage analysis. For example, if a line of file conponent 1 contains
nodl. cpp, then all modules in the application that have such a name will be selected. The user can
specify a particular module by giving more specific path information. For instance, if the line contains

/ crpl/ nod1. cpp, then only those modules with the name nod1. cpp will be selected that are in a
directory named cnpl. If no component file is specified, then all files that have been compiled with -

pr of _genx are selected for coverage analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the application, providing useful
information for both coverage and performance tuning.

The coverage tool can be configured to generate information about dynamic execution counts. This
configuration requires the - count s option. The counts information is displayed under the code after a
sign precisely under the source position where the corresponding basic block begins. If more than one basic
block is generated for the code at a source position (macros, for example), then the total number of such
blocks and the number of the blocks that were executed are also displayed in front of the execution count.

In certain situations, it may be desirable to consider all the blocks generated for a single source position as
one entity. In such cases, it is necessary to assume that all blocks generated for one source position are
covered when at least one of the blocks is covered. This assumption can be configured with the -

noparti al option. When this option is specified, decision coverage is disabled, and the related statistics
are adjusted accordingly. The code lines 11 and 12 indicate that the pri nt f statement in line 12 was
covered. However, only one of the conditions in line 11 was ever true. With the - nopar ti al option, the
tool treats the partially covered code (like the code on line 11) as covered.

142

Volume II: Optimizing Applications

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's two runs: a reference run
and a new run identifying the code that is covered by the new run but not covered by the reference run.
This feature can be used to find the portion of the application’s code that is not covered by the application’s
tests but is executed when the application is run by a customer. It can also be used to find the incremental
coverage impact of newly added tests to an application’s test space.

The dynamic profile information of the reference run for differential coverage is specified by the - r ef
option, such as in the following command:

codecov -prj Project Nanme -dpi custoner.dpi -ref appTests. dpi
The coverage statistics of a differential-coverage run shows the percentage of the code that was exercised

on a new run but was missed in the reference run. In such cases, the coverage tool shows only the modules
that included the code that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly. The code that has the same
coverage property (covered or not covered) on both runs is considered as covered code. Otherwise, if the
new run indicates that the code was executed while in the reference run the code was not executed, then the
code is treated as uncovered. On the other hand, if the code is covered in the reference run but not covered
in the new run, the differential-coverage source view shows the code as covered.

Running for Differential Coverage
To run the Code-Coverage Tool on an application, developers must provide the following three items:

* The application sources
* The. SPI file generated by Intel Compilers when compiling the application for the instrumented
binaries through the - pr of _genx option
* The. DPI file generated by the Intel Compiler's pr of ner ge tool that result from merging the
dynamic profile information files *. DYNor the . DPI file generated implicitly by Intel Compilers,
when compiling the application with the - pr of _use option
Once the required files are available, the coverage tool may be launched from this command line:
codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi
The - spi and - dpi options specify the paths to the corresponding files.

The Code-coverage Tool also has the following additional options for generating a link at the bottom of
each HTML page to send an electronic message to a named contact by using -nmane and - maddr options.

codecov -prj Project_ Name -mane John_Snith -maddr js@onpany.com

143

Intel® C++ Compiler for Linux* Systems User's Guide

Test-prioritization Tool

The Intel® compiler Test-prioritization Tool enables profile-guided optimizations to select and prioritize
application tests based on prior execution profiles of the application. The tool offers a potential of
significant time saving in testing and developing large-scale applications where testing is the major
bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool lets you select and prioritize the tests that are most relevant for any subset of the application's
code. When certain modules of an application are changed, the Test-prioritization Tool suggests the tests
that are most probably affected by the change. The tool analyzes the profile data from previous runs of the
application, discovers the dependency between the application's components and its tests, and uses this
information to guide the process of testing.

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code coverage. The advantages
of the tool usage can be summarized as follows:

* Minimizing the number of tests that are required to achieve a given overall coverage for any subset of
the application: the tool defines the smallest subset of the application tests that achieve exactly the
same code coverage as the entire set of tests.

* Reducing the turn-around time of testing: instead of spending a long time on finding a possibly large
number of failures, the tool enables the users to quickly find a small number of tests that expose the
defects associated with regressions caused by a change set.

» Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal time based
on the data of the tests' execution time.

Command-line Syntax
The syntax for this tool is as follows:
tselect -dpi _list file

where - dpi _| i st is a required tool option that sets the path to the DPI list f i | e that contains the list of
the . dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description

-hel p Prints all the options of the test-prioritization tool.

-spi file Sets the path name of the static profile information file . Spi . Default
ispgopti . spi

-dpi _l'i st file |Setsthe path name of the file that contains the name of the dynamic
profile information (. dpi) files. Each line of the file should contain
one . dpi name optionally followed by its execution time. The name
must uniquely identify the test.

144

Volume II: Optimizing Applications

Option Description

-prof _dpi fil e | Setsthe path name of the output report file.

-comp Sets the filename that contains the list of files of interest.

-cutof f val ue | Terminates when the cumulative block coverage reaches val ue% of
pre-computed total coverage. val ue must be greater than 0.0 (for
example, 99.00). It may be set to 100.

- not ot al Does not pre-compute the total coverage.
-mntime Minimizes testing execution time. The execution time of each test must
be provided on the same line of dpi _| i st file after the test name in

dd: hh: mm ss format.

-verbose Generates more logging information about the program progress.

Usage Requirements
To run the Test-prioritization Tool on an application’s tests, the following files are required:

e The. spi file generated by the Intel compilers when compiling the application for the instrumented
binaries with the -pr of _genx option.

* The. dpi files generated by the Intel compiler pr of mer ge tool as a result of merging the dynamic
profile information . dyn files of each of the application tests. The user needs to apply the
pr of mer ge tool to all . dyn files that are generated for each individual test and name the resulting
. dpi in a fashion that uniquely identifies the test. The pr of mer ge tool merges all the . dyn files
that exist in the given directory.

BNote

It is very important that you make sure that unrelated . dyn files, oftentimes from previous runs or from
other tests, are not present in that directory. Otherwise, profile information will be based on invalid profile
data. This can negatively impact the performance of optimized code as well as generate misleading
coverage information.

BNote

For successful tool execution, you should:

* Name each test . dpi file so that the file names uniquely identify each test.

* Create a DPI list file: a text file that contains the names of all . dpi test files. The name of this file
serves as an input for the test-prioritization tool execution command. Each line of the DPI list file
should include one, and only one, . dpi file name. The name can optionally be followed by the
duration of the execution time for a corresponding test in the dd: hh: mm ss format.

For example: Test 1. dpi 00: 00: 60: 35 informs that Test 1 lasted 0 days, 0 hours, 60 minutes and
35 seconds. The execution time is optional. However, if it is not provided, then the tool will not prioritize
the test for minimizing execution time. It will prioritize to minimize the number of tests only.

145

Intel® C++ Compiler for Linux* Systems User's Guide

Usage Model

The chart that follows presents the Test-prioritization Tool usage model.

Step 1:

c ile with
ENE G Keep the static profile information

.spi for coverage analysis and PGT

prof_gen:

Instrurmented Executables
D app.exe

L
~
Step 2.1 Step 2.n
Run instrumented executables on Run instrumented executables on
Test 1 Test_n
Merge Dynamic Profile Inforration Merge Dynamic Profile Information
dyn files dyn files
v é
Test_1.dpi Test_2.dpi Test_. Test_n.dpi

Run Test Priaritizer

—N 7

‘ Step 3:

Here are the steps for a simple example (Wy App. ¢) for IA-32 systems.
1. Set

PROF_DI R=/ nyApp/ prof _dir

2. Issue command

prompt >i cpc - prof_genx nyApp.c

This command compiles the program and generates an instrumented binary as well as the corresponding
static profile information pgopt i . spi .

3. Issue command
rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.

146

Volume II: Optimizing Applications

4. Issue command
nyApp < datal

Invocation of this command runs the instrumented application and generates one or more new dynamic
profile information files that have an extension . dyn in the directory specified by PROF_DI R

5. Issue command
prof merge -prof_dpi Test1. dpi

At this step, the pr of mer ge tool merges all the . dyn files into one file (Test 1. dpi) that represents the
total profile information of the application on Test 1.

6. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.
7. Issue command

nyApp < data2

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension . dyn in the directory specified by PROF_DI R

8. Issue command
prof merge -prof _dpi Test 2. dpi

At this step, the pr of nmer ge tool merges all the . dyn files into one file (Test 2. dpi) that represents the
total profile information of the application on Test 2.

9. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.
10. Issue command

nyApp < data3

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension . dyn in the directory specified by PROF_DI R

11. Issue Command

prof merge -prof_dpi Test 3. dpi

147

Intel® C++ Compiler for Linux* Systems User's Guide

At this step, the pr of mer ge tool merges all the . dyn files into one file (Test 3. dpi) that represents the
total profile information of the application on Test 3.

12. Create a file named t est s_| i st with three lines. The first line contains Test 1. dpi , the second
line contains Test 2. dpi , and the third line contains Test 3. dpi .

When these items are available, the Test-prioritization Tool may be launched from the command line in
PROF_DI Rdirectory as described in the following examples. In all examples, the discussion references the
same set of data.

Example 1 Minimizing the Number of Tests
tselect -dpi_list tests_ |list -spi pgopti.sp
where the -spi option specifies the path to the . spi file.

Here is a sample output from this run of the Test-prioritization Tool:

Total nunber of tests = 3
Total bl ock coverage ~ 52.17
Total function coverage ~ 50.00

Num | %RatCvrg | %BIkCvrg | %FncCvrg | Test Name @ Options

1 87.50 45.65 37.50 Test3.dpi

2 100.00 52.17 50.00 Test2.dpi

In this example, the Test-prioritization Tool has provided the following information:

* By running all three tests, we achieve 52.17% block coverage and 50.00% function coverage.

* Test 3 covers 45.65% of the basic blocks of the application, which is 87.50% of the total block
coverage that can be achieved from all three tests.

* By adding Test 2, we achieve a cumulative block coverage of 52.17% or 100% of the total block
coverage of Test 1, Test 2, and Test 3.

* Elimination of Test 1 has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in the t est s_| i st file:

Test 1. dpi 00: 00: 60: 35
Test 2. dpi 00: 00: 10: 15
Test 3. dpi 00: 00: 30: 45

The following command executes the Test-prioritization Tool to minimize the execution time with the -
m nti ne option:

tselect -dpi _list tests list -spi pgopti.spi -mntine

148

Volume II: Optimizing Applications

Here is a sample output:

Total nunber of tests = 3

Total bl ock coverage ~ 52.17
Total function coverage ~ 50.00
Total execution tine = 1:41:35

num | elapsedTime | %RatCvrg | %BIkCvrg | %FncCvrg | Test Name @ Options

1 10:15 75.00 39.13 25.00 Test2.dpi

2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would require one hour, 45 minutes,
and 35 seconds, while the selected tests would achieve the same total block coverage in only 41 minutes.

BNote

The order of tests when prioritization is based on minimizing time (first Test 2, then Test 3) could be
different than when prioritization is done based on minimizing the number of tests. See the preceding
example: first Test 3, then Test 2. In Example 2, Test 2 is the test that gives the highest coverage per
execution time. So, it is picked as the first test to run.

Using Other Options

The - cut of f option enables the Test-prioritization Tool to exit when it reaches a given level of basic
block coverage.

tselect -dpi _list tests |ist -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the previous example, only Test 3 will be selected, as it
achieves 45.65% block coverage, which corresponds to 87.50% of the total block coverage that is reached
from all three tests.

The Test-prioritization Tool does an initial merging of all the profile information to determine the total
coverage that is obtained by running all the tests. The - not ot al option. enables you to skip this step. In
such a case, only the absolute coverage information will be reported, as the overall coverage remains
unknown.

149

Intel® C++ Compiler for Linux* Systems User's Guide

High-level Language Optimizations (HLO)

High-level optimizations exploit the properties of source code constructs (for example, loops and arrays) in
the applications developed in high-level programming languages, such as Fortran and C++. The high-level
optimizations include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam,
blocking, data prefetch, scalar replacement, data layout optimizations and loop unrolling techniques.

The option required to turn on the high-level optimizations is - O3. The scope of optimizations turned on by
- OB is different for IA-32 and Itanium®-based applications. See Setting Optimization Levels.

IA-32 and Itanium®-based Applications

The - O3 option enables the - O2 option and adds more aggressive optimizations; for example, loop
transformation and prefetching. - O3 optimizes for maximum speed, but may not improve performance for
some programs.

IA-32 Applications

In conjunction with the vectorization options, - ax{ K| W N| B| P} and - x{ K| W N| B| P}, the - O3 option
causes the compiler to perform more aggressive data dependency analysis than the default - O2. This may
result in longer compilation times.

Itanium-based Applications

The - i vdep_par al | el option asserts there is no loop-carried dependency in the loop where an IVDEP
directive is specified. This is useful for sparse matrix applications.

Loop Transformations
The loop transformation techniques include:

* Loop normalization

* Loop reversal

* Loop interchange and permutation

* Loop distribution

e Loop fusion

* Scalar replacement

* Absence of loop-carried memory dependency with | VDEP directive

* Runtime Data Dependencies checking (Itanium®-based systems only)

The loop transformations listed above are supported by data dependence. The loop transformation
techniques also include:

¢ Induction variable elimination
e Constant propagation

* Copy propagation

e Forward substitution

e Dead code elimination

150

Volume II: Optimizing Applications

In addition to the loop transformations listed for both IA-32 and Itanium® architectures above, the Itanium
architecture enables implementation of collapsing techniques.

Scalar Replacement

The goal of scalar replacement, which is enabled by - scal ar _r ep, is to reduce memory references. This
is done mainly by replacing array references with register references.

While the compiler replaces some array references with register references when - Ol or - O2 is specified,
more aggressive replacement is performed when - O3 and - scal ar _r ep are specified. For example, with
- OB the compiler attempts replacement when there are loop-carried dependences or when data-dependence
analysis is required for memory disambiguation.

The - scal ar _r ep compiler option enables (default) scalar replacement performed during loop
transformations. The - scal ar _r ep- option disables this scalar replacement.

Loop Unrolling with -unroll

The - unr ol | [n] option is used in the following way:

-unrol | n specifies the maximum number of times you want to unroll a loop. The following
example unrolls a loop at most four times:

pronpt >i cpc -unroll 4 a.cpp
To disable loop unrolling, specify n as 0. The following example disables loop unrolling:

pronpt >i cpc -unroll 0 a.cpp

-unrol | (n omitted) lets the compiler decide whether to perform unrolling or not. This is the
default; the compiler uses default heuristics or defines n.
-unr ol | 0 (n =0) disables the loop unroller.

The Itanium® compiler currently recognizes only n = 0; any other value is ignored.

Benefits and Limitations of Loop Unrolling

The benefits of loop unrolling are as follows:

Unrolling eliminates branches and some of the code.
Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies if you have
enough free registers to keep variables live.
The Intel® Pentium® 4 and Intel® Xeon(TM) processors can correctly predict the exit branch for an
inner loop that has 16 or fewer iterations, if that number of iterations is predictable and there are no
conditional branches in the loop. Therefore, if the loop body size is not excessive, and the probable
number of iterations is known, unroll inner loops for:

* Pentium 4 processors, until they have a maximum of 16 iterations

* Pentium III or Pentium II processors, until they have a maximum of 4 iterations

151

Intel® C++ Compiler for Linux* Systems User's Guide

A potential limitation is that excessive unrolling, or unrolling of very large loops, can lead to increased
code size.

For more information on how to optimize with - unr ol | [n] , refer to the Intel® Pentium® 4 and Intel®
Xeon™ Processor Optimization Reference Manual.

Absence of Loop-carried Memory Dependency

For Itanium®-based applications, the - i vdep_par al | el option indicates there is absolutely no loop-
carried memory dependency in the loop where the | VDEP directive is specified. This technique is useful
for some sparse matrix applications. For example, the following loop requires - i vdep_par al | el in
addition to the directive | VDEP to indicate there is no loop-carried dependencies.

#pragma i vdep

for (i=1; i<n; i++)

{ e[ix[2][i]] e[ix[2][i]]+1.0;
e[ix[3][i]] e[ix[3][i]]+2.0;

}

The following example shows that using this option and the | VDEP directive ensures there is no loop-
carried dependency for the store into a() .

#pragma i vdep
for (j=0; j<n; j++)

a[b[j]] = a[b[j]] + 1;

PREFETCH Directive

The PREFETCH directive is supported on Itanium®-based systems only.

Syntax:

#pragma prefetch var: hint:distance

where hi nt value can be 0 (T0), 1 (NT1), 2 (NT2), or 3 (NTA)

152

Volume II: Optimizing Applications

Example:

for (i=i0; il=il i+=is) {

float sum= Db[i];
int ip=srowil];
int ¢ =col[ip];

#pragm NOPREFETCH col
#pragm PREFETCH val ue: 1: 80
#pragma PREFETCH x: 1: 40

for(; ip<srowi+1]; c=col [++i p])
sum -= value[ip] * x[c];
il[i] = sum

Prefetching

The goal of prefetch insertion optimization is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache. The prefetch optimization is enabled or disabled by the -
prefetch[-] compiler option.

- pr ef et ch enables (default) prefetch insertion optimization. Note that - O3 must be specified for this
option to work.

To disable prefetch insertion optimization, use - pr ef et ch- .
To facilitate compiler optimization:

e Minimize use of global variables and pointers.

* Minimize use of complex control flow.

* Choose data types carefully and avoid type casting.

For more information on how to optimize with - pr ef et ch[-], refer to the
Intel® Pentium® 4 and Intel Xeon Processor Optimization Reference Manual.

In addition to the - pr ef et ch option, the _nm pr ef et ch intrinsic and PREFETCH compiler directive
are also available. The intrinsic prefetches data from the specified address on one memory cache line. The
compiler directive enables a data prefetch from memory.

153

Intel® C++ Compiler for Linux* Systems User's Guide

Key Tuning Techniques
Use the following techniques to tune your applications for Itanium®-based systems:

* Compile your program with the - O3 and - Qi po options. Use profile guided optimization (PGO)
whenever possible.

* Identify hot spots in your code.

* Turn on Optimization Report.

* Check why loops are not software pipelined.

» Use#pragnma i vdep to indicate there is no dependence. You might need to
compile with the - i vdep_par al | el option to absolutely specify no loop carried
dependence.

* Use#pragnma swp to enable software pipelining (useful for lop-sided controls and
unknown loop count).

* Use#pragma | oop count (n) when needed.

* Useof-ansi-ali as is helpful. For example, for **p = *q, the ANSI rule
indicates the pointer and float data do not overlap.

* Addtherestrict keyword to insure there is no aliasing.

* Use-alias_args- toindicate arguments are not aliased.

* Use-fno_alias onlyif pointers get traced back to the same base pointer.

e Use#pragma distribute point tosplit large loops (normally this is done
automatically).

e For C code, do not use unsi gned i nt for loop indexes. HLO may skip optimization due to
possible subscripts overflow. If upper bounds are pointer references, assign it to a local variable
whenever possible.

» Is prefetch distance correct? Use #pr agma pr ef et ch to override the distance when it is
needed.

154

Volume II: Optimizing Applications

Parallel Programming

For parallel programming, the Intel® C++ Compiler supports both the OpenMP* 2.0 API and an automatic
parallelization capability. The following table lists the options that perform OpenMP and auto-
parallelization support.

Option Description

-opennp Enables the parallelizer to generate multithreaded code based
on the OpenMP directives. Default: OFF.

-opennp_report{0]| 1| 2} | Controls the OpenMP parallelizer's diagnostic levels.
Default: - opennp_report 1.

- opennp_st ubs Enables compilation of OpenMP programs in sequential
mode. The OpenMP directives are ignored and a stub
OpenMP library is linked. Default: OFF.

-parall el Enables the auto-parallelizer to generate multithreaded code
for loops that can be safely executed in parallel. Default:
OFF.

- par _t hr eshol d{ n} Sets a threshold for the auto-parallelization of loops based on

the probability of profitable execution of the loop in parallel,
n=0 to 100. N=0 implies "always." Default: n=100.

-par_report{0| 1| 2| 3} | Controls the auto-parallelizer's diagnostic levels.
Default: - par _report1

BNote

When both - opennp and - par al | el are specified on the command line, the - par al | el option is
honored only in routines that do not contain OpenMP directives. For routines that contain OpenMP
directives, only the - opennp option is honored.

Vectorization

The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD instructions in the
MMX(TM), SSE, and SSE2 instruction sets. The vectorizer detects operations in the program that can be
done in parallel, and then converts the sequential program to process 2, 4, 8, or 16 elements in one
operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel C++ Compiler
vectorization on [A-32 systems only. The following list summarizes this section's contents.

* a quick reference of vectorization functionality and features
* descriptions of compiler switches to control vectorization
* descriptions of the C++ language features to control vectorization
» discussion and general guidelines on vectorization levels:
* automatic vectorization
* vectorization with user intervention
* examples demonstrating typical vectorization issues and resolutions

155

Intel® C++ Compiler for Linux* Systems User's Guide

Vectorizer Options

Usage

Loop

Option Description

- ax{ K| WN| B| P} | Enables the vectorizer and generates specialized and generic TA-32
code. The generic code is usually slower than the specialized code.

-x{K| WN| B| P} | Turns on the vectorizer and generates processor-specific specialized
code.

-vec_reportn Controls the vectorizer's level of diagnostic messages:

* n =0 no diagnostic information is displayed.

e n =1 display diagnostics indicating loops successfully vectorized
(default).

e n =2sameasn =1, plus diagnostics indicating loops not
successfully vectorized.

e n =3sameasn =2, plus additional information about any proven
or assumed dependences.

If youuse - Cc, - i po with - vec_r eport{n} optionor-c, - X{ K| WN| B| P} or-ax{K WN B| P}
with - vec_r eport { n}, the compiler issues a warning and no report is generated.

To produce a report when using the aforementioned options, you need to add the - i po_obj option. The
combination of - ¢ and - i po_obj produces a single file compilation, and hence does generate object
code, and eventually a report is generated.

The following commands generate a vectorization report:
e prompt>icpc -x{K|WN| Bl P} -vec report3 file.cpp
e prompt>icpc -x{K|WN| B|P} -ipo -ipo_obj -vec report3 file.cpp
e prompt>icpc -¢c -x{KIWNB||P} -ipo -ipo_obj -vec report3 file.cpp

The following commands do not generate a vectorization report:

e prompt>icpc -c -x{K|WMB|P} -vec report3 file.cpp
e prompt>icpc -x{K|WN| B|P} -ipo -vec _report3 file.cpp
e prompt>icpc -c -x{K|WN B|P} -ipo -vec_report3 file.cpp

Parallelization and Vectorization

Combining the - par al | el and - x{ K| W N| B| P} options instructs the compiler to attempt both
automatic loop parallelization and automatic loop vectorization in the same compilation. In most cases, the
compiler will consider outermost loops for parallelization and innermost loops for vectorization. If deemed
profitable, however, the compiler may even apply loop parallelization and vectorization to the same loop.

156

Volume II: Optimizing Applications

Note that in some cases successful loop parallelization (either automatically or by means of OpenMP*
directives) may affect the messages reported by the compiler for loop vectorization; for example, under the
-vec_report 2 option indicating loops not successfully vectorized.

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and check
them against your code to eliminate ambiguities that prevent the compiler from achieving optimal
vectorization.

Guidelines for loop bodies:

* use straight-line code (a single basic block)

» use vector data only; that is, arrays and invariant expressions on the right hand side of assignments.
Array references can appear on the left hand side of assignments

* use only assignment statements

Avoid the following in loop bodies:

» function calls

* unvectorizable operations

* mixing vectorizable types in the same loop
* data-dependent loop exit conditions

Preparing your code for vectorization

To make your code vectorizable, you will often need to make some changes to your loops. However, you
should make only the changes needed to enable vectorization and no others. In particular, you should avoid
these common changes:

e do not unroll your loops, the compiler does this automatically
* do not decompose one loop with several statements in the body into several single-statement loops

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the case of
Streaming SIMD Extensions, the vector memory operations are limited to St ri de- 1 accesses with a
preference to 16-byte-aligned memory references. This means that if the compiler abstractly recognizes a
loop as vectorizable, it still might not vectorize it for a distinct target architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common problem
with global pointers is that they often prevent the compiler from being able to prove two memory
references at distinct locations. Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, and memory operations
within the loop bodies.

157

Intel® C++ Compiler for Linux* Systems User's Guide

However, by understanding these limitations and by knowing how to interpret diagnostic messages, you
can modify your program to overcome the known limitations and enable effective vectorizations. The
following topics summarize the capabilities and restrictions of the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in serial loops.
Because vectorization rearranges the order in which operations are executed, any auto-vectorizer must have
at its disposal some form of data dependence analysis. The "Data-dependent Loop" example shows some
code that exhibits data dependence. The value of each element of an array is dependent on itself and its two
neighbors.

Data-dependent Loop

float data[N;
int i;

for (i=1; i<N-1; i++)
data[i]=data[i-1]*0. 25+data[i]*0. 5+data[i +1] *0. 25;

The loop in this example is not vectorizable because the write to the current element dat a[i] is
dependent on the use of the preceding element dat a[i - 1] , which has already been written to and
changed in the previous iteration. To see this, look at the access patterns of the array for the first two
iterations as shown in the following example:

Data Dependence Vectorization Patterns

for(i=0; i<100; i++)
a[i]=b[i];

has access pattern
read b[0]

wite a[0]

read b[1]

wite a[1]

i =1: READ dat a[0]
READ dat a[1]

READ dat a[2]

WRI TE dat a[1]

i =2: READ dat a[1]
READ dat a[2]

READ dat a[3]

WRI TE dat a[2]

In the normal sequential version of the loop shown, the value of dat a[1] read during the second iteration
was written into the first iteration. For vectorization, the iterations must be done in parallel, without
changing the semantics of the original loop.

158

Volume II: Optimizing Applications

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may overlap.
Given two references in a program, the conditions are defined by:

» whether the referenced variables may be aliases for the same (or overlapping) regions in memory,
» for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series of tests
that progressively increase in power as well as time and space costs. First, a number of simple tests are
performed in a dimension-by-dimension manner, since independence in any dimension will exclude any
dependence relationship. Multi-dimensional arrays references that may cross their declared dimension
boundaries can be converted to their linearized form before the tests are applied. Some of the simple tests
used are the fast GCD test, proving independence if the greatest common divisor of the coefficients of loop
indices cannot evenly divide the constant term, and the extended bounds test, which tests potential overlap
for the extreme values of subscript expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful hierarchical
dependence solver that uses Fourier-Motzkin elimination to solve the data dependence problem in all
dimensions.

Loop Constructs

Loops can be formed with the usual f or and whi | e constructs. However, the loops must have a single
entry and a single exit to be vectorized.

Correct Usage

\{Nhi [e(i<n)

/1 1f branch is inside body of |oop

Incorrect Usage

whi | e(i <n)

if (condition) break;
/'l 2nd exit.
++i

159

Intel® C++ Compiler for Linux* Systems User's Guide

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example, fixed indexes
for loops determine the iterations. The loop iterations must be countable; that is, the number of iterations
must be expressed as one of the following:

* aconstant
* aloop invariant term
* alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. The following examples illustrate countable
and non-countable loop constructs.

Correct Usage for Countable Loop

/1 Exit condition specified by "N 1b+1"
count =N,

whi | e(count ! =1b)

/1 1b is not affected within |oop
a[i]=b[i]*x;

bli]=[i]+sqrt(d[i]);

--count;

Correct Usage for Countable Loop

{/_O!Exit condition is "(n-mt2)/2"

for(l=m |<n: |+=2)
a[i]=b[i]*x;
bli]=c[i]+sqrt(d[i]);
++i ;

}

Incorrect Usage for Non-Countable Loop

i =0;

/1 1terations dependent on afi]
whil e(a[i]>0.0)

{

ali]=b[i]*c[i];

++i

—

160

Volume II: Optimizing Applications

Types of Loops Vectorized

Strip

For integer loops, MMX(TM) technology and Streaming SIMD Extensions provide SIMD instructions for
most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved. A 32-bit shift-right
operator, for instance, is not vectorized if the final stored value is a 16-bit integer. Also, note that because
the MMX(TM) instructions and Streaming SIMD Extensions instruction sets are not fully orthogonal (byte
shifts, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, the
Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators +, - , *, and / . Also,
the Streaming SIMD Extensions provide SIMD instructions for the binary M N, MAX, and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric functions SI N,
COS, TAN) are supported in software in a vector mathematical run-time library that is provided with the
Intel® C++ Compiler.

Mining and Cleanup

Strip mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-
encodings of loops, as well as providing a means of improving memory performance. By fragmenting a
large loop into smaller segments or strips, this technique transforms the loop structure in two ways:

* It increases the temporal and spatial locality in the data cache if the data are reusable in different
passes of an algorithm.

* It reduces the number of iterations of the loop by a factor of the length of each "vector," or number of
operations being performed per SIMD operation. In the case of Streaming SIMD Extensions, this
vector, or strip length, is reduced by 4 times: four floating-point data items per single Streaming
SIMD Extensions single-precision floating-point SIMD operation are processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector
operation is done for a size less than or equal to the maximum vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Before Vectorization

i =0;
whi | e(i <n)

/1 Original |oop code
afi]=b[i]+c[i];
+4i

161

Intel® C++ Compiler for Linux* Systems User's Guide

After Vectorization

/1 The vectorizer generates the follow ng two | oops
i =0;

whi | e(i <(n-n%jt))
{
/1 Vector strip-mned | oop

/1 Subscript [i:i+3] denotes SIMD execution
afi:i+3]=b[i:i+3]+c[i:i+3];

I =i +4;
}
whi | e(i <n)
/1 Scal ar clean-up | oop
afi]=b[i]+c[i];
++i
}

Statements in the Loop Body

The vectorizable operations are different for floating-point and integer data.

Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root, max, and
min. Operation on double precision types is not permitted unless optimizing for a Pentium® 4 processor
system.

Integer Array Operations

Other

The statements within the loop body may contain char , unsi gned char,short, unsi gned
short,int,and unsi gned i nt. Calls to functions such as sqrt and f abs are also supported.
Arithmetic operations are limited to addition, subtraction, bitwise AND, OR, and XOR operators, division
(16-bit only), multiplication (16-bit only), min, and max. You can mix data types only if the conversion can
be done without a loss of precision. Some example operators where you can mix data types are
multiplication, shift, or unary operators.

Operations

No statements other than the preceding floating-point and integer operations are allowed. In particular, note
that the special __ 64 and ___ml 28 datatypes are not vectorizable. The loop body cannot contain any
function calls. Use of the Streaming SIMD Extensions intrinsics (_nm add_ps) are not allowed.

Language Support and Directives

This topic addresses language features that better help to vectorize code. The decl spec(al i gn(n))
declaration enables you to overcome hardware alignment constraints. The r est ri ct qualifier and the
pragmas address the stylistic issues due to lexical scope, data dependence, and ambiguity resolution.

162

Volume II: Optimizing Applications

Language Support

Feature Description

__decl spec(align(n)) Directs the compiler to align the
variable to an n-byte boundary.
Address of the variable is
address nod n=0.

__decl spec(align(n,off)) Directs the compiler to align the
variable to an n-byte boundary
with offset off within each n-
byte boundary. Address of the
variable is addr ess nod
n=off.

restrict Permits the disambiguator
flexibility in alias assumptions,
which enables more
vectorization.

__assune_al i gned(a, n) Instructs the compiler to assume
that array a is aligned on an n-
byte boundary; used in cases
where the compiler has failed to
obtain alignment information.

#pragma i vdep Instructs the compiler to ignore
assumed vector dependencies.

#pragma vector{al i gned| unal i gned| al ways} | Specifies how to vectorize the
loop and indicates that
efficiency heuristics should be
ignored.

#pragma novect or Specifies that the loop should
never be vectorized

Multi-version Code

Multi-version code is generated by the compiler in cases where data dependence analysis fails to prove
independence for a loop due to the occurrence of pointers with unknown values. This functionality is
referred to as dynamic dependence testing.

163

Intel® C++ Compiler for Linux* Systems User's Guide

Pragma Scope

These pragmas control the vectorization of only the subsequent loop in the program, but the compiler does
not apply them to any nested loops. Each nested loop needs its own pr agma preceding it in order for the
pr agma to be applied. You must place a pr agma only before the loop control statement.

#pragma vector always
Syntax: #pr agma vector al ways

Definition: This pragma instructs the compiler to override any efficiency heuristic during the decision to
vectorize or not. #pr agma vect or al ways will vectorize non-unit strides or very unaligned memory
accesses.

Example:

for(i =0; i <= N, i++)

a[32*i] = b[99*i];

#pragma ivdep
Syntax: #pr agma i vdep

Definition: This pr agnma instructs the compiler to ignore assumed vector dependences. To ensure correct
code, the compiler treats an assumed dependence as a proven dependence, which prevents vectorization.
This pr agma overrides that decision. Only use this when you know that the assumed loop dependences
are safe to ignore.

The loop in this example will not vectorize with the i vdep pr agma, since the value of k is not known
(vectorization would be illegal if k<0).

Example:

#pragma i vdep
for (i =0; I <m i++)

a[i] = a[i + k] * c;

#pragma vector
Syntax: #pragma vector{aligned | unaligned}

Definition: The vector loop pr agma means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the al i gned (or unal i gned) qualifier is used with
this pr agna, the loop should be vectorized using al i gned (or unal i gned) operations. Specify one and
only one of al i gned or unal i gned.

164

&Caution

Volume II: Optimizing Applications

If you specify al i gned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code.

The loop in the following example uses the al i gned qualifier to request that the loop be vectorized with
aligned instructions, as the arrays are declared in such a way that the compiler could not normally prove

this would be safe to do so.

Example:

void foo (float *a)

#pragm vector aligned
for (i =0; i <m i++)

a[i] = a[i] * c;

The compiler has at its disposal several alignment strategies in case the alignment of data structures is not
known at compile-time. A simple example is shown (but several other strategies are supported as well). If,
in the loop, the alignment of a is unknown, the compiler will generate a prelude loop that iterates until the
array reference that occurs the most hits an aligned address. This makes the alignment properties of a
known, and the vector loop is optimized accordingly.

Alignment Strategies Example

float *a;
/1 alignnent
for (i =0; i

unknown

< 100; i++)

a[i] = a[i] + 1.0f;

/1 dynam c | oop peeling
p = a & 0xO0f;

if (p!= 0)
{

p=(16 - p) / 4
for (i =0; i < p;

a[i] = a[i] + 1.0f;

i ++)

}

/1 loop with a aligned (wll
for (i =p; i < 100; i++)

a[i] = a[i] + 1.0f;

be vectorized accordingly)

165

Intel® C++ Compiler for Linux* Systems User's Guide

#pragma novector
Syntax: #pr agna novect or

Definition: The novect or loop pragma specifies that the loop should never be vectorized, even if it is
legal to do so. In this example, suppose you know the trip count (ub - | b) is too low to make
vectorization worthwhile. You can use #pr agma novect or to tell the compiler not to vectorize, even if
the loop is considered vectorizable.

Example:

void foo (int Ib, int ub)

#pragma novect or
for (j =1b; j < ub; j++)

a[j] = a[j] + bljl;

#pragma vector nontemporal
Syntax: #pr agma vect or nont enpor al

Definition: #pr agma vect or nont enpor al results in streaming stores on Pentium® 4 based
systems. An example loop (float type) together with the generated assembly are shown in the example. For
large N, significant performance improvements result on a Pentium 4 systems over a non-streaming
implementation.

Example:

#pragma vect or nontenpor al
for (i =0; i <N i++)
a[i] = 1,
. Bl1. 2:

movnt ps XMWAORD PTR _af eax],

add eax, 32
cnp eax, 4096
jl .B1.2

xnmD

novnt ps XMWWORD PTR al eax+16], xmmD

166

Dynamic Dependence Testing Example

float *p, *q
for (i =L, I <=U i++)
pli] = a[il];
}
pL = p * 4*L
pH = p + 4*U
gL = q + 4*L
gH = g + 4*U
I{f (pH <L [| pL > gH)
/1 loop without data dependence
for (i =L, i <=U i++)
{ . .
pli] =q[il];
} else {
for (i =L, i <=U i++)
{ . .
pli] = aqa[il];
}
}

Vectorization Examples

Volume II: Optimizing Applications

This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The following loop example, a vector copy operation, vectorizes because the compiler can prove dest [i]

and Src[i] are distinct.

Vectorizable Copy Due To Unproven Distinction

void vec_copy(float *dest,
{ int i;
for(i=0; i<len; i++;)
dest[i]=srcl[i];
}

fl oat

*src,

i nt

| en)

The restrict keyword in the following example indicates that the pointers refer to distinct objects.
Therefore, the compiler allows vectorization without generation of multi-version code.

167

Intel® C++ Compiler for Linux* Systems User's Guide

Using restrict to Prove Vectorizable Distinction

void vec_copy(float *restrict dest, float *restrict src, int
| en)

int i;
for(i=0; i<len; i++)

dest[i]=src[i];

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each structure or
array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit (DCU) split
due to misaligned data. The code loads the misaligned data across a 16-byte boundary, which results in an
additional memory access causing a six- to twelve-cycle stall. You can avoid the stalls if you know that the
data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary

16 Bryte 16 Byt

| Baundaries | EI-:.un-:IarieEJ

CT T
L
Mizaligned [rata

For example, if you know that elements a[0] and b[O] are aligned on a 16-byte boundary, then the
following loop can be vectorized with the alignment option on (#¥pr agma vect or al i gned):

Alignment of Pointers is Known

float *a, *b;
int i;

for(int i=0; i<10; i++)
afi]=b[i];

After vectorization, the loop is executed as shown here:

168

Volume II: Optimizing Applications

Vector and Scalar Clean-up lIterations

2 wector tergtions 2 clean-up itergtions
in scalar mode
- o o
i=0,1,2,2i=4567 (=84

Both the vector iterations a[0: 3] =b[0: 3] ;and a[4: 7] =Db[4: 7] ; can be implemented with aligned
moves if both the elements a[0] and b[0] (or, likewise, a[4] and b[4]) are 16-byte aligned.

&Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate unexpected
behavior. Specifically, using aligned moves on unaligned data, will result in an illegal instruction
exception.

Data Alignment Examples

This example contains a loop that vectorizes but only with unaligned memory instructions. The compiler
can align the local arrays, but because | b is not known at compile-time. The correct alignment cannot be
determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time

void f(int Ib)

float z2[N], a2[N, y2[N, x2;
for(i=lb; <N, 1++)

az[i]=a2[i]*x2+y2[i];

If you know that | b is a multiple of 4, you can align the loop with #pr agma. vect or al i gned as
shown in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4

void f(int Ib)
{ float z2[N], a2[N, y2[N, x2;
assert (| b%t==0);
#pragm vector aligned
for(i=lb; i<N i++)
a2[i]=a2[i]*x2+y2[i];
}

169

Intel® C++ Compiler for Linux* Systems User's Guide

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example:

Typical Matrix Multiplication

for(i=0; i<N, i++)
for(j=0; j<n; j+4)
for(k=0; k<n; k++)
cliJlil=cli]li]+ali][k]*b[K][j];

The use of b[K] [j], isnota st ri de- 1 reference and therefore will not normally be vectorizable. If the
loops are interchanged, however, all the references will become st ri de- 1 as shown in the "Matrix
Multiplication With Stride-1" example.

&Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

Matrix Multiplication With Stride-1

for(i = 0; i<N, i++)
for(k=0; k<n; k++)
for(j=0; j<n; j++)

cli]fil=cli]l[i]+ali][k]*b[k][j];

Auto-parallelization

The auto-parallelization feature of the Intel® C++ Compiler automatically translates serial portions of the
input program into equivalent multithreaded code. The auto-parallelizer analyzes the dataflow of the
program’s loops and generates multithreaded code for those loops which can be safely and efficiently
executed in parallel. This enables the potential exploitation of the parallel architecture found in symmetric
multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:
* having to deal with the details of finding loops that are good worksharing candidates
» performing the dataflow analysis to verify correct parallel execution

* partitioning the data for threaded code generation as is needed in programming with OpenMP
directives.

170

Volume II: Optimizing Applications

The parallel run-time support provides the same run-time features found in OpenMP*, such as handling the
details of loop iteration modification, thread scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel applications quickly, the
programmer must explicitly identify specific portions of the application code that contain parallelism and
add the appropriate compiler directives. Auto-parallelization triggered by the - par al | el option
automatically identifies those loop structures which contain parallelism. During compilation, the compiler
automatically attempts to decompose the code sequences into separate threads for parallel processing. No
other effort by the programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so that it can be executed
concurrently on two threads:

Original Serial Code

for (i=1; i<100; i++)
afi] =af[i] + b[i] * c[i];

Transformed Parallel Code

* Thread 1 */
ro(i=1; i<50; i++)

o]

a[i] = a[i] + b[i] * c[i];
* Thread 2 */

or (i=50; i<100; i++)

a[i] = a[i] + b[i] * c[i];

/
f
{
}
/
f
{
}

Programming with Auto-parallelization

The auto-parallelization feature implements some concepts of OpenMP*, such as worksharing construct
(with the paral | el for directive). This section provides specifics of auto-parallelization.

Guidelines for Effective Auto-parallelization Usage
A loop is parallelizable if:

* The loop is countable at compile time. This means that an expression representing how many times
the loop will execute (also called "the loop trip count™) can be generated just before entering the loop.

e There are no FLOMREAD after WRI TE), OUTPUT (WRI TE after READ) or ANTI (WRI TE after
READ) loop-carried data dependences. A loop-carried data dependence occurs when the same
memory location is referenced in different iterations of the loop. At the compiler's discretion, a loop
may be parallelized if any assumed inhibiting loop-carried dependencies can be resolved by run-time
dependency testing.

171

Intel® C++ Compiler for Linux* Systems User's Guide

The compiler may generate a run-time test for the profitability of executing in par al | el f or loop with
loop parameters that are not compile-time constants.

Coding Guidelines
Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

» Expose the trip count of loops whenever possible. Specifically use constants where the trip count is
known and save loop parameters in local variables.

* Avoid placing structures inside loop bodies that the compiler may assume to carry dependent data,
for example, function calls, ambiguous indirect references, or global references.

Auto-parallelization Data Flow
For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis

Loop classification
Dependence analysis
High-level parallelization

Data partitioning
Multi-threaded code generation

ANk =

These steps include:

* Data flow analysis: compute the flow of data through the program
* Loop classification: determine loop candidates for parallelization based on correctness and efficiency
as shown by threshold analysis
* Dependence analysis: compute the dependence analysis for references in each loop nest
* High-level parallelization:
» analyze dependence graph to determine loops which can execute in parallel.
e compute run-time dependency
* Data partitioning: examine data reference and partition based on the following types of access:
shared,private,andfirstprivate.
* Multi-threaded code generation:
* modify loop parameters
» generate entry/exit per threaded task
e generate calls to parallel runtime routines for thread creation and synchronization

Auto-parallelization: Enabling, Options, and Environment Variables

To enable the auto-parallelizer, use the - par al | el option. The - par al | el option detects parallel
loops capable of being executed safely in parallel and automatically generates multithreaded code for these
loops. An example of the command using auto-parallelization follows:

pronmpt >i cpc -c -parallel prog.cpp

172

Volume II: Optimizing Applications

Auto-parallelization Options

The - par al | el option enables the auto-parallelizer if the - Q2 (or - O3) optimization option is also on
(the default is - O2). The - par al | el option detects parallel loops capable of being executed safely in
parallel and automatically generates multithreaded code for these loops.

Option Description

-parallel Enables the auto-parallelizer

- par _t hreshol d{ 1- 100} | Controls the work threshold needed for auto-parallelization.
Default: n=100.

-par_report{1]| 2|3} Controls the diagnostic messages from the auto-parallelizer.

Auto-parallelization Environment Variables

Variable Description Default
OVP_NUM_THREADS | Controls the number of | Number of processors currently installed
threads used. in the system while generating the
executable

OVP_SCHEDULE Specifies the type of static
runtime scheduling.

Auto-parallelization Threshold Control and Diagnostics

Threshold Control

The -par _t hr eshol d[n] option sets a threshold for the auto-parallelization of loops based on the
probability of profitable execution of the loop in parallel. The value of n can be from 0 to 100. This option
is used for loops whose computation work volume cannot be determined at compile time. The threshold is
usually relevant when the loop trip count is unknown at compile time.

The - par _t hr eshol d[n] option has the following functionality:

e -par_threshol d100 is executed by default, so loops get auto-parallelized only if profitable
parallel execution is almost certain.

* Ifyou specify - par _t hr eshol d with designating a value for n, the compiler uses the default
value n=100.

* The intermediate 1 to 99 values represent the percentage probability for profitable speed-up. For
example, N=50 directs the compiler to parallelize only if there is a 50% probability of the code
speeding up if executed in parallel.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

173

Intel® C++ Compiler for Linux* Systems User's Guide

Diagnostics

The - par _report {0| 1| 2| 3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

* -par_report 0 =no diagnostic information is displayed.
e -par_report 1 =indicates loops successfully auto-parallelized (default). Issues a "LOOP AUTO-
PARALLELI ZED" message for parallel loops.
* -par_report 2 =indicates successfully auto-parallelized loops as well as unsuccessful loops.
* -par_report 3 =same as 2 plus additional information about any proven or assumed
dependencies inhibiting auto-parallelization (reasons for not parallelizing).
Example of Parallelization Diagnostics Report
This example shows output generated by - par _r eport 3:

pronpt >icpc -c -parallel -par_report3 prog.cpp

Sample Output

pr ogr am pr og
procedure: prog

serial loop: line 5: not a parallel candidate due to
staterment at line 6
serial loop: line 9

fl ow data dependence fromline 10 to line 10, due to "a
12 Lines Conpiled

where the program pr 0g. cpp is as follows:

Sample prog.c

/* Assuned side effects */
for (i=1; i<10000; i++)
a[i] = foo(i);

/* Actual dependence */
for (i=1; i<10000; i ++)

a[i] = a[i-1] +i;

Troubleshooting Tips
* Use-par_t hreshol dO to see if the compiler assumed there was not enough computational work

* Use-par_report 3 to view diagnostics
* Use-ipo[val ue] to eliminate assumed side-effects done to function calls

174

Volume II: Optimizing Applications

Parallelization with OpenMP*

The Intel® C++ Compiler supports the OpenMP* C++ version 2.0 API specification. OpenMP provides
symmetric multiprocessing (SMP) with the following major features:

» Relieves the user from having to deal with the low-level details of iteration space partitioning, data
sharing, and thread scheduling and synchronization.
* Provides the benefit of the performance available from shared memory, multiprocessor systems.

The Intel C++ Compiler performs transformations to generate multithreaded code based on the user's
placement of OpenMP directives in the source program making it easy to add threading to existing
software. The Intel compiler supports all of the current industry-standard OpenMP directives, except
WORKSHARE, and compiles parallel programs annotated with OpenMP directives. In addition, the Intel
C++ Compiler provides Intel-specific extensions to the OpenMP C++ version 2.0 specification including
run-time library routines and environment variables.

f.rj Note

As with many advanced features of compilers, you must properly understand the functionality of the
OpenMP directives in order to use them effectively and avoid unwanted program behavior.

See parallelization options summary for all of the options of the OpenMP feature in the Intel C++
Compiler.

For complete information on the OpenMP standard, visit the OpenMP Web site at http://www.openmp.org.
For OpenMP* C++ version 2.0 API specifications, see http://www.openmp.org/specs/.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the code with OpenMP
directives. The Intel C++ Compiler first processes the application and produces a multithreaded version of
the code which is then compiled. The output is a executable program with the parallelism implemented by
threads that execute parallel regions or constructs.

Targeting a Processor Run-time Check

While parallelzing a loop, the Intel compiler's loop parallelizer, OpenMP, tries to determine the optimal set
of configurations for a given processor. At run time, a check is performed to determine for which 1A-32
processor OpenMP should optimize a given loop. See detailed information in the Processor-specific
Runtime Checks, [A-32 Systems.

Performance Analysis

For performance analysis of your program, you can use the Intel® VTune(TM) Performance Analyzer to
show performance information. You can obtain detailed information about which portions of the code
require the largest amount of time to execute and where parallel performance problems are located.

175

Intel® C++ Compiler for Linux* Systems User's Guide

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more definitions of the terms used
in parallel programming.

The Execution Flow

As previously mentioned, a program containing OpenMP* C++ API compiler directives begins execution
as a single process, called the master thread of execution. The master thread executes sequentially until the
first parallel construct is encountered.

In the OpenMP C++ API, the #pr agma onp par al | el directive defines the parallel construct. When
the master thread encounters a parallel construct, it creates a team of threads, with the master thread
becoming the master of the team. The program statements enclosed by the parallel construct are executed in
parallel by each thread in the team. These statements include routines called from within the enclosed
statements.

The statements enclosed lexically within a construct define the static extent of the construct. The dynamic
extent includes the static extent as well as the routines called from within the construct. When the
#pragma onp par al | el directive reaches completion, the threads in the team synchronize, the team
is dissolved, and only the master thread continues execution. The other threads in the team enter a wait
state. You can specify any number of parallel constructs in a single program. As a result, thread teams can
be created and dissolved many times during program execution.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that are not in the
lexical extent of the parallel construct, but are in the dynamic extent, are called orphaned directives.
Orphaned directives allow you to execute major portions of your program in parallel with only minimal
changes to the sequential version of the program. Using this functionality, you can code parallel constructs
at the top levels of your program and use directives to control execution in any of the called routines. For
example:

i nt mai n(voi d)

#b}agna onp paralle
phasel();

}
voi d phasel(voi d)
{

#b}agna onp for private(i) shared(n)
for(i=0; i < n; |++)

some_wor k(i) ;

This is an orphaned directive because the parallel region is not lexically present.

176

Volume II: Optimizing Applications

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel constructs. You
can control the data environment within parallel and worksharing constructs. Using directives and data
environment clauses on directives, you can:

* Privatize scope variables by using the THREADPRI VATE directive
* Control data scope attributes by using the THREADPRI VATE directive's clauses. The data scope
attribute clauses are:

« COPYIN
» DEFAULT
» PRIVATE

* FIRSTPRIVATE
* LASTPRIVATE
* REDUCTION

» SHARED

You can use several directive clauses to control the data scope attributes of variables for the duration of the
construct in which you specify them. If you do not specify a data scope attribute clause on a directive, the
default is SHARED for those variables affected by the directive.

Pseudo Code of the Parallel Processing Model

A sample pseudo program using some of the more common OpenMP directives is shown in the code
example that follows. This example also indicates the difference between serial regions and parallel

regions.
mai n() { /1 Begin serial execution
/1 Only the nmaster thread executes
#pragma onp parall el /1 Begin a Parallel Construct, form
{ /] ateam This is Replicated Code

/1 (each team nenber executes
/1l the same code)
11
#pragm onp sections /1 Begin a Wbrksharing Construct

{ /1

#pragma onp section // One unit of work

{...} 11
#pragma onmp section // Another unit of work
{...} /11
} [l Wait until both units of work
conpl ete

/1 More Replicated Code

177

Intel® C++ Compiler for Linux* Systems User's Guide

11
#pragma onp for /1 Begin a Wbrksharing Construct;
nowai t
for(...) { /1 each iteration is unit of work
11
/1 Work is distributed anbng the team
menber s
11
} /1 End of Worksharing Construct;

/1l nowait was specified, so
/'l threads proceed
/1

#pragma onp critical // Begin a Critical Section

{ 11
/1 Replicated Code, but only one

// thread can execute it at a

} /1 given tine
/1 More Replicated Code
11

#pragma onp barrier /1 Wait for all team nenbers to arrive
/1 More Replicated Code
11

} /1 End of Parallel Construct;
/1 di sband team and conti nue

/'l serial execution

11
/1 Possibly nmore Parallel constructs
11

} /1 End serial execution

178

Volume II: Optimizing Applications

Compiling with OpenMP, Directive Format, and Diagnostics
To run the Intel® C++ Compiler in OpenMP* mode, invoke the compiler with the - opennp option:
pronpt >i cpc -openmp file.cpp

Before you run the multithreaded code, you can set the number of desired threads in the OpenMP
environment variable, OVP_NUM _THREADS. See OpenMP Environment Variables for further information.

-openmp Option

The - opennp option enables the parallelizer to generate multithreaded code based on the OpenMP
directives. The code can be executed in parallel on both uniprocessor and multiprocessor systems. The -
opennp option works with both - Q0 (no optimization) and any optimization level of - O1, - O2 (default)
and - G8. Specifying - Q0 with - opennp helps to debug OpenMP applications.

OpenMP Directive Format and Syntax
An OpenMP directive has the form:

#pragma onp directive-nane [clause, ...] newine

where:

e #pragnma onp -- Required for all OpenMP directives.

e directive-nane -- A valid OpenMP directive. Must appear after the pr agna and before any
clauses.

e cl ause -- Optional. Clauses can be in any order, and repeated as necessary unless otherwise
restricted.

* new i ne -- Required. Proceeds the structured block which is enclosed by this directive.
OpenMP Diagnostics

The - opennp_r eport { 0] 1| 2} option controls the OpenMP parallelizer's diagnostic levels O, 1, or 2
as follows:

e -opennp_report 0 =no diagnostic information is displayed.

* -opennp_report 1 =display diagnostics indicating loops, regions, and sections successfully
parallelized.

* -opennp_report2 =same as-opennp_r eport 1 plus diagnostics indicating MASTER
constructs, SI NGLE constructs, CRI Tl CAL constructs, ORDERED constructs, ATOM C directives,
etc. are successfully handled.

The default is - opennp_r eport 1.

179

Intel® C++ Compiler for Linux* Systems User's Guide

OpenMP* Directives and Clauses

OpenMP Directives

Directive Name

Description

paral | el Defines a parallel region.

for Identifies an iterative work-sharing construct that specifies a region
in which the iterations of the associated loop should be executed in
parallel.

sections Identifies a non-iterative work-sharing construct that specifies a set
of constructs that are to be divided among threads in a team.

single Identifies a construct that specifies that the associated structured

block is executed by only one thread in the team.

paral | el for

A shortcut for a par al | el region that contains a single f or
directive. The par al | el orf or OpenMP directive must be
immediately followed by a f or statement. If you place other
statement or an OpenMP directive between the par al | el orf or
directive and the f or statement, the Intel C++ Compiler issues a
syntax error.

paral | el sections

Provides a shortcut form for specifying a parallel region containing
a single sect i ons directive.

mast er

Identifies a construct that specifies a structured block that is
executed by the master thread of the team.

critical [l ock]

Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barrier Synchronizes all the threads in a team.

atomc Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the threads in a team
have a consistent view of certain objects in memory.

ordered The structured block following an or der ed directive is executed

in the order in which iterations would be executed in a sequential
loop.

t hreadpri vate

Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the
thread.

180

Volume II: Optimizing Applications

OpenMP Clauses

Clause Description

private Declares variables to be pri vat e to each thread in a team.

firstprivate | Provides a superset of the functionality provided by the pr i vat e clause.

| astprivate | Provides a superset of the functionality provided by the pr i vat e clause.

shar ed Shares variables among all the threads in a team.

def aul t Enables you to affect the data-scope attributes of variables.
reduction Performs a reduction on scalar variables.

or der ed The structured block following an or der ed directive is executed in the

order in which iterations would be executed in a sequential loop.

if Ifthei f (scal ar _| ogi cal _expressi on) clause is present, the
enclosed code block is executed in parallel only if the

scal ar _| ogi cal _expr essi on evaluates to TRUE. Otherwise the
code block is serialized.

schedul e Specifies how iterations of the f or loop are divided among the threads of
the team.
copyin Provides a mechanism to assign the same name to t hr eadpri vat e

variables for each thread in the team executing the parallel region.

OpenMP* Support Libraries

The Intel® C++ Compiler with OpenMP* support provides a production support library, | i bgui de. a.
This library enables you to run an application under different execution modes. It is used for normal or
performance-critical runs on applications that have already been tuned.

BNote

The | i bgui de. | i b library is linked dynamically, regardless of command-line options, to avoid
performance issues that are hard to debug.

Execution modes

The Intel compiler with OpenMP enables you to run an application under different execution modes that
can be specified at run time. The libraries support the serial, turnaround, and throughput modes. These
modes are selected by using the KMP_ LI BRARY environment variable at run time.

Serial

The serial mode forces parallel applications to run on a single processor.

181

Intel® C++ Compiler for Linux* Systems User's Guide

Turnaround

In a dedicated (batch or single user) parallel environment where all processors are exclusively allocated to
the program for its entire run, it is most important to effectively utilize all of the processors all of the time.
The turnaround mode is designed to keep active all of the processors involved in the parallel computation
in order to minimize the execution time of a single job. In this mode, the worker threads actively wait for
more parallel work, without yielding to other threads.

]
— 4 Note

Avoid over-allocating system resources. This occurs if either too many threads have been specified, or if
too few processors are available at run time. If system resources are over-allocated, this mode will cause
poor performance. The throughput mode should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where the job stream
is not predictable, it may be better to design and tune for throughput. This minimizes the total time to run
multiple jobs simultaneously. In this mode, the worker threads will yield to other threads while waiting for
more parallel work.

The throughput mode is designed to make the program aware of its environment (that is, the system load)
and to adjust its resource usage to produce efficient execution in a dynamic environment. Throughput mode
is the default.

OpenMP* Environment Variables

This topic describes the OpenMP* environment variables (with the OMP_ prefix) and Intel-specific
environment variables (with the KMP_ prefix).

Standard Environment Variables

Variable Description Default

OVP_SCHEDULE Sets the runtime schedule type and chunk size. | STATI C(no chunk
size specified)

OMP_NUM _THREADS | Sets the number of threads to use during Number of
execution. processors

OVP_DYNAM C Enables (TRUE) or disables (FALSE) the FALSE
dynamic adjustment of the number of threads.

OVP_NESTED Enables (TRUE) or disables (FALSE) nested | FALSE
parallelism.

182

Intel Extension Environment Variables

Volume II: Optimizing Applications

execution mode. The default value of t hr oughput
is used if this variable is not specified.

Environment Description Default
Variable
KMP_LI BRARY Selects the OpenMP run-time library throughput. The | t hr oughput
options for the variable value are: seri al , (execution
t ur nar ound, or t hr oughput indicating the mode)

KMP_STACKSI ZE | Sets the number of bytes to allocate for each parallel | IA-32: 2m
thread to use as its private stack. Use the optional Itanium®
suffix b, k, m g, or t, to specify bytes, kilobytes, compiler: 4m
megabytes, gigabytes, or terabytes.

OpenMP* Run-time Library Routines

OpenMP* provides several run-time library functions to assist you in managing your program in parallel
mode. Many of these functions have corresponding environment variables that can be set as defaults. The

run-time library functions enable you to dynamically change these factors to assist in controlling your
program. In all cases, a call to a run-time library function overrides any corresponding environment

variable.

The following table specifies the interfaces to these routines. The names for the routines are in user name
space. The onp. h and onp_I i b. h header files are provided in the | NCLUDE directory of your compiler

installation.

There are definitions for two different locks, onp_I ock_ki nd and onp_nest _| ock_ki nd, which are

used by the functions in the table that follows:

Execution Environment Routines

Function

Description

onp_set _num t hreads(nt hr eads)

Sets the number of threads to use for
subsequent parallel regions.

onp_get _num t hreads()

Returns the number of threads that are being
used in the current parallel region.

onp_get _max_t hreads()

Returns the maximum number of threads
that are available for parallel execution.

onp_get thread_num()

Returns the unique thread number of the
thread currently executing this section of
code.

onp_get _num procs()

Returns the number of processors available
to the program.

183

Intel® C++ Compiler for Linux* Systems User's Guide

Function

Description

onp_in_parallel()

Returns TRUE if called within the dynamic
extent of a parallel region executing in
parallel; otherwise returns FALSE.

onp_set _dynami c(dynani c_t hr eads)

Enables or disables dynamic adjustment of
the number of threads used to execute a
parallel region. If dynami c_t hr eads is
TRUE, dynamic threads are enabled. If
dynani c_t hr eads is FALSE, dynamic
threads are disabled. Dynamics threads are
disabled by default.

onp_get _dynam c()

Returns TRUE if dynamic thread adjustment
is enabled, otherwise returns FALSE.

onp_set nest ed(nest ed)

Enables or disables nested parallelism. If
nest ed is TRUE, nested parallelism is
enabled. If nest ed is FALSE, nested
parallelism is disabled. Nested parallelism is
disabled by default.

onp_get nested()

Returns TRUE if nested parallelism is
enabled, otherwise returns FALSE.

Lock Routines

Function

Description

onp_init_|ock(lock)

Initializes the lock associated with | ock for use in
subsequent calls.

onp_destroy_I| ock(l ock)

Causes the lock associated with | ock to become
undefined.

onp_set | ock(I ock)

Forces the executing thread to wait until the lock
associated with | ock is available. The thread is
granted ownership of the lock when it becomes
available.

onp_unset | ock(Il ock)

Releases the executing thread from ownership of
the lock associated with | ock. The behavior is
undefined if the executing thread does not own the
lock associated with | ock.

onmp_test | ock(lock

Attempts to set the lock associated with | ock. If
successful, returns TRUE, otherwise returns FALSE.

onp_init_nest | ock(l ock)

Initializes the nested lock associated with | ock for
use in the subsequent calls.

onp_destroy_nest | ock(l ock)

Causes the nested lock associated with | ock to
become undefined.

184

Volume II: Optimizing Applications

Function Description

onp_set _nest _| ock(| ock) Forces the executing thread to wait until the nested
lock associated with | ock is available. The thread
is granted ownership of the nested lock when it
becomes available.

onp_unset _nest _| ock(| ock) Releases the executing thread from ownership of
the nested lock associated with | ock if the nesting
count is zero. Behavior is undefined if the executing
thread does not own the nested lock associated with
| ock.

onp_t est_nest _| ock(Il ock) Attempts to set the nested lock associated with
| ock. If successful, returns the nesting count,
otherwise returns zero.

Timing Routines

Function Description

onp_get _wti me() | Returns a double-precision value equal to the elapsed wallclock time
(in seconds) relative to an arbitrary reference time. The reference time
does not change during program execution.

onp_get _wti ck() |Returns a double-precision value equal to the number of seconds
between successive clock ticks.

Intel Extensions

The Intel® C++ Compiler implements the following groups of functions as extensions to the OpenMP*
run-time library:

» getting and setting stack size for parallel threads
* memory allocation

The Intel extensions described in this section can be used for low-level debugging to verify that the library
code and application are functioning as intended. It is recommended to use these functions with caution
because using them requires the use of the - opennp_st ubs command-line option to execute the
program sequentially. These functions are also generally not recognized by other vendor's OpenMP-
compliant compilers, which may cause the link stage to fail for these other compilers.

BNote

The following functions require the pre-processor directive #i ncl ude <onp. h>.

185

Intel® C++ Compiler for Linux* Systems User's Guide

Stack Size

In most cases, directives can be used in place of extensions. For example, the stack size of the parallel
threads may be set using the KMP_STACKSI ZE environment variable rather than the
knp_set _st acksi ze_s() function.

]
— 4 Note

A run-time call to an Intel extension takes precedence over the corresponding environment variable setting.
See the definitions of stack size functions in the Stack Size table.

Memory Allocation

The Intel® C++ Compiler implements a group of memory allocation functions as extensions to the
OpenMP run-time library to enable threads to allocate memory from a heap local to each thread. These
functions are kKnp_mal | oc(), knp_cal [oc(), and knp_r eal | oc() . The memory allocated by
these functions must also be freed by the knp_f r ee()) function. While it is legal for the memory to be
allocated by one thread and knp_f r ee() 'd by a different thread, this mode of operation has a slight
performance penalty. See the definitions of these functions in the Memory Allocation table.

Stack Size

Function Description

knp_get _st acksi ze_s() Returns the number of bytes that will be allocated for
each parallel thread to use as its private stack. This
value can be changed with
knmp_set _stacksi ze_s() prior to the first
parallel region or with the KMP_STACKSI ZE
environment variable.

knmp_get _st acksi ze() This function is provided for backwards compatibility

only. Use knp_get _st acksi ze_s() for
compatibility across different families of Intel
processors.

knp_set _stacksi ze_s(si ze) | Setstosi ze the number of bytes that will be allocated
for each parallel thread to use as its private stack. This
value can also be set via the KMP_STACKSI ZE
environment variable. In order for

knmp_set st acksi ze_s() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the program.

knp_set _st acksi ze(si ze) This function is provided for backward compatibility
only; use knp_set _st acksi ze_s() for
compatibility across different families of Intel
processors.

186

Volume II: Optimizing Applications

Memory Allocation

Function Description
knp_mal | oc(si ze) Allocate memory block of Si ze bytes from thread-
local heap.

kmp_cal l oc(nel em el si ze) | Allocate array of nel emelements of size el si ze
from thread-local heap.

knp_real l oc(ptr, size) Reallocate memory block at address pt r and si ze
bytes from thread-local heap.

kmp_free(ptr) Free memory block at address pt r from thread-local
heap. Memory must have been previously allocated
with knp_mal | oc(), knp_cal | oc(), or
knp_real l oc().

Intel Workqueuing Model

The workqueuing model lets you parallelize control structures that are beyond the scope of those supported
by the OpenMP* model, while attempting to fit into the framework defined by OpenMP. In particular, the
workqueuing model is a flexible mechanism for specifying units of work that are not pre-computed at the
start of the worksharing construct. For si ngl e, f or, and sect i ons constructs all work units that can
be executed are known at the time the construct begins execution. The workqueuing pragmas taskq and
task relax this restriction by specifying an environment (the taskq) and the units of work (the tasks)
separately.

Workqueuing Constructs

taskg Pragma

The t askq pragma specifies the environment within which the enclosed units of work (tasks) are to be
executed. From among all the threads that encounter a t ask(q pragma, one is chosen to execute it initially.
Conceptually, the t askq pragma causes an empty queue to be created by the chosen thread, and then the
code inside the t ask(q block is executed single-threaded. All the other threads wait for work to be
enqueued on the conceptual queue. The t ask pragma specifies a unit of work, potentially executed by a
different thread. When a t ask pragma is encountered lexically within a t askq block, the code inside the
t ask block is conceptually enqueued on the queue associated with the t ask(q. The conceptual queue is
disbanded when all work enqueued on it finishes, and when the end of the t askq block is reached.

Control Structures

Many control structures exhibit the pattern of separated work iteration and work creation, and are naturally
parallelized with the workqueuing model. Some common cases are:

* whil e loops

e C++ iterators
e recursive functions.

187

Intel® C++ Compiler for Linux* Systems User's Guide

while Loops

If the computation in each iteration of a whi | e loop is independent, the entire loop becomes the
environment for the t askq pragma, and the statements in the body of the whi | e loop become the units of
work to be specified with the t ask pragma. The conditional in the whi | e loop and any modifications to
the control variables are placed outside of the t ask blocks and executed sequentially to enforce the data
dependencies on the control variables.

C++ lterators

C++ Standard Template Library (STL) iterators are very much like the whi | e loops just described,
whereby the operations on the data stored in the STL are very distinct from the act of iterating over all the
data. If the operations are data-independent, they can be done in parallel as long as the iteration over the
work is sequential. This type of whi | e loop parallelism is a generalization of the standard OpenMP*
worksharing for loops. In the worksharing for loops, the loop increment operation is the iterator and the
body of the loop is the unit of work. However, because the f or loop iteration variable frequently has a
closed form solution, it can be computed in parallel and the sequential step avoided.

Recursive Functions

Recursive functions also can be used to specify parallel iteration spaces. The mechanism is similar to
specifying parallelism using the sect i ons pragma, but is much more flexible because it allows arbitrary
code to sit between the t ask(q and the t ask pragmas, and because it allows recursive nesting of the
function to build a conceptual tree of t askq queues. The recursive nesting of the t askq pragmas is a
conceptual extension of OpenMP worksharing constructs to behave more like nested OpenMP parallel
regions. Just like nested parallel regions, each nested workqueuing construct is a new instance and is
encountered by exactly one thread. However, the major difference is that nested workqueuing constructs
do not cause new threads or teams to be formed, but rather re-use the threads from the team. This permits
very easy multi-algorithmic parallelism in dynamic environments, such that the number of threads need not
be committed at each level of parallelism, but instead only at the top level. From that point on, if a large
amount of work suddenly appears at an inner level, the idle threads from the outer level can assist in getting
that work finished. For example, it is very common in server environments to dedicate a thread to handle
each incoming request, with a large number of threads awaiting incoming requests. For a particular
request, its size may not be obvious at the time the thread begins handling it. If the thread uses nested
workqueuing constructs, and the scope of the request becomes large after the inner construct is started, the
threads from the outer construct can easily migrate to the inner construct to help finish the request.

Since the workqueuing model is designed to preserve sequential semantics, synchronization is inherent in
the semantics of the t askq block. There is an implicit team barrier at the completion of the t askq block
for the threads that encountered the t askq construct to ensure that all of the tasks specified inside of the

t askq block have finished execution. This t askq barrier enforces the sequential semantics of the
original program. Just like the OpenMP worksharing constructs, it is assumed you are responsible for
ensuring that either no dependences exist or that dependencies are appropriately synchronized between the
task blocks, or between code in a task block and code in the t askq block outside of the task blocks.

The syntax, semantics, and allowed clauses are designed to resemble OpenMP* worksharing constructs.
Most of the clauses allowed on OpenMP worksharing constructs have a reasonable meaning when applied
to the workqueuing pragmas.

188

Volume II: Optimizing Applications

taskq Construct

#pragma intel onmp taskqg [clause[[,]clause]...]
structured-bl ock

where cl ause can be any of the following:

e private (variable-list)

e firstprivate (variable-Ilist)

e Jlastprivate (variable-list)

e reduction (operator : variable-list)
 ordered

e nowait

private

The pri vat e clause creates a private, default-constructed version for each object in vari abl e- | i st
for the t askq. It also implies capt ur epri vat e on each enclosed task. The original object referenced
by each variable has an indeterminate value upon entry to the construct, must not be modified within the
dynamic extent of the construct, and has an indeterminate value upon exit from the construct.

firstprivate

The firstprivat e clause creates a private, copy-constructed version for each object in var i abl e-
I'i st for the t askq. It also implies capt ur epri vat e on each enclosed task. The original object
referenced by each variable must not be modified within the dynamic extent of the construct and has an
indeterminate value upon exit from the construct.

lastprivate

The | ast pri vat e clause creates a private, default-constructed version for each object in var i abl e-
I'i st forthet askq. It also implies capt ur epri vat e on each enclosed task. The original object
referenced by each variable has an indeterminate value upon entry to the construct, must not be modified
within the dynamic extent of the construct, and is copy-assigned the value of the object from the last
enclosed task after that task completes execution.

reduction

The r educt i on clause performs a reduction operation with the given operator in enclosed task constructs
for each object invari abl e-1i st. operat or and vari abl e-1i st are defined the same as in the
OpenMP Specifications.

ordered

The or der ed clause performs ordered constructs in enclosed t ask constructs in original sequential
execution order. The t askq directive, to which the or der ed is bound, must have an or der ed clause
present.

189

Intel® C++ Compiler for Linux* Systems User's Guide

nowait

The nowai t clause removes the implied barrier at the end of the t askq. Threads may exit the t askq
construct before completing all the t ask constructs queued within it.

task Construct

#pragma intel onp task [clause[[,]clause]...]
structured- bl ock

where cl ause can be any of the following:

e private(variable-list)
e captureprivate(variable-list)

private

The pri vat e clause creates a private, default-constructed version for each object invari abl e- i st
for the t ask. The original object referenced by the variable has an indeterminate value upon entry to the
construct, must not be modified within the dynamic extent of the construct, and has an indeterminate value
upon exit from the construct.

captureprivate

The capt ur epri vat e clause creates a private, copy-constructed version for each object in var i abl e-
[i st forthet ask at the time the t ask is enqueued. The original object referenced by each variable
retains its value but must not be modified within the dynamic extent of the t ask construct.

Combined parallel and taskq Construct

#pragma intel onmp parallel taskq [clause[[,]clause]...]
structured- bl ock

where cl ause can be any of the following:

e« if(scal ar-expression)

e numthreads(integer-expression)

e copyin(variable-list)

e default(shared | none)

e shared(variable-list)

e private(variable-Ilist)

e firstprivate(variable-list)

e Jlastprivate(variable-list)

e reduction(operator : variable-Ilist)
e ordered

Cl ause descriptions are the same for par al | el andt askq construct.

190

Volume II: Optimizing Applications

Example Function

The t est 1 function is a natural candidate to be parallelized using the workqueuing model. You can
express the parallelism by annotating the loop with a parallel t askq pragma and the work in the loop body
with at ask pragma. The parallel t askq pragma specifies an environment for the whi | e loop in which
to enqueue the units of work specified by the enclosed t ask pragma. Thus, the loop’s control structure and
the enqueuing are executed single-threaded, while the other threads in the team participate in dequeuing the
work from the t askq queue and executing it. The capt ur epr i vat e clause ensures that a private copy
of the link pointer p is captured at the time each task is being enqueued, hence preserving the sequential
semantics.

void test1(LIST p)
{ #pragma intel onmp parallel taskq shared(p)
while (p !'= NULL)
#pragma i ntel onmp task captureprivate(p)
do_wor k1(p);

p = p->nhext;

Examples of OpenMP* Usage
The following examples show how to use the OpenMP* feature.

A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each iteration is different.
Dynamic scheduling is used to get good load balancing. The f or has a nowai t because there is an
implicit bar ri er at the end of the parallel region.

void for_1 (float a[], float b[], int n)

int i, j;
#pragma onp parallel shared(a,b,n) private(i,j)
{

#pragma onmp for schedul e(dynanic, 1) nowait

for(i =1; i < n; i++4)
for(j = 0; j <= 1i; |++)
b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;

191

Intel® C++ Compiler for Linux* Systems User's Guide

Two Difference Operators

The following example uses two parallel loops fused to reduce fork/join overhead. The first f or has a
nowai t because all the data used in the second loop is different than all the data used in the first loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int

int i, j;
#pragma onp parallel shared(a,b,c,d,n,m private(i,j)
{

#pragma onp for schedul e(dynanic, 1) nowait

for(i =1; i < n; i++4)
for(j =0; j <=1i,; j++)
b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
p ma onmp for schedul e(dynamnic, 1) nowait
for(i =1; i <m i++4)
for(] jo<= 0 j+t)

:O'
dij +nmti] = (c[j + nri] +c[j + nm(i-1)])/2.0;

Optimization Support Features

This section describes language extensions to the Intel® C++ Compiler that let you optimize your source
code directly. Examples are included of optimizations supported by Intel extended directives and library
routines that enhance and/or help analyze performance.

Compiler Directives
This section discusses the language extended directives used in:

* Software Pipelining

* Loop Count and Loop Distribution
e Loop Unrolling

e Prefetching

* Vectorization

Pipelining for Itanium®-based Applications

The swp and noswp directives indicate preference for a loop to get software-pipelined or not. The Swp
directive does not help data dependence, but overrides heuristics based on profile counts or lop-sided
control flow. The syntax for this directive is:

#pragma swp

#pragma noswp

192

Volume II: Optimizing Applications

Example of swp Directive

#pragma swp
for (i=0; i<m; i++)

if (a[i]==0)
b[i]=ai] +1;
el se

b[i]=al[i]*2;

The software pipelining optimization triggered by the Swp directive applies instruction scheduling to
certain innermost loops, allowing instructions within a loop to be split into different stages, allowing
increased instruction level parallelism. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Loops chosen for software pipelining are always innermost loops that do not contain
procedure calls that are not inlined. Because the optimizer no longer considers fully unrolled loops as
innermost loops, fully unrolling loops can allow an additional loop to become the innermost loop. You can
request and view the optimization report to see whether software pipelining was applied (see Optimizer
Report Generation).

Loop Count and Loop Distribution

loop count (n) Directive

The | oop count (n) directive indicates the loop count is likely to be n. The syntax for this directive
is:

#pragma | oop count (n)

where n is an integer constant. The value of | oop count affects heuristics used in software pipelining,
vectorization and loop-transformations.

Example of loop count (n) Directive

#pragma | oop count (10000)
for(i=0; i<m i++)

/ likely to occur in this | oop
a[i]=b[i]+1.2;

193

Intel® C++ Compiler for Linux* Systems User's Guide

distribute point Directive

The di stri bute point directive indicates to the compiler a preference of performing loop
distribution. The syntax for this directive is:

#pragma di stribute point

Loop distribution may cause large loops be distributed into smaller ones. This may enable software
pipelining for more loops. If the directive is placed inside a loop, the distribution is performed after the
directive and any loop-carried dependency is ignored. If the directive is placed before a loop, the compiler
will determine where to distribute and data dependency is observed. Only one distribute directive is
supported when placed inside the loop.

Example of distribute point Directive

#pragma di stribute point
for(i=1; i<m i++)

b[i]=a[i]+1;

/] Compiler will automatically
//decide where to distribute.
// Dat a dependency i s observed.

cli]=a[i]+b[i];

dli]=c[i]+1;

for(i=1; i<m i++)
b[i]=ali]+1;

#pragma di stribute point

/[/Distribution will start here,
/lignoring all |oop-carried dependency.

sub(a, n);
cli]=a[i]+b[i];

dli]=c[i]+1;

194

Volume II: Optimizing Applications

Loop Unrolling Support

unroll Directive

The unr ol | directive (unr ol I (n) | nounr ol |) tells the compiler how many times to unroll a counted
loop. The syntax for this directive is:

#pragma unrol |

#pragma unrol |l (n)

#pragma nounrol |

where n is an integer constant from 0 through 255. The unr ol | directive must precede the f or statement
for each f or loop it affects. If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it
is outside the allowed range, the optimizer assigns the number of times to unroll the loop. The unr ol |
directive overrides any setting of loop unrolling from the command line. The directive can be applied only

for the innermost nested loop. If applied to the outer loops, it is ignored. The compiler generates correct
code by comparing n and the loop count.

Example of unroll Directive

#pragma unrol | (4)
for(i=1; i<m i++)

b[i]=a[i]+1;
dli]=c[i]+1:

Prefetching Support

prefetch Directive
The pr ef et ch and nopr ef et ch directives assert that the data prefetches are generated or not generated
for some memory references. This affects the heuristics used in the compiler. The syntax for this directive
is:
#pragma nopref et ch
#pragma prefetch
#pragma prefetch a, b
If the expression a[j] is used within a loop, by placing pr ef et ch a in front of the loop, the compiler

will insert prefetches for a[j +d] within the loop, where d is determined by the compiler. This directive is
supported when option - O3 is on.

195

Intel® C++ Compiler for Linux* Systems User's Guide

Example of prefetch Directive

#pragma noprefetch b
#pragma prefetch a

for(i=0; i<m i++)
a[i]=b[i]+1;

Vectorization Support (I1A-32)

The vect or directives control the vectorization of the subsequent loop in the program, but the compiler
does not apply them to nested loops. Each nested loop needs its own directive preceding it. You must place
the vector directive before the loop control statement.

vector always Directive

The vect or al ways directive instructs the compiler to override any efficiency heuristic during the
decision to vectorize or not, and will vectorize non-unit strides or very unaligned memory accesses.

Example of vector always Directive

#pragna vector al ways
for(i=0; i<=N;, i++)

a[32*i] =b[99*i] ;

ivdep Directive

The i vdep directive instructs the compiler to ignore assumed vector dependences. To ensure correct code,
the compiler treats an assumed dependence as a proven dependence, which prevents vectorization. This
directive overrides that decision. Use i vdep only when you know that the assumed loop dependences are
safe to ignore. The loop in the following example will not vectorize with the i vdep, since the value of K is
not known (vectorization would be illegal if k<0).

Example of ivdep Directive

#pragma i vdep
for(i=0; i<m i++)

a[i]=ali+k]*c;

196

Volume II: Optimizing Applications

vector aligned Directive

The vect or al i gned directive means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the al i gned or unal i gned qualifier is used, the
loop should be vectorized using al i gned or unal i gned operations. Specify either al i gned or
unal i gned, but not both.

&Caution

If you specify al i gned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code. The loop in the following
example uses the al i gned qualifier to request that the loop be vectorized with al i gned instructions, as
the arrays are declared in such a way that the compiler could not normally prove this would be safe to do
SO.

Example of vector aligned Directive

#void foo(float *a)

{ #pragm vector aligned
for(i=0; i<m i++)
a[i]=a[i]*c;

}

The compiler includes several alignment strategies in case the alignment of data structures is not known at
compile time. A simple example follows, but several other strategies are supported as well. If, in the
following loop, the alignment of @ is unknown, the compiler will generate a prelude loop that iterates until
the array reference that occurs the most hits an aligned address. This makes the alignment properties of a
known, and the vector loop is optimized accordingly.

197

Intel® C++ Compiler for Linux* Systems User's Guide

Example of Alignment Strategies

float *a;

/1 Al'i gnment unknown
for(i=0; i<100; i++)

a[i]=a[i]+1.0f;

/! Dynami c | oop peeling

p=a & 0xOf;
i f (p!=0)
p=(16-p)/4;

for(i=0; i<p; i++)

a[i]=a[i]+1.0f;

Loop with a aligned.
r(i=p; i<100; i++)
a[i]=a[i]+1.0f;

O e e e e

/
/W11 be vectorized accordingly.
0

novector Directive

The novect or directive specifies that the loop should never be vectorized, even if it is legal to do so. In

this example, suppose you know the trip count (ub -

I b) is too low to make vectorization worthwhile.

You can use novect or to tell the compiler not to vectorize, even if the loop is considered vectorizable.

Example of novector Directive

void foo(int |b, int ub)
{

#pragma novect or
for(j=Ib; j<ub; j++)

alj]=a[j]+b[j];

198

Volume II: Optimizing Applications

Optimizer Report Generation

The Intel® C++ Compiler provides options to generate and manage optimization reports:

* -opt_report generates an optimization report and directs it to St der r . By default, the compiler
does not generate optimization reports.
o -opt_report_filefilename generates an optimization report and directs it to a file specified

in fil ename.

o« -opt_report_Ievel {m n| med| max} specifies the detail level of the optimization report. The
M n argument provides the minimal summary and max produces the full report. The default is -
opt _report_level mn.

e -opt_report_routinefileroutine_substring generates reports from all routines with
names containing the subst ri ng as part of their name. If not specified, reports from all routines
are generated. By default, the compiler generates reports for all routines.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase argument of the -
opt _report _phasephase option. The option can be used multiple times on the same command line to
generate reports for multiple optimizers. Currently, the following optimizer reports are supported.

Optimizer | Optimizer Full Name

Logical

Name

i po Interprocedural Optimizer

hl o High Level Optimizer

ilo Intermediate Language Scalar Optimizer
ecg Code Generator

onp Open MP

al | All phases

When one of the logical names for optimizers is specified, all reports from that optimizer are generated.

For example, - opt _r eport _phasei po - opt _report _phaseecg generates reports from the
interprocedural optimizer and the code generator.

199

Intel® C++ Compiler for Linux* Systems User's Guide

Each of the optimizers can potentially have specific optimizations within them. Each of these optimizations
are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

i po_inline Interprocedural Optimizer, inline expansion of functions

i po_const ant _propagati on | Interprocedural Optimizer, constant propagation

i po_function_reorder Interprocedural Optimizer, function reorder

il o_constant _propagation | Intermediate Language Scalar Optimizer, constant
propagation

il o_copy_propagation Intermediate Language Scalar Optimizer, copy
propagation

ecg_sof tware_pi pelining |Code Generator, software pipelining

All optimization reports that have a matching prefix with the specified optimizer are generated. For
example, if - opt _r eport _phase il o_co is specified, a report from both the constant propagation
and the copy propagation are generated.

The Availability of Report Generation

The - opt _r eport _hel p option lists the logical names of optimizers available for report generation.

200

Volume II: Optimizing Applications

Timing Your Application

How fast your application executes is one indication of performance. When timing the speed of
applications, consider the following circumstances:

* Run program timings when other users are not active. Your timing results can be affected by one or
more CPU-intensive processes also running while doing your timings.

* Try to run the program under the same conditions each time to provide the most accurate results,
especially when comparing execution times of a previous version of the same program. Use the same
system (processor model, amount of memory, version of the operating system, and so on) if possible.

* If you do need to change systems, you should measure the time using the same version of the
program on both systems, so you know each system's effect on your timings.

* For programs that run for less than a few seconds, run several timings to ensure that the results are
not misleading. Certain overhead functions, like loading external programs, might influence short
timings considerably.

» If your program displays a lot of text, consider redirecting the output from the program. Redirecting
output from the program will change the times reported because of reduced screen I/O.

The following program illustrates a model for program timing:

/* Sanple Timng */
#i ncl ude <stdi 0. h>
#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

i nt mai n(voi d)

clock t start, finish;

| ong | oop;

doubl e duration, |oop_calc;
start = clock();

for(loop=0; |oop <= 2000; | oop++)

| oop_calc = 123.456 * 789;

[1printf(
\

nt inculded to facilitate exanple
printf("

)
nThe val ue of loop is: %", |oop);

finish = clock();
duration = (double)(finish - start)/CLOCKS PER _SEC,
printf("\n%.3f seconds\n", duration);

201

Reference

Compiler Limits

The following table shows the size or number of each item that the compiler can process. All capacities
shown in the table are tested values; the actual number can be greater than the number shown.

Iltem Tested Values

Control structure nesting (block nesting) 512

Conditional compilation nesting 512
Declarator modifiers 512
Parenthesis nesting levels 512

Significant characters, internal identifier 2048

External identifier name length 64K

Number of external identifiers/file 128K

Number of identifiers in a single block 2048

Number of macros simultaneously defined | 128K

Number of parameters to a function call 512
Number of parameters per macro 512
Number of characters in a string 128K
Bytes in an object 512K
Include file nesting depth 512
Case labels in a switch 32K
Members in one structure or union 32K

Enumeration constants in one enumeration | 8192

Levels of structure nesting 320

Size of arrays 2GB

202

Key Files

Key Files Summary for 1A-32 Compiler

Reference

The following tables list and briefly describe files that are installed for use by the IA-32 version of the

compiler.
/bin Files
File Description
codecov Code-coverage tool
i ccvars. sh | Batch file to set environment variables
i ccvars. csh
: ggc Scripts that check for license file and call compiler driver
i cchin Compiler drivers
i cpcbin
ncpcom Intel® C++ Compiler
i cchbin Compiler drivers
i cpcbin
pr of mer ge Utility used for Profile Guided Optimizations
pr of or der Utility used for Profile Guided Optimizations
tsel ect Test-prioritization tool
xi ar Tool used for Interprocedural Optimizations
xild Tool used for Interprocedural Optimizations

/include Files

File

Description

dvec. h

SSE 2 intrinsics for Class Libraries

emm func. h

Header file for SSE2 intrinsics (used by emmi nt ri n. h)

emmntrin. h

Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard f | oat . h

fvec. h SSE intrinsics for Class Libraries

i s0646. h Standard header file

ivec.h MMX(TM) instructions intrinsics for Class Libraries
limts.h Standard header file

203

Intel® C++ Compiler for Linux* Systems User's Guide

File Description
mat hf . h Principal header file for legacy Intel Math Library
mat hi nf. h Principal header file for current Intel Math Library

mrintrin.h

Intrinsics for MMX instructions

onmp. h Principal header file OpenMP*
omp_lib.h Header file for OpenMP
pgouser . h For use in the instrumentation compilation phase of profile-guided

optimizations

pmmintrin. h

Principal header file SSE3 intrinsics

proto.h

sse2mmx. h Principal header file for Streaming SIMD Extensions 2 intrinsics
stdarg. h Replacement header for standard st dar g. h

st dbool . h Defines _Bool keyword

stddef.h Standard header file

syslimts.h

varargs. h

Replacement header for standard var ar gs. h

xarg. h

Header file used by st dar gs. h and varargs. h

xmm func. h. h

Header file for Streaming SIMD Extensions

xmmutils.h

Utilities for Streaming SIMD Extensions

xmmntrin.h

Principal header file for Streaming SIMD Extensions intrinsics

/lib Files

Library Description
|'i bgui de. a For OpenMP* implementation
['i bgui de. so

|'i bgui de_stats.a | OpenMP static library for the parallelizer tool with performance
|'i bgui de_st at's. so | statistics and profile information

|'i bonpstub. a Library that resolves references to OpenMP subroutines when
OpenMP is not in use

[ibsvn.a Short vector math library

l[ibirc.a Intel support library for PGO and CPU dispatch

libinf.a Intel math library

[ibinf.so Intel math library

204

Reference

Library

Description

libcprts.a
libcprts.s

libcprts.so.3

(0]

Dinkumware* C++ Library

i bunwi nd.
| i bunwi nd.
li i

a

(o]
.S0.3

Unwinder library

| i bcxa. a
i bcxa. so
| i bcxa. so.

3

Intel run time support for C++ features

I i bcxaguard. a
I i bcxaguard. so
I i bcxaguard. so. 3

See gce Interoperability.

Used for interoperability support with the - cxx| i b- gcc option.

Key Files Summary for Itanium® Compiler

The following tables list and briefly describe files that are installed for use by the Itanium® compiler.

/bin Files
File Description
codecov Code-coverage tool
i ccvars. sh | Batch file to set environment variables
icc.cfg Configuration file for use from command line
; ggc Scripts that check for license file and call compiler driver
i cchin Compiler drivers
i cpchin
ncpcom Intel® C++ Compiler
i cchbin Compiler drivers
i cpchin
prof merge | Utility used for Profile Guided Optimizations
pr of or der Utility used for Profile Guided Optimizations
t sel ect Test-prioritization tool
Xi ar Tool used for Interprocedural Optimizations
xild Tool used for Interprocedural Optimizations

205

/finclude Files

Intel® C++ Compiler for Linux* Systems User's Guide

File

Description

emmntrin. h

Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard f | oat . h

fvec. h SSE intrinsics for Class Libraries

iabdintrin.h

i ab4regs. h Standard header file

i S0646. h Standard header file

ivec.h MMX(TM) instructions intrinsics for Class Libraries
limts.h Standard header file

mat hi nf . h Principal header file for current Intel Math Library

mmintrin.h

Intrinsics for MMX instructions

onp. h Principal header file OpenMP*

pgouser . h For use in the instrumentation compilation phase of profile-guided
optimizations

proto. h

sse2mx. h Principal header file for Streaming SIMD Extensions 2 intrinsics

stdarg. h Replacement header for standard st dar g. h

st dbool . h Defines _Bool keyword

stddef. h Standard header file

syslimts.h

varargs. h

Replacement header for standard var ar gs. h

xarg. h

Header file used by st dar gs. h and varargs. h

xmmntrin.h

Principal header file for Streaming SIMD Extensions intrinsics

206

Reference

/lib Files
File Description
l'ibcprts.a C++ standard language library
l'i bcxa. so C++ language library indicating I/O data location
libirc.a Intel-specific library (optimizations)
[ibma Math library

i bgui de. a OpenMP library

|'i bgui de. so Shared OpenMP library

l'i brofl. a Multiple Object Format Library, used by the Intel assembler

l'i bnofl. so Shared Multiple Object Format Library, used by the Intel assembler

|'i bunwi nder. a | Unwinder library

l'ibintrins.a |Intrinsic functions library

Diagnostics and Messages

This section describes the various messages that the compiler produces. These messages include the sign-
on message and diagnostic messages for remarks, warnings, or errors. The compiler always displays any
diagnostic message, along with the erroneous source line, on the standard output.

This section also describes how to control the severity of diagnostic messages.

Diagnostic Messages

Option | Description

- w0 Display errors (same as - W)

-wl Display warnings and errors (DEFAULT)

- W2 Display remarks, warnings, and errors

207

Intel® C++ Compiler for Linux* Systems User's Guide

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source file. These
diagnostics have the following format:

filenane (linenum: type [#nn]: nessage

fil ename | Indicates the name of the source file currently being processed.

I i nenum | Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or
catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or
catastrophes are not assigned a number.

message | Describes the diagnostic.

The following is an example of a warning message:
tantst.cpp(3): warning #328: Local variable "increment" never used.

The compiler can also display internal error messages on the standard error. If your compilation produces
any internal errors, contact your Intel representative. Internal error messages are in the following form:

FATAL COWPI LER ERROR nessage

Suppressing Warning Messages with lint Comments

The UNIX | i nt program attempts to detect features of a C or C++ program that are likely to be bugs,
non-portable, or wasteful. The compiler recognizes three | i nt -specific comments:

1. [* ARGSUSED*/
2. | * NOTREACHED* /
3./ *VARARGS*/

Like the | i nt program, the compiler suppresses warnings about certain conditions when you place these
comments at specific points in the source.

Suppressing Warning Messages or Enabling Remarks

Use the - wor - Wh option to suppress warning messages or to enable remarks during the preprocessing and
compilation phases. You can enter the option with one of the following arguments:

Option | Description

-wo Display only errors (same as - W)

-wl Display warnings and errors (DEFAULT)

- W2 Display remarks, warnings, and errors

208

Reference

For some compilations, you might not want warnings for known and benign characteristics, such as the
K&R C constructs in your code. For example, the following command compiles newpr og. cpp and
displays compiler errors, but not warnings:

prompt >i cpc - WD newpr og. cpp

Use the - ww, - we, or - wd option to indicate specific diagnostics.

Option Description
-WAL1[L2, ..., Ln] | Changes the severity of diagnostics L1 through Ln to warning.
-welL1[L2,...,Ln] |Changes the severity of diagnostics L1 through Ln to error.
-wdL1[L2, ..., Ln] | Disables diagnostics L1 through Ln.

Example

/* test.c */
int main()

i nt x=0;

If you compile t est . ¢ using the - WAl | option (enable all warnings), the compiler will emit warning
#177:

prompt>icc -Wall test.c

remark #177: variable 'x' was decl ared but never referenced
To disable warning #177, use the - wd option:

prompt>icc -Wall -wd177 test.c

Likewise, using the -we option will result in a compile-time error:

prompt>icc -Wall -wel77 test.c

error #177: variable 'x' was decl ared but never referenced

conpil ation aborted for test.c

209

Intel® C++ Compiler for Linux* Systems User's Guide

Limiting the Number of Errors Reported

Use the - wnn option to limit the number of error messages displayed before the compiler aborts. By

default, if more than 100 errors are displayed, compilation aborts.

Option

Description

-wnn/ i

Limit the number of error diagnostics that will be displayed prior to aborting
compilation to n. Remarks and warnings do not count towards this limit.

For example, the following command line specifies that if more than 50 error messages are displayed

during the compilation of a. cpp, compilation aborts.

prompt >i cpc -wn50 -c a.cpp

Remark Messages

These messages report common, but sometimes unconventional, use of C or C++. The compiler does not
print or display remarks unless you specify level 4 for the - Woption, as described in Suppressing Warning
Messages or Enabling Remarks. Remarks do not stop translation or linking. Remarks do not interfere with

any output files. The following are some representative remark messages:

e function declared inplicitly
e type qualifiers are neaningless in this declaration
e controlling expression is constant

210

Reference

Intel Math Library

The Intel® C++ Compiler includes a mathematical software library containing highly optimized and very
accurate mathematical functions. These functions are commonly used in scientific or graphic applications,
as well as other programs that rely heavily on floating-point computations. Support for C99 _Conpl ex
data types is included by using the - c99 compiler option. The mat hi nf . h header file includes
prototypes for the library functions. See Using the Intel Math Library. For a complete list of the functions
available, refer to the Function List in this section.

Math Libraries for IA-32 and Itanium®-based Systems

The math library linked to an application depends on the compilation or linkage options specified.

Library Description

l'i bi nf.a | Default static math library.

I'i bi nf. so | Default shared math library.

Using the Intel Math Library

To use the Intel math library, include the header file, mat hi nf . h, in your program. Here are two example
programs that illustrate the use of the math library.

211

Intel® C++ Compiler for Linux* Systems User's Guide

Example Using Real Functions

/1 real _math.c

#i ncl ude <stdi o. h>
#i ncl ude <mat hi nf. h>

int main() {

float fp32bits;

doubl e fp64bits;

| ong doubl e fp80bits;

| ong double pi_by four = 3.141592653589793238/ 4. 0;

/1 pil4 radians is about 45 degrees.

fp32bits = (float) pi_by four; /1 float approximation to pi/4
fp64bits = (double) pi_by four; // double approximtion to
pi/4

fp80bits = pi _by four; /1 1ong doubl e (extended)

approximation to pi/4

/1 The sin(pi/4) is known to be 1/sqrt(2) or approximtely
. 7071067

printf("Wen x = %8.8f, sinf(x) = 98.8f \n", fp32bits,

sinf (fp32bits));

printf("Wen x = %46.16f, sin(x) = %46.16f \n", fp64bits,
sin(fp64bits));

printf("When x = % 0. 20Lf, sinl(x) = 9%0.20f \n", fp80bits,
sinl (fp80bits));

return O;

Compiling r eal _mat h. c:
pronmpt>icc real _math.c

The output of a. out will look like this:

Wien x = 0.78539816, sinf(x) = 0.70710678
Wien x = 0.7853981633974483, sin(x) = 0.7071067811865475
Wien x = 0.78539816339744827900, sinl (x) =

0. 70710678118654750275

212

Reference

Example Using Complex Functions

/1 conplex_math.c

#i ncl ude <stdi o. h>
#i ncl ude <mat hi nf. h>

int main()

float _Conpl ex ¢32in,c32out;

doubl e _Conpl ex c¢64i n, c64out;

doubl e pi _by four= 3.141592653589793238/ 4. 0;
c64in =1.0 + | _* pi_by four

/1 Create the double precision conplex nunber 1 + (pi/4) *
/1l where i is the imaginary unit.

c32in = (float _Conplex) c64in

/!l Create the float conmplex value fromthe doubl e conpl ex

val ue.
c64out = cexp(c64in);
c32out = cexpf(c32in);

/1 Call the conpl ex exponenti al
Il cexp(z) = cexp(x+iy) =e" (x +1i y) =e*x * (cos(y) +
sin(y))

printf("When z = %.7f + %.7f i, cexpf(z) = %.7f + %.7f
\n"

,creal f(c32in), ci mgf(c32in),creal f(c32out), ci magf(c32o0ut));
printf("Wien z = %d2. 12f + 9%42. 12f i, cexp(z) = %2. 12f +
%2.12f i \n"

, creal (c64in), ci mag(c64in), creal (c64out), ci magf (c64out));

return O;

}

pronpt >i cc conplex_math.c

The output of a. out will look like this:

When z = 1. 0000000 + 0.7853982 i, cexpf(z) = 1.9221154 +
1.9221156 i

When z = 1. 000000000000 + 0O.785398163397 i, cexp(z) =

1. 922115514080 + 1.922115514080

BNote

_Conpl ex data types are supported in C but not in C++ programs.

213

Intel® C++ Compiler for Linux* Systems User's Guide

Exception Conditions

If you call a math function using argument(s) that may produce undefined results, an error number is
assigned to the system variable er r no. Math function errors are usually domain errors or range errors.

Domain errorsresult from arguments that are outside the domain of the function. For example, acos is
defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(- 2) or acos(3)
results in a domain error, where the return value is QNaN.

Range errors occur when a mathematically valid argument results in a function value that exceeds the
range of representable values for the floating-point data type. Attempting to evaluate exp(1000) results
in a range error, where the return value is | NF.

When domain or range error occurs, the following values are assigned to er r no:

e domain error (EDOM): errno = 33
» range error (ERANGE): errno = 34

The following example shows how to read the er r no value for an EDOMand ERANGE error.

/'l errno.c

#i ncl ude <errno. h>
#i ncl ude <mat hi nf. h>
#i ncl ude <stdio. h>

i nt mai n(voi d)

doubl e neg_one=-1.0;
doubl e zer 0=0. 0;

/1 The natural |og of a negative nunber is considered a
domain error - EDOM

printf("log(%) = % and errno(EDOM = %
\'n", neg_one, | og(neg_one), errno);

/1 The natural log of zero is considered a range error -
ERANGE

printf("log(%) = % and errno(ERANGE) = %
\n", zero, |l og(zero), errno);

The output of er r no. ¢ will look like this:

| og(-1. 000000e+00) = nan and errno(EDOV) = 33
| 0og(0.000000e+00) = -inf and errno(ERANGE) = 34

For the math functions in this section, a corresponding value for er r no is listed when applicable.

214

Reference

Other Considerations

Some math functions are inlined automatically by the compiler. The functions actually inlined may vary
and may depend on any vectorization or processor-specific compilation options used. For more
information, see Criteria for Inline Expansion of Functions.

A change of the default precision control or rounding mode may affect the results returned by some of the
mathematical functions. See Floating-point Arithmetic Precision.

It's necessary to include the - €99 compiler option when compiling programs that require support for
_Compl ex data types.

Trigonometric Functions

ACOS

The Intel Math library supports the following trigonometric functions:

Description: The acos function returns the principal value of the inverse cosine of X in the range [0, pi]
radians for X in the interval [-1,1].

errno: EDOM, for [x| > 1

Calling interface:

doubl e acos(doubl e x);

| ong doubl e acosl (I ong doubl e x);
float acosf(float x);

ACOSD

ASIN

Description: The acosd function returns the principal value of the inverse cosine of X in the range [0,180]
degrees for X in the interval [-1,1].

errno: EDOM, for [x|> 1

Calling interface:

doubl e acosd(doubl e x);

| ong doubl e acosdl (1 ong doubl e x);
float acosdf (float x);

Description: The asi n function returns the principal value of the inverse sine of X in the range [-pi/2,
+pi/2] radians for X in the interval [-1,1].

errno: EDOM, for [x|> 1

Calling interface:

doubl e asi n(doubl e x);

| ong doubl e asinl (I ong double x);
float asinf(float x);

215

Intel® C++ Compiler for Linux* Systems User's Guide

ASIND

Description: The asi nd function returns the principal value of the inverse sine of X in the range [-90,90]
degrees for X in the interval [-1,1].

errno: EDOM, for [x| > 1

Calling interface:

doubl e asi nd(doubl e Xx);

| ong doubl e asindl (1 ong double x);
float asindf(float x);

ATAN

Description: The at an function returns the principal value of the inverse tangent of X in the range [-pi/2,
+pi/2] radians.

Calling interface:

doubl e at an(doubl e x);

| ong doubl e atanl (I ong double x);
float atanf(float x);

ATANZ2

Description: The at an2 function returns the principal value of the inverse tangent of y/ X in the range [-
pi, +pi] radians.

errno: EDOM, forx=0andy=0

Calling interface:

doubl e atan2(doubl e y, double x);

| ong doubl e atan2l (1 ong double y, [ong double x);
float atan2f(float y, float x);

ATAND

Description: The at and function returns the principal value of the inverse tangent of X in the range [-
90,90] degrees.

Calling interface:

doubl e atand(doubl e x);

| ong doubl e atandl (1 ong doubl e Xx);
float atandf(float x);

216

Reference

ATAN2D

COS

COSD

COoT

COTD

Description: The at an2d function returns the principal value of the inverse tangent of y/ X in the range [-
180, +180] degrees.

errno: EDOM, forx=0andy=0.

Calling interface:

doubl e atan2d(doubl e x, double y);

| ong doubl e atan2dl (1 ong double x, |ong double y);
float atan2df(float x, float y);

Description: The cos function returns the cosine of X measured in radians. This function may be inlined
with the Itanium® compiler.

Calling interface:

doubl e cos(double x);

| ong doubl e cosl (1 ong doubl e x);
float cosf(float x);

Description: The cosd function returns the cosine of X measured in degrees.

Calling interface:

doubl e cosd(doubl e x);

| ong doubl e cosdl (I ong doubl e x);
float cosdf(float x);

Description: The cot function returns the cotangent of X measured in radians.
errno. ERANGE, for overflow conditions at x = 0.

Calling interface:

doubl e cot (doubl e x);

| ong doubl e cotl (1 ong double x);
float cotf(float x);

Description: The cot d function returns the cotangent of X measured in degrees.
errno: ERANGE, for overflow conditions at x = 0.

Calling interface:

doubl e cotd(double x);

| ong doubl e cotdl (I ong double x);
float cotdf(float x);

217

Intel® C++ Compiler for Linux* Systems User's Guide

SIN
Description: The si n function returns the sine of X measured in radians. This function may be inlined
with the [tanium® compiler.
Calling interface:
doubl e sin(double x);
| ong doubl e sinl (long double x);
float sinf(float x);
SINCOS
Description: The si ncos function returns both the sine and cosine of X measured in radians. This
function may be inlined with the Itanium® compiler.
Calling interface:
voi d sincos(double x, double *sinval, double *cosval);
voi d sincosl (I ong doubl e x, |long double *sinval, |ong double *cosval);
void sincosf(float x, float *sinval, float *cosval);
SINCOSD
Description: The si ncosd function returns both the sine and cosine of X measured in degrees.
Calling interface:
voi d sincosd(doubl e x, double *sinval, double *cosval);
voi d sincosdl (I ong double x, |ong double *sinval, |ong double *cosval);
void sincosdf(float x, float *sinval, float *cosval);
SIND
Description: The si nd function computes the sine of X measured in degrees.
Calling interface:
doubl e si nd(doubl e x);
| ong doubl e sindl (I ong double x);
float sindf(float x);
TAN

Description: The t an function returns the tangent of X measured in radians.

Calling interface:

doubl e tan(doubl e x);

| ong doubl e tanl (1 ong double x);
float tanf(float x);

218

Reference

TAND
Description: The t and function returns the tangent of X measured in degrees.
errno. ERANGE, for overflow conditions

Calling interface:

doubl e tand(doubl e x);

| ong doubl e tandl (I ong double x);
float tandf(float x);

Hyperbolic Functions

The Intel Math library supports the following hyperbolic functions:

ACOSH
Description: The acosh function returns the inverse hyperbolic cosine of X.
errno: EDOM, forx <1

Calling interface:

doubl e acosh(doubl e x);

| ong doubl e acoshl (1 ong doubl e x);
float acoshf(float x);

ASINH

Description: The asi nh function returns the inverse hyperbolic sine of X.

Calling interface:

doubl e asi nh(doubl e Xx);

| ong doubl e asinhl (1 ong double x);
float asinhf(float x);

ATANH
Description: The at anh function returns the inverse hyperbolic tangent of X.

errno. EDOM, forx <1
errno. ERANGE, forx=1

Calling interface:

doubl e atanh(doubl e x);

| ong doubl e at anhl (1 ong doubl e Xx);
float atanhf(float x);

219

Intel® C++ Compiler for Linux* Systems User's Guide

COSH

SINH

Description: The cosh function returns the hyperbolic cosine of x, (e* + €™)/2.
errno. ERANGE, for overflow conditions

Calling interface:

doubl e cosh(doubl e x);

| ong doubl e coshl (I ong doubl e x);
float coshf(float x);

Description: The si nh function returns the hyperbolic sine of X, (e - €™)/2.
errno: ERANGE, for overflow conditions

Calling interface:

doubl e si nh(doubl e x);

| ong doubl e sinhl (I ong double x);
float sinhf(float x);

SINHCOSH

TANH

Description: The si nhcosh function returns both the hyperbolic sine and hyperbolic cosine of X.
errno. ERANGE, for overflow conditions

Calling interface:

voi d sinhcosh(double x, float *sinval, float *cosval);

voi d sinhcoshl (1 ong double x, |ong double *sinval, |ong double *cosval);
voi d sinhcoshf(float x, float *sinval, float *cosval);

Description: The t anh function returns the hyperbolic tangent of X, (e* - €™) / (e* + ™).

Calling interface:

doubl e tanh(double x);

| ong doubl e tanhl (I ong doubl e x);
float tanhf(float x);

220

Reference

Exponential Functions

CBRT

EXP

The Intel Math library supports the following exponential functions:

Description: The cbrt function returns the cube root of X.

Calling interface:

doubl e cbrt (double x);

| ong double cbrtl (I ong double x);
float cbrtf(float x);

Description: The exp function returns € raised to the X power, e*. This function may be inlined by the
Itanium® compiler.

errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e exp(double x);

| ong doubl e expl (1 ong doubl e x);
float expf(float x);

EXP10

EXP2

Description: The exp10 function returns 10 raised to the X power, 10™.
errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e expl0(doubl e x);

| ong doubl e expl0l (1 ong doubl e x);
float explOf (float x);

Description: The exp2 function returns 2 raised to the X power, 2%,
errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e exp2(double x);

| ong doubl e exp2l (I ong doubl e x);
float exp2f(float x);

221

Intel® C++ Compiler for Linux* Systems User's Guide

EXPM1
Description: The expmil function returns e raised to the X power minus 1, €*- 1.
errno. ERANGE, for overflow conditions

Calling interface:

doubl e expml(doubl e x);

| ong doubl e expnil (1 ong doubl e Xx);
float expmilf(float x);

FREXP
Description: The f r exp function converts a floating-point number X into signed normalized fraction in
[1/2, 1) multiplied by an integral power of two. The signed normalized fraction is returned, and the integer

exponent stored at location exp.

Calling interface:

doubl e frexp(double x, int *exp);

| ong doubl e frexp(long double x, int *exp);
float frexpf(float x, int *exp);

HYPOT
Description: The hypot function returns the square root of (x* + y?).
errno. ERANGE, for overflow conditions

Calling interface:

doubl e hypot (doubl e x, double y);

| ong doubl e hypotl (1 ong double x, |ong double y);
float hypotf(float x, float y);

ILOGB

Description: The i | ogb function returns the exponent of X base two as a signed i nt value.
errno: ERANGE, forx=0

Calling interface:

int ilogb(double x);

int ilogbl(long double x);
int ilogbf(float x);

INVSQRT
Description: The i nvsqrt function returns the inverse square root.

Calling interface:

doubl e invsqgrt(double x);

| ong double invsqgrtl (I ong double x);
float invsqgrtf(float x);

222

Reference

LDEXP

LOG

exp

Description: The | dexp function returns X* 2%, where exp is an integer value.

errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e | dexp(doubl e x, int exp);

| ong doubl e | dexpl (1 ong double x, int exp);
float |dexpf(float x, int exp);

Description: The | og function returns the natural log of X, | n(x) . This function may be inlined by the
Itanium® compiler.

errno: EDOM, forx <0
errno: ERANGE, forx=0

Calling interface:

doubl e | og(doubl e x);

| ong doubl e | ogl (I ong double x);
float |ogf(float x);

LOG10

Description: The | 0g10 function returns the base-10 log of x, log;¢(x). This function may be inlined by
the Itanium® compiler.

errno. EDOM, forx <0
errno. ERANGE, forx=10

Calling interface:

doubl e | 0g1l0(doubl e x);

| ong doubl e 1 0g10l (1 ong doubl e x);
float |oglOf (float x);

LOG1P

Description: The | oglp function returns the natural log of (x+1),1 n(x + 1).

errno: EDOM, forx <-1
errno: ERANGE, for x =-1

Calling interface:

doubl e | oglp(doubl e x);

| ong doubl e | oglpl (1 ong double x);
float |oglpf(float Xx);

223

Intel® C++ Compiler for Linux* Systems User's Guide

LOG2

LOGB

POW

Description: The | 0g2 function returns the base-2 log of X, logy(x).

errno. EDOM, forx <0
errno. ERANGE, forx=10

Calling interface:

doubl e | 0g2(doubl e x);

| ong doubl e | og2l (I ong double x);
float |og2f(float x;

Description: The | ogb function returns the signed exponent of X.
errno: EDOM, forx=0

Calling interface:

doubl e | ogb(doubl e x);

| ong doubl e | ogbl (I ong double x);
float |ogbf(float x);

Description: The pow function returns X raised to the power of y, X”.
Calling interface:

errno: EDOM, forx=0and y <0
errno: EDOM, for x <0 and y is a non-integer
errno. ERANGE, for overflow and underflow conditions

doubl e pow(doubl e x, double y);
| ong doubl e pow (double x, double y);
float powf(float x, float y);

SCALB

Description: The scal b function returns x* 27, where y is a floating-point value.
errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e scal b(doubl e x, double y);

| ong doubl e scal bl (1 ong doubl e x, |ong double y);
float scal bf (float x, float y);

224

Reference

SCALBN
Description: The scal bn function returns X* 2", where n is an integer value.
errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e scal bn(double x, int n);

| ong doubl e scal bnl (long double x, int n);
float scal bnf(float x, int n);

SCALBLN
Description: The scal bl n function returns x* 2", where n is a long integer value.
errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e scal bl n(double x, long int n);

| ong doubl e scal blnl (long double x, long int n);
float scalblnf(float x, long int n);

SQRT
Description: The sqrt function returns the correctly rounded square root.
errno:. EDOM, forx <0

Calling interface:

doubl e sqgrt(double x);

| ong double sqrtl(long double x);
float sqgrtf(float x);

Special Functions

The Intel Math library supports the following special functions:

ANNUITY

Description: The annui t y function computes the present value factor for an annuity, (1 - (1+x)
) | X, where X is a rate and Y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:

doubl e annuity(doubl e x, double y);

| ong doubl e annuity(doubl e x, double y);
float annuityf(float x, double y);

225

Intel® C++ Compiler for Linux* Systems User's Guide

COMPOUND

ERF

ERFC

Description: The conpound function computes the compound interest factor, (1+X) ”, where X is a rate
and Y is a period.

errno. ERANGE, for underflow and overflow conditions

Calling interface:

doubl e conpound(doubl e x, double y);

| ong doubl e conpound(doubl e x, double y);
fl oat conpoundf (fl oat x, double y);

Description: The er f function returns the error function value.

Calling interface:

doubl e erf (double x);

| ong double erfl (long double x);
float erff(float x);

Description: The er f ¢ function returns the complementary error function value.
errno. ERANGE, for underflow conditions

Calling interface:

doubl e erfc(double x);

| ong doubl e erfcl (long double x);
float erfcf(float x);

GAMMA

Description: The gamra function returns the value of the logarithm of the absolute value of gamma.
errno: ERANGE, for overflow conditions when X is a negative integer.

Calling interface:

doubl e gamma(doubl e Xx);

| ong doubl e gammual (1 ong doubl e Xx);
float gammaf (float Xx);

GAMMA_R

Description: The gama_r function returns the value of the logarithm of the absolute value of gamma.
The sign of the ganma function is returned in the integer Si gngam

Calling interface:

doubl e gamma_r(d
doubl e ganmmal _r(
float gammaf r(f

ong double x, int *signganj;

ouble x, int *signganm;
|
| oat x, int *signgam;

226

Reference

JO
Description: Computes the Bessel function (of the first kind) of X with order 0.
Calling interface:
doubl e jO(doubl e x);
doubl e j Ol (1 ong doubl e x);
float jOf(float x);
J1
Description: Computes the Bessel function (of the first kind) of X with order 1.
Calling interface:
doubl e j1(doubl e x);
doubl e j 1l (1 ong double x);
float j1f (float x);
JN
Description: Computes the Bessel function (of the first kind) of X with order n.
Calling interface:
doubl e jn(int n, double x);
double jnl(int n, |Iong double x);
float jnf(int n, float x);
LGAMMA
Description: The | ganma function returns the value of the logarithm of the absolute value of gamma.
errno: ERANGE, for overflow conditions, x=0 or negative integers.
Calling interface:
doubl e | gamma(doubl e x);
| ong doubl e | gammal (1 ong doubl e x);
float | ganmaf(float x);
LGAMMA_R

Description: The | ganma_r function returns the value of the logarithm of the absolute value of gamma.
The sign of the ganma function is returned in the integer Si gngam

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:

doubl e | gamma_r (doubl e x, int *signgam;
| ong doubl e | ganma_r (doubl e x, int *signgam;
float | ganmaf _r(float x, int *signgam;

227

Intel® C++ Compiler for Linux* Systems User's Guide

TGAMMA

YO

Y1l

YN

Description: The t ganmma function computes the gamma function of X.
errno: EDOM, for x=0 or negative integers.

Calling interface:

doubl e t gamma(doubl e x);

| ong doubl e tgammal (|1 ong doubl e x);
float tganmaf(float x);

Description: Computes the Bessel function (of the second kind) of X with order 0.
errno: EDOM, forx <=0

Calling interface:

doubl e yO(doubl e x);
doubl e yOl (1 ong doubl e x);
float yOf (float x);

Description: Computes the Bessel function (of the second kind) of X with order 1.
errno:. EDOM, forx <=0

Calling interface:

doubl e y1(doubl e x);
doubl e y1l (1 ong doubl e x);
float ylf (float x);

Description: Computes the Bessel function (of the second kind) of X with order n.
errno:. EDOM, forx <=0

Calling interface:

doubl e yn(int n, double x);
doubl e ynl (int n, |ong double x);
float ynf(int n, float x);

228

Reference

Nearest Integer Functions

The Intel Math library supports the following nearest integer functions:

CEIL
Description: The cei | function returns the smallest integral value not less than X as a floating-point
number. This function may be inlined with the Itanium® compiler.
Calling interface:
doubl e ceil (doubl e x);
| ong double ceill(long double x);
float ceilf(float x);
FLOOR
Description: The f | oor function returns the largest integral value not greater than X as a floating-point
value. This function may be inlined with the Itanium® compiler.
Calling interface:
doubl e fl oor(double x);
| ong double floorl(long double x);
float floorf(float Xx);
LLRINT
Description: The | | ri nt function returns the rounded integer value (according to the current rounding
direction) asal ong long int.
errno: ERANGE, for values too large
Calling interface:
long long int Ilrint(double x);
long long int Ilrintl(long double x);
long long int Ilrintf(float x);
LLROUND

Description: The | | r ound function returns the rounded integer value asal ong | ong int.
errno: ERANGE, for values too large

Calling interface:

long long int |lround(double x);

long long int Ilroundl (long double x);
long long int Ilroundf(float x);

229

Intel® C++ Compiler for Linux* Systems User's Guide

LRINT

Description: The | ri nt function returns the rounded integer value (according to the current rounding
direction) asal ong int.

Calling interface:

long int Irint(double x);
long int Irintl(long double x);
long int Irintf(float x);

LROUND

MODF

Description: The | r ound function returns the rounded integer value as al ong i nt . Halfway cases are
rounded away from zero.

errno: ERANGE, for values too large

Calling interface:

long int |round(double x);

long int Iroundl (I ong double x);
long int lroundf(float x);

Description: The nodf function returns the value of the signed fractional part of X and stores the integral
partatx *i ptr as a floating-point number.

Calling interface:

doubl e nodf (doubl e x, double *iptr);

| ong doubl e nmodfl (I ong double x, |ong double *iptr);
float nodff(float x, float *iptr);

NEARBYINT

RINT

Description: The near byi nt function returns the rounded integral value as a floating-point number,
using the current rounding direction.

Calling interface:

doubl e near byi nt (doubl e x);

| ong doubl e nearbyintl (1 ong double x);
float nearbyintf(float x);

Description: The ri nt function returns the rounded integral value as a floating-point number, using the
current rounding direction.

Calling interface:

doubl e rint(double x);

l ong double rintl(long double x);
float rintf(float x);

230

Reference

ROUND

Description: The r ound function returns the nearest integral value as a floating-point number. Halfway
cases are rounded away from zero.

Calling interface:

doubl e round(doubl e Xx);

| ong doubl e roundl (1 ong doubl e x);
float roundf(float Xx);

TRUNC

Description: The t r unc function returns the truncated integral value as a floating-point number.

Calling interface:

doubl e trunc(doubl e x);

| ong doubl e truncl (1 ong double x);
float truncf(float x);

Remainder Functions

The Intel Math library supports the following remainder functions:

FMOD

Description: The f mod function returns the value X- n*y for integer n such that if'y is nonzero, the result
has the same sign as X and magnitude less than the magnitude of y.

errno. EDOM, forx=10

Calling interface:

doubl e frod(doubl e x, double y);

| ong doubl e fnodl (I ong double x, |ong double y);
float frodf(float x, float y);

REMAINDER
Description: The r emai nder function returns the value of X REM Y as required by the IEEE standard.

Calling interface:

doubl e remai nder (doubl e x, double y);

| ong doubl e remrai nderl (1 ong doubl e x, |ong double y);
float remainderf(float x, float y);

231

Intel® C++ Compiler for Linux* Systems User's Guide

REMQUO

Description: The r enquo function returns the value of X REM Y. In the object pointed to by quo the
function stores a value whose sign is the sign of X/ y and whose magnitude is congruent modulo 2** of the
integral quotient of X/ y, where n is an implementation-defined integer greater than or equal to 3.

Calling interface:

doubl e renquo(doubl e x, double y, int *quo);

| ong doubl e remguol (1 ong doubl e x, long double y, int *quo);
float remguof(float x, float y, int *quo);

Miscellaneous Functions

The Intel Math library supports the following miscellaneous functions:

COPYSIGN

FABS

FDIM

Description: The copysi gn function returns the value with the magnitude of X and the sign of y.

Calling interface:

doubl e copysi gn(doubl e x, double y);

| ong doubl e copysignl (I ong double x, |ong double y);
float copysignf(float x, float y);

Description: The f abs function returns the absolute value of X.

Calling interface:

doubl e fabs(double x);

| ong doubl e fabsl (I ong double x);
float fabsf(float x);

Description: The f di mfunction returns the positive difference value, x- y (for X >y) or +0 (for X <y).
err no: ERANGE, for values too large

Calling interface:

doubl e fdi n(doubl e x, double y);

| ong double fdim (I ong double x, |ong double y);
float fdinf(float x, float y);

FINITE

Description: The fi ni t e function returns 1 if X is not a NaN or +/- infinity. Otherwise 0 is returned..

Calling interface:

int finite(double x);

int finitel (Il ong double x);
int finitef(float x);

232

Reference

FMA
Description: The f nma functions return (X*y) +z.
Calling interface:
doubl e frma(double x, double y, |ong double z);
| ong double fmal (1 ong double x, |ong double y, [ong double z);
float fmaf(float x, float y, |long double z);
FMAX
Description: The f max function returns the maximum numeric value of its arguments.
Calling interface:
doubl e fmax(doubl e x, double y);
| ong doubl e fnaxl (I ong double x, |ong double y);
float fmaxf(float x, float y);
FMIN
Description: The f mi n function returns the minimum numeric value of its arguments.
Calling interface:
doubl e fmi n(doubl e x, double y);
| ong double fninl(long double x, |long double y);
float fmnf(float x, float y);
FPCLASSIFY
Description: The f pcl assi fy function returns the value of the number classification macro appropriate
to the value of its argument.
Calling interface:
doubl e fpcl assi fy(double x);
| ong doubl e fpclassifyl (long double x);
float fpclassifyf(float x);
ISFINITE

Description: The i sfi ni t e function returns 1 if X is not a NaN or +/- infinity. Otherwise 0 is returned..

Calling interface:

int isfinite(double x);

int isfinitel(long double Xx);
int isfinitef(float x);

233

Intel® C++ Compiler for Linux* Systems User's Guide

ISGREATER

Description: The i sgr eat er function returns 1 if X is greater than y. This function does not raise the
invalid floating-point exception.

Calling interface:

int isgreater(double x, double y);

int isgreaterl(long double x, |ong double y);
int isgreaterf(float x, float y);

ISGREATEREQUAL

ISINF

Description: The i sgr eat er equal function returns 1 if X is greater than or equal to y. This function
does not raise the invalid floating-point exception.

Calling interface:

i nt isgreaterequal (double x, double y);

int isgreaterequall (long double x, |ong double y);
int isgreaterequal f(float x, float y);

Description: The i si nf function returns a non-zero value if and only if its argument has an infinite value.

Calling interface:

int isinf(double x);

int isinfl(long double Xx);
int isinff(float x);

ISLESS

Description: The i sl ess function returns 1 if X is less than y. This function does not raise the invalid
floating-point exception.

Calling interface:

int isless(double x, double y);

int islessl(long double x, |ong double y);
int islessf(float x, float y);

ISLESSEQUAL

Description: The i sl essequal function returns 1 if X is less than or equal to y. This function does not
raise the invalid floating-point exception.

Calling interface:

i nt islessequal (double x, double y);

int islessequall (long double x, |ong double y);
int islessequal f(float x, float y);

234

Reference

ISLESSGREATER

Description: The i sl essgr eat er function returns 1 if X is less than or greater than y. This function
does not raise the invalid floating-point exception.

Calling interface:

int islessgreater(double x, double y);

int islessgreaterl (long double x, |ong double y);
int islessgreaterf(float x, float y);

ISNAN
Description: The i snan function returns a non-zero value if and only if X has a NaN value.

Calling interface:

i nt isnan(double x);

int isnanl (long double Xx);
int isnanf(float x);

ISNORMAL
Description: The i snor mal function returns a non-zero value if and only if X is normal.

Calling interface:

i nt isnormal (double x);

int isnormall (long double Xx);
int isnormal f(float x);

ISUNORDERED

Description: The i sunor der ed function returns 1 if either X or y is a NaN. This function does not raise
the invalid floating-point exception.

Calling interface:

i nt isunordered(double x, double y);

i nt isunorderedl (1 ong double x, |ong double y);
int isunorderedf(float x, float y);

NEXTAFTER

Description: The next af t er function returns the next representable value in the specified format after X
in the direction of y.

errno: ERANGE, for values too large

Calling interface:

doubl e next after(double x, double y);

| ong doubl e nextafterl (long double x, |ong double y);
float nextafterf(float x, float y);

235

Intel® C++ Compiler for Linux* Systems User's Guide

NEXTTOWARD

Description: The next t owar d function returns the next representable value in the specified format after
X in the direction of y. If X equals Y, then the function returns y converted to the type of the function.

errno: ERANGE, for values too large

Calling interface:

doubl e nexttoward(doubl e x, double y);

| ong doubl e nexttowardl (I ong doubl e x, |ong double y);
float nexttowardf(float x, float y);

SIGNBIT
Description: The si gnbi t function returns a non-zero value if and only if the sign of X is negative.

Calling interface:

i nt signbit(double x);

int signbitl(long double x);
int signbitf(float x);

SIGNIFICAND

Description: The si gni fi cand function returns the significand of X in the interval [1,2). For X equal to
zero, NaN, or +/- infinity, the original X is returned.

Calling interface:

doubl e significand(double x);

| ong doubl e significandl (1 ong double x);
float significandf(float x);

Complex Functions

The Intel Math library supports the following complex functions:

CABS
Description: The cabs function returns the complex absolute value of z.

Calling interface:

doubl e cabs(doubl e _Conplex z);

| ong doubl e cabsl (I ong doubl e _Conplex z);
float cabsf(float _Conplex z);

CACOS
Description: The cacos function returns the complex inverse cosine of Z.

Calling interface:

doubl e _Conpl ex cacos(doubl e _Conplex z);

| ong doubl e _Conpl ex cacosl (1 ong doubl e _Conplex z);
float _Conpl ex cacosf(fl oat _Conplex z);

236

Reference

CACOSH
Description: The cacosh function returns the complex inverse hyperbolic cosine of z.

Calling interface:

doubl e _Conpl ex cacosh(doubl e _Conplex z);

| ong doubl e _Conpl ex cacoshl (1 ong doubl e _Conpl ex z);
float _Conpl ex cacoshf(float _Conplex z);

CARG
Description: The car g function returns the value of the argument in the interval [-pi, +pi].

Calling interface:

doubl e carg(double _Conplex z);

| ong doubl e cargl (I ong doubl e _Conplex z);
float cargf(float _Conplex z);

CASIN
Description: The casi n function returns the complex inverse sine of z.

Calling interface:

doubl e _Conpl ex casi n(doubl e _Conplex z);

| ong doubl e _Conpl ex casinl(long double _Conplex z);
float _Conplex casinf(float _Conplex z);

CASINH
Description: The casi nh function returns the complex inverse hyperbolic sine of z.

Calling interface:

doubl e _Conpl ex casi nh(doubl e _Conpl ex z);

| ong doubl e _Conpl ex casi nhl (1 ong doubl e _Conpl ex z);
float _Conpl ex casi nhf(float _Conplex z);

CATAN
Description: The cat an function returns the complex inverse tangent of z.

Calling interface:

doubl e _Conpl ex catan(doubl e _Conplex z);

| ong doubl e Conpl ex catanl (I ong double Conplex z);
float _Conpl ex catanf(float _Conplex z);

CATANH
Description: The cat anh function returns the complex inverse hyperbolic tangent of z.

Calling interface:

doubl e _Conpl ex cat anh(doubl e _Conpl ex z);

| ong doubl e _Conpl ex catanhl (1 ong doubl e _Conpl ex z);
float _Conpl ex catanhf(float _Conplex z);

237

Intel® C++ Compiler for Linux* Systems User's Guide

CCOS

Description: The ccos function returns the complex cosine of z.

Calling interface:

doubl e _Conmpl ex ccos(double _Conplex z);

| ong doubl e _Conpl ex ccosl (I ong double _Conplex z);
float _Conpl ex ccosf(float _Conplex z);

CCOSH

CEXP

Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:

doubl e _Conpl ex ccosh(doubl e _Conplex z);

| ong doubl e _Conpl ex ccoshl (I ong doubl e _Conplex z);
float _Conpl ex ccoshf(float _Conplex z);

Description: The cexp function computes e”.

Calling interface:

doubl e _Conpl ex cexp(double _Complex z);

| ong doubl e _Conpl ex cexpl (1 ong double _Conplex z);
float _Conpl ex cexpf(float _Conplex z);

CEXP2

Description: The cexp function computes 2°.

Calling interface:

doubl e _Compl ex cexp2(doubl e _Conplex z);

| ong doubl e _Conpl ex cexp2l (I ong doubl e _Conplex z);
float _Conpl ex cexp2f(float _Conplex z);

CEXP10

Description: The cexp10 function computes 10°.

Calling interface:

doubl e _Conpl ex cexplO(doubl e _Conplex z);

| ong doubl e _Conpl ex cexplOl (I ong double _Conplex z);
float _Conpl ex cexplOf (float _Conplex z);

CIMAG

Description: The ci mag function returns the imaginary part value of z.

Calling interface:

doubl e ci mag(doubl e _Conpl ex z);

| ong doubl e ci magl (1 ong doubl e _Conpl ex z);
float cimgf(float _Conplex z);

238

CIS

CISD

CLOG

Reference

Description: The ci s function returns the cosine and sine (as a complex value) of z measured in radians.

Calling interface:

doubl e _Conpl ex ci s(double z);

| ong doubl e _Conplex cisl(long double z);
float _Conplex cisf(float z);

Description: The ci s function returns the cosine and sine (as a complex value) of z measured in degrees.

Calling interface:

doubl e _Conpl ex ci s(double z);

| ong double _Conplex cisl(long double z);
float _Conplex cisf(float z);

Description: The ¢l og function returns the complex natural logarithm of z.

Calling interface:

doubl e _Conmpl ex cl og(doubl e _Complex z);

| ong doubl e _Conplex clogl(long double _Conplex z);
float _Conplex clogf(float _Conplex z);

CLOG2

Description: The ¢l 0g2 function returns the complex logarithm base 2 of z.

Calling interface:

doubl e Conpl ex cl og2(doubl e Conplex z);

| ong doubl e _Conpl ex clog2l (I ong doubl e _Conplex z);
float _Conpl ex clog2f(float _Conplex z);

CLOG10

Description: The ¢l 0g10 function returns the complex logarithm base 10 of z.

Calling interface:

doubl e _Conpl ex cl ogl0(doubl e _Conpl ex z);

| ong doubl e _Conpl ex cloglOl (I ong double _Conplex z);
float _Conpl ex cl oglOf (float _Conplex z);

239

Intel® C++ Compiler for Linux* Systems User's Guide

CONJ

Description: The conj function returns the complex conjugate of z, by reversing the sign of its imaginary
part.

Calling interface:

doubl e _Conpl ex conj (doubl e _Conpl ex z);

| ong doubl e _Conplex conjl(long double _Conplex z);
float _Conplex conjf(float _Conplex z);

CPOW
Description: The cpow function returns the complex power function, X’ .

Calling interface:

doubl e _Conpl ex cpow(doubl e Conplex x, double _Conplex y);

| ong doubl e Conplex cpow (Il ong double Conplex x, double _Conplex y);
float _Conpl ex cpowf (float _Conplex x, float _Conplex y);

CPROJ

Description: The cpr oj function returns a projection of z onto the Riemann sphere.

Calling interface:

doubl e _Conpl ex cproj (doubl e _Conplex z);

| ong double Conplex cprojl (long double _Conplex z);
float _Conplex cprojf(float _Conplex z);

CREAL
Description: The cr eal function returns the real part value of z.

Calling interface:

doubl e creal (doubl e _Conplex z);

| ong double creall (1 ong double _Conplex z);
float creal f(float _Conplex z);

CSIN
Description: The csi n function returns the complex sine of z.

Calling interface:

doubl e _Conmpl ex csin(double _Conplex z);

| ong doubl e _Conplex csinl(long double _Conplex z);
float _Conpl ex csinf(float _Conplex z);

240

Reference

CSINH
Description: The csi nh function returns the complex hyperbolic sine of z.

Calling interface:

doubl e _Conpl ex csi nh(doubl e Conplex z);

| ong doubl e _Conpl ex csinhl (1 ong double _Conplex z);
float _Conpl ex csinhf(float _Conplex z);

CSQRT
Description: The csqrt function returns the complex square root of z.

Calling interface:

doubl e _Conpl ex csqgrt (doubl e _Conplex z);

| ong double Conplex csqrtl(long double _Conplex z);
float _Conplex csqrtf(float _Conplex z);

CTAN
Description: The ct an function returns the complex tangent of z.

Calling interface:

doubl e _Conmpl ex ctan(double _Complex z);

| ong doubl e _Conplex ctanl (Il ong double _Conplex z);
float _Conplex ctanf(float _Conplex z);

CTANH
Description: The ct anh function returns the complex hyperbolic tangent of z.

Calling interface:

doubl e _Conpl ex ctanh(doubl e _Conplex z);

| ong doubl e _Conpl ex ctanhl (I ong doubl e _Conplex z);
float _Conpl ex ctanhf(float _Conplex z);

241

Intel® C++ Compiler for Linux* Systems User's Guide

C99 Macros
The Intel Math library and mat hi nf . h header file support the following C99 macros:
int fpclassify(x);

int isfinite(x);

int isgreater(x, y);

int isgreaterequal (x, y);
int isinf(x);

int isless(x, y);

int islessequal (x, V);
int islessgreater(x, y);
int isnan(x);

int isnormal (x);

int isunordered(x, y);
int signbit(x);

See also, Miscellaneous Functions.

242

Reference

Intel® C++ Intrinsics Reference

The Intel® Pentium® 4 processor and other Intel processors have instructions to enable development of
optimized multimedia applications. The instructions are implemented through extensions to previously
implemented instructions. This technology uses the single instruction, multiple data (SIMD) technique. By
processing data elements in parallel, applications with media-rich bit streams are able to significantly
improve performance using SIMD instructions. The Intel® Itanium® processor also supports these
instructions.

The most direct way to use these instructions is to inline the assembly language instructions into your
source code. However, this can be time-consuming and tedious, and assembly language inline
programming is not supported on all compilers. Instead, Intel provides easy implementation through the use
of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C variables
instead of hardware registers. Using these intrinsics frees programmers from having to program in
assembly language and manage registers. In addition, the compiler optimizes the instruction scheduling so
that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium instructions
that cannot be generated using the standard constructs of the C and C++ languages. The Intel® C++
Compiler also supports general purpose intrinsics that work across all IA-32 and Itanium-based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191

243

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsics Availability on Intel Processors

Processors: MMX(TM) Streaming Streaming Itanium
Technology SIMD SIMD Processor
Intrinsics Extensions Extensions 2 | Instructions

Itanium X X N/A X

Processor

Pentium 4 X X X N/A

Processor

Pentium III X X N/A N/A

Processor

Pentium II X N/A N/A N/A

Processor

Pentium with X N/A N/A N/A

MMX

Technology

Pentium Pro N/A N/A N/A N/A

Processor

Pentium N/A N/A N/A N/A

Processor

Benefits of Using Intrinsics

The major benefit of using intrinsics is that you now have access to key features that are not available using
conventional coding practices. Intrinsics enable you to code with the syntax of C function calls and
variables instead of assembly language. Most MMX(TM) technology, Streaming SIMD Extensions, and
Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic that implements that instruction
directly. This frees you from managing registers and enables the compiler to optimize the instruction
scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new features:

* new Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing
* new Data Types--Enable packing of up to 16 elements of data in one register

The Streaming SIMD Extensions 2 intrinsics are defined only for IA-32, not for Itanium®-based systems.
Streaming SIMD Extensions 2 operate on 128 bit quantities - 2 64-bit double precision floating point
values. The Itanium architecture does not support parallel double precision computation, so Streaming
SIMD Extensions 2 are not implemented on Itanium-based systems.

244

Reference

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX instructions
use eight 64-bit registers (M0 to NM/) which are aliased on the floating-point stack registers.

MMX(TM) Technology Registers

Tag Werd MMZE™ Technology Registers
1 i) 7] 0
LT}
Pt bty
OMosE=2

Streaming SIMD Extensions Registers
The Streaming SIMD Extensions use eight 128-bit registers (Xm0 to X /).

Streaming S D Extension Radisters
128 0

AN

Hhha 7

CIMOEEES

These new data registers enable the processing of data elements in parallel. Because each register can hold
more than one data element, the processor can process more than one data element simultaneously. This
processing capability is also known as single-instruction multiple data processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing registers
and assembly programming. Further, the compiler optimizes the instruction scheduling so that your
executable runs faster.

ff—t_)Note

The MMand XMMregisters are the SIMD registers used by the IA-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the Itanium-
based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit general registers and
the 64-bit significand of the 80-bit floating-point register.

Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are used as the
operands to these intrinsic functions. The following table shows the data type availability marked with "X".

245

Intel® C++ Compiler for Linux* Systems User's Guide

New Data Types Available

New Data | MMX(TM) Streaming SIMD | Streaming SIMD | ltanium®
Type Technology Extensions Extensions 2 Processor
__nmb4 X X X X

_ nml28 N/A X X X

_ m28d |N/A N/A X X
__nmlL28i N/A N/A X X

__mo64 Data Type

The __ b4 data type is used to represent the contents of an MMX register, which is the register that is
used by the MMX technology intrinsics. The __n64 data type can hold eight 8-bit values, four 16-bit
values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __ml28 data type is used to represent the contents of a Streaming SIMD Extension register used by
the Streaming SIMD Extension intrinsics. The __ml28 data type can hold four 32-bit floating values.

The __ml28d data type can hold two 64-bit floating-point values.
The __nl28i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values.

The compiler aligns __nL28 local and global data to 16-byte boundaries on the stack. To align i nt eger,
fl oat, or doubl e arrays, you can use the declspec statement.

New Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

» Use new data types only on either side of an assignment, as a return value, or as a parameter. You
cannot use it with other arithmetic expressions (+, -, etc).

» Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

* Use new data types only with the respective intrinsics described in this documentation. The new data
types are supported on both sides of an assignment statement: as parameters to a function call, and as
a return value from a function call.

246

Reference

Naming and Usage Syntax

Most of the intrinsic names use a notational convention as follows:

_mm<intrin_op>_<suffix>

<i ntrin_op> | Indicates the intrinsics basic operation; for example, add for addition and
sub for subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two
letters of each suffix denotes whether the data is packed (p), extended
packed (ep), or scalar (S). The remaining letters denote the type:

* s single-precision floating point
* d double-precision floating point
e 128 signed 128-bit integer

* i 64 signed 64-bit integer

* U64 unsigned 64-bit integer

* i 32 signed 32-bit integer

e U32 unsigned 32-bit integer

* |16 signed 16-bit integer

e Ul6 unsigned 16-bit integer

* i 8 signed 8-bit integer

e U8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r O is the
lowest word of r . Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};

__mi28d t = _nmmload_pd(a);

The result is the same as either of the following:
_ nml28d t = mmset _pd(2.0, 1.0);

_ nml28d t _mmsetr_pd(1.0, 2.0);

In other words, the X nmregister that holds the value t will look as follows:

127)
[&0 1.0 |

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

247

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Syntax

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_nanme (paraneters)

Where,

_ ml28, nml28d, nml28i, i

indicated in the intrinsic syntax defin

data_type Is the return data type, which can be either voi d, i nt, b4,

nt 64. Intrinsics that can be

implemented across all IA may return other data types as well, as

itions.

use in your C++ code instead of inlin

i ntrinsic_name |Is the name of the intrinsic, which behaves like a function that you can

ing the actual instruction.

paraneters Represents the parameters required by each intrinsic.

Intrinsics For All 1A

The intrinsics in this section function across all IA-32 and Itanium®-based platforms. They are offered as a

convenience to the programmer. They are grouped as follows:

* Integer Arithmetic Related

* Floating-Point Related

* String and Block Copy Related
* Miscellaneous

Integer Arithmetic Related

Intrinsic

Description

i nt abs(int)

Returns the absolute value of an
integer.

l ong | abs(I ong)

Returns the absolute value of a
long integer.

unsi gned | ong otl (unsi gned | ong
h

r
val ue, int shift)

Rotates bits left for an unsigned
long integer.

unsi gned | ong

_lrotr(unsigned | ong
val ue, int shift)

Rotates bits right for an unsigned
long integer.

unsigned int _ rotl (unsigned int
val ue, int shift)

Rotates bits left for an unsigned
integer.

unsigned int _ rotr(unsigned int
val ue, int shift)

Rotates bits right for an unsigned
integer.

248

]
~—+/Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Floating-point Related

Reference

Intrinsic

Description

doubl e fabs(doubl e)

Returns the absolute value of a floating-point value.

doubl e I og(doubl e)

Returns the natural logarithm In(x), x>0, with
double precision.

float |ogf(float)

Returns the natural logarithm In(x), x>0, with single
precision.

doubl e | 0g10(doubl e)

Returns the base 10 logarithm log10(x), x>0, with
double precision.

float | o0glOf(fl oat)

Returns the base 10 logarithm log10(x), x>0, with
single precision.

doubl e exp(doubl e)

Returns the exponential function with double
precision.

fl oat expf(float)

Returns the exponential function with single
precision.

doubl e pow(doubl e, doubl e)

Returns the value of x to the power y with double
precision.

float powf(float, float)

Returns the value of x to the power y with single
precision.

doubl e si n(doubl e)

Returns the sine of x with double precision.

float sinf(float)

Returns the sine of x with single precision.

doubl e cos(doubl e)

Returns the cosine of x with double precision.

float cosf(float)

Returns the cosine of x with single precision.

doubl e tan(doubl e)

Returns the tangent of x with double precision.

float tanf(float)

Returns the tangent of x with single precision.

doubl e acos(doubl e)

Returns the arccosine of x with double precision

fl oat acosf(fl oat)

Returns the arccosine of x with single precision

doubl e acosh(doubl e)

Compute the inverse hyperbolic cosine of the
argument with double precision.

fl oat acoshf (fl oat)

Compute the inverse hyperbolic cosine of the
argument with single precision.

doubl e asi n(doubl e)

Compute arc sine of the argument with double
precision.

249

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic

Description

fl oat asinf(float)

Compute arc sine of the argument with single
precision.

doubl e asi nh(doubl e)

Compute inverse hyperbolic sine of the argument
with double precision.

fl oat asinhf(fl oat)

Compute inverse hyperbolic sine of the argument
with single precision.

doubl e at an(doubl e)

Compute arc tangent of the argument with double
precision.

float atanf(float)

Compute arc tangent of the argument with single
precision.

doubl e atanh(doubl e)

Compute inverse hyperbolic tangent of the argument
with double precision.

fl oat atanhf(fl oat)

Compute inverse hyperbolic tangent of the argument
with single precision.

fl oat cabs(double)**

Computes absolute value of complex number.

doubl e ceil (doubl e)

Computes smallest integral value of double
precision argument not less than the argument.

float ceil f(float)

Computes smallest integral value of single precision
argument not less than the argument.

doubl e cosh(doubl e)

Computes the hyperbolic cosine of double precison
argument.

fl oat coshf(float)

Computes the hyperbolic cosine of single precison
argument.

fl oat fabsf(float)

Computes absolute value of single precision
argument.

doubl e fl oor (doubl e)

Computes the largest integral value of the double
precision argument not greater than the argument.

float floorf(float)

Computes the largest integral value of the single
precision argument not greater than the argument.

doubl e frod(doubl e)

Computes the floating-point remainder of the
division of the first argument by the second
argument with double precison.

float frodf(float)

Computes the floating-point remainder of the
division of the first argument by the second
argument with single precison.

doubl e hypot (doubl e,
doubl e)

Computes the length of the hypotenuse of a right
angled triangle with double precision.

fl oat hypotf (fl oat)

Computes the length of the hypotenuse of a right
angled triangle with single precision.

250

Reference

Intrinsic

Description

doubl e rint(double)

Computes the integral value represented as double
using the IEEE rounding mode.

float rintf(float)

Computes the integral value represented with single
precision using the IEEE rounding mode.

doubl e si nh(doubl e)

Computes the hyperbolic sine of the double
precision argument.

float sinhf(float)

Computes the hyperbolic sine of the single precision
argument.

float sqrtf(float)

Computes the square root of the single precision
argument.

doubl e t anh(doubl e)

Computes the hyperbolic tangent of the double
precision argument.

float tanhf(float)

Computes the hyperbolic tangent of the single
precision argument.

* Not implemented on Itanium®-based systems.

** doubl e in this case is a complex number made up of two single precision (32-bit floating point)

elements (real and imaginary parts).

String and Block Copy Related

The following are not implemented as intrinsics on Itanium®-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all
characters in
astring to a

fixed value.

voi d *menctnp(const void *cs,

const void *ct, size_t n) |Compares
two regions
of memory.
Return <0 if
cs<ct,0if
cs=ct, or

>0 ifcs>ct.

void *nmencpy(void *s, const

void *ct, size t n) Copies from
memory.

Returns S.

void *nenset (void * s,

int c,

size_t n) Sets memory
to a fixed
value.

Returns s.

251

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Description

char *strcat(char * s, const char * ct) Appends to a
string.
Returns s.

int *strcnmp(const char *, const char *) Compares
two strings.
Return <0 if
cs<ct,0if
cs=ct, or
>0 ifcs>ct .

char *strcpy(char * s, const char * ct) Copies a
string.
Returns s.

size_ t strlen(const char * cs) Returns the
length of
string CS.

int strncp(char *, char *, int) Compare two
strings, but
only
specified
number of
characters.

int strncpy(char *, char *, int) Copies a
string, but
only
specified
number of
characters.

Miscellaneous Intrinsics

The intrinsic functions listed here are common to IA-32 and the Itanium® architecture.

Intrinsic Description

_abnormal _term nation(void) Can be invoked only by termination
handlers. Returns TRUE if the
termination handler is invoked as a
result of a premature exit of the
corresponding try-finally region.

void * _alloca(int) Allocates the buffers.

extern int _bit_scan_forward(int X) | Returns the bit index of the least
significant set bit of x. If x is 0, the
result is undefined.

252

Reference

Intrinsic

Description

extern int _bit_scan_reverse(int)

Returns the bit index of the most
significant set bit of x. If x is 0, the
result is undefined.

extern int _bswap(int)

Reverses the byte order of x. Bits 0-7
are swapped with bits 24-31, and bits 8-
15 are swapped with bits 16-23.

_exception_code(void)

Returns the exception code.

_exception_i nfo(void)

Returns the exception information.

void _enabl e()

Enables the interrupt.

voi d _disabl e()

Disables the interrupt.

int _in_byte(int)

Intrinsic that maps to the IA-32
instruction | N. Transfer data byte from
port specified by argument.

int _in_dword(int)

Intrinsic that maps to the IA-32
instruction | N. Transfer double word
from port specified by argument.

int _in_word(int)

Intrinsic that maps to the IA-32
instruction | N. Transfer word from port
specified by argument.

int _inp(int)

Same as _i n_byt e

int _inpd(int)

Same as _i n_dword

int _inpw(int)

Same as _i n_wor d

int _out_byte(int, int)

Intrinsic that maps to the IA-32
instruction OUT. Transfer data byte in
second argument to port specified by
first argument.

int out _dword(int, int)

Intrinsic that maps to the IA-32
instruction OUT. Transfer double word
in second argument to port specified by
first argument.

int out _word(int, int)

Intrinsic that maps to the IA-32
instruction OUT. Transfer word in
second argument to port specified by
first argument.

int _outp(int, int)

Same as _out _byte

int _outpd(int, int)

Same as _out _dword

int outpw(int, int)

Same as _out _word

extern int _popcnt32(int x)

Returns the number of set bits in x.

253

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic

Description

extern __int64 _rdtsc(void)

Returns the current value of the
processor's 64-bit time stamp counter.

extern __int64 _rdpnt(int p)

Returns the current value of the 40-bit
performance monitoring counter
specified by p.

int _setjnp(jnp_buf)*

A fast version of set j np() , which
bypasses the termination handling.
Saves the callee-save registers, stack
pointer and return address.

MMX(TM) Technology Intrinsics

Support for MMX(TM) Technology

MMX(TM) technology is an extension to the Intel architecture (IA) instruction set. The MMX instruction
set adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight registers

can be directly addressed using the register names N0 to MM/

The prototypes for MMX technology intrinsics are in the mmi nt ri n. h header file.

The EMMS Instruction: Why You Need It

Using EMVE is like emptying a container to accommodate new content. For instance, MMX(TM)
instructions automatically enable an FP tag word in the register to enable use of the ___n64 data type. This
resets the FP register set to alias it as the MMX register set. To enable the FP register set again, reset the

register state with the EMVB instruction or via the _nmm enpt y() intrinsic.

254

Reference

Why You Need EMMS to Reset After an MMX(TM) Instruction

FP Tay Wiewd Akaces FP Rsgislag bo Aol Like i Regeckins b Secepsl

MALE Inshucion Begishers Nesd s [aka lypes

FE Tag e Fmgislers

1 1] [1]

a4 Daka Ty pes

FE Inshucion
FP Nal

vs of 32, 6d, and B0 Liks

FP Tag g ke FP Pagslas -
1] Fitl R
i
FRT
an sty) Chsars e FP Tag Wierd and Sfows FP Daba Ty pes in Flagishes Again

TRAAET

&Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-point

instruction can result in unexpected execution or poor performance.

EMMS Usage Guidelines

The guidelines when to use EMVS are:

Do not use on Itanium®-based systems. There are no special registers (or overlay) for the MMX(TM)
instructions or Streaming SIMD Extensions on Itanium-based systems even though the intrinsics are
supported.
Use _mm enpt y() after an MMX instruction if the next instruction is a floating-point (FP)
instruction -- for example, before calculations on f | oat , doubl e or| ong doubl e. You must be
aware of all situations when your code generates an MMX instruction with the Intel® C++ Compiler,
ie.

* when using an MMX technology intrinsic

* when using Streaming SIMD Extension integer intrinsics that use the __ 64 data

type

e when referencing an __ 64 data type variable

* when using an MMX instruction through inline assembly
Do not use _mm enpt y() before an MMX instruction, since using _nm enpt y() before an
MMX instruction incurs an operation with no benefit (no-op).
Use different functions for operations that use FP instructions and those that use MMX instructions.
This eliminates the need to empty the multimedia state within the body of a critical loop.
Use _nmm enpt y() during runtime initialization of __n64 and FP data types. This ensures
resetting the register between data type transitions.
See the "Correct Usage" coding example.

255

Intel® C++ Compiler for Linux* Systems User's Guide

Incorrect Usage Correct Usage

mb4 X

float f

_m paddd(y, z); |__nb4 x _m paddd(y, z);
float f

nit();

(_mm_enpty(),

init());

For more documentation on EMMS, visit the http://developer.intel.com Web site.

MMX(TM) Technology General Support Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mi nt ri n. h header file.

Intrinsic Alternate Corresponding | Operation | Signed | Saturation

Name Name Instruction

_menpty _mm enpty EMVB Empty MM | -- -
state

_mfromint | _mmcvtsi 32 si64 |MOD Convert -- --
fromi nt

~mto_int _mmcvtsi 64 _si32 | MWD Convert - -
fromi nt

_m packsswb | _mm packs_pi 16 PACKSSV\B Pack Yes Yes

_m packssdw | _mm packs_pi 32 PACKSSDW Pack Yes Yes

_m packuswb | _mm packs_pul6 PACKUSV\B Pack No Yes

_m punpckhbw | _mm unpackhi pi 8 | PUNPCKHBW Interleave | -- --

_m punpckhwd | _mm unpackhi _pi 16 | PUNPCKHW\D Interleave | -- -

_m punpckhdg | _mm unpackhi _pi 32 | PUNPCKHDQ Interleave | -- --

_m punpckl bw | _mm unpackl o_pi 8 | PUNPCKLBW Interleave | -- -

_m punpckl wd | _mm unpackl o_pi 16 | PUNPCKLWD Interleave | -- --

_m punpckl dgq | _mm unpackl! o_pi 32 | PUNPCKLDQ Interleave | -- -

void _m enpty(void)

Empty the multimedia state.

b4 mfromint(int i)

Convert the integer object i to a 64-bit ___m64 object. The integer value is zero-extended to 64 bits.

int _mto int(__n64 m

Convert the lower 32 bits of the __ 64 object mto an integer.

256

Reference

__nB4 _m packsswh(__nb4 ml, _ nb4 nR)

Pack the four 16-bit values from il into the lower four 8-bit values of the result with signed saturation, and
pack the four 16-bit values from n® into the upper four 8-bit values of the result with signed saturation.

__nmb4 m packssdw __nb4 ml, _ nb4 nR)

Pack the two 32-bit values from il into the lower two 16-bit values of the result with signed saturation,
and pack the two 32-bit values from R into the upper two 16-bit values of the result with signed
saturation.

__nb4 _m packuswb(__nb4 ml, _ nb4 nR)

Pack the four 16-bit values from il into the lower four 8-bit values of the result with unsigned saturation,
and pack the four 16-bit values from N2 into the upper four 8-bit values of the result with unsigned
saturation.

__nB4 _m punpckhbw(__n64 ml, _ nb4 nR)

Interleave the four 8-bit values from the high half of ml with the four values from the high half of 2. The
interleaving begins with the data from nil.

__nB4 _m punpckhwd(__n64 ml, _ nb4 nR)

Interleave the two 16-bit values from the high half of mL with the two values from the high half of 2. The
interleaving begins with the data from .

__nB4 _m punpckhdq(__n64 ml, _ nb4 nR)

Interleave the 32-bit value from the high half of ml with the 32-bit value from the high half of n2. The
interleaving begins with the data from .

__ B4 _m punpckl bw(_n64 nl, _ nb4 nR)

Interleave the four 8-bit values from the low half of nl with the four values from the low half of 2. The
interleaving begins with the data from .

__nB4 _m punpcklwd(__n64 nml, __ nb4 nR)

Interleave the two 16-bit values from the low half of Ml with the two values from the low half of 2. The
interleaving begins with the data from nil.

__nB4 _m punpckl dq(__n64 nml, _ nb4 nR)

Interleave the 32-bit value from the low half of mil with the 32-bit value from the low half of n2. The
interleaving begins with the data from nil.

257

Intel® C++ Compiler for Linux* Systems User's Guide

MMX(TM) Technology Packed Arithmetic Intrinsics

The prototypes for MM X(TM) technology intrinsics are in the mri nt ri n. h header file.

Packed Arithmetic Intrinsics, Part 1

Intrinsic Alternate Name Corresponding | Operation Signed

Name Instruction

_m paddb _mm add_pi 8 PADDB Addition --

_m paddw _mm add_pi 16 PADDW Addition --

_m paddd _mm add_pi 32 PADDD Addition --

_m paddsb | _nm adds_pi 8 PADDSB Addition Yes

_m paddsw |_nm adds_pi 16 | PADDSW Addition Yes

_m paddusb | _nm adds_pu8 PADDUSB Addition No

_m paddusw |_nm adds_pul6 | PADDUSW Addition No

_m psubb _mmsub _pi 8 PSUBB Subtraction --

_m psubw _mm sub_pi 16 PSUBW Subtraction --

_m psubd _mm sub_pi 32 PSUBD Subtraction --

_m psubsb | _nmm subs _pi 8 PSUBSB Subtraction Yes

_m psubsw |_nm subs_pi 16 |PSUBSW Subtraction Yes

_m psubusb | _nm subs_pu8 PSUBUSB Subtraction No

_m psubusw|_nm subs_pul6 |PSUBUSW Subtraction No

_m prmaddwd | _nm nadd_pi 16 | PMADDWD Multiplication | --

~mpmul hw | _nm nul hi _pi 16 | PMULHW Multiplication | Yes

_mpmullw [_nmnullo_pil6 |PMILLW Multiplication | --
Packed Arithmetic Intrinsics, Part 2

Intrinsic Alternate Name Corresponding | Argument | Result

Name Instruction Values/Bits | Values/Bits

_m paddb _nmm add_pi 8 PADDB 8/8 8/8

_m paddw _mm add_pi 16 PADDW 4/16 4/16

_m paddd _mm add_pi 32 PADDD 2/32 2/32

_m paddsb | _nm adds_pi 8 PADDSB 8/8 8/8

_m paddsw |_nm adds_pi 16 | PADDSW 4/16 4/16

258

Intrinsic Alternate Name Corresponding | Argument | Result

Name Instruction Values/Bits | Values/Bits

_m paddusb | _nm adds_pu8 PADDUSB 8/8 8/8

_m paddusw |_nm adds_pul6 | PADDUSW 4/16 4/16

_m psubb _mmsub _pi 8 PSUBB 8/8 8/8

_m psubw _mm sub_pi 16 PSUBW 4/16 4/16

_m psubd _mm sub_pi 32 PSUBD 2/32 2/32

_m psubsb |_nm subs_pi 8 PSUBSB 8/8 8/8

_m psubsw | _nm subs_pi 16 |PSUBSW 4/16 4/16

_m psubusb | _nm subs_pu8 PSUBUSB 8/8 8/8

_m psubusw|_nm subs_pul6 |PSUBUSW 4/16 4/16

~m prmaddwd | _nm nadd_pi 16 | PMADDWD 4/16 2/32

_mpmul hw | _nm nul hi _pi 16 | PMULHW 4/16 4/16 (high)

~mpmullw [_nmmnullo_pil6|PMILLW 4/16 4/16 (low)
__nb4 _mpaddb(__nb4 nml, _ b4 np)

Add the eight 8-bit values in ml to the eight 8-bit values in N2.

__nb4 _m paddw(__n64 ni,

__nb4 nR)

Add the four 16-bit values in mlL to the four 16-bit values in 2.

__nBb4 _m paddd(__nm64 ni,

__nmb4 nR)

Add the two 32-bit values in ml to the two 32-bit values in 2.

__nB4 _m paddsb(__n64 mil,

64 ne)

Reference

Add the eight signed 8-bit values in ML to the eight signed 8-bit values in N using saturating arithmetic.

__nb4 _m paddsw(__n64 mil,

n64 ne)

Add the four signed 16-bit values in il to the four signed 16-bit values in M2 using saturating arithmetic.

__nb4 _m paddusb(__n64 ni,

n64 ne)

Add the eight unsigned 8-bit values in ml to the eight unsigned 8-bit values in N2 and using saturating

arithmetic.

259

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4 _m paddusw(__n64 nil, _ nb64 nR)

Add the four unsigned 16-bit values in ML to the four unsigned 16-bit values in M2 using saturating
arithmetic.

__nb4 _mpsubb(__m64 ml, _ nb64 nR)

Subtract the eight 8-bit values in M2 from the eight 8-bit values in .
__nB4 _mpsubw(__nm64 nml, _ nmb64 nP)

Subtract the four 16-bit values in N2 from the four 16-bit values in L.
__nB4 mpsubd(__nm64 ml, _ 64 nP)

Subtract the two 32-bit values in M2 from the two 32-bit values in nL.
__nB4 mpsubsh(__nb4 ml, _ nb4 nR)

Subtract the eight signed 8-bit values in M2 from the eight signed 8-bit values in ml using saturating
arithmetic.

__nB4 mpsubsw__nb4 ml, _ nb4 nR)

Subtract the four signed 16-bit values in M2 from the four signed 16-bit values in Ml using saturating
arithmetic.

__nb4 _m psubusb(__n64 nil, _ nb64 nR)

Subtract the eight unsigned 8-bit values in M2 from the eight unsigned 8-bit values in ML using saturating
arithmetic.

__nB4 _m psubusw(__n64 nil, _ nmb4 nR)

Subtract the four unsigned 16-bit values in N2 from the four unsigned 16-bit values in Ml using saturating
arithmetic.

B4 _m pmaddwd(__n64 nl, _ B4 nR)

Multiply four 16-bit values in ml by four 16-bit values in M2 producing four 32-bit intermediate results,
which are then summed by pairs to produce two 32-bit results.

B4 _mpmul hw(_nB4 nl, _ nB4 ne)

Multiply four signed 16-bit values in il by four signed 16-bit values in M2 and produce the high 16 bits of
the four results.

b4 mpmullw__nb4 ml, _ nb4 nR)

Multiply four 16-bit values in mL by four 16-bit values in N2 and produce the low 16 bits of the four
results.

260

MMX(TM) Technology Shift Intrinsics

Reference

The prototypes for MMX(TM) technology intrinsics are in the mri nt ri n. h header file.

Intrinsic Alternate Shift Shift Corresponding
Name Name Direction | Type Instruction
_mpsllw |_mmsll_pil6 |left Logical PSLLW
mpsliwi |_mmslli_pil6 |left Logical PSLLW
_mpslld |_mmsll_pi32 |left Logical PSLLD
~mpslldi |_mmslli_pi32|left Logical PSLLD
mpsllq | _mmsll_si64 |Ileft Logical PSLLQ
_mpsllqi |_mslli_si64]|left Logical PSLLQ
_mpsraw |_nmsra_pi 16 |right Arithmetic | PSRAW
_mpsrawi |_nmsrai_pi 16 |right Arithmetic | PSRAW
_mpsrad |_nmsra_pi32 |right Arithmetic | PSRAD
_mpsradi |_nmsrai_pi 32 |right Arithmetic | PSRADI
_mpsrlw |_nmsrl_pi1l6 | right Logical PSRLW
_mpsrliw |_mmsrli_pi16 |right Logical PSRLW
_mpsrld |_mmsrl_pi32 |right Logical PSRLD
_mpsrldi |_nmmsrli_pi32|right Logical PSRLDI
_mpsrlq |_mmsrl_si64 |right Logical PSRLQ
_mpsrlqgi |_mmsrli_si64 |right Logical PSRLQ
_ b4 mpsliw__nm64d m _ nb4 count)

Shift four 16-bit values in mleft the amount specified by count

b4 mpsliwi(_nb4d m

Shift four 16-bit values in mleft the amount specified by count

i nt count)

performance, count should be a constant.

b4 mpslld(__nm4 m

__nB4 count)

while shifting in zeros.

while shifting in zeros. For the best

Shift two 32-bit values in mleft the amount specified by count while shifting in zeros.

b4 mpsllidi(_nb4d m

i nt count)

Shift two 32-bit values in mleft the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

261

Intel® C++ Compiler for Linux* Systems User's Guide

b4 mpsllqg(_nmd4d m _ nb4 count)
Shift the 64-bit value in mleft the amount specified by count while shifting in zeros.
b4 mpsllqgi(__nmb4 m int count)

Shift the 64-bit value in mleft the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__nb4 mpsrawm(__nm64 m _ nb4 count)
Shift four 16-bit values in mright the amount specified by count while shifting in the sign bit.
_nb4 mpsrawi (__nb4 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

b4 mpsrad(__nm64d m _ nb4 count)
Shift two 32-bit values in mright the amount specified by count while shifting in the sign bit.
b4 mpsradi(__nb4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

b4 mpsriw__nm6d m _ nbB4 count)
Shift four 16-bit values in mright the amount specified by count while shifting in zeros.
_nb4 mpsriwi(__nb4 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_nb4 mpsrlid(__nm4 m _ nb4 count)
Shift two 32-bit values in mright the amount specified by count while shifting in zeros.
b4 mpsrlidi(_nb4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

b4 mpsrliq(__nmd4 m _ nb4 count)

Shift the 64-bit value in mright the amount specified by count while shifting in zeros.

262

b4 mpsrlqgi(_nb4d m

i nt count)

Reference

Shift the 64-bit value in mright the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics

The prototypes for MM X(TM) technology intrinsics are in the mri nt ri n. h header file.

Intrinsic | Alternate Operation Corresponding
Name Name Instruction
_mpand |_nmand_si 64 Bitwise AND PAND

_m pandn | _nm andnot _si 64 | Logical NOT PANDN

_m por _nmm.or_si 64 Bitwise OR POR

_mpxor |_nmxor_si 64 Bitwise Exclusive OR | PXOR

__nB4 _m pand(__nb4 ml,

)

Perform a bitwise AND of the 64-bit value in il with the 64-bit value in 2.

__nB4 _m pandn(__n64 ni,

n64 ne)

Perform a logical NOT on the 64-bit value in Ml and use the result in a bitwise AND with the 64-bit value

in 2.

__nb4 mpor(__nb4 mi,

__nmb4 nR)

Perform a bitwise OR of the 64-bit value in ml with the 64-bit value in nR.

__nB4 _m pxor(__nb64 ml,

B4)

Perform a bitwise XOR of the 64-bit value in ml with the 64-bit value in nP.

MMX(TM) Technology Compare Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the nmi nt ri n. h header file.

Intrinsic Alternate Comparison | Number | Element | Corresponding

Name Name of Bit Size | Instruction
Elements

_m pcnpegb | _nm cnpeq_pi 8 | Equal 8 8 PCVMPE(B

_m pcnpeqw | _nmm cnped_pi 16 | Equal 4 16 PCMPEQW

_m pcnpeqd | _nmm cnped_pi 32 | Equal 2 32 PCVPEQD

_mpcnpgtb | _nm cnpgt _pi 8 | Greater Than | 8 8 PCVPGTB

263

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Alternate Comparison | Number | Element | Corresponding
Name Name of Bit Size | Instruction
Elements
_m pcnpgtw | _nm cnpgt _pi 16 | Greater Than | 4 16 PCVPGTW
_mpcnpgtd [_nm cnpgt _pi 32 | Greater Than | 2 32 PCVPGTD
__nB4 _m pcnpegb(__nm64 nil, _ b4 nR)

If the respective 8-bit values in Ml are equal to the respective 8-bit values in NP set the respective 8-bit
resulting values to all ones, otherwise set them to all zeros.

__ B4 _mpcnpegw(__n64 nil, _ nb64 nR)

If the respective 16-bit values in ML are equal to the respective 16-bit values in N2 set the respective 16-bit
resulting values to all ones, otherwise set them to all zeros.

__nb4 _mpcnpeqd(__n64 nil, _ nb64 nR)

If the respective 32-bit values in ML are equal to the respective 32-bit values in N2 set the respective 32-bit
resulting values to all ones, otherwise set them to all zeros.
__ b4 mpcnpgtb(__nm64 nil, _ nb64 nR)

If the respective 8-bit values in ML are greater than the respective 8-bit values in M2 set the respective 8-bit
resulting values to all ones, otherwise set them to all zeros.
__nB4 _mpcnpgtw(__nm64 nil, _ nmb4 nR)

If the respective 16-bit values in Ml are greater than the respective 16-bit values in N2 set the respective
16-bit resulting values to all ones, otherwise set them to all zeros.
__nb4 mpcnpgtd(__nm64 nil, _ b4 nR)

If the respective 32-bit values in Ml are greater than the respective 32-bit values in n? set the respective
32-bit resulting values to all ones, otherwise set them all to zeros.

MMX(TM) Technology Set Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the nmi nt ri n. h header file.

Intrinsic Operation Number of | Element | Signed | Reverse
Name Elements | Bit Size Order
_mm set zer o_si 64 | set to zero 1 64 No No
_mm set _pi 32 set integer values | 2 32 No No
_mm set _pi 16 set integer values | 4 16 No No
_mm set _pi 8 set integer values | 8 8 No No

264

Reference

Intrinsic Operation Number of | Element | Signed | Reverse
Name Elements | Bit Size Order
_mm set1_pi 32 set integer values | 2 32 Yes No
_mmset1_pi 16 set integer values | 4 16 Yes No
_mmsetl pi8 set integer values | 8 8 Yes No
_mm setr_pi 32 set integer values | 2 32 No Yes
_mm setr_pi 16 set integer values | 4 16 No Yes
_mmsetr_pi 8 set integer values | 8 8 No Yes
ﬂ Note

In the following descriptions regarding the bits of the MMX register, bit O is the least significant and bit 63
is the most significant.

__nmb4 _nm setzero_si 64()

PXOR
Sets the 64-bit value to zero.
r .= 0x0

B4 mmset pi32(int il, int i0)

(composite) Sets the 2 signed 32-bit integer values.

ro:=1i0

ri:=i1

__nB4 _mm set_pi l6(short s3, short s2, short sl1, short sO)

(composite) Sets the 4 signed 16-bit integer values.

ro =

ri.=wl
r2 := w2
r3 :=w3

__nB4 mmset_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char bl, char b0)

(composite) Sets the 8 signed 8-bit integer values.

ro := b0
rl := bl
r7 := b7

n64 nmmsetl pi32(int i)

Sets the 2 signed 32-bit integer values to i .
ro:=i
ri:=1i

265

Intel® C++ Compiler for Linux* Systems User's Guide

__nmb4 mmsetl pil6(short s)

(composite) Sets the 4 signed 16-bit integer values to w.
ro:
ri:
r2:
r3:

=2

n64 nm set1l pi 8(char b)

(composite) Sets the 8 signed 8-bit integer values to b

r0:=b
rl:=b
r7:=b

B4 mmsetr_pi32(int i1, int i0)

(com.posi_te) Sets the 2 signed 32-bit integer values in reverse order.

i ie

__nB4 mmsetr_pil6(short s3, short s2, short sl1, short sO0)

(composite) Sets the 4 signed 16-bit integer values in reverse order.

ro .=

ri.=wl
r2 := w2
r3 :=w3

__nB4 mmsetr_pi 8(char b7, char b6, char b5, char b4, char b3, char b2,
char bl, char b0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.

ro := b0
rl := bl
r7 := b7

MMX(TM) Technology Intrinsics on Itanium® Architecture

MMX(TM) technology intrinsics provide access to the MMX technology instruction set on Itanium®-based
systems. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent both in
name and functionality to the set of IA-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names generate the
same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the mmi nt ri n. h header file.

266

Reference

Data Types

The C data type __ 64 is used when using MMX technology intrinsics. It can hold eight 8-bit values, four
16-bit values, two 32-bit values, or one 64-bit value.

The __n64 data type is not a basic ANSI C data type. Therefore, observe the following usage restrictions:

» Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" +"," - ", and so on).

» Use the new data type as objects in aggregates, such as unions, to access the byte elements and
structures; the address of an __ 64 object may be taken.

* Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel® Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel® Architecture Software
Developer's Manual, Volume 2.

Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming SIMD Extensions (SSE)
in the Intel® C++ Compiler. These topics explain the following features of the intrinsics:

* Floating Point Intrinsics

e Arithmetic Operation Intrinsics

* Logical Operation Intrinsics

e Comparison Intrinsics

* Conversion Intrinsics

* Load Operations

* Set Operations

» Store Operations

* Cacheability Support

* Integer Intrinsics

e Memory and Initialization Intrinsics
* Miscellaneous Intrinsics

¢ Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for SSE intrinsics are in the Xmmi nt ri n. h header file.

SNote

You can also use the single i @32i nt ri n. h header file for any [A-32 intrinsics.

Floating-point Intrinsics for Streaming SIMD Extensions

You should be familiar with the hardware features provided by the Streaming SIMD Extensions (SSE)
when writing programs with the intrinsics. The following are four important issues to keep in mind:

* Certain intrinsics, such as _nmm | oadr _ps and _nm cnpgt _sSs, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful that they may
consist of more than one machine-language instruction.

* Floating-point data loaded or stored as __ml28 objects must be generally 16-byte-aligned.

267

Intel® C++ Compiler for Linux* Systems User's Guide

* Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to
the nature of the instruction.

* The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined.
Therefore, FP operations using NaN arguments will not match the expected behavior of the
corresponding assembly instructions.

Arithmetic Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the Xmmi nt ri n. h header file.

Intrinsic Instruction | Operation RO R1 R2 R3
_mm add_ss | ADDSS Addition a0 al a2 a3
[op]
b0
_nm add_ps | ADDPS Addition a0 al a2 a3
[op] [op] [[op] |[op]
b0 bl b2 b3
_mm sub_ss SUBSS Subtraction a0 al a2 a3
[op]
b0
_mmsub_ps | SUBPS Subtraction a0 al a2 a3
[op] [op] [[op] |[op]
b0 bl b2 b3
_mm mul _ss MULSS Multiplication | a0 al a2 a3
[op]
0
_mm_nul _ps MULPS Multiplication | @0 al a2 a3
[op] [op] [[op] |[op]
b0 bl b2 b3
_mmdiv_ss Dl VSS Division a0 al a2 a3
[op]
b0
_mmdiv_ps |DIVPS Division a0 al a2 a3
[op] [op] [[op] |[op]
b0 bl b2 b3
_mmsqrt_ss | SQRTSS Squared Root | [0p] al a2 a3
a0
_mmsqrt_ps | SQRTPS Squared Root | [0p] [op] |[op] |[op]
a0 bl b2 b3
_mmrcp_ss RCPSS Reciprocal [op] al a2 a3
a0
_mm.rcp_ps RCPPS Reciprocal [op] [op] |[op] |[op]
a0 bl b2 b3
_mmrsqrt_ss | RSQRTSS | Reciprocal [op] al a2 a3
Square Root a0
_mmrsqgrt_ps | RSQRTPS | Reciprocal [op] [op] [op] [op]
Squared Root | @0 bl b2 b3

268

Reference

Intrinsic Instruction | Operation RO R1 R2 R3
_mm.m n_ss M NSS Computes [op] (al a2 a3
Minimum a0, b0)
_mm.min_ps M NPS Computes [op] ([op] |[op] |[op]
Minimum a0, b0) |(al, (a2, (a3,
b1) b2) b3)
_Mm_max_ss MAXSS Computes [op] (al a2 a3
Maximum a0, b0)
_mm _max_ps MAXPS Computes [op] ([op] |[op] |[op]
Maximum a0, b0) |(al, (az, (as,
b1) b2) b3)

_ nml28 _mm add_ss(__nl28 a, _ ml28 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b; the upper 3 SP FP values are
passed through from a.

ro := a0 + b0

ri:=al; r2:=a2,; r3 := a3

_ nml28 mmadd ps(__nl28 a, _ ml28 b)

Adds the four SP FP values of a and b.

ro := a0 + b0
rl :=al + bl
r2 := a2 + b2
r3 := a3 + b3

_ nml28 mmsub_ss(__nl28 a, _ ml28 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed through from a.
ro := a0 - bO
rli:=al; r2:=a2; r3 := a3

_ nml28 _mmsub_ps(__nl28 a, _ ml28 b)

Subtracts the four SP FP values of a and b.

ro := a0 - boO
rl :=al - bl
r2z := a2 - b2
r3 := a3 - b3

_ 28 mmmul _ss(__nl28 a, _ ml28 b)

Multiplies the lower SP FP values of a and b; the upper 3 SP FP values are passed through from a.
ro := a0 * b0
ri:=al; r2:=a2; r3 := a3

269

Intel® C++ Compiler for Linux* Systems User's Guide

_ 28 mmnul _ps(__nl28 a, _ ml28 b)

Multiplies the four SP FP values of a and b.

ro := a0 * bo
rl :=al * bl
r2 := a2 * b2
r3 := a3 * b3

~ nml28 mmdiv_ss(__nl28 a, _ ml28 b)

Divides the lower SP FP values of a and b; the upper 3 SP FP values are passed through from a.
ro := a0 / b0
rli:=al; r2:=a2; r3 := a3

_ nml28 mmdiv_ps(__nl28 a, _ ml28 b)

Divides the four SP FP values of a and b.

ro := a0 / bo
rl :=al/ bl
r2 := a2/ b2
r3 := a3 / b3

_ nml28 _mmsqrt_ss(__nl28 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values are passed through.
ro := sqrt(a0)
rli:=al; r2:=a2; r3 := a3

_ nml28 mmsqrt_ps(__nl28 a)

Computes the square roots of the four SP FP values of a.

ro := sqrt(a0)
ri:= sqrt(al)
r2 :=sqrt(a2)
r3 := sqrt(a3)

_ nml28 mmrcp_ss(__nml28 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the upper 3 SP FP values are
passed through.

ro := recip(a0)

ri:=al,; r2:=a2; r3 := a3

_ nml28 mmrcp_ps(__ml28 a)

Computes the approximations of reciprocals of the four SP FP values of a.

ro := recip(a0)
ri := recip(al)
r2 := recip(a2)
r3 := recip(al3)

_ ml28 mmrsqgrt_ss(__m28 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP value of a; the upper 3
SP FP values are passed through.

ro := recip(sqgrt(a0))

ri:=al; r2:=a2; r3 := a3

270

Reference

_ nml28 mmrsqgrt_ps(__m28 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP values of a.

ro := recip(sqgrt(a0))
ri := recip(sqgrt(al))
r2 :=recip(sqrt(a2))
r3 :=recip(sqgrt(a3ld))

_ 28 mmmin_ss(__nl28 a, _ ml28 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP values are passed through
from a.

ro :
ri:

m n(a0, bO0)
al ; r2 := a2 ; r3 := a3

_ nml28 mmmin_ps(__nl28 a, _ ml28 b)

Computes the minimum of the four SP FP values of a and b.

ro := mn(a0, b0)
ri := mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)

_ nml28 _mm max_ss(__nl28 a, _ ml28 b)

Computes the maximum of the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.

ro := max(a0, b0)

ri:=al,; r2:=a2; r3 := a3

_ nml28 mmnmax_ps(__nl28 a, _ ml28 b)

Computes the maximum of the four SP FP values of a and b.

ro := max(a0, b0)
ri := max(al, bl)
r2 := max(a2, b2)
r3 := max(a3, b3)

271

Intel® C++ Compiler for Linux* Systems User's Guide

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction
_nmm and_ps Bitwise AND ANDPS
_mm_andnot _ps | Logical NOT ANDNPS
_mm.or_ps Bitwise OR ORPS

_m _xor _ps Bitwise Exclusive OR | XORPS

_ nml28 _mmand_ps(__nl28 a, _ ml28 b)

Computes the bitwise And of the four SP FP values of a and b.

ro := a0 & bho
rl :=al & bl
r2 := a2 & b2
r3 := a3 & b3

_ nml28 _mm andnot_ps(__nl28 a, _ ml28 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.

ro := ~a0 & b0
rl := ~al & bl
rez := ~a2 & b2
r3 := ~a3 & b3

_ nml28 mmor _ps(__m28 a, _ m28 b)

Computes the bitwise OR of the four SP FP values of a and b.

ro := a0 | b0
ri:=al| bl
r2 :=a2| b2
r3 := a3 | b3

_ nml28 _mmxor_ps(__nl28 a, _ ml28 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

ro := a0 » bo
rl :=al ~ bl
r2 := a2 ™ b2
r3 := a3 ™ b3

272

Comparisons for Streaming SIMD Extensions

Reference

Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP FP values of a
and b are compared, and a 32-bit mask is returned; the upper three SP FP values are passed through from a.
The mask is set to Oxf f f f f f f f for each element where the comparison is true and 0x0 where the

comparison is false.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the Xmmi nt ri n. h header file.

Intrinsic Comparison Corresponding
Name Instruction
_mm cnpeq_ss Equal CMPEQSS
_hm cnpeq_ps Equal CMPEQPS
_mmcnplt_ss Less Than CMPLTSS
_mmcnplt_ps Less Than CMPLTPS
_mm cnpl e_ss Less Than or Equal CMPLESS
_mm cnpl e_ps Less Than or Equal CMPLEPS
_mm.cnpgt _ss Greater Than CVMPLTSS
_mm cnpgt _ps Greater Than CVPLTPS
_hm.cnpge_ss Greater Than or Equal CMPLESS
_m_cnpge_ps Greater Than or Equal CMPLEPS
_nhm.cnpneq_ss | Not Equal CMPNEQSS
_hm.cnpneq_ps | Not Equal CMPNEQPS
_mmcnpnlt_ss | NotLess Than CMPNLTSS
_mmecnpnlt_ps | Not Less Than CVPNLTPS
_mmcnpnl e_ss | Not Less Than or Equal | CMPNLESS
_mmcnpnl e_ps | Not Less Than or Equal | CMPNLEPS
_mm.cnpngt _ss Not Greater Than CVPNLTSS
_mm cnpngt _ps | Not Greater Than CMPNLTPS
_hm.cnpnge_ss Not Greater Than or Equal | CMPNLESS
_hm.cnpnge_ps Not Greater Than or Equal | CMPNLEPS
_mm cnpord_ss Ordered CMPORDSS
_mmcnpord_ps | Ordered CMPORDPS
_mm_cnpunor d_ss | Unordered CMPUNORDSS

273

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Comparison Corresponding
Name Instruction
_mm _cnpunord_ps | Unordered CMPUNORDPS
_mm.com eq_ss | Equal COM SS
_mmcomlt_ps |Less Than COM SS
_mmconile_ss | Less Than or Equal COM SS
mm comi gt _ss Greater Than COM SS
_mm comi ge_ss Greater Than or Equal COM SS
_mm comi neq_ss | Not Equal COM SS
_mm_ucom eq_ss | Equal UCOM SS
_nm.uconilt_ss | Less Than UCOM SS
_mm ucomi | e_ss | Less Than or Equal UCOM SS
_hm_uconi gt _ss | Greater Than UCOM SS
_mm_ucomi ge_ss | Greater Than or Equal UCOM SS
_m_ucom neq_ss | Not Equal UCOM SS

_ nml28 mmcnpeq_ss(__ml28 a, _ ml28 bh)

Compare for equality.

ro := (a0 == b0) ? Oxffffffff 0x0

ri:=al; r2:=2a2; r3 := a3

__nml28 mmcnpeq_ps(__ml28 a, _ ml28 bh)

Compare for equality.

ro := (a0 == b0) ? Oxffffffff 0x0

rli:=(al == bl) ? Oxffffffff 0x0

r2 := (a2 == b2) ? Oxffffffff 0x0

r3 := (a3 == b3) ? Oxffffffff 0x0

_ nml28 mmecnplt_ss(__ml28 a, _ ml28 bh)

Compare for less-than.

ro := (a0 < b0) ? Oxffffffff : OxO

rli:=al; r2:=a2; r3 := a3

_ 28 mmecnplt_ps(__m28 a, _ ml28 b)

Compare for less-than.

ro := (a0 < b0) ? Oxffffffff 0x0

rl :=(al < bl) ? Oxffffffff 0x0

r2z := (a2 < b2) ? Oxffffffff 0x0

r3 := (a3 < b3) ? Oxffffffff 0x0

274

_ nml28 mmecnple_ss(__m28 a, _ ml28

Compare for less-than-or-equal.
ro := (a0 <= b0) ? Oxffffffff : OxO
rli:=al; r2:=a2; r3 := a3

_ 28 mmecnple_ps(__m28 a, mL.28

Compare for less-than-or-equal.

ro := (a0 <= b0) ? Oxffffffff 0x0
ri:=(al <= bl) ? Oxffffffff 0x0
r2 := (a2 <= b2) ? Oxffffffff 0x0
r3 := (a3 <= b3) ? Oxffffffff 0x0

_ nml28 _mmcnpgt _ss(__ml28 a, mL.28

Compare for greater-than.
= (a0 > b0) ? oxffffffff : OxO
r1 = al; r2:=a2; r3 := a3

_ nl28 mmecnpgt _ps(__m28 a, _ ml28

Compare for greater-than.

ro := (a0 > b0) ? Oxffffffff 0x0
ri:=(al > bl) ? Oxffffffff : OxO
r2 := (a2 > b2) ? oxffffffff : OxO
r3 := (a3 > b3) ? Oxffffffff . OxO

_ nml28 mmcnpge_ss(__ml28 a, _ ml28

Compare for greater-than-or-equal.
ro := (a0 >= b0) ? Oxffffffff : OxO
rli:=al; r2:=a2; r3 := a3

_ nml28 _mm cnpge_ps(__ml28 a, mL.28

Compare for greater-than-or-equal.

ro := (a0 >= b0) ? Oxffffffff 0x0
ri:=(al >= bl) ? Oxffffffff 0x0
r2 := (a2 >= b2) ? Oxffffffff 0x0
r3 := (a3 >= b3) ? Oxffffffff 0x0

_ nml28 _mmcnpneqg_ss(__nl28 a, _ ml28 b)

Compare for inequality.
= (a0 '= b0) ? Oxffffffff : OxO
r1 = al; r2:=a2; r3 := a3

__nml28 _mmcnpneq_ps(__nl28 a, _ nml28 b)

Compare for inequality.

ro := (a0 !'= b0) ? Oxffffffff 0x0
ri:=(al !=bl) ? Oxffffffff 0x0
r2 := (a2 !'= b2) ? Oxffffffff 0x0
r3 := (a3 !=b3) ? Oxffffffff 0x0

b)

b)

b)

b)

b)

b)

Reference

275

Intel® C++ Compiler for Linux* Systems User's Guide

~ nml28 mmecnpnlt_ss(_ nl28 a,

Compare for not-less-than.
ro :=1(a0 < b0) ? Oxffffffff
rli:=al; r2:=a2; r3 := a3

_ 28 mmecnpnlt_ps(__ nl28 a,

Compare for not-less-than.

ro :=1(a0 < b0) ? Oxffffffff
ri:=1!(al < bl) ? Oxffffffff
r2 :=1(a2 < b2) ? Oxffffffff
r3 :=1(a3 < b3) ? Oxffffffff

28 _mmcnpnle_ss(_ nl28 a,

Compare for not-less-than-or-equal.
ro :=1(a0 <= b0) ? Oxffffffff

_ ml28

0x0

ni28

0x0
0x0
0x0
0x0

28

0x0

rl :=al; r2 :=a2; r3 := a3

~ nml28 mmecnpnle_ps(__ nl28 a,

Compare for not-less-than-or-equal.

ro :=1(a0 <= b0) ? Oxffffffff
ri:=1(al <= bl) ? Oxffffffff
r2 :=1(a2 <= b2) ? Oxffffffff
r3 :=1(a3 <= h3) ? Oxffffffff

__nml28 mmcnpngt _ss(__ nl28 a,

Compare for not-greater-than.
ro :=1(a0 > b0) ? Oxffffffff
rli:=al; r2:=a2; r3 := a3

__nml28 _mm cnpngt_ps(__ nl28 a,

Compare for not-greater-than.

ro :=1(a0 > b0) ? Oxffffffff
ri:=1(al > bl) ? Oxffffffff
r2 :=1(a2 > b2) ? Oxffffffff
r3 :=1(a3 > b3) ? Oxffffffff

__nml28 _mm cnpnge_ss(__nl28 a,

Compare for not-greater-than-or-equal.
ro :=1(a0 >= b0) ? Oxffffffff
ri:

__nml28 _mm cnpnge_ps(__ nl28 a,

Compare for not-greater-than-or-equal.

ro :=1(a0 >= b0) ? Oxffffffff
ri:=1(al >= bl) ? Oxffffffff
r2 :=1(a2 >= b2) ? Oxffffffff
r3 :=1(a3 >= b3) ? Oxffffffff

276

al ; r2 :=a2; r3 := a3'

28

0x0

ni28

0x0
0x0
0x0
0x0

ni28

0x0

ni28

0x0
0x0
0x0
0x0

b)

b)

b)

b)

b)

b)

b)

b)

Reference

_ nml28 mmecnpord_ss(__ nl28 a, _ ml28 b)

Compare for ordered.
ro := (a0 ord? b0) ? Oxffffffff : OxO
rli:=al; r2:=a2; r3 := a3

_ nml28 _mmcnpord_ps(__nl28 a, _ ml28 b)

Compare for ordered.

ro := (a0 ord? b0) ? Oxffffffff 0x0
rli:=(al ord? bl) ? Oxffffffff 0x0
r2 := (a2 ord? b2) ? Oxffffffff 0x0
r3 := (a3 ord? b3) ? Oxffffffff 0x0

_ nml28 _mm crpunord_ss(__ ml28 a, _ ml28 b)

Compare for unordered.
ro := (a0 unord? b0) ? Oxffffffff : OxO
ri:=al; r2:=a2; r3 := a3

_ nml28 mmcnpunord ps(__ ml28 a, _ ml28 h)

Compare for unordered.

ro := (a0 unord? b0) ? Oxffffffff 0x0
ri := (al unord? bl) ? Oxffffffff 0x0
r2 := (a2 unord? b2) ? Oxffffffff 0x0
r3 := (a3 unord? b3) ? Oxffffffff 0x0

int _nmmcomeq_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise

0 is returned.
r := (a0 == b0) ? 0Ox1 : 0xO

int _mmecomlt_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise 0

is returned.
r := (a0 < b0) ? Ox1 : OxO

int _nmmeconmle_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of @ and b for a less than or equal to b. If a is less than or equal to b, 1 is

returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0xO

int _nmcomgt_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of @ and b for a greater than b. If a is greater than b are equal, 1 is

returned. Otherwise 0 is returned.
r := (a0 > b0) ? Ox1 : OxO

277

Intel® C++ Compiler for Linux* Systems User's Guide

int _nmmcomge_ ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of @ and b for a greater than or equal to b. If a is greater than or equal to

b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0xO

int _nmcomneq_ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a not equal to b. If @ and b are not equal, 1 is returned.

Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : OxO

int _nmucom eq_ss(__ml28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise

0 is returned.
r := (a0 == b0) ? 0Ox1 : 0xO

int _nmuconmlt_ss(__ml28 a, _ nl28 b)

Compares the lower SP FP value of @ and b for a less than b. If a is less than b, 1 is returned. Otherwise 0

is returned.
r := (a0 < b0) ? Ox1 : 0OxO

int _nmuconile_ss(__m28 a, _ nl28 b)

Compares the lower SP FP value of @ and b for a less than or equal to b. If a is less than or equal to b, 1 is

returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0Ox1 : 0xO

int _nmuconigt _ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than or equal to b, 1 is

returned. Otherwise 0 is returned.
r := (a0 > b0) ? Ox1 : 0OxO

int _nmuconige ss(__m28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal to

b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0Ox1 : 0xO

int _nmuconineq_ss(__ml28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a not equal to b. If @ and b are not equal, 1 is returned.

Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : OxO

278

Conversion Operations for Streaming SIMD Extensions

Reference

The conversions operations are listed in the following table followed by a description of each intrinsic with
the most recent mnemonic naming convention. The alternate name is provided in case you have used these
intrinsics before.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.

Intrinsic Alternate Corresponding
Name Name Instruction
_mm cvt_ss2si _mmcvtss_si 32 | CVTSS2SI

|

_mm cvt_ps2pi

|_rrm_cvt ps_pi 32 ‘ CVTPS2PI

|

_mmcvtt_ss2si

|_mm_cvttss_si 32 | CVTTSS2S|

_mmcvtt _ps2pi _mmcvttps_pi 32 | CVTTPS2PI
_mm cvt _si 2ss _mmcvtsi 32_ss | CVTSI 2SS
_mm cvt _pi 2ps _mmcvtpi 32_ps | CVTTPS2PI
_mm cvt pi 16_ps composite
_mm cvt pul6_ps composite
_mm cvt pi 8_ps composite
_mm _cvt pu8_ps composite
_mm cvt pi 32x2_ps composite
_mm cvtps_pi 16 composite
_mmcvtps_pi 8 composite

int _nmcvt_ss2si(__ml28 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current rounding mode.

r

;= (int)a0

__ B4 mmcvt_ps2pi (__m28 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the current rounding mode,
returning the integers in packed form.

r
r

0 :
1:

(int)a0
(int)al

int _nmecvtt_ss2si(__nl28 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.

r

= (int)al

279

Intel® C++ Compiler for Linux* Systems User's Guide

B4 mmecvtt _ps2pi (__nl28 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation, returning the integers in

packed form.
ro := (int)ao
ri:= (int)al

_ nml28 _mmcvt_si2ss(__nl28, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed through from

a
ro := (float)b
rl :=al; r2 :=a2; r3 := a3

_ nml28 mmecvt _pi2ps(__nl28, _ nb4)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two SP FP values
are passed through from a.

ro := (float)bo

ri (float)bl
r2 := a2

r3 a3

_inline __ m28 _mmcvtpi 16 _ps(__nbB4 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.
r

0
ri
r2 :
r3

_inline __ m28 _mmcvtpul6 _ps(__nb4 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP values.
ro := (float)aO
ri:= (float)al
r2 := (float)a2
r3 := (float)a3

_inline __m28 _mmcvtpu8_ps(__nb64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP values.

ro := (float)a0
ri:= (float)al
r2 := (float)a2
r3 := (float)a3

280

Reference

_inline __m28 _mmcvtpi32x2 _ps(__nmb4 a, _ nb4 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to four
single precision FP values.

ro := (float)a0
ri:= (float)al
r2 := (float)bO
r3 := (float)bl

_inline __nm64 mmecvtps _pil6(__m28 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.
ro := (short)a0
(short)al
short) a2
short) a3

—~

ri
r2 :
r3
_inline __mb4 _mmcvtps_pi8(__nl28 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer values of the result.

ro := (char)a0
rl := (char)al
r2 := (char)a2
r3 := (char)a3

Load Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the Xmmi nt ri n. h header file.
_ nml28 mmload_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.
ro:=*p
ri :=0.0,; r2:=0.0; r3:=0.0

_ nml28 _mm|oad_psl(float * p)

Loads a single SP FP value, copying it into all four words.

ro:=*p
ri.==*p
r2 :=*p
r3 :=*p

_ nml28 _mmload_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

ro := p[0]
ri:= p[1]
r2 := p[2]
r3 := p[3]

281

Intel® C++ Compiler for Linux* Systems User's Guide

__nml28 _mm | oadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

ro := p[0]
ri:= p[1]
r2 .= p[2]
r3 := p[3]

__nml28 _mm | oadr _ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := p[3]
ri:= p[2]
r2 .= p[1]
r3 := p[0]

Set Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.
_ nml28 mmset _ss(float w)

Sets the low word of an SP FP value to wand clears the upper three words.
ro:
ri:

w
r2:=r3:=0.0
_ nml28 _mm set _psi(float w)

Sets the four SP FP values to W.
ro:=rl1l:=r2 :=r3 :=w

_ nml28 mmset _ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.
ro:
ri:
r2 :
r3:

N< X 5

_ nml28 mmsetr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.
ro:
ri:
r2:
r3:

S X< N

__nml28 _mm setzero_ps(void)

Clears the four SP FP values.
ro:=rl1:=r2 :=r3 :=0.0

282

Reference

Store Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.
void _mm store_ss(float * p, _ ml28 a)

Stores the lower SP FP value.
*p .= a0

void mmstore _psil(float * p, _ nl28 a)

Stores the lower SP FP value across four words.

p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void mmstore_ps(float *p, _ ml28 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0] := a0
p[1l] := al
p[2] := a2
p[3] := a3
void mmstoreu_ps(float *p, _ nml28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

p[O] := a0
p[1l] := al
p[2] := a2
p[3] := a3
void mmstorer_ps(float * p, _ nl28 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0] := a3
p[1l] := a2
p[2] := al
p[3] := a0

_ nml28 mmnove_ss(_ ml28 a, _ ml28 bh)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

ro := b0
rl :=al
r2 := a2
r3 := a3

283

Intel® C++ Compiler for Linux* Systems User's Guide

Cacheability Support Using Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.
void _nm pause(voi d)

The execution of the next instruction is delayed an implementation specific amount of time. The instruction
does not modify the architectural state. This intrinsic provides especially significant performance gain.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spi n_| oop: pause
cnp eax, A
jne spin_|loop

In this example, the program spins until memory location A matches the value in register eax. The code
sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the attempt
to get a lock has failed.

get lock: nmov eax, 1

xchg eax, A ; Try to get |ock
cnp eax, 0 ; Test if successfu
jne spin_|loop

Critical Section

/1 critical _section code
mov A, 0 ; Rel ease | ock
jmp continue

spi n_| oop: pause;

/1 spin-loop hint

cnp 0, A

/1 check lock availability
jne spin_loop

jmp get | ock

/1 continue: other code

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing [A-32 processor generations, a test for processor type
(a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors which
use the PAUSE as a hint there can be significant performance benefit.

284

Integer Intrinsics Using Streaming SIMD Extensions

Reference

The integer intrinsics are listed in the following table followed by a description of each intrinsic with the
most recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.

differences

Intrinsic Alternate Operation Corresponding

Name Name Instruction

_mpextrw _mm extract _pi 16 | Extract on of four words PEXTRW

_mpinsrw | _mminsert_pil6 Insert a word Pl NSRW

_mpmaxsw | _nmm max_pi 16 Compute the maximum PMAXSW

_m pnexub _mm_nmax_pu8 Compute the maximum, PVAXUB
unsigned

_mpmnsw |_nmunin_pil6 Compute the minimum PM NSW

_mpmnub | _mmmn_pu8 Compute the minimum, PM NUB
unsigned

_m prmoviskb | _nmm novemask_pi 8 | Create an eight-bit mask PMOVIVBKB

_m pmul huw | _mm rmul hi _pul6 Multiply, return high bits PMULHUW

_m pshufw _mm shuffl e _pi1l6 | Return a combination of PSHUFW
four words

_m masknovqg | _nmm nasknove_si 64 | Conditional Store MASKMOVQ

_m pavgb _hm avg_pu8 Compute rounded average | PAVGEB

_m pavgw _mm avg_pulé6 Compute rounded average | PAVGW

_m psadbw | _nm sad_pu8 Compute sum of absolute PSADBW

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS

Instruction: Why You Need It and When to Use It topic for more details.

int _mpextrw(__nb4 a,

int n)

Extracts one of the four words of a. The selector n must be an immediate.

r .=

B4 mpinsrw__nb4 a,

(n==0) ? a0 :

int d,

((n==1) ? al :

((n==2) ? a2 :

int n)

a3))

Inserts word d into one of four words of a. The selector N must be an immediate.

ro :=(n==0) ? d: ao0;
ri:=(n==1) ? d: al;
r2 :=(n==2) ?2d: az
r3 :=(n==3) ?2 d: a3

285

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4 _mpnmaxsw__nb4 a, _ nb64 b)

Computes the element-wise maximum of the words in a and b.

ro := mn(a0, b0)
ri := mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)
__nb4 _mpnaxub(__nb4 a, _ nb64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

ro := mn(a0, b0)
ri := mn(al, bl)
r7 := mn(a7, b7)

n64 mpmnsw(__n64 a, _ nb4 b)

Computes the element-wise minimum of the words in a and b.

ro := mn(a0, b0)

ri := mn(al, bl)

r2 := mn(a2, b2)

r3 := mn(a3, b3)

__nB4 _mpmnub(__nb4 a, _ b4 b)

Computes the element-wise minimum of the unsigned bytes in a and b.
ro := mn(a0, b0)

ri := mn(al, bl)

r7 .= mn(a7, b7)

int _m pnmoviskb(__n64 a)

Creates an 8-bit mask from the most significant bits of the bytes in a.
r :=sign(a7)<<7 | sign(a6)<<6 |[... | sign(a0)

__nB4 _mpmul huw(__nmb4 a, _ nb4 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate results.

ro := hiword(a0 * bO0)
ri := hiword(al * bl)
r2 := hiwrd(a2 * b2)
r3 := hiwrd(a3 * b3)
__nB4 mpshufw(__nb4 a, int n)

Returns a combination of the four words of a. The selector N must be an immediate.

ro := word (n&0x3) of a

ri:= word ((n>>2)&0x3) of a
r2 := word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

286

Reference

void _m nmasknovq(__n64 d, _ nm64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector N determines
whether the corresponding byte in d will be stored.

if (sign(n0)) p[0] := dO

if (sign(nl)) p[l] :=d1

if (sign(n7)) p[7] := d7
__nb4 mpavgb(__nmb4 a, _ nb4 b)

Computes the (rounded) averages of the unsigned bytes in @ and b.
t = (unsigned short)a0 + (unsigned short)bO
ro = (t >>1) | (t & 0x01)

t = (unsigned short)a7 + (unsigned short)b7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

__nB4 _mpavgwWm __nmb4 a, _ nb4 b)

Computes the (rounded) averages of the unsigned words in a and b.
t = (unsigned int)a0 + (unsigned int)b0

ro =(t >>1) | (t & 0x01)

t = (unsi gned word)a7 + (unsigned word)b7

r7 = (unsigned short)((t >> 1) | (t & 0x01))

__nb4 mpsadbw(__nb4 a, _ nb64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b, returning he value in the
lower word. The upper three words are cleared.

ro abs(a0-b0) +... + abs(a7-b7)
ri rz=r3=20

Memory and Initialization Using Streaming SIMD Extensions

This section describes the | oad, set , and St or e operations, which let you load and store data into
memory. The | oad and set operations are similar in that both initialize __ ml28 data. However, the set
operations take a float argument and are intended for initialization with constants, whereas the | oad
operations take a floating point argument and are intended to mimic the instructions for loading data from
memory. The St Or e operation assigns the initialized data to the address.

287

The intrinsics are listed in the following table. Syntax and a brief description are contained the following

topics.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Alternate Operation Corresponding

Name Name Instruction

_hm | oad_ss Load the low value and MOVSS
clear the three high values

_mm | oad_ps1 _mm_ | oadl_ps | Load one value into all four | MOVSS +
words Shuffling

_mm | oad_ps Load four values, address | MOVAPS
aligned

_mm | oadu_ps Load four values, address | MOVUPS
unaligned

mm| oadr _ps Load four values, in MOVAPS +
reverse order Shuffling

_mm.set_ss Set the low value and clear | Composite
the three high values

_mmset_psl _mmsetl_ps Set all four words with the | Composite
same value

_mm set _ps Set four values, address Composite
aligned

_nmsetr_ps Set four values, in reverse | Composite
order

_m set zer o_ps Clear all four values Composite

_mmstore_ss Store the low value MOVSS

_mmstore_psl |_mmstorel_ps | Store the low value across | Shuffling +
all four words. The address | MOVSS
must be 16-byte aligned.

_mmstore_ps Store four values, address | MOVAPS
aligned

_mm st oreu_ps Store four values, address | MOVUPS
unaligned

_mm storer_ps Store four values, in MOVAPS +
reverse order Shuffling

_mm nove_ss Set the low word, and pass | MOVSS
in three high values

_mm get csr Return register contents STMXCSR

_mm.setcsr Control Register LDMXCSR

288

Reference

Intrinsic Alternate Operation Corresponding
Name Name Instruction

_mm prefetch

_mm st ream pi

_nmm st ream ps

_mm sfence

_mmcvtss_f32

_ nml28 _mm | oad_ss(fl oat const*a)

Loads an SP FP value into the low word and clears the upper three words.
ro := *a
ri :=0.0; r2:=0.0; r3:=0.0

_ nml28 _mm | oad_psl(float const*a)

Loads a single SP FP value, copying it into all four words.

ro := *a
rl .= *a
r2 := *a
r3 := *a

_ nml28 _mm | oad_ps(fl oat const*a)

Loads four SP FP values. The address must be 16-byte-aligned.

ro := a[0]
ri:= a[l]
r2 := a[2]
r3 := a[3]

_ nml28 _mm | oadu_ps(fl oat const*a)

Loads four SP FP values. The address need not be 16-byte-aligned.

ro := a[0]
ri:= a[l]
r2 := a[2]
r3 := a[3]

_ nml28 _mm | oadr _ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := a[3]
ri:= a[2]
r2 := a[l]
r3 := a[0]

289

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28 mmset _ss(float a)

Sets the low word of an SP FP value to a and clears the upper three words.
ro:
ri:

c
r2:=r3:=0.0
__ nml28 _mm set _psi(float a)

Sets the four SP FP values to a.
ro:=rl1l:=r2:=r3 := a

_ nml28 _mmset _ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs.

ro := a
rl :=b
r2 :=c
r3 :=d

_ nml28 mmsetr_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs in reverse order.
ro:
ri:
r2:
r3:

QLTOQ

__nml28 _mm setzero_ps(void)

Clears the four SP FP values.
ro:=rl:=r2:=r3:=0.0

void mmstore_ss(float *v, _ ml28 a)

Stores the lower SP FP value.
*v = a0

void mmstore _psi(float *v, _ nml28 a)

Stores the lower SP FP value across four words.

v[0] := a0
v[1l] := a0
v[2] := a0
v[3] := a0
void mmstore_ps(float *v, _ ml28 a)

Stores four SP FP values. The address must be 16-byte-aligned.

v[0] := a0
v[1l] := al
v[2] := a2
v[3] := a3

290

Reference

void mmstoreu_ps(float *v, _ nml28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

v[0] := a0
v[1l] := al
v[2] := a2
v[3] := a3
void mmstorer_ps(float *v, _ nml28 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

v[0] := a3
v[1l] := a2
v[2] := al
v[3] := a0

_ nml28 mm nove_ss(__ml28 a, _ nil28 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

ro := bo
rl :=al
r2 := a2
r3 := a3

unsi gned int _mm getcsr(void)

Returns the contents of the control register.

void _mm setcsr(unsigned int i)

Sets the control register to the value specified.

void _mm prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location "closer" to the processor. The
value sel specifies the type of prefetch operation: the constants _ MM HI NT_TO, MM HI NT_T1,
_MM HI NT_T2,and MM HI NT_NTA should be used for IA-32, corresponding to the type of pr ef et ch
instruction. The constants _ MM HI NT_T1, MM HI NT_NT1, MM HI NT_NT2,and MM HI NT_NTA
should be used for Itanium®-based systems.

void mmstreampi(__nb4 *p, _ nbB4 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the caches. This intrinsic requires
you to empty the multimedia state for the X register. See The EMMS Instruction: Why You Need It and
When to Use It topic.

void mmstreamps(float *p, _ nml28 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the caches. The address must be 16-
byte-aligned.

291

Intel® C++ Compiler for Linux* Systems User's Guide

void _mm sfence(void)
(uses SFENCE) Guarantees that every preceding store is globally visible before any subsequent store.
float _mMmcvtss f32(__nl28 a)

This intrinsic extracts a single precision floating point value from the first vector element of an __ niL28. It
does so in the most effecient manner possible in the context used. This intrinsic doesn't map to any specific
SSE instruction.

Miscellaneous Intrinsics Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmi nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction
_mmshuffle_ps | Shuffle SHUFPS
_mm_unpackhi _ps | Unpack High UNPCKHPS
mm unpackl o_ps | Unpack Low UNPCKLPS
mm| oadh_pi Load High MOVHPS reg, mem
mm st or eh_pi Store High MOVHPS nmem reg
_mm rovehl _ps | Move High to Low | MOVHLPS
_mm rmovel h_ps | Move Low to High | MOVLHPS
_mm | oadl _pi Load Low MOVLPS reg, mem
_mm storel _pi Store Low MOVLPS mem reg
_mm nmovenmask_ps | Create four-bit mask | MOVVBKPS

_ 28 mmshuffle ps(__m28 a, _ ml28 b, unsigned int imB)

Selects four specific SP FP values from a and b, based on the mask i 8. The mask must be an
immediate. See Macro Function for Shuffle Using Streaming SIMD Extensions for a description of the
shuffle semantics.

_ nml28 _mm unpackhi _ps(__ml28 a, _ ml28 b)

Selects and interleaves the upper two SP FP values from a and b.

ro := a2
ri := b2
r2 := a3
r3 := b3

292

Reference

_ nml28 _mmunpacklo _ps(__ ml28 a, _ ml28 bh)

Selects and interleaves the lower two SP FP values from a and b.

ro := a0
rl := bo
r2z :=al
r3 := bl

_ nml28 mmloadh pi(__ml28, _ nbB4 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.

ro .= a0
rl :=al
r2 := *p0
r3 :=*pl

void mmstoreh pi(__nb4 *p, _ nml28 a)

Stores the upper two SP FP values to the address p.
*pO := a2
*pl := a3

_ nml28 _mm nmovehl _ps(__nl28 a, _ ml28 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The upper 2 SP FP values
of a are passed through to the result.

r3 := a3
r2 := a2
rl := b3
ro := b2

_ nml28 mm novel h_ps(__nl28 a, _ ml28 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The lower 2 SP FP values
of a are passed through to the result.

r3 := bl
r2 := bo
rl :=al
ro := a0

_ nml28 mmloadl pi(__m28 a, _ nb64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two values are
passed through from a.

ro := *p0
ri:=*pl
r2z .= a2
r3 .= a3

void mmstorel _pi(__nb4 *p, _ nml28 a)

Stores the lower two SP FP values of a to the address p.
*pO := ao
*pl := al

293

Intel® C++ Compiler for Linux* Systems User's Guide

int _nm novemask ps(__ml28 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.
r :=sign(a3)<<3 | sign(a2)<<2 | sign(al)<<l | sign(a0)

Using Streaming SIMD Extensions on Itanium® Architecture

The Streaming SIMD Extensions (SSE) intrinsics provide access to Itanium® instructions for Streaming
SIMD Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are
equivalent both in name and functionality to the set of IA-32-based SSE intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided by SSE.
Keep the following issues in mind:

e Certain intrinsics are provided only for compatibility with previously-defined IA-32 intrinsics. Using
them on Itanium-based systems probably leads to performance degradation.

* Floating-point (FP) data loaded stored as ___nil28 objects must be 16-byte-aligned.

* Some intrinsics require that their arguments be immediates -- that is, constant integers (literals), due
to the nature of the instruction.

Data Types

The new data type ___mL28 is used with the SSE intrinsics. It represents a 128-bit quantity composed of
four single-precision FP values. This corresponds to the 128-bit IA-32 Streaming SIMD Extensions
register.

The compiler aligns ___mL28 local data to 16-byte boundaries on the stack. Global data of these types is
also 16 byte-aligned. To align i nt eger, f | oat , or doubl e arrays, you can use the decl spec
alignment.

Because Itanium instructions treat the SSE registers in the same way whether you are using packed or
scalar data, there isno ___nB2 data type to represent scalar data. For scalar operations, use the __ ml28
objects and the "scalar" forms of the intrinsics; the compiler and the processor implement these operations
with 32-bit memory references. But, for better performance the packed form should be substituting for the
scalar form whenever possible.

The address of a __ nl28 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

SSE intrinsics are defined for the ___nil28 data type, a 128-bit quantity consisting of four single-precision
FP values. SIMD instructions for Itanium-based systems operate on 64-bit FP register quantities containing
two single-precision floating-point values. Thus, each __ml28 operand is actually a pair of FP registers
and therefore each intrinsic corresponds to at least one pair of Itanium instructions operating on the pair of
FP register operands.

294

Reference

Compatibility versus Performance

Many of the SSE intrinsics for Itanium-based systems were created for compatibility with existing IA-32
intrinsics and not for performance. In some situations, intrinsic usage that improved performance on IA-32
will not do so on Itanium-based systems. One reason for this is that some intrinsics map nicely into the TA-
32 instruction set but not into the Itanium instruction set. Thus, it is important to differentiate between
intrinsics which were implemented for a performance advantage on Itanium-based systems, and those
implemented simply to provide compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to initially port legacy
code or in non-critical code sections:

* Any SSE scalar intrinsic (_SS vari ety) - use packed (_ps) version if possible

e com anducom SSE comparisons - these correspond to IA-32 COM SS and UCOM SS instructions
only. A sequence of Itanium instructions are required to implement these.

e Conversions in general are multi-instruction operations. These are particularly expensive:
_mmcvtpi 16_ps, _mm cvt pul6_ps, nmcvtpi 8 ps, _nmm cvt pu8_ps,
_mm cvt pi 32x2_ps, _mm cvtps_pi 16, _mm cvtps_pi 8

* SSE utility intrinsic _nmm_novenask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation intrinsics
(rcp and r sqrt) are much faster than the true di v and sqr t intrinsics.

Macro Function for Shuffle Using Streaming SIMD Extensions

The Streaming SIMD Extensions (SSE) provide a macro function to help create constants that describe
shuffle operations. The macro takes four small integers (in the range of 0 to 3) and combines them into an
8-bit immediate value used by the SHUFPS instruction.

Shuffle Function Macro

_MM ZHOFFLE(z,¥v,x,w)
f* expands to the following walues */f
fz==6) | fy==d) | o ix=<2) | ow

You can view the four integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

-

Fwl o= [a[b]ec]

[4]

FomE = (e lflalh]

n? = mm shuffle psinl, s,
_MM SHUFFLE(1l,0,3,Z))

\‘_ ; m3

=
]
P |
G
Ra

295

Intel® C++ Compiler for Linux* Systems User's Guide

Macro Functions to Read and Write the Control Registers

The following macro functions enable you to read and write bits to and from the control register. For
details, see Set Operations. For [tanium®-based systems, these macros do not allow you to access all of the
bits of the FPSR. See the descriptions for the get f psr () and set f psr () intrinsics in the Native
Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments
_MM _SET_EXCEPTI ON_STATE(x) _MM_EXCEPT_I NVALI D
_MM _GET_EXCEPTI ON_STATE() _MM EXCEPT_DI V_ZERO

_MM_EXCEPT_DENORM

M acr o Definitions _MM_EXCEPT_OVERFLOW
Write to and read from the sixth-least significant control
register bit, respectively.

_MM_EXCEPT_UNDERFLOW

_MM_EXCEPT_| NEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

if [_MM GET_EXTEFTION_STATE(x) & _MM EXCEPT DIV ZER0) {

§#% Esception hars occurred *f

¥

Exception Mask Macros Macro Arguments
_MM_SET_EXCEPTI ON_MASK(x) _MM_MASK_| NVALI D
_MM_GET_EXCEPTI ON_MASK () _MM_MASK_DI V_ZERO

_MM_MASK_DENORM

M acr o Definitions _MM_MASK_OVERFLOW
Write to and read from the seventh through twelfth
control register bits, respectively.

Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_UNDERFLOW

_MM_MASK_| NEXACT

296

Reference

The following example masks the overflow and underflow exceptions and unmasks all other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTI ON_MASK(MM_MASK_OVERFLOW | _ MM MASK_UNDERFLOW

Rounding Mode Macro Arguments
_MM_SET_ROUNDI NG_MODE(x) _ MM _ROUND_NEAREST
_MM_GET_ROUNDI NG_MODE() _MM_ROUND_DOWN

M acr o Definition _MM_ROUND_UP

Write to and read from bits thirteen and fourteen of the
control register.

_MM_ROUND_TOWARD ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO
f (_MM_GET_ROUNDI NG MODE() == _MM ROUND_TOWARD ZERO) ({
*

i

/* Rounding node is round toward zero */

}

Flush-to-Zero Mode | Macro Arguments
_MM SET_FLUSH_ZERO_ MODE(x) | _MM FLUSH_ZERO ON
_MM GET_FLUSH_ZERO MODE() _MM FLUSH ZERO OFF

Macr o Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF
_MM_SET_FLUSH_ZERO MODE(_MM FLUSH_ZERO COFF)

Macro Function for Matrix Transposition

The Streaming SIMD Extensions (SSE) also provide the following macro function to transpose a 4 by 4
matrix of single precision floating point values.

_ MM TRANSPOSE4_PS(row0, rowl, row2, rowd)

The arguments r ow0, r owl, r ow2, and r ow3 are __mL28 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments r ow0, r owl,

r ow2, and r ow3 where r ow0 now holds column 0 of the original matrix, r owl now holds column 1 of
the original matrix, and so on.

297

Intel® C++ Compiler for Linux* Systems User's Guide

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
MMV TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_ PS Macro

L TH ¥ . Vi 1wl | K X X i

[0y X r Wi Fewd ¥ W L ha
|

..... Wioow x L . r) x a

[Vi T Wi i | WA N W, Wil

jesnal
signilicarnl
dasrin

s
sk boant
lpaie b

Streaming SIMD Extensions 2

This section describes the C++ language-level features supporting the Intel® Pentium® 4 processor
Streaming SIMD Extensions 2 (SSE2) in the Intel® C++ Compiler, which are divided into two categories:

* Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (__nl28d).

* Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and initialization
intrinsics for the extended-precision integer data type (__n128i).

SNote

The Pentium 4 processor SSE2 intrinsics are defined only for IA-32 platforms, not Itanium®-based
platforms. Pentium 4 processor SSE2 operate on 128 bit quantities -- 2 64-bit double precision floating
point values. The Itanium processor does not support parallel double precision computation, so Pentium 4
processor SSE2 are not implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Sreaming SSIMD Extensions 2 External Architecture
Foecification (EAS) and other Pentium 4 processor manuals available for download from the
developer.intel.com web site. You should be familiar with the hardware features provided by the StSE2
when writing programs with the intrinsics. The following are three important issues to keep in mind:

e Certain intrinsics, such as_mm | oadr _pd and _nm cnpgt _sd, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

e Data loaded or stored as ___nL28d objects must be generally 16-byte-aligned.

* Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to
the nature of the instruction.

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.

298

Reference

=]

~./Note

You can also use the single i a32i nt ri n. h header file for any IA-32 intrinsics.
Floating-point Arithmetic Operations for Streaming SIMD Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 (SSE2) are listed in the following table.
The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresponding | Operation RO R1
Name Instruction Value Value
_mm add_sd | ADDSD Addition a0 [op] al
b0
_nmm add_pd | ADDPD Addition a0 [op] al [op]
(o]0] bl
_mm sub_sd | SUBSD Subtraction a0 [op] al
(o]0]
_mm sub_pd | SUBPD Subtraction a0 [op] al [op]
b0 bl
_mm nul _sd | MULSD Multiplication gg [op] al
_mmnul _pd | MULPD Multiplication a0 [op] al [op]
b0 bl
_mmdiv_sd |DIVSD Division a0 [op] al
b0
_mmdiv_pd |DIVPD Division a0 [op] al [op]
b0 bl
_mmsqrt_sd | SQRTSD Computes Square a0 [op] al
Root b0
_mmsqrt_pd | SQRTPD Computes Square a0 [op] al [op]
Root b0 bl
_mmmin_sd |MNSD Computes Minimum gg [op] al
_mmmn_pd |M NPD Computes Minimum | a0 [op] al [op]
b0 bl
_nmm max_sd | MAXSD Computes Maximum gg [op] al
_nmm nmax_pd | MAXPD Computes Maximum gg [op] E‘i [op]

299

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mm add_sd(__nml28d a, __ ml28d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper DP FP value is
passed through from a.

ro := a0 + b0

ri:=al

_ nml28d _mm add_pd(__nl28d a, __ _ml28d b)

Adds the two DP FP values of a and b.
ro := a0 + b0
rl :=al + bl

_ nml28d _mmsub_sd(__nl28d a, __ ml28d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.
ro := a0 - b0
ri :=al

_ nml28d _mm sub_pd(__nml28d a, __ _ml28d b)

Subtracts the two DP FP values of b from a.
ro := a0 - bo
rl :=al - bl

_ nml28d mmnmul _sd(__nml28d a, __ ml28d b)

Multiplies the lower DP FP values of @ and b. The upper DP FP is passed through from a.
ro := a0 * b0
ri:= al

_ nml28d mmmul _pd(__nml28d a, __ ml28d b)
Multiplies the two DP FP values of a and b.

ro := a0 * b0

ri:=al* bl

_ nml28d _mmdiv_sd(__nml28d a, __ ml28d b)

Divides the lower DP FP values of @ and b. The upper DP FP value is passed through from a.
ro := a0 / bO
ri:=al

_ nml28d mmdiv_pd(__nml28d a, __ ml28d b)

Divides the two DP FP values of a and b.
ro := a0 / bo
rl :=al/ bl

_ nml28d mmsqrt_sd(__m28d a, _ ml28d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is passed through from a.
ro := sqrt(b0)
ri:=al

300

Reference

_ nml28d mmsqrt_pd(__ml28d a)

Computes the square roots of the two DP FP values of a.
ro := sqrt(a0)
ri:= sqrt(al)

_ nml28d _mmmn_sd(__nml28d a, __ ml28d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is passed through

from a.
ro := mn (a0, bO0)
rl :=al

_ nml28d mmmin_pd(__nml28d a, __ ml28d b)

Computes the minima of the two DP FP values of a and b.
ro := mn(a0, b0)
ri := mn(al, bl)

_ nml28d _mm max_sd(__nml28d a, __ _ml28d b)

Computes the maximum of the lower DP FP values of @ and b. The upper DP FP value is passed through

from a.
ro := max (a0, bO0)
rl :=al

_ nml28d _mm max_pd(__nml28d a, __ ml28d b)

Computes the maxima of the two DP FP values of a and b.
ro := max(a0, b0)
ri := max(al, bl)

Floating-point Logical Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the enri nt ri n. h header file.
_ nml28d _mmand_pd(__nml28d a, __ ml28d b)

(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.
ro := a0 & b0
ri:=al &bl

_ nml28d _mm andnot _pd(__m28d a, _ ml28d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit

value in a.
ro := (~a0) & bo
ri:=(~al) &bl

_ nml28d mmor _pd(__nl28d a, _ nil28d b)

(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.
ro := a0 | bo
ri:=al| bl

301

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mm xor_pd(__nml28d a, __ ml28d b)

(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.
ro := a0 "~ b0
ri:=al "™ bl

Floating-point Comparison Operations for Streaming SIMD Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP FP values of a
and b are compared, and a 64-bit mask is returned; the upper DP FP value is passed through from a. The
mask is setto OXffffffffffffffff for each element where the comparison is true and 0x0 where the
comparison is false. The r following the instruction name indicates that the operands to the instruction are
reversed in the actual implementation. The comparison intrinsics for the Streaming SIMD Extensions 2
(SSE2) are listed in the following table followed by detailed descriptions.

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresponding | Compare

Name Instruction For:

_mm cnpeqg_pd CVPEQPD Equality
_mmecnplt_pd CVPLTPD Less Than

_mmcnpl e_pd CVPLEPD Less Than or Equal
_mm cnpgt _pd CMPLTPDx Greater Than

_mm cnpge_pd CMPLEPDy Greater Than or Equal
_mm cnpord_pd CVPORDPD Ordered

_mm cnpunor d_pd | CMPUNORDPD Unordered

_mm cnpneq_pd CVPNEQPD Inequality
_mmecnpnlt_pd CVPNLTPD Not Less Than
_mm cnpnl e_pd CVPNLEPD Not Less Than or Equal
_mm_cnpngt _pd CVPNLTPDrx Not Greater Than
_mm _cnpnge_pd CMPLEPDry Not Greater Than or Equal
_mm cnpeg_sd CVPEQSD Equality
_mmecnplt_sd CVMPLTSD Less Than

_mmcnpl e_sd CMPLESD Less Than or Equal
_mm cnpgt _sd CMPLTSDr Greater Than

_mm cnpge_sd CMPLESDr Greater Than or Equal
_mm cnpord_sd CVPORDSD Ordered

_mm cnpunor d_sd | CMPUNORDSD Unordered

302

Intrinsic Corresponding | Compare

Name Instruction For:

_mm cnpneq_sd CVPNEQSD Inequality
_mmecnpnlt_sd CVPNLTSD Not Less Than

_mm cnpnl e_sd CMPNLESD Not Less Than or Equal
_mm cnpngt _sd CMPNLTSDr Not Greater Than

_mm cnpnge_sd CVPNLESDR

Not Greater Than or Equal

_mm comi eq_sd COM SD Equality
_mmcomlt_sd COM SD Less Than
_mmconile_sd COM SD Less Than or Equal
_mm comi gt _sd COM SD Greater Than
_mm comi ge_sd COM SD Greater Than or Equal
_mm comi neq_sd | COM SD Not Equal
_mm.ucom eq_sd |[UCOM SD Equality
_mmuconilt_sd |UCOM SD Less Than
_mm.uconi l e_sd | UCOM SD Less Than or Equal
_mmucom gt _sd |[UCOM SD Greater Than
_mm ucomi ge_sd | UCOM SD Greater Than or Equal
_mm _ucom neqg_sd | UCOM SD Not Equal
_ nml28d _mm cnpeq_pd(__nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for equality.
ro := (a0 == b0) ? Oxffffffffffffffff : OxO
rli:=(al == bl) ? Oxffffffffffffffff : OxO
_ nml28d mmecnplt_pd(__nl28d a, _ nl28d b)
Compares the two DP FP values of @ and b for a less than b.
ro := (a0 < b0) ? Oxffffffffffffffff : OxO
ri:=(al < bl) ? Oxffffffffffffffff : OxO

_ m28d mmecnple_ pd(__m28d a, _ ml28d b)

Compares the two DP FP values of a and b fo
ro := (a0 <= b0) ? Oxffffffffff
ri:=(al <= bl) ? Oxffffffffff

r aless
ffffff : OxO0
ffffff : OxO0

ess than or equal to b.

Reference

303

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mmcnpgt _pd(__nl28d a, _ nil28d b)

Compares the two DP FP values of a and b for a greater than b.
ro := (a0 > b0) ? Oxffffffffffffffff : OxO
rl:=(al > bl) ? Oxffffffffffffffff . OxO

_ nml28d _mm cnpge_pd(__nl28d a, _ nl28d b)

Compares the two DP FP values of a and b for a greater than or equal to b.
rO = (a0 >= b0) ? Oxffffffffffffffff : OxO
1 :=(al >= bl) ? Oxffffffffffffffff : OxO

_ nml28d _mmcnpord_pd(__ml28d a, _ ml28d b)

Compares the two DP FP values of a and b for ordered.
0 := (a0 ord b0O) ? Oxffffffffffffffff : OxO
1 :=(al ord b1l) ? Oxffffffffffffffff : OxO

_ nml28d _mm cnpunord_pd(__nl28d a, __ ml28d b)

Compares the two DP FP values of a and b for unordered.
ro := (a0 unord b0) ? Oxffffffffffffffff 0x0
rl := (al unord bl) ? Oxffffffffffffffff 0x0

_ nml28d _mmcnpneq_pd (_ nl28d a, __ml28d b)

Compares the two DP FP values of @ and b for inequality.
0 := (a0 !'=Db0O) ? Oxffffffffffffffff : OxO
1 :=(al !=Dbl) ? OxFfffffffffffffff 0x0

_ nml28d mmecnpnlt_pd(__m28d a, _ ml28d b)

Compares the two DP FP values of @ and b for a not less than b.
ro :=1(a0 < b0) ? Oxffffffffffffffff 0x0
rli:=1(al < bl) ? Oxffffffffffffffff 0x0

_ nml28d _mmcnpnle_pd(__m28d a, _ ml28d b)

Compares the two DP FP values of a and b for a not less than or equal to b.
ro :=1!(a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=1!(al <= bl) ? Oxffffffffffffffff : OxO

_ nml28d _mmcnpngt _pd(__m28d a, _ ml28d b)

Compares the two DP FP values of a and b for a not greater than b.
ro:="!(a0 > b0) ? Oxffffffffffffffff : OxO
ri:=1(al > bl) ? Oxffffffffffffffff 0x0

_ nml28d _mm cnpnge_pd(__m28d a, _ ml28d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.
ro :=1!(a0 >= b0) ? Oxffffffffffffffff : OxO
ri:=1!(al >= bl) ? Oxffffffffffffffff : OxO

304

Reference

_ nml28d _mmcnpeq_sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a
ro := (a0 == b0) ? Oxfffff
ri :=al

nd b for equality. The upper DP FP value is passed through from a.
fffff

a
f fffff : 0xO

_ nml28d mmecnplt_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of @ and b for a less than b. The upper DP FP value is passed through
from a.

ro :
ri:

(a0 < b0) ? Oxffffffffffffffff : OxO
il

_ nml28d mmecnple_sd(_ _nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP value is passed
through from a.

ro := (a0 <= b0) ? Oxffffffffffffffff . OxO
rl :=al

_ nml28d _mmcnpgt_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is passed through
from a.

ro:
ri:

(a0 > b0) ? Oxffffffffffffffff . OxO
al

_ nml28d _mmcnpge_sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP value is

passed through from a.

ro := (a0 >= b0) ? Oxffffffffffffffff . OxO
rl :=al

_ nml28d _mmcnpord_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed through from a.
ro := (a0 ord b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmcnpunord_sd(__ nl28d a, __ ml28d b)

Compares the lower DP FP value of @ and b for unordered. The upper DP FP value is passed through from
a.

ro:
ri:

(a0 unord b0) ? Oxffffffffffffffff . OxO
al

_ nml28d _mm cnpneq_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed through from
a.

ro:
ri:

(a0 '= b0) ? Oxffffffffffffffff . OxO
al

305

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d mmecnpnlt_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is passed

through from a.
ro:="!(a0 < b0) ? Oxffffffffffffffff : OxO
ri :=al

_ nml28d _mmcnpnle_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP value is

passed through from a.
ro :=1(a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=al

_ nml28d _mmcnpngt _sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is passed

through from a.
ro:=1!(a0 > b0) ? Oxffffffffffffffff : OxO
ri :=al

_ nml28d _mm cnpnge_sd(__m28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP FP value is
passed through from a.

ro :=1!(a0 >= b0) ? Oxffffffffffffffff : OxO

ri:=al

int _nmcomeq _sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of @ and b for a equal to b. If a and b are equal, 1 is returned. Otherwise

0 is returned.
r := (a0 == b0) ? 0Ox1 : 0xO

int _mmecomlt _sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of @ and b for a less than b. If a is less than b, 1 is returned. Otherwise 0

is returned.
r := (a0 < b0) ? Ox1 : OxO

int _nmcomle_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is

returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0Ox1 : 0xO

int _nmcomgt_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is

returned. Otherwise 0 is returned.
r := (a0 > b0) ? Ox1 : OxO

306

Reference

int _nmcomge_sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal to

b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0xO

int _nmcom neq_sd(__nl28d a, __ ml28d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.

Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : OxO

int _nmucom eq_sd(__nl28d a, __ _ml28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise

0 is returned.
r := (a0 == b0) ? 0Ox1 : 0xO

int _nmuconilt_sd(__nml28d a, __ _ml28d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise 0

is returned.
r := (a0 < b0) ? Ox1 : OxO

int _nmuconile_sd(__nml28d a, __ _ml28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is

returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0Ox1 : 0xO

int _nmucom gt _sd(__nl28d a, __ ml28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is

returned. Otherwise 0 is returned.
r := (a0 > b0) ? Ox1 : 0OxO

int _nmuconige sd(__nl28d a, __ ml28d b)

Compares the lower DP FP value of @ and b for a greater than or equal to b. If a is greater than or equal to

b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0Ox1 : 0xO

int _nmucom neq_sd(__ml28d a, _ ml28d b)

Compares the lower DP FP value of @ and b for a not equal to b. If a and b are not equal, 1 is returned.

Otherwise 0 is returned.
r := (a0 !'= b0) ? Ox1 : OxO

Floating-point Conversion Operations for Streaming SIMD Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as_nm cvt pd_ps result in a loss of precision. The rounding mode used in such cases
is determined by the value in the MXCSR register. The default rounding mode is round-to-nearest. Note
that the rounding mode used by the C and C++ languages when performing a type conversion is to truncate.

307

Intel® C++ Compiler for Linux* Systems User's Guide

The _mm cvtt pd_epi 32 and _nmm cvtt sd_si 32 intrinsics use the truncate rounding mode
regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) are listed in the following
table followed by detailed descriptions.

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresp_onding Return Parameters

Name Instruction Type

_mm cvt pd_ps CVTPD2PS __mi28 |(__m28d a)

_mm cvt ps_pd CVTPS2PD _ nml28d | (__ml28 a)

_mm cvtepi 32_pd | CVTDQ@PD _ nml28d | (__ml28i a)

_mm cvt pd_epi 32 | CVTPD2DQ _ ml28i |(__m28d a)

_mm cvtsd_si 32 CvTSsD2SI i nt (__m28d a)
_mm_cvtsd_ss | ovTSD2SS _mi28 |(_m28 a, __ni28d b)
_mmevtsi32_sd | CVISI2SD | __mi28d |(__mi28d a, int b)
_mm cvtss_sd CVTSS2SD _ nml28d | (__m28d a, _ ml28 b)
_mm cvttpd_epi 32 | CVTTPD2DQ _ ml28i |(__m28d a)
_mmecvttsd si 32 | CVITSD2SI i nt (__m28d a)

_mm cvt pd_pi 32 CVTPD2PI b4 (__m28d a)
_mmecvttpd_pi32 |CVITPD2PI | __n64 | (__mi28d a)
_mmevtpi32_pd |CVIPI2PD | __ni28d |(__n64 a)

_mmcvtsd _f64 None double |(__nl28d a)

_ nml28 _mmcvtpd_ps(__ml28d a)

Converts the two DP FP values of a to SP FP values.

ro := (float) a0
ri:= (float) al
r2:=0.0,; r3:=0.0

_ nml28d _mm cvtps_pd(__nl28 a)

Converts the lower two SP FP values of a to DP FP values.
ro := (double) a0
rl := (double) al

_ nml28d _mmcvtepi 32_pd(__nl28i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.
ro := (double) a0
rli := (double) al

308

Reference

_ nml28i _mmcvtpd_epi 32(__nl28d a)

Converts the two DP FP values of a to 32-bit signed integer values.

ro := (int) a0
ri:=(int) al
rz :=0x0; r3 := 0x0

int _nmmecvtsd_si32(__nl28d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.
r :=(int) a0

_ nml28 mmecvtsd ss(__ml28 a, _ ml28d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are passed through.
ro := (float) bO
rli :=al;, r2:=a2; r3 := a3

_ nml28d _mmcvtsi 32_sd(__ml28d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed through.
ro := (double) b
ri:=al

_ nml28d _mmcvtss_sd(__nl28d a, _ nl28 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is passed

through.
ro := (double) bO
ri :=al

_ nml28i _mmcvttpd_epi 32(__m28d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

ro := (int) a0
ri:= (int) al
r2z :=0x0; r3 := 0x0

int _mmecvttsd si32(__ml28d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.
r :=(int) a0

__nmB4 mmcvtpd_pi 32(__nl28d a)

Converts the two DP FP values of a to 32-bit signed integer values.
ro := (int) a0
ri:=(int) al

__nB4 mmecvttpd_pi32(__m28d a)

Converts the two DP FP values of a to 32-bit signed integer values using truncate.
ro := (int) a0
ri:= (int) al

309

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mmcvtpi 32_pd(__nbB4 a)

Converts the two 32-bit signed integer values of a to DP FP values.
ro := (double) a0
rli := (double) al

_mmcvtsd_f64(__m28d a)

This intrinsic extracts a double precision floating point value from the first vector element of an ___ ml28d.
It does so in the most efficient manner possible in the context used. This intrinsic does not map to any
specific SSE2 instruction.

Floating-point Memory and Initialization Operations for Streaming SIMD
Extensions 2

This section describes the | oad, set , and st or e operations, which let you load and store data into
memory. The | oad and set operations are similar in that both initialize __ nl28d data. However, the
set operations take a double argument and are intended for initialization with constants, while the | oad
operations take a double pointer argument and are intended to mimic the instructions for loading data from
memory. The St or e operation assigns the initialized data to the address.

f)Note

There is no intrinsic for move operations. To move data from one register to another, a simple assignment,
A = B, suffices, where A and B are the source and target registers for the move operation.

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the emi nt ri n. h header file.

Floating-point Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.
__ nml28d _mm | oad_pd(doubl e const*dp)

(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte aligned.
ro := p[0]
ri .= p[1]

_ nml28d _mm | oadl_pd(doubl e const*dp)

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both elements. The address p need not
be 16-byte aligned.

ro:=*p

ri:=*p

310

Reference

_ nml28d _mm | oadr_pd(doubl e const *dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The address p must be 16-byte
aligned.

_ nml28d _mm | oadu_pd(doubl e const *dp)

(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte aligned.
ro := p[0]
ri .= p[1]

_ nml28d _mm | oad_sd(doubl e const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address p need not be 16-byte
aligned.

ro:=*p
rl .=0.0

_ nml28d _mm | oadh_pd(__nl28d a, doubl e const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result. The lower DP FP value is
passed through from a. The address p need not be 16-byte aligned.

ro := a0
ri.==*p

_ nml28d _mmloadl _pd(__nl28d a, double const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result. The upper DP FP value is
passed through from a. The address p need not be 16-byte aligned.

ro:=*p

ri:=al

Floating-point Set Operations for Streaming SIMD Extensions 2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the enri nt ri n. h header file.
_ nml28d _mm set_sd(doubl e w)

(composite) Sets the lower DP FP value to wand sets the upper DP FP value to zero.
ro :
ri:

W
0.0
_ nml28d _mMm setl pd(double w)

(composite) Sets the 2 DP FP values to w.
ro:=w
ri:=w

311

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28d _mm set pd(doubl e w, double x)

(composite) Sets the lower DP FP value to x and sets the upper DP FP value to w.
ro :=x
ri:=w

_ nml28d _mm setr_pd(doubl e w, double x)

(composite) Sets the lower DP FP value to wand sets the upper DP FP value to X.
ro:=w
ri :=x

_ nml28d _mm setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.
ro := 0.0
ri :=0.0

_ nml28d _mm nmove_sd(_ nl28d a, _ nl28d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is passed
through from a.

ro := bo

ri:=al

Floating-point Store Operations for Streaming SIMD Extensions 2

The following St or e operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.
void _mm store_sd(double *dp, _ nl28d a)

(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.
*dp := a0

void _mm storel_pd(double *dp, _ ml28d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The address dp must be 16-byte

aligned.
dp[0] := a0
dp[1] := a0

void _mm store_pd(double *dp, _ nil28d a)

(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte aligned.
dp[0] a0
dp[1] al

void _mm storeu_pd(double *dp, _ ml28d a)

(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte aligned.
dp[0] a0
dp[1] al

312

Reference

void _mm storer_pd(double *dp, _ ml28d a)

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The address dp must be 16-byte

aligned.
dp[0] := al
dp[1] := a0

void _mm storeh_pd(double *dp, _ ml28d a)

(uses MOVHPD) Stores the upper DP FP value of a.
*dp 1= al

void _mm storel _pd(double *dp, _ ml28d a)

(uses MOVLPD) Stores the lower DP FP value of a.
*dp := a0

Integer Arithmetic Operations for Streaming SIMD Extensions 2

The integer arithmetic operations for Streaming SIMD Extensions 2 (SSE2) are listed in the following table
followed by their descriptions. The packed arithmetic intrinsics for SSE2 are listed in the Floating-point
Arithmetic Operations topic.

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Instruction | Operation

_mm add_epi 8 PADDB Addition

_mm add_epi 16 PADDW Addition

_mm add_epi 32 PADDD Addition
_mm add_si 64 PADDQ Addition
_mm add_epi 64 PADDQ Addition

_mm adds_epi 8 PADDSB Addition

_mm adds_epi 16 | PADDSW Addition

_mm adds_epu8 PADDUSB Addition

_mm adds_epul6 |PADDUSW | Addition

_mm avg_epu8 PAVGB Computes Average

_mm avg_epul6 PAVGW Computes Average

_mm madd_epi 16 | PMADDWD | Multiplication/Addition

_mm_max_epi 16 PMAXSW Computes Maxima

_nm _max_epu8 PMVAXUB Computes Maxima

_mm._m n_epi 16 PM NSW Computes Minima

313

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Instruction | Operation

_mm_m n_epu8 PM NUB Computes Minima

_mm rmul hi _epi 16 | PMULHW Multiplication

_mm mul hi _epul6 | PMULHUW Multiplication

~mmmullo_epi 16 | PMULLW Multiplication

_mm mul _su32 PMULUDQ | Multiplication

_mm mul _epu32 PMULUDQ | Multiplication

_mm sad_epu8 PSADBW Computes Difference/Adds
_mm sub_epi 8 PSUBB Subtraction
_mm sub_epi 16 PSUBW Subtraction
_mm sub_epi 32 PSUBD Subtraction
_mm sub_si 64 PSUBQ Subtraction
_mm sub_epi 64 PSUBQ Subtraction

_mm subs_epi 8 PSUBSB Subtraction

_mm subs_epi 16 | PSUBSW Subtraction

_mm subs_epu8 PSUBUSB Subtraction

_mm subs_epul6 |PSUBUSW | Subtraction

_ mml28i _nm add_epi 8(__ml28i a, _ ml28i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in b.
ro := a0 + b0
rl :=al + bl

r15 := al5 + bl5
_ mml28i _nm add_epi 16(__nml28i a, _ nl28i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b.

ro := a0 + bo
rl :=al + bl
'r'7':: a7 + b7

_ ml28i _mm add_epi 32(__ml28i a, _ ml28i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b.

ro := a0 + bo
rl :=al + bl
r2 := a2 + b2
r3 := a3 + b3

314

Reference

__nb4 mmadd _si64(__nb64 a, __nb4 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.
r:=a+b

_ ml28i _mm add_epi 64(__ml28i a, _ ml28i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit integers in b.
ro := a0 + b0
ri:=al + bl

_ ml28i _mm adds_epi 8(__ml28i a, _ ml28i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating arithmetic.
ro := SignedSaturate(a0 + bO0)
rl := SignedSaturate(al + bl)

ri5 ;= Si gnedSat ur at e(al5 + bl5)
_ nml28i _mm adds_epi 16(__nml28i a, _ nl28i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using saturating arithmetic.
rO := SignedSaturate(a0 + b0)
rl := SignedSaturate(al + bl)

(7

Si gnedSat urate(a7 + b7)
_ ml28i _mm adds_epu8(__ml28i a, _ ml28i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating arithmetic.
ro := UnsignedSaturate(a0 + b0)
rl := UnsignedSaturate(al + bl)

ri5 : = Unsi gnedSat urat e(al5 + blb5)
_ nml28i _mm adds_epul6(__nl28i a, _ nl28i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using saturating arithmetic.
ro := UnsignedSaturate(a0 + b0)
ri := UnsignedSaturate(al + bl)

ri5 : = Unsi gnedSat urate(a7 + b7)

_ nml28i _mmavg_epu8(__nl28i a, _ nl28i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers in b and
rounds.

ro := (a0 + b0) / 2

ri:=(al + bl) / 2

ri5 := (al5 + bl5) / 2

315

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mmavg_epul6(__ml28i a, _ ml28i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in b and

rounds.

ro := (a0 + b0) / 2
ri:=(al + bl) / 2
r7 := (a7 + b7) | 2

_ nml28i _mmmadd_epi 16(__nml28i a, _ nl28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Adds the signed 32-
bit integer results pairwise and packs the 4 signed 32-bit integer results.

ro := (a0 * b0) + (al * bil)
ri:= (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * bb)
r3 := (a6 * b6) + (a7 * b7)

_ ml28i _mm max_epi 16(__m28i a, _ ml28i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from

b.

ro := max(a0, b0)
ri := max(al, bl)
r7 = max(a7, b7)

_ ml28i _mm max_epu8(__ nl28i a, _ nl28i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers

from b.
ro := max(a0, b0)
ri := max(al, bl)

ri5 := max(al5, blb)
_ ml28i _mmmn_epil16(__m28i a, _ ml28i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from

b.

ro := mn(a0, b0)
ri:= mn(al, bl)
r7 := mn(a7, b7)

_ 28 _mmmn_epu8(__nl28i a, _ nl28i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers
from b.

ro := mn(a0, b0)

ri := mn(al, bl)

ri5 := nin(al5, bl5)

316

Reference

_ nml28i _mmnmul hi _epi 16(__nl28i a, _ ml28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Packs the upper 16-
bits of the 8 signed 32-bit results.

ro := (a0 * b0)[31:16]
ri:= (al * bl)[31:16]
r7 := (a7 * b7)[31:16]

_ nml28i _mmmul hi _epul6(__nl28i a, __ ml28i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers from b. Packs the upper
16-bits of the 8 unsigned 32-bit results.

ro := (a0 * b0)[31:16]

ri:= (al * bl)[31:16]

r7 := (a7 * b7)[31:16]
_ ml28i _mmmullo_epi 16(__nml28i a, _ nl28i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from
b. Packs the lower 16-bits of the 8 signed or unsigned 32-bit results.

ro := (a0 * b0)[15:0]
ri:= (al * bl)[15:0]
r7 := (a7 * b7)[15:0]

_ B4 _mmnul _su32(__nb4 a, __nb4 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-bit integer

result.
r := a0 * bo

_ ml28i _mmmul _epu32(__m28i a, _ ml28i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b. Packs the 2 unsigned
64-bit integer results.

ro := a0 * boO

rl := a2 * b2

_ nml28i _mmsad_epu8(__nl28i a, _ nl28i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b. Sums the upper 8 differences and lower 8 differences, and packs the resulting 2 unsigned

16-bit integers into the upper and lower 64-bit elements.
ro := abs(a0 - b0) + abs(al - bl) +...+ abs(a7 - b7)

ril :; Ox0 ; r2 :=0x0 ; r3 := 0x0
rd4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(al5 - blb)
r5 :=0x0; r6 :=0x0 ; r7 := 0x0

_ nml28i _mmsub_epi 8(__nl28i a, _ nl28i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit integers of a.
ro := a0 - b0
ri:=al - bl

r15 := al5 - bis

317

Intel® C++ Compiler for Linux* Systems User's Guide

_ nml28i _mm sub_epi 16(__nl28i a, _ nl28i h)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or unsigned 16-bit integers of a.

ro := a0 - bo
rl :=al - bl
r7 1= a7 - b7

_ ml28i _mmsub_epi 32(__m28i a, _ ml28i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a.

ro := a0 - bo
rl :=al - bl
r2 := a2 - b2
r3 := a3 - b3

n64 mmsub si64 (__nmb64d a, _ nb4 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.
r:=a-m=o

_ ml28i _mm sub_epi 64(__m28i a, _ ml28i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or unsigned 64-bit integers in a.
ro := a0 - b0
rli:=al - bl

_ ml28i _mmsubs_epi 8(__m28i a, _ ml28i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using saturating
arithmetic.

ro := SignedSaturate(a0 - bO0)

rl := SignedSaturate(al - bl)

ri5 : = Si gnedSat ur at e(al5 - blb)
_ ml28i _mm subs_epi 16(__nml28i a, _ nl28i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a using saturating

arithmetic.

ro := SignedSaturate(a0 - bO0)
rl := SignedSaturate(al - bl)
r7 = Si gnedSaturate(a7 - b7)

_ ml28i _mm subs_epu8(__ml28i a, _ ml28i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using saturating
arithmetic.

ro := UnsignedSaturate(a0 - b0)

rl := UnsignedSaturate(al - bl)

ri5 : = Unsi gnedSat urat e(al5 - blb)

318

Reference

_ nml28i _mm subs_epul6(__nl28i a, _ nl28i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a using saturating
arithmetic.

ro := UnsignedSaturate(a0 - b0)

rl := UnsignedSaturate(al - bl)

r7 Unsi gnedSat urate(a7 - b7)

Integer Logical Operations for Streaming SIMD Extensions 2

The following four logical-operation intrinsics and their respective instructions are functional as part of
Streaming SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.
_ ml28i _mmand_si 128(__ml28i a, _ ml28i b)

(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.
r:=aé&hb

_ ml28i _mm andnot _si 128(__ml28i a, _ ml28i b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit
value in a.
r:=(~a) &b

_ nml28i _mmor_si128(__nl28i a, _ nl28i b)

(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
r:=ajl b

_ ml28i _mm xor_si128(__ml28i a, _ ml28i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.
r:=an”hb

Integer Shift Operations for Streaming SIMD Extensions 2

The shift-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) and the description for each are
listed in the following table.

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Shift Shift Corresponding
Direction | Type Instruction
_mmslli_sil28 | Left Logical PSLLDQ
_mmslli_epil6 | Left Logical | PSLLW
_mmsll_epi16 | Left Logical | PSLLW
_mmslli_epi 32 | Left Logical PSLLD

319

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Shift Shift Corresponding
Direction | Type Instruction

_mmsll_epi32 | Left Logical | PSLLD
_mmslli_epi64 | Left Logical PSLLQ
_mmsl| _epi 64 |Left Logical PSLLQ
_hm srai _epi 16 | Right Arithmetic | PSRAW
_mmsra_epi 16 | Right Arithmetic | PSRAW
_hm srai _epi 32 | Right Arithmetic | PSRAD
_mmsra_epi 32 | Right Arithmetic | PSRAD
_mmsrli_si 128 | Right Logical PSRLDQ
_mmsrli_epi 16 | Right Logical | PSRLW
_mmsrl_epi 16 | Right Logical | PSRLW
_mmsrli_epi 32 | Right Logical | PSRLD
_mmsrl_epi 32 | Right Logical | PSRLD
_mm.srli_epi 64 | Right Logical | PSRLQ
_mmsrl_epi 64 | Right Logical | PSRLQ

_ 28 _mmslli_si128(__ml28i a, int inm

Shifts the 128-bit value in a left by i mmbytes while shifting in zeros. i MMmust be an immediate.
r:=a<< (imm* 8)

_ nml28i _mmslli_epil6(__nml28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

rO : = a0 << count
rl .= al << count
k?':: a7 << count

_ 28 _mmsll _epil6(__m28i a, __ ml28i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

rO : = a0 << count
rl .= al << count
k?':: a7 << count

320

_ nml28i _mmslli_epi32(__nml28i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

ro := a0 << count
rl := al << count
r2 := a2 << count
r3 := a3 << count

_ nml28i _mmsll _epi32(__m28i a, __ ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

ro := a0 << count
rl := al << count
r2 := a2 << count
r3 := a3 << count

_ nml28i mmslli_epi64(__nml28i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

rO : = a0 << count
rl := al << count

_ ml28i _mmsll_epi64(__m28i a, __ ml28i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

roO : = a0 << count
rl .= al << count

_ ml28i _mmsrai_epi16(__nml28i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

ro := a0 >> count
rl := al >> count
f7':= a7 >> count

_ nml28i _mmsra_epil6(__m28i a, _ ml28i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

ro := a0 >> count
rl := al >> count
f7':= a7 >> count

_ ml28i _mmsrai_epi32(__nml28i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

rO : = a0 >> count
rl := al >> count
r2 := a2 >> count
r3 := a3 >> count

Reference

321

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mmsra_epi32(__m28i a, __ ml28i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

ro := a0 >> count
rl := al >> count
r2 := a2 >> count
r3 :=1i3 >> count

_ nml28i _mmsrli_si128(__ml28i a, int inm

Shifts the 128-bit value in a right by i mmbytes while shifting in zeros. i MMmust be an immediate.
r :=srl(a, imr38)

_ nml28i _mmsrli_epil6(__nml28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r7 = srl (a7, count)

_ ml28i _mmsrl_epil1l6(__m28i a, _ ml28i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r7 = srl (a7, count)

_ ml28i _mmsrli_epi32(__ml28i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r2 :=srl (a2, count)
r3 := srl(a3, count)

_ ml28i _mmsrl_epi32(__m28i a, __ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r2 :=srl (a2, count)
r3 := srl(a3, count)

_ ml28i _mmsrli_epi64(__ml28i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.
ro := srl (a0, count)
rli := srl(al, count)

322

Reference

_ nml28i _mmsrl_epi64(__ml28i a, __ ml28i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.
ro := srl (a0, count)
rli := srl(al, count)

Integer Comparison Operations for Streaming SIMD Extensions 2

The comparison intrinsics for Streaming SIMD Extensions 2 (SSE2) and descriptions for each are listed in
the following table.

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Name Instruction | Comparison | Elements | Size of
Elements

_mm cnpeq_epi 8 | PCMPEQB | Equality 16 8

_m cnpeq_epi 16 | PCMPEQW | Equality 8 16
_mm cnpeq_epi 32 | PCMPEQD | Equality 4 32
_mmcnpgt _epi 8 | PCMPGIB | Greater Than | 16 8
_nmm cnpgt _epi 16 | PCMPGTW | Greater Than | 8 16
_mm cnpgt _epi 32 | PCMPGTD | Greater Than | 4 32
_mmecnplt_epi 8 |[PCMPGTBr | Less Than 16 8
~mmecnplt_epi 16 | PCMPGTW | Less Than 8 16
_mmecnplt_epi 32 | PCMPGTDr | Less Than 4 32

_ ml28i _mmcnpeq_epi 8(__nml28i a, _ nl28i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit integers in b for
equality.

ro := (a0 == b0) ? Oxff : OxO

ri:= (al == bl) ? Oxff : OxO

r15 := (al5 == b15) ? Oxff : 0x0
_ ml28i _mm cnpeqg_epi 16(__nl28i a, __ ml28i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit integers in b for

equality.

ro := (a0 == b0) ? Oxffff 0x0
ri:= (al == bl) ? Oxffff 0x0
r7 := (a7 == b7) ? Oxffff : OxO

323

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mmcnpeq_epi 32(__nl28i a, __ _ml28i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned 32-bit integers in b for

equality.

ro := (a0 == b0) ? Oxffffffff 0x0
ri:=(al == bl) ? Oxffffffff : OxO
r2 := (a2 == b2) ? Oxffffffff : OxO
r3:= (a3 == b3) ? Oxffffffff : OxO

_ nml28i _mmecnpgt _epi 8(__nml28i a, _ nl28i b)

Compares the 16 signed 8-bit integers in @ and the 16 signed 8-bit integers in b for greater than.
ro := (a0 > b0) ? Oxff : 0OxO
ri:=(al > bl) ? Oxff : 0OxO

ri5 := (al5 > b15) ? Oxff : OxO
_ ml28i _mmcnpgt_epi 16(__nl28i a, __ ml28i b)

Compares the 8 signed 16-bit integers in @ and the 8 signed 16-bit integers in b for greater than.

ro := (a0 > b0) ? Oxffff : 0OxO
ri:=(al > bl) ? Oxffff : 0OxO
r7 := (a7 > b7) ? Oxffff : OxO

_ ml28i _mmcnpgt_epi 32(__nl28i a, __ _ml28i b)

Compares the 4 signed 32-bit integers in @ and the 4 signed 32-bit integers in b for greater than.

ro := (a0 > b0) ? Oxffff : 0OxO
ri:= (al > bl) ? Oxffff : 0OxO
r2 := (a2 > b2) ? oxffff : 0xO
r3 := (a3 > b3) ? Oxffff : 0OxO

_ ml28i _mmecnplt_epi8(__ nml28i a, _ _ml28i b)

Compares the 16 signed 8-bit integers in @ and the 16 signed 8-bit integers in b for less than.
ro := (a0 < b0) ? Oxff : 0OxO
ri:= (al < bl) ? Oxff : OxO

ri5 := (al5 < b15) ? Oxff : OxO
_ ml28i _mmecnplt_epi16(_ m28i a, _ ml28i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.

ro := (a0 < b0) ? Oxffff : OxO
ri:= (al < bl) ? Oxffff : OxO
r7 := (a7 < b7) ? Oxffff : OxO

_ ml28i _mmecenplt_epi32(__m28i a, _ ml28i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than.

ro := (a0 < b0) ? Oxffff : 0OxO
ri:=(al < bl) ? Oxffff : OxO
r2 := (a2 < b2) ? oxffff : 0xO
r3 := (a3 < b3) ? Oxffff : OxO

324

Reference

Integer Conversions Operations for Streaming SIMD Extensions 2

The following two conversion intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.
_ nml28i _mmcvtsi 32 si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an __ml28i object. Copies the sign
bit of a into the upper 96 bits of the __ mL28i object.

ro := a

ri :=0x0,; r2 :=0x0; r3 := 0x0

int _nmecvtsi 128 si32(__ml28i a)

(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.
r := a0

_ nml28 _mm cvtepi 32_ps(__ml28i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

ro := (float) a0
ri:= (float) al
r2 := (float) a2
r3 := (float) a3

_ ml28i _mm cvtps_epi 32(__nl28 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

ro := (int) a0
ri:= (int) al
r2 .= (int) a2
r3 :=(int) a3

_ nml28i _mmcvttps_epi 32(__m28 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

ro := (int) a0
ri:= (int) al
r2 := (int) a2
r3 :=(int) a3

Integer Memory and Initialization Operations for Streaming SIMD Extensions 2

The integer | oad, set , and st or e intrinsics and their respective instructions provide memory and
initialization operations for the Streaming SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.
* Load Operations

* Set Operations
» Store Operations

325

Intel® C++ Compiler for Linux* Systems User's Guide

Integer Load Operations for Streaming SIMD Extensions 2

The following | oad operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmi nt ri n. h header file.
_ nml28i _mmload _si128(__ml28i const*p)

(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.
r:=*p

_ nml28i _mm|loadu_si 128(___nl28i const*p)

(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.
r:=*p

_ nml28i _mm| oadl epi 64(__nl28i const*p)
(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result, zeroing
the upper 64 bits of the result.

ro: = *p[63:0]
ri1:=0x0

Integer Set Operations for SSE2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.
_ nml28i _mmset _epi64(__n64 ql, _ nb4 q0)

Sets the 2 64-bit integer values.
ro := g0
ri :=ql

_ nml28i _mmset_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.
ro:=i
ri:
r2:
r3:

10
i1
i 2
i3

_ nml28i _mm set_epi 16(short w7, short w6, short ws, short w4, short w3,
short w2, short wl, short w0)

Sets the 8 signed 16-bit integer values.

ro :=wo
ri:=wl
f7':= w7

326

Reference

_ ml28i _mm set_epi 8(char bl5, char bl4, char bl3, char bl2, char bll
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char bl, char bO0)

Sets the 16 signed 8-bit integer values.

ro := bo
rl := bl
r15 : = bl5

_ nml28i _mmsetl epi 64(__nbB4 q)

Sets the 2 64-bit integer values to .
ro :=g
ri =g

_ nml28i _mmsetl epi32(int i)

Sets the 4 signed 32-bit integer values to i .
ro:=i

ri:
r2:
r3:

_ nml28i _mmsetl epi 16(short w)

Sets the 8 signed 16-bit integer values to W.

ro :=w
ri:=w
r7 = w

_ nml28i _mmsetl epi 8(char b)

Sets the 16 signed 8-bit integer values to b.
ro:=b
rli:=»b

ri5 := b
_ nml28i _mmsetr_epi 64(__nm64 q0, _ _nmb4 ql)

Sets the 2 64-bit integer values in reverse order.
ro :=qo0
ri :=ql

_ ml28i _mmsetr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.
ro:=i
ri:
r2:

i0
i1
i 2
r3 :=1i3

327

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mmsetr_epi 16(short w0, short wl, short w2, short w3, short w4,
short wh, short w6, short wr)

Sets the 8 signed 16-bit integer values in reverse order.

ro :=w
ri.=wl
k?':: w7

_ nml28i _mmsetr_epi 8(char bl5, char bl4, char bl13, char bl2, char bl1l
char bl10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char bl, char bO0)

Sets the 16 signed 8-bit integer values in reverse order.

ro := b0
rl := bl
r15 : = bl5

_ nml28i _mm setzero_si 128()

Sets the 128-bit value to zero.
r .= 0x0

Integer Store Operations for Streaming SIMD Extensions 2

The following St or e operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.
void mmstore_si128(__ml28i *p, _ ml28i b)

(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.
* -
p:=a

void mmstoreu_si128(__nl28i *p, _ ml28i b)

(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.
* -
p:=a

void _mm masknoveu_si 128(__ ml28i d, _ ml28i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The high bit of each byte in the
selector N determines whether the corresponding byte in d will be stored. Address p need not be 16-byte

aligned.
if (noO[7]) p[O]
it (n1[7]) p[1]

if (n15[7]) p[15] := di5

do
dl

void _mm storel _epi 64(__nml28i *p, _ ml28i Q)

(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.
*p[63: 0] : =a0

328

Reference

Macro Function for Shuffle

The Streaming SIMD Extensions 2 (SSE2) provide a macro function to help create constants that describe
shuffle operations. The macro takes two small integers (in the range of 0 to 1) and combines them into an
2-bit immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

_M SHUFTLEL [, v)

expands to the vahe of
[=<1) | v

You can view the two integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Ir(f"
I i
: [[

e oo

wd = _n_skafile_pdind, mi, M SHUFFLEZ (1,0

. = [l
k;’“g e T

Cacheability Support Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the enri nt ri n. h header file.
void _nmm stream pd(double *p, _ nil28d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches. The address p must be 16-
byte aligned. If the cache line containing address p is already in the cache, the cache will be updated.
p[0] := a0

p[1l] := al

void _mm stream si 128(__nl28i *p, _ ml28i a)

Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated. Address p must be 16-byte aligned.
* -

p:=a

void _mmstreamsi32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated.
* . —_

p:=a

329

Intel® C++ Compiler for Linux* Systems User's Guide

void _mmcl flush(void const*p)
Cache line containing p is flushed and invalidated from all caches in the coherency domain.
void mm | fence(void)

Guarantees that every load instruction that precedes, in program order, the load fence instruction is globally
visible before any load instruction which follows the fence in program order.

void _mm nfence(void)

Guarantees that every memory access that precedes, in program order, the memory fence instruction is
globally visible before any memory instruction which follows the fence in program order.

voi d _nm pause(voi d)

The execution of the next instruction is delayed an implementation specific amount of time. The instruction
does not modify the architectural state. This intrinsic provides especially significant performance gain.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spi n | oop: pause
cnp eax, A
jne spin_loop

In this example, the program spins until memory location A matches the value in register eax. The code
sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the attempt
to get a lock has failed.

get _lock: mov eax, 1

xchg eax, A ; Try to get |ock
cnp eax, 0 ; Test if successfu
jne spin_loop

critical _section code

mov A, O ; Release |ock

jmp continue

spi n_l oop: pause ; Spin-loop hint
cnp 0, A; Check lock availability
jne spin_loop

jmp get | ock

conti nue:

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing [A-32 processor generations, a test for processor type

330

Reference

(a CPUI Dtest) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors which
use the PAUSE as a hint there can be significant performance benefit.

The miscellaneous intrinsics for Streaming SIMD Extensions 2 (SSE2) are listed in the following table

followed by their descriptions.

Miscellaneous Operations for Streaming SIMD Extensions 2

The prototypes for SSE2 intrinsics are in the enmi nt ri n. h header file.

Intrinsic Corresponding | Operation
Instruction

_mm packs_epi 16 PACKSSV\B Packed Saturation

_mm packs_epi 32 PACKSSDW Packed Saturation

_mm packus_epi 16 PACKUSWB Packed Saturation

_mm extract _epi 16 PEXTRW Extraction

_mm.insert_epi 16 Pl NSRwW Insertion

_mm nmovenask_epi 8 PMOVMSKB Mask Creation

_mm shuffle_epi 32 PSHUFD Shuffle

_mm shuffl ehi _epi 16 PSHUFHW Shuffle

_mm shuffl el o_epi 16 PSHUFLW Shuffle

_mm unpackhi _epi 8 PUNPCKHBW Interleave

_mm unpackhi _epi 16 PUNPCKHWD Interleave

_mm unpackhi _epi 32 PUNPCKHDQ Interleave

_mm unpackhi _epi 64 PUNPCKHQDQ Interleave

_mm unpackl o_epi 8 PUNPCKLBW Interleave

_mm unpackl o_epi 16 PUNPCKLWD Interleave

_mm unpackl o_epi 32 PUNPCKLDQ Interleave

_mm unpackl o_epi 64 PUNPCKLQDQ Interleave

_mm _novepi 64_pi 64 MOVDQ2Q move

_ml28i _nm novpi 64_epi 64 | MOVQ2DQ move

_mm nmove_epi 64 MOVQ move

331

Intel® C++ Compiler for Linux* Systems User's Guide

_ ml28i _mm packs_epi 16(__nl28i a, __ ml28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

rO : = SignedSaturate(a0)
rl := SignedSaturate(al)
r7 = Si gnedSat ur at e(a7)
r8 : = SignedSat urate(b0)
r9 := SignedSaturate(bl)

ri5 : = Si gnedSat ur at e(b7)
_ ml28i _mm packs_epi 32(__nml28i a, __ _ml28i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates.

rO : = SignedSat urat e(a0)
rl := SignedSaturate(al)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(bl)
ré := SignedSaturate(b2)
r7 := SignedSaturate(b3)

_ ml28i _mm packus_epi 16(__ml28i a, _ ml28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.

ro : = Unsi gnedSat urat e(a0)
ri := UnsignedSaturate(al)
(7 = Unsi gnedSat ur at e(a7)
r8 : = UnsignedSat urat e(b0)
r9 := UnsignedSaturate(bl)

ri5 : = Unsi gnedSat ur at e(b7)
int _nmextract_epi16(__ml28i a, int im

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector i TmMmust be
an immediate.

r :=(imm==0) ? a0

((imm==1) ? al :

(imm==7) 2 a7)

_ ml28i _mminsert_epi16(__m28i a, int b, int im

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector i MMmust be an

immediate.

ro :=(imm==20) ? b : ao0;
ri:=(imm==1) ? b : al
r7 = (imm==7) ? b : a7,

332

Reference

int _nm novemask epi 8(__ml28i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and
zero extends the upper bits.

r .= al5[7] << 15
al4[7] << 14 |
éit?] << 1 |
ao[7]

_ m28i _mmshuffle_epi32(__nl28i a, int imm

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by i "m The shuffle value, i mm must be
an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_ ml28i _mmshufflehi _epi16(__m28i a, int inm

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by i mm The shuffle value, i mm
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_ nml28i _mmshufflel o _epi16(__ml28i a, int inm

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by i m The shuffle value, i mm
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_ nml28i _mmunpackhi _epi 8(__nl28i a, _ nl28i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit
integers in b.
ro:=a8; rl:

= b8
r2 :=a9 ; r3:

b9

r14 := al5 ; r15 := bl5
__ nml28i _mmunpackhi epi 16(__ml28i a, __ ml28i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit
integers in b.

roO :=a4 ; rl := b4
r2 := a5 ; r3 := bb
r4 := a6 ; r5 := b6
ré := a7 ; r7 := b7

_ nml28i _mm unpackhi _epi 32(_ml28i a, __ _ml28i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit
integers in b.
ro:=a2,; rl:

= b2
r2 :=a3 ; r3:

b3

333

Intel® C++ Compiler for Linux* Systems User's Guide

__nml28i _mmunpackhi epi 64(__ml28i a, __ ml28i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned 64-bit
integer in b.
ro:=al; rl1:=Dbl

_ nml28i _mmunpackl o _epi 8(__nl28i a, _ nl28i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit
integers in b.
ro:=ao0; rl1:

= b0
r2 :=al; r3:

bl

ri4 := a7 ; rl5 1= b7
_ nml28i _mm unpackl o_epi 16(_ml28i a, __ ml28i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in @ with the lower 4 signed or unsigned 16-bit
integers in b.

roO :=al0 ; rl := b0
rz :=al; r3 :=Dbl
r4 := a2 ; r5 := b2
ré := a3 ; r7 := b3

_ nml28i _mm unpackl o_epi 32(_ml28i a, __ _ml28i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in @ with the lower 2 signed or unsigned 32-bit
integers in b.

ro:=ao; rl:
r2:=al; r3:

o]0
bl

__ nml28i _mmunpackl o_epi 64(__ml28i a, __ ml28i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned 64-bit
integer in b.
ro:=a0; rl1 := b0

__nB4 _nmm novepi 64_pi 64(__nl28i a)

Returns the lower 64 bits of a as an __ 64 type.
ro := a0 ;

_128i _mm novpi 64_pi 64(_nb4 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.
ro:=a0; rl1 := 0X0 ;

_128i _mm nove_epi 64(__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.
ro:=ao0; rl1 := 0X0 ;

334

Additional Miscellaneous Intrinsics

Reference

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the emi nt ri n. h header file.

_ nml28d _mm unpackhi _pd(__nl28d a, __ _ml28d b)

(uses UNPCKHPD) Interleaves the upper DP FP values of a and b.
ro:= al
ri:= bl

_ nml28d _mmunpackl o_pd(__nl28d a, __ ml28d b)

(uses UNPCKLPD) Interleaves the lower DP FP values of a and b.
ro := ao
ri:= bo

int _nm novemask pd(__ ml28d a)

(uses MOVVBKPD) Creates a two-bit mask from the sign bits of the two DP FP values of a.

r := sign(al) << 1 | sign(a0)

_ nml28d _mmshuffle_pd(__ml28d a, _ nl28d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the mask i . The mask must be

an immediate. See Macro Function for Shuffle for a description of the shuffle semantics.

Intrinsics for Casting Support

This version of the Intel C++ Compiler supports casting between various SP, DP, and INT vector types.

These intrinsics do not convert values; they just change the type.
extern _nl28 _mmcastpd _ps(__m28d in);
extern _ nl28i _mm castpd_si 128(__ml28d in);
extern _ nl28d _mm castps_pd(__ml28 in);
extern _ nl28i _mmcastps_si 128(__ml28 in);
extern nMl28 nmm castsi 128 ps(__ ml28i in);

extern _ nl28d _mm castsi 128 pd(__ml28i in);

335

Intel® C++ Compiler for Linux* Systems User's Guide

Streaming SIMD Extensions 3

The Intel® C++ intrinsics listed in this section are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3). They will not function correctly on other IA-32 processors. New
SSE3 intrinsics include:

* Floating-point Vector Intrinsics
* Integer Vector Intrinsics
* Miscellaneous Intrinsics

e Macro Functions

The prototypes for these intrinsics are in the pnri nt ri n. h header file.

]

~—s Note

You can also use the single i @32i nt ri n. h header file for any [A-32 intrinsics.

Floating-point Vector Intrinsics for Streaming SIMD Extensions 3

The floating-point intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmm nt ri n. h header file.
Single-precision Floating-point Vector Intrinsics
extern _ nl28 _nmm addsub _ps(__ nl28 a, _ nl28 b);

Subtracts even vector elements while adding odd vector elements.

ro := a0 - boO;
rl :=al + bl;
r2 := a2 - bh2;
r3 := a3 + b3;

extern _ nml28 nm hadd _ps(__nl28 a, _ nl28 b);

Adds adjacent vector elements.

ro := a0 + al;
rl := a2 + a3;
r2 := b0 + bi;
r3 := b2 + b3;

extern _ nml28 nm hsub _ps(__ nl28 a, _ nl28 b);

Subtracts adjacent vector elements.

ro := a0 - al;
rl := a2 - a3;
r2 := b0 - bi;
r3 := b2 - b3;

336

extern _ nl28 _mm novehdup _ps(__nl28 a);

Duplicates odd vector elements into even vector elements.

ro := al;
rl = al;
r2 := as3;
r3 := as3;

extern _ nl28 _mm novel dup_ps(__nl28 a);

Duplicates even vector elements into odd vector elements.

ro := ao;
rl := a0;
r2 := az2;
r3 := az2;

Double-precision Floating-point Vector Intrinsics

extern _ nl28d _mm addsub_pd(__ml28d a, __ ml28d b);

Adds upper vector element while subtracting lower vector element.
ro := a0 - DbO;
ri:=al + bil;

extern _ nl28d _mm hadd_pd(__ml28d a, _ ml28d b);

Adds adjacent vector elements.
ro := a0 + ail;
ri:= b0 + bil;

extern _ nl28d _mm hsub_pd(__ml28d a, _ nml28d b);

Subtracts adjacent vector elements.
ro := a0 - al
ri:= b0 - bil;

extern _ nl28d _mm | oaddup_pd(doubl e const * dp);

Duplicates a double value into upper and lower vector elements.
ro := *dp;
ri:= *dp;

extern _ nl28d _mm nmovedup_pd(__ml28d a);

Duplicates lower vector element into upper vector element.
ro := ao;
ri:= ao;

Reference

337

Intel® C++ Compiler for Linux* Systems User's Guide

Integer Vector Intrinsics for Streaming SIMD Extensions 3

The integer vector intrinsic listed here is designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmm nt ri n. h header file.
extern _ nl28i _mmlddqu_si128(__nl28i const *p);

Loads an unaligned 128-bit value. This differs from novdqu in that it can provide higher performance in
some cases. However, it also may provide lower performance than novdqu if the memory value being
read was just previously written.
r.==*p;

Macro Functions for Streaming SIMD Extensions 3

The macro function intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmm nt ri n. h header file.

_MM _SET_DENORMALS ZERO MODE(X)

Macro arguments: one of __ MM DENORMALS_ZERO ON, _MM DENORMALS ZERO OFF

This causes "denor mal s are zer 0" mode to be turned on or off by setting the appropriate bit of the
control register.

_ MMV _GET_DENORMALS ZERO MODE()

No arguments. This returns the current value of the denormals are zero mode bit of the control register.

Miscellaneous Intrinsics for Streaming SIMD Extensions 3

The miscellaneous intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pnri nt ri n. h header file.

extern void _mmnonitor(void const *p, unsigned extensions, unsigned
hi nts);

Generates the MONI TOR instruction. This sets up an address range for the monitor hardware using p to
provide the logical address, and will be passed to the monitor instruction in register eax. The extensions
parameter contains optional extensions to the monitor hardware which will be passed in ecx. The hints
parameter will contain hints to the monitor hardware, which will be passed in edX. A non-zero value for
extensions will cause a general protection fault.

extern void _mm mnaait (unsi gned extensions, unsigned hints);

Generates the MAAI T instruction. This instruction is a hint that allows the processor to stop execution and
enter an implementation-dependent optimized state until occurrence of a class of events. In future processor
designs extensions and hints parameters may be used to convey additional information to the processor. All

338

Reference

non-zero values of extensions and hints are reserved. A non-zero value for extensions will cause a general
protection fault.

Intrinsics for Itanium® Instructions

This section lists and describes the native intrinsics for Itanium® instructions. These intrinsics cannot be
used on the IA-32 architecture. The intrinsics for Itanium instructions give programmers access to Itanium
instructions that cannot be generated using the standard constructs of the C and C++ languages.

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.
Native Intrinsics for Itanium® Instructions
The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Integer Operations

Intrinsic Corresponding
Instruction

_int64 64 dep_m(__int64 r, dep (Deposit)

__int64 s, const int pos, const

int len)

__int64 b4 _dep _m (const int v, dep (Deposit)
_int64 s, const int p, const int

[en)

_int64 _nb4 _dep_zr(__int64 s, dep. z (Deposit)

const int pos, const int |en)

__int64 _nbB4_dep_zi(const int v, dep. z (Deposit)

const int pos, const int |en)

_int64 b4 _extr(__int64 r, ext r (Extract)

const int pos, const int |en)

_int64 b4 extru(__int64d r, ext r. u (Extract)

const int pos, const int |en)

nt64 _nb4_xmal (__int64 a, xma. | (Fixed-point multiply add using

__int64 b, __int64 c) the low 64 bits of the 128-bit result. The
result is signed.)

__int64 _nmb4_xnmalu(__int64 a, xma. | u (Fixed-point multiply add using

__int64 b, __int64 c) the low 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _nb4_xmah(__int64 a, xma. h (Fixed-point multiply add using

__int64 b, __int64 c) the high 64 bits of the 128-bit result. The
result is signed.)

__int64 _nb4_xmahu(__int64 a, xma. hu (Fixed-point multiply add using

__int64 b, __int64 c) the high 64 bits of the 128-bit result. The

result is unsigned.)

nt 64 n64 popcnt(__int64 a) popcnt (Population count)

339

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Corresponding
Instruction

__int64 _nb4_shladd(__i nt64 a, shl add (Shift left and add)

const int count, _ int64 b)

__int64 _nbB4_shrp(__int64 a, shr p (Shift right pair)

__int64 b, const int count)

FSR Operations

Intrinsic Description

void _fsetc(int Sets the control bits of FPSR. sf 0. Maps to the f set c. sf 0
amask, int omask) r, r instruction. There is no corresponding instruction to read
the control bits. Use _nmm get f psr ().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR. sf 0). Maps to the f cl r f . sf O instruction.

int64 nmb4 dep m(__int64 r, __int64 s, const int pos, const int |en)

The right-justified 64-bit value r is deposited into the value in S at an arbitrary bit position and the result is
returned. The deposited bit field begins at bit position pos and extends to the left (toward the most
significant bit) the number of bits specified by | en.

_int64 _nm64 _dep_m(const int v, __ int64 s, const int p, const int |en)
The sign-extended value v (either all 1s or all 0s) is deposited into the value in S at an arbitrary bit position
and the result is returned. The deposited bit field begins at bit position p and extends to the left (toward the
most significant bit) the number of bits specified by | en.

_int64 b4 _dep_zr(__int64 s, const int pos, const int |en)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an arbitrary bit position and
the result is returned. The deposited bit field begins at bit position pos and extends to the left (toward the
most significant bit) the number of bits specified by | en.

__int64 _nm64_dep_zi(const int v, const int pos, const int |en)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all zeros at an arbitrary
bit position and the result is returned. The deposited bit field begins at bit position pos and extends to the
left (toward the most significant bit) the number of bits specified by | en.

_int64 b4 _extr(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and sign extended. The extracted

field begins at position pos and extends | en bits to the left. The sign is taken from the most significant bit
of the extracted field.

340

Reference

_int64 nmb4 extru(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and zero extended. The extracted
field begins at position pos and extends | en bits to the left.

_int64 nmb4 xmal (__int64 a, __int64 b, __int64 c)
The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit signed

result. The 64-bit value C is zero-extended and added to the product. The least significant 64 bits of the sum
are then returned.

_int64 nmb4 xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit unsigned
result. The 64-bit value C is zero-extended and added to the product. The least significant 64 bits of the sum
are then returned.

_int64 nmb4 xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit signed
result. The 64-bit value C is zero-extended and added to the product. The most significant 64 bits of the
sum are then returned.

_int64 _nmb64 xmahu(__int64 a, __int64 b, __ int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce a full 128-bit unsigned
result. The 64-bit value C is zero-extended and added to the product. The most significant 64 bits of the
sum are then returned.

__int64 _nmb4 _popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the resulting sum is
returned.

__int64 _nm64_shladd(__int64 a, const int count, __int64 b)
a is shifted to the left by count bits and then added to b. The result is returned.
_int64 nmb4 shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits. The least significant
64 bits of the result are returned.

341

Intel® C++ Compiler for Linux* Systems User's Guide

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the i @64i nt ri n. h header file.

Intrinsic

Description

unsi gned __int64
_Interl ockedExchange8(vol atil e unsi gned

Map to the xchg1 instruction.
Atomically write the least

_Interl ockedConpar eExchange8_rel (vol atile
unsi gned char *Desti nation, unsigned
__int64 Exchange, unsigned __int64

char *Target, unsigned __int64 val ue) significant byte of its 2nd
argument to address specified
by its 1st argument.

unsi gned i nt 64 Compare and exchange

atomically the least significant
byte at the address specified by
its 1st argument. Maps to the

_Interl ockedConpar eExchange8_acq(vol atil e
unsi gned char *Desti nation, unsigned
i nt 64 Exchange, unsigned __int64

Conpar and . .
P) crmpxchgl. r el instruction
with appropriate setup.
unsi gned i nt 64 Same as the previous intrinsic,

but using acqui r e semantic.

Conpar and)

unsigned __int64 . . Map to the xchg?2 instruction.
_Interl ockedExchangel6(vol atil e unsi gned Atomically write the least
short *Target, unsigned __int64 val ue)

significant word of its 2nd
argument to address specified
by its 1st argument.

unsi gned __int64

I nterl ockedConpar eExchangel6 rel (vol atile
unsi gned short *Destination, unsigned

i nt 64 Exchange, unsigned __int64

Compare and exchange
atomically the least significant
word at the address specified
by its 1st argument. Maps to

I nt erl ockedConpar eExchangel6 acq(vol atile
unsi gned short *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Conpar and
P) the cmpxchg2.re
instruction with appropriate
setup.
unsi gned i nt 64 Same as the previous intrinsic,

but using acqui r e semantic.

int _Interlockedlncrenment(volatile int
*addend

Atomically increment by one
the value specified by its
argument. Maps to the

f et chadd4 instruction.

int _InterlockedDecrenent(volatile int
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the

f et chadd4 instruction.

int _InterlockedExchange(volatile int
*Target, |ong val ue

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

342

Reference

Intrinsic

Description

int _Interl ockedConpareExchange(vol atile
int *Destination, int Exchange, int
Conpar and

Do a compare and exchange
operation atomically. Maps to
the cnpxchg4 instruction
with appropriate setup.

int _InterlockedExchangeAdd(vol atile int
*addend, int increnent

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cnpxchg4 instruction to
guarantee atomicity.

int _InterlockedAdd(volatile int *addend,
int increment)

Same as the previous intrinsic,
but returns new value, not the
original one.

void *

_Interl ockedConpar eExchangePoi nter (voi d *
vol atil e *Destination, void *Exchange,
voi d *Conpar and)

Map the exch8 instruction;
Atomically compare and
exchange the pointer value
specified by its first argument
(all arguments are pointers)

unsigned __int64
_Interl ockedExchangeU(vol atil e unsi gned
int *Target, unsigned __int64 val ue)

Atomically exchange the 32-
bit quantity specified by the 1st
argument. Maps to the xchg4
instruction.

unsigned __int64

_Interl ockedConpar eExchange_rel (vol atile
unsi gned int *Destination, unsigned
__int64 Exchange, unsigned __int64

Maps to the cnpxchg4. r el
instruction with appropriate
setup. Atomically compare and
exchange the value specified

Conpar and
P) by the first argument (a 64-bit
pointer).
unsi gned i nt64 Same as the previous intrinsic,

_Interl ockedConpar eExchange_acq(vol atil e
unsi gned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

but map the cnpxchg4. acq
instruction.

void _Rel easeSpi nLock(volatile int *x)

Release spin lock.

__int64 _Interlockedl ncrement64(volatile Increment by one the value
int 64 *addend) specified by its argument.
Maps to the f et chadd
instruction.
__int64 _Interl ockedDecrenent64(volatile Decrement by one the value
__int64 *addend) specified by its argument.

Maps to the f et chadd
instruction.

t64 _Interl ockedExchange64(vol atile

in
int64 *Target, _ _int64 val ue)

Do an exchange operation
atomically. Maps to the xchg
instruction.

343

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Description
unsi gned __int64 Same as
_Interl ockedExchangeU64(vol atile unsigned ||nterlockedExchange64
__int64 *Target, unsigned __int64 val ue) (for unsigned quantities).
unsigned __int64) Maps to the cnpxchg. r el

I nterl ockedConpar eExchange64 rel (vol atil e | instruction with appropriate
unsi gned __int64 *Destination, unsigned

setup. Atomically compare and

@Irrg;?gngg(change, unsigned __int64 exchange the value specified
by the first argument (a 64-bit
pointer).

unsigned __int64 Maps to the cnmpxchg. acq

I nterl ockedConpar eExchange64 acq(vol atil e | instruction with appropriate
unsigned __int64 *Destination, unsigned setup. Atomically compare and

__int64 Exchange, unsigned __int64 .

Conpar and) exchange the value spemﬁed.
by the first argument (a 64-bit
pointer).

_int64 . Same as the previous intrinsic

_I'nterl ockedConpar eExchange64(vol atil e for signed quantities.

__int64 *Destination, __int64 Exchange,

__int64 Conparand)

int64 Interl ockedExchangeAdd64(vol atile | Use compare and exchange to
__int64 *addend, __int64 increnent) do an atomic add of the
increment value to the addend.
Maps to a loop with the
cnpxchg instruction to
guarantee atomicity

inted | nter I ockedAdd64(volatile i nt 64 | Same as the previous intrinsic,
*addend, __int64 increment); but returns the new value, not
the original value. See Note.

BNote

_Interl ockedSub64 is provided as a macro definition based on _| nt er | ockedAdd64.

#define _Interl ockedSub64(target, incr) _Interl ockedAdd64((target), (-
(incr))).

Uses cnpxchg to do an atomic sub of the i ncr value to the t ar get . Maps to a loop with the cnpxchg
instruction to guarantee atomicity.

344

Load and Store

Reference

You can use the load and store intrinsic to force the strict memory access ordering of specific data objects.
This intended use is for the case when the user suppresses the strict memory access ordering by using the -

serialize-vol atil e- option.

Intrinsic Prototype Description

_st1 rel |void __stl1 rel(void *dst, const Generates an st 1. r el
char val ue); instruction.

_st2 rel |void __st2 rel(void *dst, const Generates an St 2. r el
short val ue); instruction.

__st4_rel |void __st4_rel(void *dst, const Generates an St 4. r el
int value); instruction.

_st8_rel |void __st8 rel (void *dst, const Generates an st 8. r el
__int64 value); instruction.

__1d1_acq |unsigned char __1dl_acq(void Generates an | d1. acq
*src); instruction.

__1d2_acq |unsigned short _ 1d2 acqg(void Generates an | d2. acq
*src); instruction.

1 d4_acq |unsigned int _ 1d4_acq(void Generates an | d4. acq
*src); instruction.

_1d8_acq |unsigned __int64 _ 1d8 acq(void Generates an | d8. acq
*src); instruction.

Operating System Related Intrinsics

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Intrinsic

Description

unsigned __int64
__getReg(const int
whi chReg)

Gets the value from a hardware register based on
the index passed in. Produces a corresponding nov
= r instruction. Provides access to the following
registers:

See Register Names for getReg() and setReg().

void _ setReg(const int
whi chReg, unsigned __int64
val ue)

Sets the value for a hardware register based on the
index passed in. Produces a corresponding nov =
I instruction.

See Register Names for getReg() and setReg().

unsi gned __int64
__getlndReg(const int
whi chl ndReg, __int64 index)

Return the value of an indexed register. The index
is the 2nd argument; the register file is the first
argument.

345

Intel® C++ Compiler for Linux* Systems User's Guide

Description

Intrinsic

void __ setlndReg(const int
whi chl ndReg, __int64 index,
unsi gned __int64 val ue)

Copy a value in an indexed register. The index is
the 2nd argument; the register file is the first
argument.

void * ptr64 _rdteb(void)

Gets TEB address. The TEB address is keptinr 13
and maps to the move r =t p instruction

void __isrlz(void)

Executes the serialize instruction. Maps to the
srl z.i instruction.

void __dsrlz(void)

Serializes the data. Maps to the srl z. d
instruction.

unsigned __int64
__fetchadd4_acq(unsi gned
int *addend, const int

i ncrenent)

Map the f et chadd4. acq instruction.

unsi gned __int64
__fetchadd4_rel (unsi gned
i nt *addend, const int

i ncrenent)

Map the f et chadd4. r el instruction.

unsigned __int64
__fetchadd8 _acq(unsi gned
__int64 *addend, const int
i ncrenent)

Map the f et chadd8. acq instruction.

unsi gned __int64
__fetchadd8 rel (unsi gned

Map the f et chadd8. r el instruction.

whi chFl oat Reg, void *src)

__int64 *addend, const int

i ncrenent)

void _ fwb(void) Flushes the write buffers. Maps to the f wb
instruction.

void _ _Idfs(const int Map the | df s instruction. Load a single precision

value to the specified register.

void _ ldfd(const int
whi chFl oat Reg, void *src)

Map the | df d instruction. Load a double
precision value to the specified register.

void _ ldfe(const int
whi chFl oat Reg, void *src)

Map the | df e instruction. Load an extended
precision value to the specified register.

void _ 1 df8(const int
whi chFl oat Reg, void *src)

Map the | df 8 instruction.

void __Idf _fill(const int
whi chFl oat Reg, void *src)

Map the | df . fi || instruction.

void _ stfs(void *dst,
const i nt whichFl oat Reg)

Map the sf t s instruction.

void _ stfd(void *dst,
const i nt whichFl oat Reg)

Map the st f d instruction.

void _ stfe(void *dst,
const int whichFl oat Reg)

Map the st f e instruction.

346

Reference

Intrinsic

Description

void _ stf8(void *dst,
const i nt whichFl oat Reg)

Map the st f 8 instruction.

void _ stf_spill(void *dst,
const i nt whichFl oat Reg)

Map the st f . spi | | instruction.

void __nf(void)

Executes a memory fence instruction. Maps to the
nf instruction.

void __nfa(void) Executes a memory fence, acceptance form
instruction. Maps to the nf . @ instruction.

void _ synci (void) Enables memory synchronization. Maps to the
sync. i instruction.

void __thash(__int64) Generates a translation hash entry address. Maps to
thet hash r = r instruction.

void __ttag(__int64) Generates a translation hash entry tag. Maps to the
ttag r=r instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache (Map
i t c. d instruction).

void __itci(__int64 pa) Insert an entry into the instruction translation cache

Mapitc.i).

void __itrd(__int64
whi chTransReg, __int64 pa)

Map the i t r. d instruction.

void __itri(__int64
whi chTransReg, __int64 pa)

Map thei tr. i instruction.

void _ ptce(__int64 va)

Map the pt c. e instruction.

void _ ptcl(__int64 va,
__int64 pagesz)

Purges the local translation cache. Maps to the
ptc.l r, r instruction.

void _ ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Maps to the
ptc.g r, r instruction.

void _ ptcga(__int64 va,
__int64 pagesz)

Purges the global translation cache and ALAT.
Maps to the pt c. ga r, r instruction.

void _ _ptri(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the pt r . i
r, r instruction.

void _ptrd(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the pt r . d
r, r instruction.

_int64 _tpa(__int64 va)

Map the t pa instruction.

void __inval at(void) Invalidates ALAT. Maps to the i nval a
instruction.

void __invala (void) Sameasvoid __inval at (void)

void __invala_gr(const int whi chGener al Reg = 0-127

whi chGener al Req)

347

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsic Description

void __invala fr(const int whi chFl oat Reg = 0-127

whi chFl oat Req)

void __break(const int) Generates a break instruction with an immediate.

void _ nop(const int) Generate a Nop instruction.

voi d __debugbreak(voi d) Generates a Debug Break Instruction fault.

void _ fc(__int64) Flushes a cache line associated with the address
given by the argument. Maps to the f € instruction.

void __sun(int mask) Sets the user mask bits of PSR. Maps to the sum
i M4 instruction.

void __run(int mask) Resets the user mask.

__int64) Get the caller's address.

_Ret ur nAddr ess(voi d)

void __Ifetch(int Ifhint, Generate the | f et ch. | f hi nt instruction. The

void *y) value of the first argument specifies the hint type.

VOId __Ifetch_fault(int Generate the | f et ch. faul t. | fhint

I'fhin void *y) instruction. The value of the first argument
specifies the hint type.

v0|d __Ifetch_excl (int Generate the | f et ch. excl . | f hi nt

I'fhint, void *y) instruction. The value {0[12|3} of the first
argument specifies the hint type.

oid Generate the | f et ch. faul t. excl . | f hint
_| f t ch_fault _excl (int instruction. The value of the first argument
[fhin void *y)

specifies the hint type.

unsi gned int
__cacheSi ze(unsi gned i nt
cachelLevel)

__cacheSi ze(n) returns the size in bytes of
the cache at level n. 1 represents the first-level
cache. 0 is returned for a non-existent cache level.
For example, an application may query the cache
size and use it to select block sizes in algorithms
that operate on matrices.

void _ _menory_barrier(void)

Creates a barrier across which the compiler will
not schedule any data access instruction. The
compiler may allocate local data in registers across
a memory barrier, but not global data.

void __ssm(int mask)

Sets the system mask. Maps to the ssm i nm24
instruction.

void _rsm(int mask)

Resets the system mask bits of PSR. Maps to the
rsm i nmR4 instruction.

348

Reference

Conversion Intrinsics

The prototypes for these intrinsics are in the i @64i nt ri n. h header file.

Intrinsic Description

_int64 _mto_int64(__n64 a) Convert a of type ___ B4 to type

__i nt 64, Translates to nop since both
types reside in the same register on
Itanium-based systems.

b4 mfromint64(__int64 a) Convert a of type __i nt 64 to type

___ B4, Translates to nop since both types
reside in the same register on Itanium-
based systems.

_int64) Convert its double precision argument to a

__round_doubl e_to_int64(doubl e signed integer.

d)

unsi gned __int64 Map the get f . exp instruction and return

__getf_exp(double d) the 16-bit exponent and the sign of its
operand.

Register Names for getReg() and setReg()

The prototypes for getReg() and setReg() intrinsics are in the i a64r egs. h header file.

Name whichReg

_| AG4_REG | P 1016

_1A64_REG PSR | 1019

_1 A64_REG PSR L | 1019

General Integer Registers

Name whichReg

_I A64_REG GP | 1025

_I AB4_REG _SP | 1036

_I A64_REG TP | 1037

349

Intel® C++ Compiler for Linux* Systems User's Guide

Application Registers

Name whichReg
_1 A64_REG_AR_KRO 3072
_1 A64_REG AR KR1 3073
_1A64_REG AR KR2 3074
_1 AB4_REG AR KR3 3075
_1 A64_REG AR KR4 3076
_1 AB4_REG AR _KR5 3077
_1 A64_REG AR KR6 3078
_1 A64_REG AR KRY 3079
_1 AB4_REG AR _RSC 3088
_1 A64_REG AR BSP 3089

_1A64_REG AR BSPSTORE | 3090

_I AB4_REG_AR_RNAT 3091

_I AB4_REG AR _FCR 3093

_I A64_REG AR EFLAG 3096

_I A64_REG AR _CSD 3097

_I A64_REG AR SSD 3098

_I AB4_REG AR _CFLAG 3099

_1A64_REG AR FSR 3100
_1A64_REG AR FIR 3101
_1A64_REG AR _FDR 3102
_1A64_REG AR _CCV 3104
_1A64_REG AR_UNAT 3108
_1A64_REG AR FPSR 3112
_1A64_REG AR | TC 3116
_1A64_REG AR _PFS 3136
_1A64_REG AR LC 3137
_1A64_REG AR EC 3138

350

Control Registers

Name whichReg
_1 A64_REG CR DCR | 4096
_1A64_REG CR_ITM | 4097
_1A64_REG CR I VA | 4098
I A64_REG CR PTA | 4104
_1A64_REG CR I PSR | 4112
_IA64_REG CR I SR |4113
1A64 REG CR IIP |4115
_1A64_REG CR I FA |4116
_1A64_REG CR I TIR| 4117
_1A64_REG CR Il PA | 4118
_IA64_REG CR IFS |4119
_1A64_REG CR IIM |4120
_1A64_REG CR I HA [4121
_1A64_REG CR LID |4160
_1A64_REG CR IVR |4161*
_IA64_REG CR TPR |4162
_1A64_REG CR EQ 4163
_ I A64_REG CR | RRO | 4164 *
_ I A64_REG CR I RR1 | 4165 *
_1A64_REG CR I RR2 | 4166 *
_ I A64_REG CR | RR3 | 4167 *
_1A64_REG CR I TV |4168
1 A64_REG CR PW | 4169
_1A64_REG CR _CMCV | 4170
_1A64_REG CR LRRO | 4176
1 A64_REG CR LRR1 | 4177

* get Reg only

Reference

351

Intel® C++ Compiler for Linux* Systems User's Guide

Indirect Registers for getindReg() and setindReg()

Name whichReg

_1 A64_REG | NDR_CPUI D 9000 *

_1A64_REG | NDR_DBR 9001
_1A64_REG | NDR | BR 9002
_1A64_REG | NDR_PKR 9003
_1A64_REG | NDR_PMC 9004
_1A64_REG | NDR_PMD 9005
_1A64_REG | NDR_RR 9006

_|I A64_REG_| NDR_RESERVED | 9007

* get | ndReg only

Multimedia Additions

The prototypes for these intrinsics are in the i a64i nt ri n. h header file.

Intrinsic Corresponding Instruction
_int64 _nm64_czx1ll (__nB4 a) czx1. | (Compute Zero Index)
__int64 nb4_czxlr(__nb4 a) czx1.r (Compute Zero Index)
__int64 nb4_czx2l (__nb4 a) czx2.| (Compute Zero Index)
_int64 _nmb4 _czx2r(__nb4 a) czx2.r (Compute Zero Index)
__nmb4 _nb4_mix1ll (__nmb4 a, __nb4 b) m x1. 1 (Mix)

b4 _nb4_nmixlr(__nb4 a, __nmb4 b) mi x1. r (Mix)

__nmb4 _nb4_mx2l (__nmb4 a, __nb4 b) m x2. | (Mix)

__nB4 _nb4_nmix2r(__nb4 a, __nmb4 b) mi x2. r (Mix)

__nB4 _nb4_nix4l (__nb4 a, __nmb4 b) mi x4. 1 (Mix)

_ n64 b4 _mixdr(__nb4 a, __nbd b) m x4. r (Mix)

__nmb4 _nb4_nux1l(__nm64 a, const int n) mux1 (Mux)

__nmb4 _nb64_mux2(__nb4 a, const int n) mux2 (Mux)

__nmb4 _nb64_paddluus(__nmb64 a, __nmb4 h) paddl. uus (Parallel add)
__nmb4 _nb64_padd2uus(__nb64 a, __nmb4 h) padd2. uus (Parallel add)
__nmb4 _nbB4_pavgl_nraz(__nb4 a, __nb4 b) | pavgl (Parallel average)

352

Reference

Intrinsic Corresponding Instruction

__n64 _n64_pavg2_nraz(__n64 a, __nb64 b) |pavg2 (Parallel average)

__nmb4 _nb4_pavgsubl(__nmb64 a, __ b4 h) pavgsubl (Parallel average
subtract)

__nb4 _nb4_pavgsub2(__nm64 a, _ nb4 b) pavgsub?2 (Parallel average

subtract)
__nm64 _nb4_pnpy2r(__nb4 a, __nb4 b) pnpy2. r (Parallel multiply)
__nb64 _nb4_pnpy2l (__nbB4 a, __nb4 b) pnpy2. | (Parallel multiply)
__n64 _nb4_pnpyshr2(__nb64 a, __nb4 b, pnpyshr 2 (Parallel multiply
const int count) and shift right)

__nmb4 _nB4_pnpyshr2u(__n64 a, __n64 b, pnpyshr 2. u (Parallel multiply
const int count) and shift right)

__nmb64 _nb4_pshl add2(__n64 a, const int |pshladd2 (Parallel shift left
count, _ nb4 b) and add)

__nb4 _n64_pshradd2(__nb4 a, const int |pshradd2 (Parallel shift right
count, _ b4 b) and add)

__nmb4 _nb4_psubluus(__nm64 a, __nb4 b) psubl. uus (Parallel subtract)

__nm64 _nb4_psub2uus(__nb4 a, __nb4 b) psub2. uus (Parallel subtract)

_int64 _nm64_czx1ll (__nbB4 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least significant
element, and the index of the first zero element is returned. The element width is 8 bits, so the range of the
result is from 0 - 7. If no zero element is found, the default result is 8.

__int64 b4 _czxlr(__nb4 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most significant
element, and the index of the first zero element is returned. The element width is 8 bits, so the range of the
result is from O - 7. If no zero element is found, the default result is 8.

_int64 b4 _czx2l (__nb4 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least significant
element, and the index of the first zero element is returned. The element width is 16 bits, so the range of the
result is from O - 3. If no zero element is found, the default result is 4.

__int64 b4 _czx2r(__nb4 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most significant
element, and the index of the first zero element is returned. The element width is 16 bits, so the range of the
result is from O - 3. If no zero element is found, the default result is 4.

353

Intel® C++ Compiler for Linux* Systems User's Guide

b4 nbd mx1l (__nm64 a, _ _nb4 h)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as shown in Figure 1, and return
the result.

EEEE

g e T T Fig 1

_ nBb4 nbd _mxlr(__nmb4 a, _ _nb4 h)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as shown in Figure 2, and
return the result.

RERER 'HHEMN

T Fig 2

_nB4 nbd mx2l(__nmb4 a, __nb4 h)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as shown in Figure 3, and return
the result.

- &=

Fig 3

B4 _nB4_mix2r(__nb4 a, __nb4 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as shown in Figure 4, and
return the result.

__nBb4 nbd m x4l (__nmb4 a, __nbB4 h)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as shown in Figure 5, and return
the result.

354

Reference

__nBb4 nb4d _mxdr(__nmb4 a, __nb4 h)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as shown in Figure 6, and
return the result.

S S b e i e

— fige

__nb4 nb4 _nux1l(__nbB4 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and the result is returned.
Table 1 shows the possible values of n.

Erev Elrmix

W brest

355

Intel® C++ Compiler for Linux* Systems User's Guide

Values of n for m64_mux1 Operation

|
‘ @r cst | 0
@ix |8
@huf |9
@l t OxA
@ ev 0xB

__nb4 nb4_mux2(__nbB4 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and the result is returned.

. i,
i Gy
2 12, OxE ufile 10 00 11 01) L 0001 10
; et | 5
| I F 4 L Fo ¥ 4 a
| | | aH 1
I Rl 2 I - _I_;_ | i
muxd 1 = 12, Oxed (allemats 11 01 10 00} mux? 11 =2, Oxaa (broadeast 10 10 10 10)
Fig 8

__nb4 nb4_pavgsubl(__m64 a, _ nb4 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data elements (bytes) of a and
the results of the subtraction are then each independently shifted to the right by one position. The high-
order bits of each element are filled with the borrow bits of the subtraction.

__nb4 nb4_pavgsub2(__mb4 a, _ nb4 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned data elements (double
bytes) of a and the results of the subtraction are then each independently shifted to the right by one
position. The high-order bits of each element are filled with the borrow bits of the subtraction.

__nm64 _nb4_pnpy2l (__nb4 a, __nb4 b)

Two signed 16-bit data elements of a, starting with the most significant data element, are multiplied by the

corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned as shown in
Figure 9.

356

Reference

1Y Y
v R

__nB4 nb4_prpy2r(__nmb4d a, __nb4 b)

Two signed 16-bit data elements of a, starting with the least significant data element, are multiplied by the
corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned as shown in
Figure 10.

Fig 10

__nBb4 _nb4_pnpyshr2(__nm64 a, _ nbB4 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed 16-bit data elements
of b, yielding four 32-bit products. Each product is then shifted to the right count bits and the least
significant 16 bits of each shifted product form 4 16-bit results, which are returned as one 64-bit word.

__nBb4 _nb4_prpyshr2u(__nb4 a, _ nmb4 b, const int count)
The four unsigned 16-bit data elements of a are multiplied by the corresponding unsigned 16-bit data
elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits and the

least significant 16 bits of each shifted product form 4 16-bit results, which are returned as one 64-bit word.

__nb4 nb4_pshl add2(__nm64 a, const int count, _ nmb64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the result are forced to 0,
and then bits [31:30] of b are copied to bits [62:61] of the result. The result is returned.

__nBb4 nb4_pshradd2(__nm64 a, const int count, _ nm64 b)

The four signed 16-bit data elements of @ are each independently shifted to the right by count bits (the
high order bits of each element are filled with the initial value of the sign bits of the data elements in a);
they are then added to the four signed 16-bit data elements of b. The result is returned.

357

Intel® C++ Compiler for Linux* Systems User's Guide

__nb4 nb4 _paddluus(__nm64 a, _ nb4 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated as unsigned, while the
elements of b are treated as signed. The results are treated as unsigned and are returned as one 64-bit word.

__nb4 nb4 _padd2uus(__nmb4 a, _ nb4 b)

a is added to b as four separate 16-bit wide elements. The elements of a are treated as unsigned, while the
elements of b are treated as signed. The results are treated as unsigned and are returned as one 64-bit word.

__nB4 nb4_psubluus(__nm64 a, _ nb4 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are returned as one
64-bit word.

__nBb4 _nb4_psub2uus(__nm64 a, _ nb4 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are returned as one
64-bit word.

__nb4 nb4_pavgl nraz(__nmb4 a, _ _nbB4 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide data elements of b and the
results of each add are then independently shifted to the right by one position. The high-order bits of each
element are filled with the carry bits of the sums.

__nB4 nb4_pavg2_nraz(__nmb4 a, _ _nbB4 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide data elements of b and
the results of each add are then independently shifted to the right by one position. The high-order bits of
each element are filled with the carry bits of the sums.

Synchronization Primitives

The synchronization primitive intrinsics provide a variety of operations. Besides performing these
operations, each intrinsic has two key properties:

» the function performed is guaranteed to be atomic
» associated with each intrinsic are certain memory barrier properties that restrict the movement of memory
references to visible data across the intrinsic operation by either the compiler or the processor

For the following intrinsics, <t ype> is either a 32-bit or 64-bit integer.
Atomic Fetch-and-op Operations

<type> __sync_fetch_and_add(<type> *ptr, <type> val)
<type> __sync_fetch_and_and(<type> *ptr, <type> val)
<type> __sync_fetch_and_nand(<type> *ptr, <type> val)
<type> _sync_fetch_and or(<type> *ptr, <type> val)

<type> __sync_fetch_and _sub(<type> *ptr, <type> val)
<type> __sync_fetch_and_xor(<type> *ptr, <type> val)

358

Reference

Atomic Op-and-fetch Operations

<type> __ sync_add_and fetch(<type> *ptr, <type> val)
<type> __sync_sub_and fetch(<type> *ptr, <type> val)
<type> __sync_or_and_fetch(<type> *ptr, <type> val)

<type> __sync_and_and fetch(<type> *ptr, <type> val)
<type> __sync_nand_and _fetch(<type> *ptr, <type> val)
<type> __sync_xor_and_fetch(<type> *ptr, <type> val)

Atomic Compare-and-swap Operations

<type> __sync_val conpare_and_swap(<type> *ptr, <type> old val, <type>
new val)

int __sync_bool conpare_and swap(<type> *ptr, <type> old val, <type>
new val)

Atomic Synchronize Operation
void _ sync_synchroni ze (void);
Atomic Lock-test-and-set Operation
<type> _ sync_l ock_test_and_set(<type> *ptr, <type> val)
Atomic Lock-release Operation
void __sync_| ock_rel ease(<type> *ptr)
Miscellaneous Intrinsics
voi d* _ get _return_address(unsigned int |evel);

This intrinsic yields the return address of the current function. The | evel argument must be a constant
value. A value of 0 yields the return address of the current function. Any other value yields a zero return
address. On Linux systems, this intrinsic is synonymous with __bui I ti n_ret urn_addr ess. The
name and the argument are provided for compatibility with gcc*.

void __set_return_address(voi d* addr);

This intrinsic overwrites the default return address of the current function with the address indicated by its
argument. On return from the current invocation, program execution continues at the address provided.

voi d* _ get _frame_address(unsigned int |evel);
This intrinsic returns the frame address of the current function. The | evel argument must be a constant
value. A value of 0 yields the frame address of the current function. Any other value yields a zero return

value. On Linux systems, this intrinsic is synonymous with __bui [ti n_f rame_addr ess. The name
and the argument are provided for compatibility with gcc.

359

Intel® C++ Compiler for Linux* Systems User's Guide

Data Alignment, Memory Allocation Intrinsics, and Inline Assembly
This section describes features that support usage of the intrinsics. The following topics are described:

* Alignment Support
* Allocating and Freeing Aligned Memory Blocks

Alignment Support

To improve intrinsics performance, you need to align data. For example, when you are using the Streaming
SIMD Extensions, you should align data to 16 bytes in memory operations to improve performance.
Specifically, you must align __ n28 objects as addresses passed to the _nmm | oad and _mm store
intrinsics. If you want to declare arrays of floats and treat them as __ L 28 objects by casting, you need to
ensure that the float arrays are properly aligned.

Use __decl spec(align) to direct the compiler to align data more strictly than it otherwise does on
both IA-32 and Itanium®-based systems. For example, a data object of type int is allocated at a byte
address which is a multiple of 4 by default (the size of an int). However, by using

__decl spec(align), you can direct the compiler to instead use an address which is a multiple of 8,
16, or 32 with the following restrictions on [A-32:

* 32-byte addresses must be statically allocated
* 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering
small objects that are commonly used together into a St r uct , and forcing the St r uct to be allocated at
the beginning of a cache line, you can effectively guarantee that each object is loaded into the cache as
soon as any one is accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:
al i gn(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested alignment.

&Caution

In this release, __decl spec(al i gn(8)) does not function correctly. Use
__decl spec(align(16)) instead.

ff—t_)Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In other
words, data is aligned to the maximum of its own alignment or the alignment specified with
__decl spec(align).

You can request alignments for individual variables, whether of static or automatic storage duration.
(Global and static variables have static storage duration; local variables have automatic storage duration by
default.) You cannot adjust the alignment of a parameter, nor a field of a st ruct or cl ass. You can,
however, increase the alignment of a St r uct (or uni on or cl ass), in which case every object of that
type is affected.

360

Reference

As an example, suppose that a function uses local variables i and] as subscripts into a 2-dimensional
array. They might be declared as follows:

These variables are commonly used together. But they can fall in different cache lines, which could be
detrimental to performance. You can instead declare them as follows:

__declspec(align(8)) struct { int i, j; } sub;
The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the St r uct

variable name (written as sub in the previous example). In C, however, it is required, and you must write
referencestoi andj assub.i andsub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a St r uct
type for them, as in the following example:

typedef struct _ declspec(align(8)) { int i, j; } Sub;

By placing the __decl spec(al i gn) after the keyword St r uct , you are requesting the appropriate
alignment for all objects of that type. However, that allocation of parameters is unaffected by

__decl spec(al i gn). (If necessary, you can assign the value of a parameter to a local variable with the
appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__decl spec(align(16)) float array[1000];
Allocating and Freeing Aligned Memory Blocks
Use the _mm nmal | oc and _mm f r ee intrinsics to allocate and free aligned blocks of memory. These
intrinsics are based on mal | oc and f r ee, which are in the | i bi r c. a library. You need to include
mal | oc. h. The syntax for these intrinsics is as follows:
void* mmmalloc (int size, int align)
void _mmfree (void *p)
The _mm _mal | oc routine takes an extra parameter, which is the alignment constraint. This constraint

must be a power of two. The pointer that is returned from _nm mal | oc is guaranteed to be aligned on the
specified boundary.

ff—t_)Note

Memory that is allocated using _mm mal | oc must be freed using _nm free . Callingfree on
memory allocated with _mm mal | oc or calling _nm f r ee on memory allocated with mal | oc will
cause unpredictable behavior.

361

Intel® C++ Compiler for Linux* Systems User's Guide

Inline Assembly

By default, the compiler inlines a number of standard C, C++, and math library functions. This usually
results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library functions
do not set the er r no variable. So, in code that relies upon the setting of the er r no variable, you should
use the - nol i b_i nl i ne option, which turns off inline expansion of library functions. Also, if one of
your functions has the same name as one of the compiler's supplied library functions, the compiler assumes
that it is one of the latter and replaces the call with the inlined version. Consequently, if the program
defines a function with the same name as one of the known library routines, you must use the -

nol i b_i nl i ne option to ensure that the program's function is the one used.

]

~—s Note

Automatic inline expansion of library functions is not related to the inline expansion that the compiler does
during interprocedural optimizations. For example, the following command compiles the program sum.c
without expanding the library functions, but with inline expansion from interprocedural optimizations
(IPO):

pronpt>icpc -ip -nolib_inline sumcpp
For details on IPO, see Interprocedural Optimizations.
MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the - use_nmsasmoption. See your
MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 only)
The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm keyword [volatile-keyword] (asmtenplate [asminterface |) ;

&Caution

Under the - use_nmsasmcompilation flag, Gnu asm aliases will only work if you use the __asm __
keyword, they will not work correctly if you use the alternate __asmor as mkeywords.

Syntax Element Description

asm keywor d asmstatements begin with the keyword asm Alternatively, either
__asmor __asm__ may be used for compatibility. See Caution
statement.

vol ati | e- keywor d | If the optional keyword vol at i | e is given, the asmis volatile.
Two vol at i | e asmstatements will never be moved past each
other, and a reference to a vol at i | e variable will not be moved
relative to a volatile asm Alternate keywords __vol ati | e and
__vol atil e__ may be used for compatibility.

362

Reference

Syntax Element

Description

asmtenpl ate

The asm t enpl at e is a C language ASCII string which specifies
how to output the assembly code for an instruction. Most of the
template is a fixed string; everything but the substitution-directives,
if any, is passed through to the assembler. The syntax for a
substitution directive is a %followed by one or two characters. The
supported substitution directives are specified in a subsequent
section.

asminterface

The asm i nt er f ace consists of three parts:

1. an optional out put - | i st

2. an optional i nput - | i st

3. an optional cl obber -1 i st

These are separated by colon (:) characters. If the out put - | i st
is missing, but an i nput - | i st is given, the input list may be
preceded by two colons (::)to take the place of the missing

out put-Ilist. Iftheasm i nt erface is omitted altogether,
the asmstatement is considered vol at i | e regardless of whether a
vol ati | e- keywor d was specified.

out put-1Iist

Anout put - | i st consists of one or more out put - specs
separated by commas. For the purposes of substitution in the asm
t enpl at e, each out put - spec is numbered. The first operand
in the out put - | i st is numbered 0, the second is 1, and so on.
Numbering is continuous through the out put - | i st and into the
i nput -1 i st. The total number of operands is limited to 10 (i.e.
0-9).

i nput-1ist

Similar to an out put - | i st,ani nput-1i st consists of one or
more i Nput - specs separated by commas. For the purposes of
substitution in the asn t enpl at e, each i nput - spec is
numbered, with the numbers continuing from those in the out put -
list.

cl obber-1i st

A cl obber-1i st tells the compiler that the asmuses or changes
a specific machine register that is either coded directly into the asm
or is changed implicitly by the assembly instruction. The

cl obber-1i st is a comma-separated list of cl obber - specs.

i nput - spec

The i nput - specs tell the compiler about expressions whose
values may be needed by the inserted assembly instruction. In order
to describe fully the input requirements of the asm you can list

i nput - specs that are not actually referenced in the asm

tenpl at e.

cl obber - spec

Each cl obber - spec specifies the name of a single machine
register that is clobbered. The register name may optionally be
preceded by a % The following are the valid register names: eax,
ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di, bp, sp, al, bl, cl,
dl, ah, bh, ch, dh, st, st(1) - st(7), mmO - mm7, xmmO0 - xmm?7, and
cc. Itis also legal to specify "memory" in a cl obber - spec. This
prevents the compiler from keeping data cached in registers across
the asmstatement.

363

Intel® C++ Compiler for Linux* Systems User's Guide

Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across architectures. Before
implementing intrinsics across architectures, please note the following.

* Instrinsics may generate code that does not run on all IA processors. Therefore the programmer is
responsible for using CPUI Dto detect the processor and generating the appropriate code.

* Implement intrinsics by processor family, not by specific processor. The guiding principle for which
family -- IA-32 or Itanium® processors -- the intrinsic is implemented on is performance, not
compatibility. Where there is added performance on both families, the intrinsic will be identical.

Intrinsics For Implementation Across All 1A

The following intrinsics provide significant performance gain over a non-intrinsic-based code equivalent.

lint abs(int)

‘Iong | abs(| ong)

‘unsigned long _Irotl(unsigned long value, int shift)

unsigned long __Irotr(unsigned |ong value, int shift)

unsigned int _ rotl (unsigned int value, int shift)

unsigned int _ rotr(unsigned int value, int shift)

_int64 __i64_rotl(__int64 value, int shift)

|_int64 __i64_rotr(__int64 value, int shift)
'doubl e fabs(doubl e)

doubl e | og(doubl e)

float |ogf(float)
doubl e | 0g10(doubl e)

float | o0glOf(fl oat)

'doubl e exp(doubl e)

'float expf (float)
doubl e pow(doubl e, doubl e)
float powf(float, float)

doubl e si n(doubl e)

float sinf(float)

'doubl e cos(doubl e)

‘float cosf (fl oat)

doubl e tan(doubl e)

float tanf(float)

364

doubl e acos(doubl e)

fl oat acosf(fl oat)

doubl e acosh(doubl e)

fl oat acoshf (fl oat)

doubl e asi n(doubl e)

fl oat asinf(float)

doubl e asi nh(doubl e)

float asinhf(float)

doubl e at an(doubl e)

float atanf(float)

doubl e atanh(doubl e)

fl oat atanhf(fl oat)

fl oat cabs(double)*

doubl e ceil (doubl e)

float ceilf(float)

doubl e cosh(doubl e)

fl oat coshf(float)

fl oat fabsf(float)

doubl e fl oor (doubl e)

float floorf(float)

doubl e frod(doubl e)

float fnodf(float)

doubl e hypot (doubl e, doubl e)

fl oat hypotf (fl oat)

doubl e rint(double)

float rintf(float)

doubl e si nh(doubl e)

float sinhf(float)

float sqrtf(float)

doubl e t anh(doubl e)

float tanhf(float)

char *_strset(char *, _int32)

voi d *menctnp(const void *cs,

const void *ct, size_t n)

void *mencpy(void *s, const void *ct, size_t n)

Reference

365

Intel® C++ Compiler for Linux* Systems User's Guide

void *nmenset (void * s, int c, size t n)

char *Strcat(char * s, const char * ct)

int *strcnp(const char *, const char *)

char *strcpy(char * s, const char * ct)

size_ t strlen(const char * cs)

int strncp(char *, char *, int)

int strncpy(char *, char *, int)

void *__alloca(int)

int _setjnmp(jnp_buf)

_exception_code(voi d)

_exception_info(void)

_abnornal _ternination(void)

void _enabl e()

voi d _disabl e()

int _bswap(int)

int _in_byte(int)

int _in_dword(int)

int _in_word(int)

int _inp(int)
int _inpd(int)
int _inpw(int)

int _out_byte(int, int)

int out_dword(int, int)

int out _word(int, int)

int outp(int, int)

int _outpd(int, int)

int _outpw(int, int)

366

Reference

MMX(TM) Technology Intrinsics Implementation

Key to the table entries

* A =Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map directly
to native instructions, but they offer no significant performance gain.

* C =Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Intrinsic Name Alternate Name Across | MMX(TM) ltanium®
All 1A | Technology | Architecture
Streaming
SIMD _
Extensions
Streaming
SIMD
Extensions
2
_menpty _mm enpty N/A B
_mfrom.int _mmcvtsi32_si64 | N/A A A
~mto_int _mmcvtsi 64 _si32 |N/A A A
_m packsswb _nm packs_pi 16 N/A A A
_m packssdw _mm packs_pi 32 N/A A A
_m packuswb _mm packs_pul6 N/A A A
_m punpckhbw _mm unpackhi _pi 8 |N/A A A
_m punpckhwd _mm unpackhi _pi 16 | N/A A A
_m punpckhdq _mm unpackhi _pi 32 | N/A A A
_m punpckl bw _mm unpackl o_pi 8 | N/A A A
_m punpckl wd _mm unpackl o_pi 16 | N/A A A
_m punpckl dqg _mm unpackl o_pi 32 | N/A A A
_m paddb _nmm add_pi 8 N/A A A
_m paddw _nmm add_pi 16 N/A A A
_m paddd _nmm_add_pi 32 N/A A A
_m paddsb _nmm adds_pi 8 N/A A A
_m paddsw _nmm adds_pi 16 N/A A A
_m paddusb _mm adds_pu8 N/A A A

367

Intel® C++ Compiler for Linux* Systems User's Guide

_m paddusw _mm adds_pul6 N/A A A
_m psubb _nmm sub_pi 8 N/A A A
_m psubw _nmm sub_pi 16 N/A A A
_m psubd _mm sub_pi 32 N/A A A
_m psubsb _nmm subs_pi 8 N/A A A
_m psubsw _nmm subs_pi 16 N/A A A
_m psubusb _mm subs_pu8 N/A A A
_m psubusw _mm subs_pul6 N/A A A
_m prmaddwd _mm rmadd_pi 16 N/A A C
—m pmul hw _mm nul hi _pi 16 N/A A A
_mpmul | w _mmmullo_pil6 N/A A A
_mpsllw _mmsll _pil6 N/A A A
_m psl | wi _mmslli_pil6 N/A A A
_mpsllid _mmsl1 _pi32 N/A A A
_m psl | di _mmslli_pi32 N/A A A
_mpsllq _mmsl | _si64 N/A A A
_mpsllqi _mmslli_si64 N/A A A
_m psraw _mm sra_pi 16 N/A A A
_m _psrawi _mmsrai _pil6 N/A A A
_m psrad _mm sra_pi 32 N/A A A
_m psr adi _mmsrai _pi 32 N/A A A
_mpsrlw _mmsrl_pi 16 N/A A A
_mpsrlwi _mmsrli_pil6 N/A A A
_mpsrid _mmsrl_pi 32 N/A A A
_m psrldi _mmsrli_pi32 N/A A A
_mpsrlq _mmsrl _si 64 N/A A A
_m psrlqi _mmsrli_si64 N/A A A
_m pand _mm and_si 64 N/A A A
_m pandn _mm andnot _si 64 N/A A A
_m por _nmm or_si 64 N/A A A
_m _pxor _mm xor _si 64 N/A A A

368

Reference

_m pcnpeqgb _nm cnpeq_pi 8 N/A A A
_m _pcnpeqgw _nm cnpeq_pi 16 N/A A A
_m pcnpeqd _nm cnpeq_pi 32 N/A A A
_m pcnpgtb _mm cnpgt _pi 8 N/A A A
_m pcnpgtw _nm cnpgt _pi 16 N/A A A
_m pcnpgtd _nmm cnpgt _pi 32 N/A A A

nm set zero si 64 N/A A A
_mm set_pi 32 N/A A A
_mmset_pi 16 N/A A C
_mmset _pi8 N/A A C
_mmsetl pi32 N/A A A
_mmsetl pil6 N/A A A
_mmsetl pi8 N/A A A
_mmsetr_pi 32 N/A A A
_mmsetr_pi 16 N/A A C
_mmsetr_pi8 N/A A C

_mm_enpty is implemented in Itanium instructions as a NOP for source compatibility only.

369

Intel® C++ Compiler for Linux* Systems User's Guide

Streaming SIMD Extensions Intrinsics Implementation

Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On Itanium®-
based systems basic operations like add or compare will require two SIMD instructions. Both can be
executed in the same cycle so the throughput is one basic Streaming SIMD Extensions operation per cycle
or 4 32-bit single precision operations per cycle.

Key to the table entries

* A =Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map directly
to native instructions but they offer no significant performance gain.

* C =Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Alternate Across | MMX(TM Streaming | Itanium®
Name Name All'lIA | Technology | SIMD Architecture
Extensions
Streaming
SIMD
Extensions
2
_mm add_ss N/A N/A B B
_mm add_ps N/A N/A A A
_mm sub_ss N/A N/A B B
_mm sub_ps N/A N/A A A
_mm mul _ss N/A N/A B B
_mm mul _ps N/A N/A A A
_mmdiv_ss N/A N/A B B
_mmdiv_ps N/A N/A A A
_mmsqrt_ss N/A N/A B B
_mmsqrt_ps N/A N/A A A
_mm.rcp_ss N/A N/A B B
_mmrcp_ps N/A N/A A A
_mmrsqgrt_ss N/A N/A B B
_mmrsqgrt_ps N/A N/A A A
_mm.mn_ss N/A N/A B B
_mm.mn_ps N/A N/A A A
_mm_nmax_ss N/A N/A B B

370

Reference

_mm_max_ps N/A N/A A A
_mm and_ps N/A N/A A A
_mm andnot _ps N/A N/A A A
_hm or _ps N/A N/A A A
_mm_Xxor _ps N/A N/A A A
_mm_cnpeq_ss N/A N/A B B
_hm cnpeq_ps N/A N/A A A
_mmecenplt_ss N/A N/A B B
_mmecnplt_ps N/A N/A A A
_mmcnpl e_ss N/A N/A B B
_mm cnpl e_ps N/A N/A A A
_hm cnpgt _ss N/A N/A B B
_mm_cnpgt _ps N/A N/A A A
_hm cnpge_ss N/A N/A B B
_mm_cnpge_ps N/A N/A A A
_hm cnpneq_ss N/A N/A B B
_hm cnpneq_ps N/A N/A A A
_mmecnpnlt_ss N/A N/A B B
_mmcnpnlt_ps N/A N/A A A
_mm cnpnl e_ss N/A N/A B B
_mm cnpnl e_ps N/A N/A A A
_mm _cnpngt _ss N/A N/A B B
_mm_cnpngt _ps N/A N/A A A
_hm cnpnge_ss N/A N/A B B
_mm_cnpnge_ps N/A N/A A A
_mm cnpord_ss N/A N/A B B
_mm cnpord_ps N/A N/A A A
_mm cnpunord_ss N/A N/A B B
_mm cnpunor d_ps N/A N/A A A
_mm comi eq_sSs N/A N/A B B
_mmcom | t_ss N/A N/A B B

371

Intel® C++ Compiler for Linux* Systems User's Guide

_mmconile_ss N/A N/A B B
_mm comi gt _ss N/A N/A B B
_mm coni ge_ss N/A N/A B B
_mm com neq_ss N/A N/A B B
_mm_ucom eq_ss N/A N/A B B
_mmucom | t_ss N/A N/A B B
_mm.ucom | e_ss N/A N/A B B
_mm.ucom gt _ss N/A N/A B B
_mm ucom ge_ss N/A N/A B B
_mm.ucom neq_ss N/A N/A B B
_mm cvt _ss2si _mmcvtss_si 32 N/A N/A A B
_mm cvt _ps2pi _mm cvtps_pi 32 N/A N/A A A
_mmcvtt_ss2si _mmcvttss_si 32 N/A N/A A B
_mm cvtt_ps2pi _mmcvttps_pi 32 N/A N/A A A
_mm cvt_si 2ss _mm cvtsi 32_ss N/A N/A A B
_mm cvt _pi 2ps _mm cvt pi 32_ps N/A N/A A C
_mm cvt pi 16_ps N/A N/A A C
_mm cvt pul6_ps N/A N/A A C
_mm cvt pi 8_ps N/A N/A A C
_mm _cvt pu8_ps N/A N/A A C
_mm cvt pi 32x2_ps N/A N/A A C
_mmcvtps_pi 16 N/A N/A A C
_mmcvtps_pi 8 N/A N/A A C
_hm nove_ss N/A N/A A A
_mmshuffle_ps N/A N/A A A
_mm unpackhi _ps N/A N/A A A
_mm unpackl o_ps N/A N/A A A
_mm nmovehl _ps N/A N/A A A
_mm novel h_ps N/A N/A A A
_mm nmovenask_ps N/A N/A A C
_mm get csr N/A N/A A A

372

Reference

_mm set csr N/A N/A A A
_mm | oadh_pi N/A N/A A A
_mm | oadl _pi N/A N/A A A
_mm | oad_ss N/A N/A A B
_mm | oad_ps1 _mm | oadl_ps N/A N/A A A
_mm | oad_ps N/A N/A A A
_mm | oadu_ps N/A N/A A A
_mm | oadr _ps N/A N/A A A
_mm st oreh_pi N/A N/A A A
_mmstorel _pi N/A N/A A A
_mm store_ss N/A N/A A A
_mm store_ps N/A N/A A A
_mmstore_psl _mm storel _ps N/A N/A A A
_hm st oreu_ps N/A N/A A A
_mm storer_ps N/A N/A A A
_mm set _ss N/A N/A A A
_mm set_psl _mmsetl ps N/A N/A A A
_mm set _ps N/A N/A A A
_mm setr_ps N/A N/A A A
_mm set zero_ps N/A N/A A A
_mm prefetch N/A N/A A A
_mm st ream pi N/A N/A A A
_mm stream ps N/A N/A A A
_mm sfence N/A N/A A A
_m pextrw _mmextract_pi 16 |N/A N/A A A
_m pinsrw _mminsert_pil6 N/A N/A A A
M pmaxsw _nm _max_pi 16 N/A N/A A A
_m prmaxub _mm max_pu8 N/A N/A A A
_m pm nsw _mmmn_pi 16 N/A N/A A A
_m pm nub _mm. nin_pu8 N/A N/A A A
_m provirskb _mm novenmask_pi 8 | N/A N/A A C

373

Intel® C++ Compiler for Linux* Systems User's Guide

—m pmul huw _mm nul hi _pul6 N/A N/A A A
_m pshufw _mmshuffle_pil16 |N/A N/A A A
_m masknovq _mm nmasknove_si 64 | N/A N/A A C
_m pavgb _mm avg_pu8 N/A N/A A A
_m pavgw _mm avg_pulé N/A N/A A A
_m psadbw _nmm sad_pu8 N/A N/A A A

Streaming SIMD Extensions 2 Intrinsics Implementation

Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-point
values. The Intel® Itanium® processor does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries

* A =Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map directly
to native instructions, but they offer no significant performance gain.

* C =Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across | MMX(TM) Streaming | Streaming | [tanium®
All IA | Technology | SIMD SIMD Architecture
Extenions | Extensions
2
_mm add_sd N/A N/A N/A A N/A
hm add_pd N/A N/A N/A A N/A
_mm sub_sd N/A N/A N/A A N/A
_m sub_pd N/A N/A N/A A N/A
_mm nmul _sd N/A N/A N/A A N/A
_mm_nul _pd N/A N/A N/A A N/A
_mmsqrt_sd N/A N/A N/A A N/A
_mm.sqrt_pd N/A N/A N/A A N/A
_mmdiv_sd N/A N/A N/A A N/A
_mm div_pd N/A N/A N/A A N/A
_mmmnmin_sd N/A N/A N/A A N/A
_m_ni n_pd N/A N/A N/A A N/A
_mm max_sd N/A N/A N/A A N/A

374

Reference

_nm_nax_pd N/A N/A N/A A N/A
_mm_and_pd N/A N/A N/A A N/A
_mm andnot _pd N/A N/A N/A A N/A
_mm.or _pd N/A N/A N/A A N/A
_hm xor _pd N/A N/A N/A A N/A
_mm cnpeq_sd N/A N/A N/A A N/A
_hm cnpeq_pd N/A N/A N/A A N/A
_mmecnplt_sd N/A N/A N/A A N/A
_mmecnplt_pd N/A N/A N/A A N/A
_mmcnple_sd N/A N/A N/A A N/A
_mmcnpl e_pd N/A N/A N/A A N/A
_nhm cnpgt _sd N/A N/A N/A A N/A
mm cnpgt _pd N/A N/A N/A A N/A
_nhm cnpge_sd N/A N/A N/A A N/A
_nmm cnpge_pd N/A N/A N/A A N/A
_mm cnpneq_sd N/A N/A N/A A N/A
_hm cnpneq_pd N/A N/A N/A A N/A
_mmecnpnlt_sd N/A N/A N/A A N/A
_mmcnpnlt_pd N/A N/A N/A A N/A
_mmcnpnle_sd N/A N/A N/A A N/A
_mm cnpnl e_pd N/A N/A N/A A N/A
_mm cnpngt _sd N/A N/A N/A A N/A
_hm_cnpngt _pd N/A N/A N/A A N/A
_hm cnpnge_sd N/A N/A N/A A N/A
hm cnpnge_pd N/A N/A N/A A N/A
_hm cnpord_pd N/A N/A N/A A N/A
_mm cnpord_sd N/A N/A N/A A N/A
_mm cnpunor d_pd N/A N/A N/A A N/A
_mm cnpunor d_sd N/A N/A N/A A N/A
_mm coni eq_sd N/A N/A N/A A N/A
_mmcom |t _sd N/A N/A N/A A N/A

375

Intel® C++ Compiler for Linux* Systems User's Guide

_mmconile_sd N/A N/A N/A A N/A
_mm comi gt _sd N/A N/A N/A A N/A
_mm coni ge_sd N/A N/A N/A A N/A
_mm _com neq_sd N/A N/A N/A A N/A
_mm_ucomi eqg_sd N/A N/A N/A A N/A
_mm.ucomilt_sd N/A N/A N/A A N/A
_nm uconi | e_sd N/A N/A N/A A N/A
_mm_ucomi gt _sd N/A N/A N/A A N/A
_mm _ucom ge_sd N/A N/A N/A A N/A
_mm_ucomi neg_sd N/A N/A N/A A N/A
_nm _cvt epi 32_pd N/A N/A N/A A N/A
_mm cvt pd_epi 32 N/A N/A N/A A N/A
_mm cvttpd_epi 32 N/A N/A N/A A N/A
_mm cvt epi 32_ps N/A N/A N/A A N/A
_mm cvt ps_epi 32 N/A N/A N/A A N/A
_mmcvttps_epi 32 N/A N/A N/A A N/A
_mm cvt pd_ps N/A N/A N/A A N/A
_mm cvt ps_pd N/A N/A N/A A N/A
_mm cvtsd_ss N/A N/A N/A A N/A
_mmcvtss_sd N/A N/A N/A A N/A
_nm cvtsd_si 32 N/A N/A N/A A N/A
_mm cvttsd_si 32 N/A N/A N/A A N/A
_mm cvt si 32_sd N/A N/A N/A A N/A
_nm_cvt pd_pi 32 N/A N/A N/A A N/A
_mm cvttpd_pi 32 N/A N/A N/A A N/A
_mm cvt pi 32_pd N/A N/A N/A A N/A
_mm unpackhi _pd N/A N/A N/A A N/A
_mm unpackl o_pd N/A N/A N/A A N/A
_mm unpackl o_pd N/A N/A N/A A N/A
_mm shuffle_pd N/A N/A N/A A N/A
_mm | oad_pd N/A N/A N/A A N/A

376

Reference

_mm | oadl _pd N/A N/A N/A A N/A
_mm | oadr _pd N/A N/A N/A A N/A
_mm | oadu_pd N/A N/A N/A A N/A
_mm | oad_sd N/A N/A N/A A N/A
_mm | oadh_pd N/A N/A N/A A N/A
_mm | oadl _pd N/A N/A N/A A N/A
_mm set_sd N/A N/A N/A A N/A
_mmsetl pd N/A N/A N/A A N/A
_mm set_pd N/A N/A N/A A N/A
_mmsetr_pd N/A N/A N/A A N/A
_mm set zero_pd N/A N/A N/A A N/A
_mm nove_sd N/A N/A N/A A N/A
_mmstore_sd N/A N/A N/A A N/A
_mm storel_pd N/A N/A N/A A N/A
_mmstore_pd N/A N/A N/A A N/A
_mm storeu_pd N/A N/A N/A A N/A
_mm storer_pd N/A N/A N/A A N/A
_mm storeh_pd N/A N/A N/A A N/A
_mmstorel _pd N/A N/A N/A A N/A
_mm add_epi 8 N/A N/A N/A A N/A
_mm add_epi 16 N/A N/A N/A A N/A
_mm add_epi 32 N/A N/A N/A A N/A
_mm add_si 64 N/A N/A N/A A N/A
_mm add_epi 64 N/A N/A N/A A N/A
_mm adds_epi 8 N/A N/A N/A A N/A
_nm adds_epi 16 N/A N/A N/A A N/A
_mm adds_epu8 N/A N/A N/A A N/A
_mm adds_epul6 N/A N/A N/A A N/A
_mm avg_epu8 N/A N/A N/A A N/A
_mm avg_epulé6 N/A N/A N/A A N/A
_nm nadd_epi 16 N/A N/A N/A A N/A

377

Intel® C++ Compiler for Linux* Systems User's Guide

_mm nmax_epi 16 N/A N/A N/A A N/A
_mm _max_epu8 N/A N/A N/A A N/A
_mmmn_epi 16 N/A N/A N/A A N/A
_mm_m n_epu8 N/A N/A N/A A N/A
_mm mul hi _epi 16 N/A N/A N/A A N/A
_mm mul hi _epul6 N/A N/A N/A A N/A
_mm nul | o_epi 16 N/A N/A N/A A N/A
_mm nmul _su32 N/A N/A N/A A N/A
_mm mul _epu32 N/A N/A N/A A N/A
_mm sad_epu8 N/A N/A N/A A N/A
_nm sub_epi 8 N/A N/A N/A A N/A
_mm sub_epi 16 N/A N/A N/A A N/A
_mm sub_epi 32 N/A N/A N/A A N/A
_mm sub_si 64 N/A N/A N/A A N/A
_mm sub_epi 64 N/A N/A N/A A N/A
_mm subs_epi 8 N/A N/A N/A A N/A
_nm subs_epi 16 N/A N/A N/A A N/A
_mm subs_epu8 N/A N/A N/A A N/A
_mm subs_epul6 N/A N/A N/A A N/A
_mm and_si 128 N/A N/A N/A A N/A
_mm andnot _si 128 N/A N/A N/A A N/A
_mm or_si 128 N/A N/A N/A A N/A
_mm xor _si 128 N/A N/A N/A A N/A
_mmslli_si128 N/A N/A N/A A N/A
~mmslli_epil6 N/A N/A N/A A N/A
_mmsl| _epi16 N/A N/A N/A A N/A
~mmslli_epi32 N/A N/A N/A A N/A
_mmsl| _epi32 N/A N/A N/A A N/A
_mmslli_epi64 N/A N/A N/A A N/A
~_mmsl | _epi64 N/A N/A N/A A N/A
_mm srai _epi 16 N/A N/A N/A A N/A

378

Reference

_mm sra_epi 16 N/A N/A N/A A N/A
_mm srai _epi 32 N/A N/A N/A A N/A
_mm sra_epi 32 N/A N/A N/A A N/A
_mmsrli_si128 N/A N/A N/A A N/A
_mmsrli_epil6 N/A N/A N/A A N/A
_mmsrl _epi 16 N/A N/A N/A A N/A
_mmsrli_epi32 N/A N/A N/A A N/A
_mm srl _epi 32 N/A N/A N/A A N/A
_mmsrli_epi64 N/A N/A N/A A N/A
_mmsrl _epi 64 N/A N/A N/A A N/A
_nm cnpeq_epi 8 N/A N/A N/A A N/A
_mm cnpeg_epi 16 N/A N/A N/A A N/A
_mm cnpeq_epi 32 N/A N/A N/A A N/A
_mm cnpgt _epi 8 N/A N/A N/A A N/A
_mm cnpgt _epi 16 N/A N/A N/A A N/A
_mm cnpgt _epi 32 N/A N/A N/A A N/A
_mmecnplt_epi 8 N/A N/A N/A A N/A
_mmecnplt_epi 16 N/A N/A N/A A N/A
_mm cnpl t_epi 32 N/A N/A N/A A N/A
_mm cvtsi 32_si 128 N/A N/A N/A A N/A
_mmecvtsi 128 si32 | N/A N/A N/A A N/A
_mm packs_epi 16 N/A N/A N/A A N/A
_mm packs_epi 32 N/A N/A N/A A N/A
_mm packus_epi 16 N/A N/A N/A A N/A
_mm extract _epi 16 N/A N/A N/A A N/A
_mm.insert_epi 16 N/A N/A N/A A N/A
_mm novenask_epi 8 N/A N/A N/A A N/A
_mmshuffle epi32 |N/A N/A N/A A N/A
_mm shuffl ehi _epi 16 | N/A N/A N/A A N/A
_mm shuffl el o_epi 16 | N/A N/A N/A A N/A
_mm unpackhi _epi 8 N/A N/A N/A A N/A

379

Intel® C++ Compiler for Linux* Systems User's Guide

_mm unpackhi _epi 16 |N/A N/A N/A A N/A
_mm unpackhi _epi 32 | N/A N/A N/A A N/A
_mm unpackhi _epi 64 |N/A N/A N/A A N/A
_mm unpackl o_epi 8 N/A N/A N/A A N/A
_mm unpackl o_epi 16 |N/A N/A N/A A N/A
_mm unpackl o_epi 32 |N/A N/A N/A A N/A
_mm unpackl o_epi 64 | N/A N/A N/A A N/A
_mm _nove_epi 64 N/A N/A N/A A N/A
_nm _novpi 64_epi 64 | N/A N/A N/A A N/A
_mm _novepi 64_pi 64 N/A N/A N/A A N/A
_mm | oad_si 128 N/A N/A N/A A N/A
_mm | oadu_si 128 N/A N/A N/A A N/A
_mm | oadl _epi 64 N/A N/A N/A A N/A
_mm set _epi 64 N/A N/A N/A A N/A
_mm set _epi 32 N/A N/A N/A A N/A
_mm set _epi 16 N/A N/A N/A A N/A
_mm set_epi 8 N/A N/A N/A A N/A
_mm set 1l epi 64 N/A N/A N/A A N/A
_nm set 1 _epi 32 N/A N/A N/A A N/A
_mm setl epi l6 N/A N/A N/A A N/A
_mm setl_epi8 N/A N/A N/A A N/A
_mm setr_epi 64 N/A N/A N/A A N/A
_mm setr_epi 32 N/A N/A N/A A N/A
_mm setr_epi 16 N/A N/A N/A A N/A
_mm setr_epi 8 N/A N/A N/A A N/A
_mm set zero_si 128 N/A N/A N/A A N/A
_mm store_si 128 N/A N/A N/A A N/A
_mm storeu_si 128 N/A N/A N/A A N/A
_mm storel _epi 64 N/A N/A N/A A N/A
_mm masknoveu_si 128 | N/A N/A N/A A N/A
_mm st ream pd N/A N/A N/A A N/A

380

Reference

_mm stream si 128 N/A N/A N/A A N/A
_mmcl fl ush N/A N/A N/A A N/A
_mm | fence N/A N/A N/A A N/A
_mm nf ence N/A N/A N/A A N/A
_mm stream si 32 N/A N/A N/A A N/A
_mm _pause N/A N/A N/A A N/A

381

Intel® C++ Compiler for Linux* Systems User's Guide

Intel® C++ Class Libraries

The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle
of SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of
parallel processing is increased data throughput using fewer clock cycles. The objective is to improve
application performance of complex and computation-intensive audio, video, and graphical data bit
streams.

Hardware and Software Requirements

You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the class
libraries. The Intel® C++ Class Libraries are functions abstracted from the instruction extensions available
on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Header Extension Set Available on These Processors

File

ivec.h | MMX(TM) Pentium® with MMX technology, Pentium II, Pentium III,
technology Pentium 4, Intel® Xeon(TM), and Itanium® processors

fvec. h Streaming SIMD Pentium III, Pentium 4, Intel Xeon, and Itanium processors
Extensions

dvec. h | Streaming SIMD Pentium 4 and Intel Xeon processors
Extensions 2

About the Classes
The Intel® C++ Class Libraries for SIMD Operations include:

* Integer vector (I vec) classes
* Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: i vec. h, f vec. h, and dvec. h.
The classes themselves are not partitioned like this. The classes are named according to the underlying type
of operation. The header files are partitioned according to architecture:

* ivec. his specific to architectures with MMX(TM) technology
» fvec. his specific to architectures with Streaming SIMD Extensions
* dvec. h is specific to architectures with Streaming SIMD Extensions 2

Streaming SIMD Extensions 2 intrinsics cannot be used on Itanium®-based systems. The rmt| ass. h
header file includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel architecture, particularly code
that would benefit from the use of SIMD instructions. You should be familiar with C++ and the use of C++
classes.

382

Reference

Details About the Libraries

The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class Libraries.
These processor-instruction extensions enable parallel processing using the single instruction-multiple data
(SIMD) technique as illustrated in the following figure.

SIMD Data Flow

A3 A= A1 AD
B3 B2 B1 BO

v

hanpnmnpnﬂ Al1opB1 IAl:lann

Performing four operations with a single instruction improves efficiency by a factor of four for that
particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++ SIMD
classes. Compare the coding required to add four 32-bit floating-point values, using each of the available
interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class
Libraries

... __m28 a,b,c; #i nclude <mintrin. h> #i ncl ude

__asm{ novaps xmD, b ... __m28 a,b,c; a= <fvec.h> ...

nmovaps xnmil, ¢ addps _mm add_ps(b,c); ... F32vec4 a, b, c;

xmD, xmril novaps a, a = b +c;

xnm0 } ...

This table shows an addition of two single-precision floating-point values using assembly inlining,
intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class
Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the standard notation
in C++, making it much easier to implement over other methods.

C++ Classes and SIMD Operations

The use of C++ classes for SIMD operations is based on the concept of operating on arrays, or vectors of
data, in parallel. Consider the addition of two vectors, A and B, where each vector contains four elements.
Using the integer vector (I vec) class, the elements A[i] and B[i] from each array are summed as
shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] *

383

Intel® C++ Compiler for Linux* Systems User's Guide

The following example shows the same results using one operation with | vec Classes.

SIMD Method of Adding Elements Using Ivec Classes

sl s16vecd ivecA, ivecB, ivec C /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecCO, ivecCl, ivecC2, ivecC3 */

Available Classes

The Intel C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes and
libraries.

SIMD Vector Classes

Instruction Set | Class Signedness | Data Size | Elements | Header
Type File

MMX(TM) | 64vecl | unspecified __nb4 64 1 ivec.h

technology

(available for

[A-32- and

[tanium®-based

systems)
| 32vec2 unspecified i nt 32 2 ivec. h
| s32vec?2 | signed i nt 32 |2 ivec.h
|l u32vec2 unsigned i nt 32 2 ivec. h
| 16vec4 | unspecified |short 16 |4 ivec.h
I sl6vec4 | signed short 16 |4 ivec.h
lulévec4 | unsigned short 16 |4 ivec.h
| Bvec8 unspecified char 8 8 ivec.h
I s8vec8 | signed char 8 8 ivec.h
I u8vec8 | unsigned char 8 8 ivec.h

Streaming SIMD | F32vec4 | signed fl oat 32 |4 fvec. h

Extensions

(available for

[A-32 and

Itanium-based

systems)
F32vecl | signed f1 oat 32 |1 fvec. h

Streaming SIMD | F64vec2 | signed double |64 |2 dvec. h

Extensions 2

(available for

[A-32-based

systems only)

384

Reference

Instruction Set | Class Signedness | Data Size | Elements | Header
Type File
I 128vecl |unspecified |__nl28i |128 |1 dvec. h
| 64vec2 | unspecified || otng 64 |4 dvec. h
in
| s64vec2 | signed I otng 64 |4 dvec. h
in
| u64vec?2 | unsigned I otng 32 |4 dvec. h
in
| 32vec4 | unspecified |int 32 |4 dvec. h
I s32vec4 | signed i nt 32 |4 dvec. h
l u32vec4 | unsigned i nt 32 |4 dvec. h
| 16vec8 | unspecified |int 16 |8 dvec. h
I sl6vecs8 | signed i nt 16 |8 dvec. h
l ul6vec8 | unsigned i nt 16 |8 dvec. h
| 8vecl6 |unspecified |char 8 16 dvec. h
I s8vecl6 | signed char 8 16 dvec. h
l u8vecl6 | unsigned char 8 16 dvec. h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor

performance, and are therefore excluded from individual classes.

EjNote

Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.

(For example, _nm shuffl e_ps, mm shuffle_pi 16, _mm extract _pi 16,

_mm.insert_pi 16).

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler. To
enable the classes, use the #i ncl ude directive in your program file as shown in the table that follows.

Include Directives for Enabling Classes

Instruction Set Extension

Include Directive

MMX Technology

#i ncl ude <ivec. h>

Streaming SIMD Extensions

#i ncl ude <fvec. h>

Streaming SIMD Extensions 2

#i ncl ude <dvec. h>

385

Intel® C++ Compiler for Linux* Systems User's Guide

Each succeeding file from the top down includes the preceding class. You only need to include f vec. h if
you want to use both the | vec and Fvec classes. Similarly, to use all the classes including those for the
Streaming SIMD Extensions 2, you need only to include the dvec. h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage rules for
each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the | vec and Fvec classes at the same time, your program could mix MMX instructions,
called by | vec classes, with Intel x87 architecture floating-point instructions, called by Fvec classes.
Floating-point instructions exist in the following Fvec functions:

e fvec constructors
* debug functions (cout and element access)
e rsqrt_nr

f)Note

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with the
EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following example.

ivecA = ivecA & ivecB; | Ivec logical operation that uses MMX instructions
empty (); clear state
cout << f32vec4a; F32vec4 operation that uses x87 floating-point instructions

&Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an incorrect
register state.

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer to this
topic before coding with the | vec classes.

Capabilities
The fundamental capabilities of each C++ SIMD class include:
* computation
* horizontal data motion
* branch compression/elimination

» caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

386

Reference

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *,/ , reciprocal (r cp and r cp_nr), square root (Sqrt),
reciprocal square root (rsqrt andrsqrt_nr).

Operations I cp and r SQrt are new approximating instructions with very short latencies that produce
results with at least 12 bits of accuracy. Operations r cp_nr and rsqrt _nr use software refining
techniques to enhance the accuracy of the approximations, with a minimal impact on performance. (The
'nr " stands for Newton-Raphson, a mathematical technique for improving performance using an
approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term "horizontal"
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_hori zont al , unpack_| owand pack_sat functions are examples of horizontal data
support. This support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the
C++ classes due to their immediate arguments. However, the C++ class implementation enables you to mix
shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvech, fvecd;
fveca += fvech;
fvecd = _nm shuffle_ps(fveca, fvecb, 0);

Typically every instruction with horizontal data flow contains some inefficiency in the implementation. If
possible, implement your algorithms without using the horizontal capabilities.

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate branches, using
logical operations, max and min functions, conditional selects, and compares. Consider the following
example:

short a[4], b[4], c[4];
for (i=0; i<4; i++)
c[i] =a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i . For each i , the result could be either A or B depending on
the actual values. A simple way of removing the branch altogether is to use the sel ect _gt function, as
follows:

| slévecd a, b, ¢
c = select _gt(a, b, a, b)

387

Intel® C++ Compiler for Linux* Systems User's Guide

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize the
effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.
This results in higher performance for data that should be cached.

Integer Vector Classes

The | vec classes provide an interface to SIMD processing using integer vectors of various sizes. The class
hierarchy is represented in the following figure.

Ivec Class Hierarchy

[16tvact | [132veca| [nevece] [imveca | [2zvact| [18suaca | [1azveet | [1teveca | [1ovects |

Is32vec?| |ludEvec? Is32vecd | |luddvecd

s

CHADRIH

The M64 and ML28 classes define the 64 and __ml28i data types from which the rest of the | vec
classes are derived. The first generation of child classes are derived based solely on bit sizes of 128, 64, 32,
16, and 8 respectively for the | 128vecl, | 64vecl, 164vec2,| 32vec2,| 32vec4,| 16vec4,

| 16vec8, | 8vecl6, and | 8vecS8 classes. The latter seven of the these classes require specification of
signedness and saturation.

&Caution

Do not intermix the M64 and ML28 data types. You will get unexpected behavior if you do.

The signedness is indicated by the S and U in the class names:

| s64vec?2
| ué4vec?
| s32vec4
Il u32vec4
| slévec8
lulévec8
| s8vecl6
| u8vecl6
| s32vec?2
Il u32vec?
| sl6vec4
lulévec4d
| s8vec8

| u8vecs8

388

Terms, Conventions, and Syntax

Reference

The following are special terms and syntax used in this chapter to describe functionality of the classes with

respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the following

generic format:

<t ype><si gnedness><bi t s>vec<el enent s>

{F] 1} {s] u}{64] 32| 16| 8} vec { 8| 4| 2| 1}
where
type indicates floating point (F) or integer (|)

si gnedness | indicates signed (S) or unsigned (U). For the Ivec class, leaving this field
blank indicates an intermediate class. There are no unsigned Fvec classes,
therefore for the Fvec classes, this field is blank.

bits specifies the number of bits per element

el enent s specifies the number of elements

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and operations

defined in this manual.

e Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the same
size. For example, the nearest common ancestor of | u8vec8 and | s8vec8is| 8vec8. Also, the

nearest common ancestor between | u8vec8 and | 16vec4 is M64.

» Cadting -- Changes the data type from one class to another. When an operation uses different data

types as operands, the return value of the operation must be assigned to a single data type. Therefore,
one or more of the data types must be converted to a required data type. This conversion is known as
a typecast. Sometimes, typecasting is automatic, other times you must use special syntax to explicitly
typecast it yourself.

Operator Overloading -- This is the ability to use various operators on the same user-defined data
type of a given class. Once you declare a variable, you can add, subtract, multiply, and perform a
range of operations. Each family of classes accepts a specified range of operators, and must comply
by rules and restrictions regarding typecasting and operator overloading as defined in the header files.
The following table shows the notation used in this documention to address typecasting, operator
overloading, and other rules.

389

Intel® C++ Compiler for Linux* Systems User's Guide

Class Syntax Notation Conventions

Class Name Description

I'[s|ul [N]vec[N] | Any value except | 128vecl nor | 64vecl
| 64vecl __b4 data type

I [s|u] 64vec2 two 64-bit values of any signedness

I [s]u] 32vec4 four 32-bit values of any signedness

I [s|u] 8vecl6 eight 16-bit values of any signedness
I[s|u] 16vec8 sixteen 8-bit values of any signedness

I [s]u] 32vec2 two 32-bit values of any signedness

I[s|u] 16vec4 four 16-bit values of any signedness

I [s]u] 8vec8 eight 8-bit values of any signedness

Rules for Operators
To use operators with the | vec classes you must use one of the following three syntax conventions:
[lvec Jass] R=] lvec_ Cass] A[operator][lvec_ Class] B
Examplel: | 64vecl R = |164vecl A & | 64vecl B;
[Ivec_Cass] R =[operator] ([Ilvec_Cass] A[lvec_Cass] B)
Example2: | 64vecl R = andnot (I 64vecl A, |64vecl B);
[Ivec_Cass] R[operator]=[lvec_Cass] A
Example3: | 64vecl R &= | 64vecl A
[oper at or]an operator (for example, &, |, or *)
[lvec_Class]anl vec class
R, A, B variables declared using the pertinent | vec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is
illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types
freely and the compiler will do the typecasting for you.

390

Summary of Rules Major Operators

Reference

Operators Sign Size Other Typecasting Requirements
Typecasting | Typecasting
Assignment N/A N/A N/A
Logical Automatic Automatic Explicit typecasting is required for
(to left) different types used in non-logical
expressions on the right side of the
assignment.

Addition and Automatic Explicit N/A

Subtraction

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to ensure arithmetic
shift.

Compare Automatic Explicit Explicit casting is required for signed
classes for the less-than or greater-than
operations.

Conditional Automatic Explicit Explicit casting is required for signed

Select classes for less-than or greater-than
operations.

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization for all
class sizes. All values are initialized with the most significant element on the left and the least significant to

the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration ML28 | 128vecl A; | u8vecl6 A;

Declaration Vb4 | 64vecl A; | u8vecl6 A

_ ml28 ML28 | 128vecl A(__ nl28 m); lul6vec8(__ml28
Initialization m;

__nb4 M54 | 64vecl A(__nm64 n);luBvec8 A(__nb4d m;
Initialization

__int64 V64 | 64vecl A = __ int64 m lu8vec8 A
Initialization = int64 m

int i M64 | 64vecl A =int i; luBvec8 A =int i;
Initialization

391

Intel® C++ Compiler for Linux* Systems User's Guide

Operation

Class

Syntax

i nt initialization

| 32vec?2

| 32vec2 A(int Al, int AO);

I s32vec2 A(signed int Al, signed int

A0) ;

lu32vec2 A(unsigned int Al, unsigned int
A0) ;

i nt Initialization

| 32vec4

| 32vec4 A(short A3, short A2, short Al,
short AO0);

| s32vec4 A(signed short A3, ..., signed
short AO0);

lu32vecd A(unsigned short A3, ...,

unsi gned short AO0);

short int
Initialization

| 16vec4

| 16vec4 A(short A3, short A2, short AL,
short AO0);

| slévecd A(signed short A3, ..., signed
short AO0);

lulévecd4 A(unsigned short A3, ...

unsi gned short AO0);

short int
Initialization

| 16vec8

| 16vec8 A(short A7, short A6,
Al, short AQ);

| sl6vec8 A(signed A7, ..., signed short
A0) ;

lulévec8 A(unsigned short A7, ...,

unsi gned short AO0);

., short

char
Initialization

| 8vec8

| Bvec8 A(char A7, char A6, ..., char A1l,
char AQ);

| s8vec8 A(signed char A7, ..., signed
char AQ);

| u8vec8 A(unsi gned char A7, ...

unsi gned char AQ);

char
Initialization

| 8vecl6b

| 8vecl6 A(char Al5, ..., char A0);

| s8vecl6 A(signed char Al5, ..., signed
char A0);

| u8vecl6 A(unsigned char Al5, ...,

unsi gned char AQ);

392

Reference

Assignment Operator

Any | vec object can be assigned to any other | vec object; conversion on assignment from one | vec
object to another is automatic.

Assignment Operator Examples

| sl6vecd A

| s8vec8 B;

| 64vecl C

A =B; /* assign Is8vec8 to |Isl6vecd */
B=C, /* assign |64vecl to Is8vec8 */

B

A &C, /* assign M64 result of '& to Is8vec8 */
Logical Operators

The logical operators use the symbols and intrinsics listed in the following table.

Bitwise Operator Symbols | Syntax Usage Corresponding
Operation X X Intrinsic
Standard | w/assign | Standard w/assign
AND & &= R=A&B R&=A _m’n_and_s! 64
_mm and_si 128
OR | = R=A|B R=A |_mmand_si64
_mm and_si 128
XOR A A= R=A"B R"A=A _nmm and_si 64
_mm and_si 128
ANDNOT andnot N/A R=Aandnot | N/A _m and_si 64
B _mm and_si 128

Logical Operators and Miscellaneous Exceptions.
A and B converted to M64. Result assigned to | u8vec8.
| 64vecl A
| s8vec8 B;
| u8vec8 C,

C=AZ%&B;

393

Intel® C++ Compiler for Linux* Systems User's Guide

Same size and signedness operators return the nearest common ancestor.
| 32vec2 R = 1s32vec2 A ™ lu32vec2 B;

A&B returns M64, which is cast to | u8vecs.

C = lu8vec8(A&B) + C;

When A and B are of the same class, they return the same type. When A and B are of different classes, the
return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply when A
and B are of different classes.

Ivec Logical Operator Overloading

Return ® AND | OR | XOR | NAND | A Operand B Operand

| 64vecl R| & | A andnot || [s| u] 64vec2 A|I[s|u] 64vec2 B
| 64vec2 R| & | A andnot | I [s| u] 64vec2 A|I[s|u] 64vec2 B
| 32vec2 R| & | A andnot | I [s| u] 32vec2 A|I[s|u]32vec2 B
| 32vec4 R| & | A andnot | I [s| u] 32vec4 A|I[s|u]32vecs4 B
| 16vec4 R| & | A andnot | I [s|u] 16vec4 A|l[s|u] 16vecd B
| 16vec8 R| & | A andnot | I [s| u] 16vec8 A|I[s|u] 16vec8 B
| 8vec8 R | & | A andnot | I [s|u]8vec8 A |I[s|u]8vec8 B

| 8vecl6 R| & | A andnot | I [s|u] 8vecl6 A|I[s|u]8vecl6 B

For logical operators with assignment, the return value of Ris always the same data type as the pre-
declared value of R as listed in the table that follows.

394

Ivec Logical Operator Overloading with Assignment

Return Type | Left Side ® AND | OR | XOR | Right Side (Any Ivec Type)
| 128vecl | 128vecl R &= || |7= I[s|ul][Nvec[N A
| 64vecl | 64vecl R &= || |7= I[s|ul][NJvec[N A
| 64vec? | 64vec2 R &= ||= |7= I[s|ul][NJvec[N A
I[x]32vec4 |I[x] 32vecd R | &= ||= |*= I[s|ul][Nvec[N A
I[x]32vec2 |1[x]32vec2 R| &= || |’= I[s|ul][NJvec[N A
I[x]16vec8 |I[x] 16vec8 R| &= ||= |*= I[s|ul][NJvec[N A
I[x] 16vecd |I[x] 16vecd R| &= ||= |’= I[s|ul][NJvec[N A
I[x]8vecl6 |I[x]8Bvecls R| &= ||= |’= I[s|ul][NJvec[N A
I[x]8vec8 |I[x]8vec8 R |&= || |7= I[s|ul][NJvec[N A

Addition and Subtraction Operators

Reference

The addition and subtraction operators return the class of the nearest common ancestor when the right-side
operands are of different signs. The following code provides examples of usage and miscellaneous

exceptions.

Syntax Usage for Addition and Subtraction Operators

Return nearest common ancestor type, | 16vec4.

| sl6vecd A
|l ulévec4 B;
| 16vec4 C,

A + B;

Returns type left-hand operand type.

| slévecd A;
lulévec4d B;
A += B;

B -= A

Explicitly convert B to | s16vec4.

| slévecd A, C

395

Intel® C++ Compiler for Linux* Systems User's Guide

lu32vec24 B
C=A+ C
C = A+ (Isl6vecd)B;

Addition and Subtraction Operators with Corresponding Intrinsics

Operation | Symbols | Syntax | Corresponding Intrinsics

Addition + R=A+B |_nm add_epi 64
+= R+=A _mm add_epi 32
_mm add_epi 16
_mm add_epi 8
_mm add_pi 32
_mm add_pi 16
_mm add_pi 8

R=A-B |_nmm sub_epi 64
R-=A _mm sub_epi 32
_mm sub_epi 16
_mm sub_epi 8
_mm sub_pi 32
_mm sub_pi 16
_mmsub _pi 8

Subtraction | -

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

Addition and Subtraction Operator Overloading

Return Value | Available Operators | Right Side Operands

R Add Sub A B

| 64vec2 R |+ - I[s|u] 64vec2 A|l[s|u] 64vec2 B
| 32vecd R |+ - I[s|u]32vecd A|lI[s|u]32vecd4 B
| 32vec2 R |+ - I[s|u]32vec2 A|lI[s|u]32vec2 B
| 16vec8 R |+ - I[s|u] 16vec8 A|l[s|u] l6vec8 B
| 16vecd R |+ - I[s|u]l6vecd A|I[s|u] l6vecd B
| 8vec8 R + - I[s|u]8vec8 A |I[s|u]8vec8 B
| 8vecle R |+ - I[s|u]8vec2 A |I[s|u]8vecl6 B

The following table shows the return data type values for operands of the addition and subtraction operators
with assignment. The left side operand determines the size and signedness of the return value. The right
side operand must be the same size as the left operand; otherwise, you must use an explicit typecast.

396

Reference

Addition and Subtraction with Assignment

Return Value ® | Left Side ® Add | Sub | Right Side (A)

I [x] 32vec4 I[x]32vec2 R|+= |-= I [s|u] 32vecd A
I[x] 32vec2 R|I[x]32vec2 R|+= |-= I [s|u]32vec2 A
I [x] 16vec8 I [x] 16vec8 += | = I[s|u] 16vec8 A
I [x] 16vec4 I [x] 16vec4 += | = I [s|u] 16vecd A
I [x] 8vecl6 I [x] 8vecl6 += | = I[s|u] 8vecl6 A
| [x] 8vec8 I [x] 8vec8 += | = I [s|u] 8vec8 A

Multiplication Operators

The multiplication operators can only accept and return data types from the | [S| u] 16vec4 or
I [s| u] 16vecs8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators
Explicitly convert B to | s16vec4.

| sl6évecd A, C

lu32vec2 B;

C=A* C

C

A * (lIsl6vecd)B;

Return nearest common ancestor type, | 16vec4

I slévecd A;

lulévec4 B;

| 16vec4d G

C=A+ B

The mul _hi gh and mul _add functions take | s16vec4 data only.
Islévecd4 A B, C D

C mul _hi gh(A, B);

D

nmul _add(A, B);

397

Intel® C++ Compiler for Linux* Systems User's Guide

Multiplication Operators with Corresponding Intrinsics

Symbols Syntax Usage Intrinsic
* *= |R=A*B _mmonul |l o_pi 16
R *= A _mmmull o_epi 16
mul _hi gh [N/A |R = nul _hi gh(A, B) |_nm nul hi _pi 16
_mm rul hi _epi 16
mul _add [N/A |R = mul _hi gh(A, B) |_nm nmadd_pi 16
_mm rmadd_epi 16

The multiplication return operators always return the nearest common ancestor as listed in the table that
follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Multiplication Operator Overloading

R Mul A B

| 16vecd R | * I[s|u] 16vecd A|l[s|u] 16vecd B
| 16vec8 R | * I[s|u] 16vec8 A|l[s|u] 16vec8 B
| slévecd R|mul add |Isl6vecd A | slévecd B

| slévec8 mul _add |Isl6vec8 A | sl6vec8 B

I s32vec2 R |mul _high|lIsl6vecd A | sl6vecd B

| s32vec4 R |mul _high|sl6vec8 A | s16vec8 B

The following table shows the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size, you

must use an explicit typecast.

Multiplication with Assighment

Return Value ® | Left Side ® | Mul | Right Side (A)
I [x] 16vec8 I[x] 16vec8 | *= |1[s|u] 16vec8 A
I [x] 16vecd I[x] 16vecd | *= |1[s]|u] 16vecd A

398

Reference

Shift Operators

The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type.
The first or left operand of a << can be of any type except | [S| u] 8vec|[8| 16] .

Example Syntax Usage for Shift Operators

Automatic size and sign conversion.

I slévecd A C

I u32vec?2 B;

C=A

A&B returns | 16vec4, which must be cast to | ul6vec4 to ensure logical shift, not arithmetic shift.
Islévecd A C

lulévecd4 B, R

R = (lul6bvecd) (A & B) G

A&B returns | 16vec4, which must be cast to | S16vec4 to ensure arithmetic shift, not logical shift.
R = (1sl6vecd) (A & B) G

Shift Operators with Corresponding Intrinsics

Operation | Symbols | Syntax Usage | Intrinsic
Shift Left | << R=A<<B ~mmsll _si64
&= R &= A _mmslli_si64
_mmsl1 _pi32
~mmslli_pi32
~mmsll| _pil6
_mmslli_pil6
Shift Right | >> R=A>>B _mmsrl_si64
R>>=A ~mmsrli_si64
_mmsrl _pi32
_mmsrli_pi32
_mmsrl _pil6
~mmsrli_pil6
_mmsra_pi 32
mm srai _pi 32
mm sra_pi 16
mm srai _pi 16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The following table shows how the return type is determined by the first
argument type.

399

Intel® C++ Compiler for Linux* Systems User's Guide

Shift Operator Overloading

Operation | R Right Shift | Left Shift | A B

Logical | 64vecl |>> |>>= |<< |[<<= |[l64vecl A; |164vecl B;

Logical I32vec2 |>> |>>= |<< |<<= |I132vec2 A |I32vec2 B;

Arithmetic | 15S32vec2 |>> |>>= |<< |<<= [1s32vec2 A|I[s|u][N vec[N B;
Logical lu32vec2 |>> |>>= |<< |<<= |lu32vec2 A|lI[s|u]l[Nvec[N B;
Logical | 16vecd |>> |>>= |<< |<<= |[l1l6vec4d A |I1l6vecd B

Arithmetic |1 sl16vecd |>> |>>= |<< |<<= |lsl6vecd A|I[s|u][N vec[N B;
Logical lulbvecd |>> |>>= |<< |<<= |lulbvecd A|I[s|u][Nvec[N B;

Comparison Operators

The equality and inequality comparison operands can have mixed signedness, but they must be of the same
size. The comparison operators for less-than and greater-than must be of the same sign and size.

Example of Syntax Usage for Comparison Operator

The nearest common ancestor is returned for compare for equal/not-equal operations.
| u8vec8 A,

| s8vec8 B;

| 8vec8 G

C = cmpneq(A B);

Type cast needed for different-sized elements for equal/not-equal comparisons.
lu8vec8 A C

I slévec4d B;

C = cnpeq(A, (1uBvec8)B);

Type cast needed for sign or size differences for less-than and greater-than comparisons.
lulévecd A

Islévecd4 B, C

C = cnpge((1 sl6vecd) A B);

C = cnpgt(B,O;

400

Reference

Inequality Comparison Symbols and Corresponding Intrinsics

Compare For: | Operators | Syntax Intrinsic
Equality cnpeq R = cnpeq(A, B) |_nmcnpeq_pi 32
_mm _cnpeq_pi 16
_mm cnpeqg_pi 8
Inequality cnpneq R = cnpneq(A, B) |_mmcnpeq_pi 32 | _nm andnot _si 64
_mm cnpeq_pi 16
_mm cnpeqg_pi 8
Greater Than cnpgt R = cnpgt (A, B) |_nmcnpgt _pi 32
_mm _cnpgt _pi 16
_mmcnpgt_pi 8
Greater Than cnpge R = cnpge(A, B) |_nmcnpgt_pi 32 | _nm andnot _si 64
or Equal To _hm_cnpgt _pi 16
_mm cnpgt _pi 8
Less Than cnpl t R =cnplt(A B) |_mmcnpgt_pi32
_mm cnpgt _pi 16
_mmcnpgt_pi 8
Less Than cnpl e R = cnple(A B) |_nmcnpgt_pi 32 | _nm andnot _si 64
or Equal To _mm cnpgt _pi 16
_mm cnpgt _pi 8

Comparison operators have the restriction that the operands must be the size and sign as listed in the
Compare Operator Overloading table.

Compare Operator Overloading

R Comparison | A B
| 32vec2 R|cnpeq I[s|u]32vec2 B|I[s|u]32vec2 B
cnpne
| 16vecd R I[s|u] 16vec4 B|I[s|u] 16vecd B
| 8vec8 R I[s|u]8vec8 B |I[s|u] 8vec8 B
| 32vec2 R | cnpgt | s32vec2 B I s32vec2 B
cnpge
cnpl t
cnpl e
| 16vecd R | sl6vec4 B | sl6vecd4 B
| 8vec8 R | s8vec8 B | s8vec8 B

401

Intel® C++ Compiler for Linux* Systems User's Guide

Conditional Select Operators

For conditional select operands, the third and fourth operands determine the type returned. Third and fourth

operands with same size, but different signedness, return the nearest common ancestor data type.

Conditional Select Syntax Usage

Return the nearest common ancestor data type if third and fourth operands are of the same size, but

different signs.

| 16vecd R = sel ect_neq(lsl6vecd4, |sl6vecd, |sl6vecd, |lul6vecd);
Conditional Select for Equality
RO := (A0 == B0O) ? CO : DoO;
Rl := (Al == B1) ? ClL : Di;
R := (A2 == B2) ? C : Dz
R3 := (A3 == B3) ? C3: D3;
Conditional Select for Inequality
RO := (A0 !'=B0) ? CO : D0O;
RlL := (Al !'=B1) ? CL : Di;
R := (A2 '=B2) ? C : Dz
R3 := (A3 !=B3) ? C3: D3
Conditional Select Symbols and Corresponding Intrinsics
Conditional | Operators Syntax Corresponding Additional
Select For: Intrinsic Intrinsic (Applies
to All)
Equality select _eq |R= _mm cnpeqg_pi 32 | _nmm and_si 64
sel ect _eq(A, _mm cnpeqg_pi 16 | _mm or _si 64
B.C D)_ _mm cnpeq_pi 8 | _nmm andnot _si 64
Inequality select _neq |R= _nmm cnpeq_pi 32
sel ect _neq(A, | _m cnpeq_pi 16
B, C, D) _nmm cnpeq_pi 8
Greater Than |Sel ect_gt |R= _mm cnpgt _pi 32
sel ect_gt(A, |_mcnpgt_pi 16
B, C, D) _mm cnpgt_pi 8

402

Reference

Conditional | Operators Syntax Corresponding Additional
Select For: Intrinsic Intrinsic (Applies
to All)
Greater Than | Sel ect_ge |R= _mm cnpge_pi 32
or Equal To sel ect_gt(A, |_"mmcnpge_pi 16
B, C, D) _nmm cnpge_pi 8
Less Than select_It |R= _mmcnpl t _pi 32
select _It(A, |_hmcnplt_pil6
B, C,D) _mmecenplt _pi 8
Less Than select _le |R= _mm cnpl e_pi 32
or Equal To sel ect | e(A, |_mmcnple_pil6
B, C,D) _mmecnple_pi 8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands Cand D. For conditional select operations using greater-than or less-than operations,
the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison | A and B C D
| 32vec2 R|select_eq |[I[s|u]32vec2 |I[s|u]32vec2 |I[s]u]32vec2
sel ect _ne
| 16vecd R I[s|u]l6vecd |1[s|u]1l6vecd |I[s]u]l6vecd
| 8vec8 R I[s|]u]8vec8 |I[s|u]8vec8 |I[s]u]8vec8
‘I32vec2 R|sel ect gt ‘I332vec2 |Is32ve02 ‘I332vec2
| sel ect _ge
I 16vec4 R|select It ‘Isleec4 |Isl6vec4 ‘Isleec4
select le
| 8vec8 R | s8vec8 | s8vec8 | s8vec8

The following table shows the mapping of return values from RO to R7 for any number of elements. The
same return value mappings also apply when there are fewer than four return values.

403

Intel® C++ Compiler for Linux* Systems User's Guide

Conditional Select Operator Return Value Mapping

Return Value | A and B Operands C and D operands
A0 | Available Operators | BO
RO:= AO |==|!=|>|>=|<|<=|B0 | ?C0:DO0;
R1:= A0 |=|!=|>|>=|<|<=|B0 |?7Cl:DIl;
R2:= AO0 |==|!=|>|>=|<|<=|B0 |?7C2:D2;
R3:= AQ |==|!=|>|>=|<|<=|B0 |?7C3:D3;
R4:= A0 |==|!=|>|>=|<|<=|B0 | ?C4:D4
RS5:= AQ |==|!=|>|>=|<|<=|B0 |?C5:D5;
R6:= AQ |==|!=|>|>=|<|<=|B0 | ?7C6:D6;
R7:= AO |==|!=|>|>=|<|<=|B0 |?C7:D7;

Debug

The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are provided
for debugging programs only. Use of these operations may result in loss of performance, so you should not
use them outside of debugging.

Output

The four 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << |s32vec4d A

cout << lu32vec4d A

cout << hex << lu32vec4 A, /* print in hex format */
"[3]:A3 [2]:A2 [1]:Al [0]: AD"

Corresponding Intrinsics: none

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << |s32vec2 A
cout << lu32vec2 A
cout << hex << lu32vec2 A, /* print in hex format */

"[1]: Al [0]: AO"

404

Reference

Corresponding Intrinsics: none

The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << |sl6vec8 A

cout << lul6vec8 A;

cout << hex << lul6vec8 A, /* print in hex format */
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:Al1l [0]:A0"
Corresponding Intrinsics: none

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << |sl6vecd A

cout << lul6vecd A

cout << hex << lul6vecd A, /* print in hex format */
"[3]:A3 [2]:A2 [1]: Al [O]: AO"

Corresponding Intrinsics: none

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << |Is8vecl6 A; cout << lu8vecl6 A; cout << hex << lu8vec8 A
/* print in hex format instead of decinal*/

"[15]:Al5 [14]:Al4 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8
[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]: A1l [O]: AO"

Corresponding Intrinsics: none

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << |s8vec8 A; cout << |uB8vec8 A;cout << hex << |u8vec8 A
/* print in hex format instead of decimal*/
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]: Al [0O]: AO"

Corresponding Intrinsics: none

405

Intel® C++ Compiler for Linux* Systems User's Guide

Element Access Operators

int R=1s64vec2 Ali];

unsigned int R = lu64vec2 Ali];
int R=1s32vecd4 Ali];

unsigned int R = lu32vecd4 Ali];
int R=1s32vec2 Ali];

unsigned int R = lu32vec2 Ali];
short R = Isl6vec8 Ali];

unsi gned short R = lul6vec8 Ali];
short R = Isl6vecd Ali];

unsi gned short R = lul6vecd Ali];

| s8vecl6 Ali];

si gned char R
unsi gned char R = lu8vecl6 Ali];
signed char R = |s8vec8 Ali];
unsi gned char R = lu8vec8 Ali];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element outside of A,
a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none
Element Assignment Operators

| s64vec2 Ali]

I
=1
Y

Is32vecd Ali] = int R

lu32vecd4 Ali] = unsigned int R
Is32vec2 Ali] = int R

lu32vec2 Ali] = unsigned int R

| sl6évec8 Ali] = short R;

lulévec8 Ali] = unsigned short R

| slévecd Ali] = short R

406

Reference

lulévecd Ali] unsi gned short R,

| s8vecl6 Ali] signed char R

lu8vecl6 Ali] unsi gned char R;

| s8vec8 Ali] signed char R
lu8vec8 A[i] = unsigned char R

Assign Rto element i of A. If DEBUG s enabled and the user tries to assign a value to an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators
Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.
| 364vec2 unpack_hi gh(l64vec2 A, 164vec2 B);
| s64vec2 unpack_hi gh(l1s64vec2 A, |s64vec2 B);
| uédvec?2 unpack_hi gh(lu64vec2 A, |u6dvec2 B);

RO
R1

Al;
B1;

Corresponding intrinsic: _nm _unpackhi _epi 64

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B .
| 32vec4 unpack_hi gh(132vec4 A, |32vec4 B);

| s32vec4 unpack_hi gh(1s32vecd4 A, 1s32vecd B);

| u3d2vec4 unpack_hi gh(lu32vec4 A, 1u32vec4 B);

RO = Al;
R1 = B1;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _nm _unpackhi _epi 32

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.
| 32vec2 unpack_hi gh(132vec2 A, |32vec2 B);

| s32vec2 unpack_hi gh(1s32vec2 A, |s32vec2 B);

| u3d2vec2 unpack_hi gh(lu32vec2 A, |u32vec2 B);

407

Intel® C++ Compiler for Linux* Systems User's Guide

RO
R1

Al;
B1;

Corresponding intrinsic: _nm _unpackhi _pi 32

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B.
| 16vec8 unpack_hi gh(l 16vec8 A, | 16vec8 B);

| sl6vec8 unpack_hi gh(lsl6vec8 A, |sl6vec8 B);

| ulévec8 unpack_hi gh(lul6vec8 A, |ul6vec8 B);

RO = A2;
R1 = B2;
R2 = A3;
R3 = B3;

Corresponding intrinsic: _nm _unpackhi _epi 16

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B.
| 16vec4 unpack_hi gh(l 16vec4 A, | 16vec4 B);

| si6vecd unpack_hi gh(lsl6vecd4d A, |sl6vecd B);

| ulévecd unpack_hi gh(lulévecd4 A, |ul6vecd B);

RO
R2

A2; R1
A3; R3

B2;
B3;

Corresponding intrinsic: _nm _unpackhi _pi 16

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.
| 8vec8 unpack_hi gh(18vec8 A, 18vec8 B);

| s8vec8 unpack_hi gh(ls8vec8 A |8vec8 B);

| u8vec8 unpack_hi gh(lu8vec8 A |8vec8 B);

RO = A4;
R1 = B4;
R2 = A5;
R3 = B5;
R4 = AG;
R5 = B6;
R6 = A7;
R7 = B7;

Corresponding intrinsic: _nm unpackhi _pi 8
Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of B.

| 8vecl6 unpack_high(l8vecl6 A, |8vecl6 B);

408

| s8vecl6 unpack_hi gh(1s8vecl6 A, |8vecl6 B);
| u8vecl6 unpack_hi gh(lu8vecl6é A, |8vecl6 B);
RO = A8;
Rl = BS;
R2 = A9;
R3 = B9;
R4 = A10;
R5 = B10;
R6 = Al1l;
R7 = B11;
R8 = A12;
R8 = B12;
R2 = A13;
R3 = B13;
R4 = Al4;
R5 = B14;
R6 = Al5;
R7 = B15;

Corresponding intrinsic: _nm _unpackhi _epi 16
Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B

RO
R1

AOQ;
BO;

Corresponding intrinsic: _nm _unpackl o_epi 32

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B

| 64vec2 unpack | owm | 64vec2 A, |64vec2 B);

| s64vec2 unpack_| ow(| s64vec2 A, |s64vec2 B);
| uédvec?2 unpack_| ow(| ubdvec2 A, |u6dvec2 B);
RO = AQ;

Rl = BO;

R2 = Al;

R3 = B1;

Corresponding intrinsic: _nm _unpackl o_epi 32

Reference

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B

| 32vec4 unpack | owm 1 32vec4 A, |32vecd B);

| s32vecd unpack | ow(ls32vec4 A, |1s32vecd B);
lu3d2vecd unpack_ | ow(lu32vec4 A, 1u32vecd B);
RO = AO0;

Rl = BO;

R2 = Al;

R3 = B1;

409

Intel® C++ Compiler for Linux* Systems User's Guide

Corresponding intrinsic: _nm unpackl o_epi 32

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.
| 32vec2 unpack_| owm132vec2 A, |32vec2 B);

| s32vec2 unpack_| om I s32vec2 A, [s32vec2 B);

| u32vec2 unpack_| om I u32vec2 A, |u32vec2 B);

RO
R1

AOQ;
BO;

Corresponding intrinsic: _nm unpackl o_pi 32

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.
| 16vec8 unpack | owm | 16vec8 A, |16vec8 B);

| si6vec8 unpack_| ow(lsl6vec8 A, |1sl6vec8 B);

lulévec8 unpack_| ow(lul6évec8 A, lul6vec8 B);

RO = AO;
R1 = BO;
R2 = Al;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _nm _unpackl o_epi 16

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.
| 16vec4 unpack | owm | 16vecd A, |16vecd B)

| slévecd unpack | ow(lsl6vecd A, |sl6vecd B)

lulévecd unpack | ow(lul6évecd A, lul6vecd B)

RO = AQ;
R1 = BO;
R2 = Al;
R3 = BI;

Corresponding intrinsic: _nm unpackl o_pi 16
Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.
| Bvecl16 unpack | ow|18vecl6 A, |8vecl6 B);

| s8vecl1l6 unpack_| ow(ls8vecl6 A, |s8vecl6 B);

410

Reference

| u8vecl6 unpack | ow(lu8vecl6 A, |u8vecl6 B)

RO = AO;
R1 = BO;
R2 = Al;
R3 = BI;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;
R8 = A4;
R9 = B4;
R10 = A5;
R11 = B5;
R12 = AG6;
R13 = B6;
R14 = A7;
R15 = B7;

Corresponding intrinsic: _nm unpackl o_epi 8

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.
| 8vec8 unpack_| ow(|1 8vec8 A, [|8vec8 B);

| s8vec8 unpack | om |1 s8vec8 A, |s8vec8 B);

| u8vec8 unpack | om 1 u8vec8 A, 1u8vec8 B);

RO = AO;
R1 = BO;
R2 = Al;
R3 = BI1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _nm unpackl o_pi 8
Pack Operators

Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

| sl6vec8 pack_sat (1 s32vec2 A, 1s32vec2 B);
Corresponding intrinsic: _nmm _packs_epi 32

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

| sl6vecd pack_sat (1 s32vec2 A, 1s32vec2 B);
Corresponding intrinsic: _nmm _packs_pi 32

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

| s8vecl6 pack_sat (I sl6vecd A, Isl6vecd B);
Corresponding intrinsic: _nm _packs_epi 16

411

Intel® C++ Compiler for Linux* Systems User's Guide

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

| s8vec8 pack_sat(lsl6vec4 A |Islévecd B);
Corresponding intrinsic: _nm _packs_pi 16

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

| u8vecl6 packu_sat (1sl6vecd A Isl6vecd B);
Corresponding intrinsic: _nm _packus_epi 16

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

| u8vec8 packu_sat (I s16vec4 A, Isl6vecd B);
Corresponding intrinsic: _nm _packs_pul6

Clear MMX(TM) Instructions State Operator

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the EMMS
instruction intrinsic.

void enmpty(void);
Corresponding intrinsic: _nmm_enpt y

Integer Intrinsics for Streaming SIMD Extensions

E)Note

You must include f vec. h header file for the following functionality.

Compute the element-wise maximum of the respective signed integer words in A and B.

| si6vecd sind_max(lsl6vecd A, |sl6vecd B);
Corresponding intrinsic: _nm _nmax_pi 16

Compute the element-wise minimum of the respective signed integer words in A and B.

| si6vecd sind_m n(lsl6vecd A, |1sl6vecd B);
Corresponding intrinsic: _nm ni n_pi 16

Compute the element-wise maximum of the respective unsigned bytes in A and B.

| u8vec8 sinmd_max(luB8vec8 A, |u8vec8 B);
Corresponding intrinsic: _mm_nmax_pu8

Compute the element-wise minimum of the respective unsigned bytes in A and B.

lu8vec8 sinmd _mn(luBvec8 A, |u8vec8 B);
Corresponding intrinsic: _nm i n_pu8

Create an 8-bit mask from the most significant bits of the bytes in A.

412

Reference
i nt move_nmask(| 8vec8 A);
Corresponding intrinsic: _nm _novenask_pi 8

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored.

voi d mask_nove(l 8vec8 A, |18vec8 B, signed char *p);
Corresponding intrinsic: _nm_nmasknove_si 64

Store the data in A to the address p without polluting the caches. A can be any | vec type.

void store nta(__n64 *p, M64 A);
Corresponding intrinsic: _nm st r eam pi

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

| u8vec8 sinmd_avg(luBvec8 A, |u8vec8 B);
Corresponding intrinsic: _mm avg_pu8

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

lulévecd sind_avg(lul6vecd A, lul6vecd B);
Corresponding intrinsic: _mm avg_pul6

Conversions Between Fvec and lvec

Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

i nt F64vec2Tol nt (F64vec42 A);
r := (int)Ao0;

Convert the four floating-point values of A to two the two least significant double-precision floating-point
values.

F64vec2 F32vec4ToF64vec2(F32vecd A);
ro : = (doubl e) A0;
rl := (doubl e)Al;

Convert the two double-precision floating-point values of A to two single-precision floating-point values.

F32vec4 F64vec2ToF32vecd(F64vec2 A);
10 := (float)AO;
rl := (float)Al;

Convert the signed i nt in B to a double-precision floating-point value and pass the upper double-precision
value from A through to the result.

F64vec2 InttoF64vec2(F64vec2 A, int B);
ro := (doubl e)B;
rl .= Al

Convert the lower floating-point value of A to a 32-bit integer with truncation.

413

Intel® C++ Compiler for Linux* Systems User's Guide

i nt F32vec4Tol nt (F32vec4 A);
r := (int)AO0;

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the
integers in packed form.

| s32vec2 F32vec4Tol s32vec2 (F32vecd4 A);
ro := (int)A0;
rli := (int)Al

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are passed

through from A.

F32vec4 | nt ToF32vec4(F32vecd4 A, int B);
ro := (float)B;

ri:= Al,

r2 := A2,

r3 = A3

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

F32vec4 |s32vec2ToF32vec4(F32vec4 A, 1s32vec2 B);

ro := (float)BO;
ri := (float)B1;
r2 .= ;
r3 = A3;

Floating-point Vector Classes

Floating-point Vector Classes

The floating-point vector classes, F64vec?2, F32vec4, and F32vec1, provide an interface to SIMD
operations. The class specifications are as follows:

F64vec2 A(doubl e x, double y);
F32vec4 A(float z, float y, float x, float w);

F32vecl B(fl oat w);

The packed floating-point input values are represented with the right-most value lowest as shown in the
following table.

414

Reference

Single-Precision Floating-point Elements

High Yalue A3 A2 Al AD Low Yalue
Operands .I ' : :
B3 B2 B1 BO
T T T T
Operations |:
Return [RB* R2 Y R1 Y RO Y
127 63 I-m JRI;}
|
128 bits F32vecd (RO, R1, B2, and R3)

F32vecd returns four packed single-precision floating point values (RO, R1, R2, and R3).
F32vec2 returns one single-precision floating point value (RO,

Fvec Notation Conventions
This reference uses the following conventions for syntax and return values.
Fvec Classes Syntax Notation
Fvec classes use the syntax conventions shown the following examples:
[Fvec_Cass] R = [Fvec_Cl ass] A [operator][lvec_O ass] B;
Examplel: F64vec2 R = F64vec2 A & F64vec2 B;
[Fvec_C ass] R = [operator] ([Fvec_C ass] A [Fvec_C ass] B);
Example2: F64vec2 R = andnot (F64vec2 A, F64vec2 B);
[Fvec_C ass] R [operator]= [Fvec_C ass] A;
Example 3: F64vec2 R &= F64vec2 A
where
[operat or] is an operator (for example, &, |, or)
[Fvec_O ass] isany Fvec class (F64vec2, F32vec4, or F32vecl)
R, A, B are declared Fvec variables of the type indicated
Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the conventions
presented in the Return Value Convention Notation Mappings table. F32vec4 returns four single-

415

Intel® C++ Compiler for Linux* Systems User's Guide

precision, floating-point values (RO, R1, R2, and R3); F64vec2 returns two double-precision, floating-
point values, and F32vec1 returns the lowest single-precision floating-point value (R0).

Return Value Convention Notation Mappings

Example 1: Example 2: Example F32vec4 | F64vec2 | F32vecl
3:

RO := A0 & RO : = A0 andnot |[RO &= X X X

BO; BO; AOQ;

RlL := Al & R1 : = Al andnot Rl &= X X N/A

B1; B1; Al;

R2 := A2 & R2 : = A2 andnot R2 &= X N/A N/A

B2; B2; A2;

R3 := A3 & R3 : = A3 andhot R3 &= X N/A N/A

B3 B3; A3;

Data Alignment

Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-aligned data
whenever possible.

F32vec4 and F64vec?2 object variables are properly aligned by default. Note that floating point arrays
are not automatically aligned. To get 16-byte alignment, you can use the alignment __decl spec:

__declspec(align(16)) float A 4];
Conversions

All Fvec object variables can be implicitly converted to __ml28 data types. For example, the results of
computations performed on F32vec4 or F32vecl object variables can be assigned to __ml28 data

types.

_ nml28d mm= A & B; /* where A B are F64vec2 object variables */

_ nml28 mm= A & B; /* where A B are F32vec4 object variables */

28 mm

A & B; /* where A B are F32vecl object variables */

416

Reference

Constructors and Initialization
The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A N/A N/A
F32vec4 B;
F32vecl C;

__m128 Object Initialization

F64vec2 A(__ ml28d nm; N/A N/A
F32vec4 B(__ nml28 m)j;
F32vecl C(__ ml28 m);

Double Initialization

/* Initializes two doubles. */ _mm set _pd A0 :=d0;
F64vec2 A(doubl e dO, double di); Al =dl;
F64vec2 A = F64vec2(doubl e dO, double dl);

F64vec2 A(double dO); _mmsetl pd A0 :=do;
/* Initializes both return val ues Al :=do;

with the sane doubl e precision value */.

Float Initialization

F32vec4 A(float f3, float f2, _mm set _ps A0 = f0;
float f1, float fO); Al ==fl;
F32vecd4 A = F32vec4(float f3, float f2, A2 =
float f1, float fO); A3 =3
F32vec4 A(float fO0); _mmsetl ps A0 :=10;
/* Initializes all return val ues Al :=Af0;
with the same floating point value. */ A2 = f0:

A3 :=10;
F32vec4 A(double dO); _mmset1l_ps(d) | A0 :=d0;
/* Initialize all return values wth Al :=do;
t he sane doubl e-precision value. */ A2 = dO:

A3 :=do0;
F32vecl A(doubl e dO); _mmset_ss(d) | A0:=do;
/* Initializes the | owest value of A Al ==0;
with dO and the other values with 0.*/ A2 =0:

A3 =0;
F32vecl B(fl oat fO0); _mm set_ss BO := f0;
/* Initializes the | owest value of B Bl :=0;
with fO and the other values with 0.*/ B2 :=0:

B3 :=0;

417

Intel® C++ Compiler for Linux* Systems User's Guide

Example Intrinsic Returns
F32vecl B(int 1); _nmm cvtsi 32_ss | BO = f0;
/* Initializes the | owest value of B Bl :={}
with f0, other val ues are undefined. */ B2 := {}

B3 :={}

Arithmetic Operators

The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators
have been divided into standard and advanced operations, which are described in more detail later in this
section.

Fvec Arithmetic Operators

Category | Operation Operators | Generic Syntax
Standard Addition + R=A+ B;
+= R += A
Subtraction - R=A- B
-= R-= A
Multiplication * R=A* B
* — R *= A
Division / R=A/ B
/= R/=A
Advanced | Square Root sqrt R = sqrt(A);
Reciprocal rep R =rcp(A);
(Newton-Raphson) rcp_nr R = rcp_nr(A);
Reciprocal Square Root | r'sqrt R=rsqrt(A);
(Newton-Raphson) rsgrt_nr |R = rsqrt_nr(A);

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A | Operators |B | F32vec4 | F64vec2 | F32vecl
RO:=|AO |+ |- |* |/ |BO

Rl:=|AL |+ |- |* |/ |Bl N/A
R2:=|A2 |+ |- |* |] |B2 N/A N/A
R3:=|A3 |+ |- |* |/ |B3 N/A N/A

418

Arithmetic with Assignment Return Value Mapping

R Operators A | F32vec4 | F64vec2 | F32vecl
RO:=|+=|-=|*=|/=|A0

Rl:=|+=|-=|*=|/=|Al N/A
R:=|+=|-=|*=|/=| A2 N/A N/A
R3:=|+=|-=|*=|/=|A3 N/A N/A

This table lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Reference

Operation Returns | Example Syntax Usage Intrinsic
Addition 4 floats F32vec4 R = F32vec4 A + F32vec4 _mm add_ps
B;
F32vec4 R += F32vec4 A
2 F64vec2 R = F64vec2 A + F32vec?2 _mm add_pd
doubles | B
F64vec2 R += F64vec2 A
1 float F32vecl R = F32vecl A + F32vecl _mm add_ss
B;
F32vecl R += F32vecl A
Subtraction 4 floats F32vec4 R = F32vec4 A - F32vec4d _mm sub_ps
B;
F32vec4 R -= F32vec4 A
2 F64vec2 R - F64vec2 A + F32vec2 _mm sub_pd
doubles | B
F64vec2 R -= F64vec2 A
1 float F32vecl R = F32vecl A - F32vecl _mm sub_ss
B;
F32vecl R -= F32vecl A
Multiplication | 4 floats F32vec4 R = F32vec4 A * F32vec4 _mm rmul _ps
B;
F32vec4 R *= F32vec4 A
2 F64vec2 R = F64vec2 A * F364vec2 |_nm nul _pd
doubles | B
F64vec2 R *= F64vec2 A
1 float F32vecl R = F32vecl A * F32vecl _mm nul _ss
B;
F32vecl R *= F32vecl A
Division 4 floats F32vec4 R = F32vec4 A/ F32vec4d _mmdiv_ps
B;
F32vec4 R /= F32vec4d A
2 F64vec2 R = F64vec2 A/ F64vec2 _mmdiv_pd
doubles | B;
F64vec2 R /= F64vec2 A

419

Intel® C++ Compiler for Linux* Systems User's Guide

Operation

Returns

Example Syntax Usage

Intrinsic

1 float

B!
F32vecl R /= F32vecl A

F32vecl R = F32vecl A/ F32vecl ~mmdiv_ss

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which use the

syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A | F32vec4 | F64vec?2 | F32vecl

RO:= | sqrt rcp|rsqrt |rcp_nr |[rsqrt_nr [A0

Rl1:=|sqrt rcp|rsqrt |rcp_nr |rsgrt_nr | Al N/A

R2:=|sqrt rcp |rsqrt [rcp_nr |rsqrt_nr [A2 N/A N/A

R3:=|sqrt rcp|rsqrt |rcp_nr |rsqgrt_nr | A3 N/A N/A

f:= | add_horizontal (A0 + N/A N/A
Al + A2
+ A3)

d:= | add_horizontal (A0 + N/A N/A
Al)

This table shows examples for advanced arithmetic operators.
Advanced Arithmetic Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vecd4 A); _mmsqrt_ps

2 doubles | F64vec2 R = sqrt (F64vec2 A); _mmsqrt_pd

1 float F32vecl R = sqrt(F32vecl A); _mmsqrt_ss

Reciprocal

4 floats F32vec4 R = rcp(F32vecd A); _mmrcp_ps

2 doubles | F64vec2 R = rcp(F64vec2 A); _mmrcp_pd

1 float F32vecl R = rcp(F32vecl A); _mmrcp_ss

Reciprocal Square Root

4 floats F32vec4 R = rsqrt (F32vec4 A); _mmrsqgrt_ps

420

Returns | Example Syntax Usage Intrinsic

2 doubles | F64vec2 R = rsqrt (F64vec2 A); _mmrsqgrt_pd

1 float F32vecl R = rsqgrt(F32vecl A); _mmrsqrt_ss

Reciprocal Newton Raphson

4 floats |F32vec4 R = rcp_nr(F32vecd A); _mm sub_ps
_mm add_ps
_mm_mul _ps
_mm.rcp_ps

2 doubles | F64vec2 R = rcp_nr(F64vec2 A); _mm sub_pd
_mm add_pd
_mm mul _pd
_mmrcp_pd

1 float F32vecl R = rcp_nr(F32vecl A); _mm sub_ss
_mm add_ss
_mm mul _ss
_mmrcp_ss

Reciprocal Square Root Newton Raphson

4 float F32vec4 R = rsqgrt_nr(F32vecd A); _mm sub_pd
_mm mul _pd
_mmrsqrt_ps

2 doubles | F64vec2 R = rsqrt_nr(F64vec2 A); _mm sub_pd
_mm_rul _pd
_mmrsqgrt_pd

1 float F32vecl R = rsqgrt_nr(F32vecl A); _mm sub_ss
_mm mul _ss

_mmrsqrt_ss

Horizontal Add

1 float float f = add_hori zontal (F32vec4 A); _mm add_ss
_mm shuffle_ss
1 double |double d = add_hori zontal (F64vec2 A); | _mm add_sd

“mm shuffle_sd

Minimum and Maximum Operators

Compute the minimums of the two double precision floating-point values of A and B.

F64vec2 R = simd_m n(F64vec2 A, F64vec2 B)

RO :=m
Rl :=m

n(A0, BO) ;
n(Al, B1);

Corresponding intrinsic: _nm i n_pd

Compute the minimums of the four single precision floating-point values of A and B.

F32vec4 R = sind_m n(F32vec4 A, F32vec4 B)

RO :

R1

m n(A0, BO) ;
m n(Al, Bl);

Reference

421

Intel® C++ Compiler for Linux* Systems User's Guide

R2 := m n(A2, B2);
R3 := m n(A3, B3);
Corresponding intrinsic: _nm _mi n_ps

Compute the minimum of the lowest single precision floating-point values of A and B.

F32vecl R = sind_m n(F32vecl A, F32vecl B)
RO : = m n(A0, BO);
Corresponding intrinsic: _mm _m n_ss

Compute the maximums of the two double precision floating-point values of A and B.
F64vec2 sind_max(F64vec2 A, F64vec2 B)

RO : = max(A0, BO);

R1 := max(Al, Bl);

Corresponding intrinsic: _nm _max_pd

Compute the maximums of the four single precision floating-point values of A and B.

F32vec4 R = sind_man(F32vec4 A, F32vec4 B)

RO : = max(A0, BO);
R1 := max(Al, Bl);
R2 : = max(A2, B2);
R3 : = max(A3, B3);

Corresponding intrinsic: _mm_nmax_ps
Compute the maximum of the lowest single precision floating-point values of A and B.

F32vecl sind_nmax(F32vecl A, F32vecl B)
RO : = max(A0, BO);
Corresponding intrinsic: _mm _nmax_ss

Logical Operators

The following table lists the logical operators of the Fvec classes and generic syntax. The logical operators
for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation | Operators | Generic Syntax
AND & R=AZ&B;
&= R & A
oR | R=A]| B
| = RI=A
XOR A R=A"B;
N= R N= A,
andnot andnot R = andnot (A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is
no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the packed
vector intrinsics.

422

Logical Operations for Fvec Classes

Reference

Operation | Returns | Example Syntax Usage Intrinsic
AND 4 floats F32vec4 & = F32vec4 A & F32vec4 | _mm and_ps
B;
F32vec4 & &= F32vecd A
2 F64vec2 R = F64vec2 A & F32vec2 |_mm and_pd
doubles | B;
F64vec2 R &= F64vec2 A
1 float F32vecl R = F32vecl A & F32vecl |_mm and_ps
B;
F32vecl R &= F32vecl A
R 4 floats F32vec4 R = F32vec4 A | F32vec4 |_nmor_ps
B;
F32vec4 R | = F32vecd A
2 F64vec2 R = F64vec2 A | F32vec2 | _mmor_pd
doubles | B;
F64vec2 R | = F64vec2 A
1 float F32vecl R = F32vecl A | F32vecl |_mmor_ps
B;
F32vecl R | = F32vecl A
XOR 4 floats | F32vec4 R = F32vec4 A ™~ F32vec4 |_nm xor_ps
B;
F32vec4 R "= F32vecd A
2 F64vec2 R = F64vec2 A " _mm xor _pd
doubles | F364vec2 B;
F64vec2 R "= F64vec2 A
1 float F32vecl R = F32vecl A ~ F32vecl |_nm Xxor_ps
B;
F32vecl R *= F32vecl A
ANDNOT 2 F64vec2 R = andnot (F64vec2 A, _mm andnot _pd
doubles | F64vec2 B);

423

Intel® C++ Compiler for Linux* Systems User's Guide

Compare Operators

The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators | Syntax

Equality cnpeq R = cnpeq(A, B)
Inequality cnpneq R = cnpneq(A, B)
Greater Than cnpgt R = cnpgt (A, B)
Greater Than or Equal To cnpge R = cnpge(A, B)
Not Greater Than cnpngt R = cnpngt (A, B)
Not Greater Than or Equal To | cnpnge R = cmpnge(A, B)
Less Than cnpl t R =cmplt(A B)
Less Than or Equal To cnpl e R = cnpl e(A, B)
Not Less Than crpnl t R = cnpnlt (A, B)
Not Less Than or Equal To cnpnl e R = cmpnl e(A, B)

Compare Operators

The mask is set to Oxf f f f f f f f for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The following table shows the return values for each class of
the compare operators, which use the syntax described earlier in the Return Value Notation section.

424

Compare Operator Return Value Mapping

Reference

R

AO

For Any
Operators

B

If True

If False

F32vec4

F64vec?2

F32vecl

RO:=

(Al
I(Al

cnp[eq
| It]
le |
| ge]
cnp[ne
| nlt
nle |
ngt |
nge]

ot

Bl)
Bl)

Oxffffffff

0x0000000

X

X

X

R1:=

(Al
(Al

cnp[eq
| It]
le |
| ge]
cnp[ne
| nlt
nle |
ngt |
ngel

gt

B2)
B2)

Oxffffffff

0x0000000

N/A

(Al
I(Al

cnp[eq
| It]
le |
| ge]
cnp[ne
| nlt
nle |
ngt |
nge]

gt

B3)
B3)

Oxffffffff

0x0000000

N/A

N/A

R3:=

A3

cnp[eq
| It]
le |
| ge]
cnp[ne
| nlt
nle |
ngt |
ngel

gt

B3)
B3)

Oxffffffff

0x0000000

N/A

N/A

The following table shows examples for arithmetic operators and intrinsics.

425

Intel® C++ Compiler for Linux* Systems User's Guide

Compare Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic
Compare for Equality

4 floats | F32vec4 R = cnpeq(F32vec4 A); |_nm cnpeq_ps
2 doubles | F64vec2 R = cnpeq(F64vec2 A); _mm cnpeq_pd
1 float F32vecl R = cnpeq(F32vecl A); |_nm.cnpeq_ss
Compare for Inequality

4 floats | F32vec4 R = cnpneq(F32vec4 A); | _nm cnpneqg_ps
2 doubles | F64vec2 R = cnpneq(F64vec2 A); | _nmm cnpneq_pd
1 float F32vecl R = cnpneq(F32vecl A); | _mm cnpneq_sSs
Compare for Less Than

4 floats F32vec4 R = cnplt (F32vec4 A); _mmecnplt_ps
2 doubles | F64vec2 R = cnplt (F64vec2 A); |_mmecnplt_pd
1 float F32vecl R = cnplt (F32vecl A); _mmecnplt_ss
Compare for Less Than or Equal

4 floats | F32vec4 R = cnple(F32vec4 A); |_mmcnpl e_ps
2 doubles | F64vec2 R = cnpl e(F64vec2 A); _mm cnpl e_pd
1 float F32vecl R = cnpl e(F32vecl A); |_nmcnple_pd
Compare for Greater Than

4 floats | F32vec4 R = cnpgt (F32vec4 A); |_nmcnpgt_ps
2 doubles | F64vec2 R = cnpgt (F32vec42 A); | _mm cnpgt _pd
1 float F32vecl R = cnpgt (F32vecl A); _mm cnpgt _ss
Compare for Greater Than or Equal To

4 floats F32vec4 R = cnpge(F32vec4 A); _mm cnpge_ps
2 doubles | F64vec2 R = cnpge(F64vec2 A); _mm cnpge_pd
1 float F32vecl R = cnpge(F32vecl A); |_nm.cnpge_ss
Compare for Not Less Than

4 floats | F32vec4 R = cnpnlt(F32vec4 A); |_mmcnpnlt_ps
2 doubles | F64vec2 R = cnpnl t (F64vec2 A); | _mmcnpnlt _pd
1 float F32vecl R = cnpnl t (F32vecl A); |_mmecnpnlt_ss
Compare for Not Less Than or Equal

426

4 floats |F32vec4 R = cnpnl e(F32vec4 A); |_nm cnpnl e_ps

2 doubles | F64vec2 R

cnpnl e(F64vec2 A); | _mm cnpnl e_pd

1 float F32vecl R = cnpnl e(F32vecl A); |_mmcnpnl e_ss

Compare for Not Greater Than

4 floats | F32vec4 R = cnpngt (F32vec4 A); | _nm cnpngt _ps

2 doubles | F64vec2 R

cnpngt (F64vec2 A); | _mm cnpngt pd

1 float F32vecl R = cnpngt (F32vecl A); | _mm cnhpngt_ss

Compare for Not Greater Than or Equal

4 floats | F32vec4 R = cnpnge(F32vec4 A); | _mm cnpnge_ps

2 doubles | F64vec2 R

cnpnge(F64vec2 A); | _mm cnpnge_pd

1 float F32vecl R = cnpnge(F32vecl A); |_nm cnpnge_ss

Conditional Select Operators for Fvec Classes

Reference

Each conditional function compares single-precision floating-point values of A and B. The C and D
parameters are used for return value. Comparison between objects of any Fvec class returns the same class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq |R = select_eq(A B)
Inequality sel ect _neq |R = sel ect_neq(A, B)
Greater Than select_gt |[R = select_gt(A B)
Greater Than or Equal To select_ge |R = select_ge(A B)
Not Greater Than select_gt |[R = select_gt(A B)
Not Greater Than or Equal To | Sel ect _ge |R = sel ect_ge(A, B)
Less Than select _It |[R = select_It(A B)
Less Than or Equal To select _le |R = select_le(A B)
Not Less Than select_nlt |R = select_nlt(A B)
Not Less Than or Equal To select_nle |R = select_nle(A B)

427

Intel® C++ Compiler for Linux* Systems User's Guide

Conditional Select Operator Usage

For conditional select operators, the return value is stored in C if the comparison is true or in D if false. The
following table shows the return values for each class of the conditional select operators, using the Return
Value Notation described earlier.

Compare Operator Return Value Mapping

R AO | Operators B |C |D |F32vec4 |F64vec?2 | F32vecl
RO:=| (Al |select_[eq | It | B0) | CO | DO | X X X
At |le | gt | ge] B0) | CO | DO

select _[ne | nlt |
nle | ngt | nge]

Rl:=|(A2 |select_[eq | It | B1) |Cl | D1 | X X N/A
a2 |le | gt | ge] B1) | C1 | D1
select _[ne | nlt |
nle | ngt | nge]

R2:=| (A2 |select [eq | It | |B2) C2|D2|X N/A N/A
a2 le | gt | ge] B2) | C2 | D2
select [ne | nlt |
nle | ngt | nge]

R3:=[(A3 |select_[eq | It | B3) |C3 | D3 | X N/A N/A

(A3 |le | gt | ge] B3) | C3 | D3
select [ne | nlt |

nle | ngt | nge]

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns | Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = sel ect _eq(F32vecd4 A); _mm cnpeq_ps
2 doubles | F64vec2 R = sel ect _eq(F64vec2 A); |_mmcnpeqg_pd
1 float F32vecl R = sel ect _eq(F32vecl A); _mm cnpeq_ss

Compare for Inequality

4 floats F32vec4 R = sel ect _neq(F32vec4 A); | _nm cnpneq_ps

2 doubles | F64vec2 R = sel ect _neq(F64vec2 A); | _mm cnpneqg_pd

1 float F32vecl R = sel ect _neq(F32vecl A); |_mm cnpneq_ss

Compare for Less Than

4 floats | F32vec4 R = select_|t(F32vec4 A); |_mmecnplt_ps

2 doubles | F64vec2 R = sel ect |t (F64vec2 A); _mmecnplt_pd

428

1 float F32vecl R = select_It(F32vecl A); |_mmecnplt_ss
Compare for Less Than or Equal

4 floats | F32vec4 R = select_| e(F32vec4 A); |_mmcnpl e_ps
2 doubles | F64vec2 R = sel ect | e(F64vec2 A); _mm cnpl e_pd
1 float F32vecl R = select_le(F32vecl A); |_mmcnple_ps
Compare for Greater Than

4 floats F32vec4 R = sel ect_gt(F32vecd4 A); _mm cnpgt _ps
2 doubles | F64vec2 R = sel ect _gt (F64vec2 A); |_mmcnpgt _pd
1 float F32vecl R = sel ect_gt(F32vecl A); _mm cnpgt _ss
Compare for Greater Than or Equal To

4 floats F32vecl R = sel ect _ge(F32vec4 A); _mm cnpge_ps
2 doubles | F64vec2 R = sel ect _ge(F64vec2 A); _mm cnpge_pd
1 float F32vecl R = sel ect _ge(F32vecl A); |_mm cnpge_ss
Compare for Not Less Than

4 floats |F32vecl R = select_nlt(F32vecd4 A); |_mmcnpnlt_ps
2 doubles | F64vec2 R = select _nlt(F64vec2 A); | _mmcnpnlt_pd
1 float F32vecl R = select_nlt(F32vecl A); | _nmmcnpnlt_ss
Compare for Not Less Than or Equal

4 floats | F32vecl R = sel ect_nl e(F32vec4 A); |_mmcnpnl e_ps
2 doubles | F64vec2 R = sel ect _nl e(F64vec2 A); |_mmcnpnl e_pd
1 float F32vecl R = sel ect_nl e(F32vecl A); | _nmcnpnl e_ss
Compare for Not Greater Than

4 floats | F32vecl R = sel ect_ngt (F32vec4 A); | _mm cnpngt_ps
2 doubles | F64vec2 R = sel ect _ngt (F64vec2 A); | _mm cnpngt_pd
1 float F32vecl R = sel ect_ngt (F32vecl A); |_nm cnpngt_ss
Compare for Not Greater Than or Equal

4 floats | F32vecl R = sel ect_nge(F32vec4 A); | _mm cnpnge_ps
2 doubles | F64vec2 R = sel ect _nge(F64vec2 A); | _mm cnpnge_pd
1 float F32vecl R = sel ect _nge(F32vecl A); | _nm cnpnge_ss

Reference

429

Intel® C++ Compiler for Linux* Systems User's Guide

Cacheability Support Operations

Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _nm st r eam pd

Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store nta(float *p, F32vecd4 A);
Corresponding intrinsic: _nmm St r eam ps

Debugging
The debug operations do not map to any compiler intrinsics for MMX(TM) technology or Streaming SIMD

Extensions. They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations

The two single, double-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F64vec2 A
"[1]: Al [0O]: AO"
Corresponding intrinsics: none

The four, single-precision floating-point values of A are placed in the output buffer and printed in decimal
format as follows:

cout << F32vec4d A
"[3]:A3 [2]:A2 [1]: Al [0O]: AO"
Corresponding intrinsics: none

The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vecl A
Corresponding intrinsics: none

Element Access Operations
double d = F64vec2 Alint i]

Read one of the two, double-precision floating-point values of A without modifying the corresponding
floating-point value. Permitted values of i are 0 and 1. For example:

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed and
the program aborts.

double d = F64vec2 Al 1];
Corresponding intrinsics: none

430

Reference

Read one of the four, single-precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vecd4 Alint i]

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and the
program aborts.

float f = F32vec4 Al 2];
Corresponding intrinsics: none

Element Assignment Operations
F64vecd4 Alint i] = double d;

Modify one of the two, double-precision floating-point values of A. Permitted values of i nt i are 0 and 1.
For example:

F32vec4 Al 1] = double d;
F32vec4 Alint i] = float f;

Modify one of the four, single-precision floating-point values of A. Permitted values of i nt i are0, 1, 2,
and 3. For example:

If DEBUG is enabled and i nt i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.

F32vec4 Al 3] = float f;
Corresponding intrinsics: none.

Load and Store Operators

Loads two, double-precision floating-point values, copying them into the two, floating-point values of A.
No assumption is made for alignment.

voi d | oadu(F64vec2 A, double *p)
Corresponding intrinsic: _nm | oadu_pd

Stores the two, doubl e-precision floating-point values of A No
assunption is made for alignnent.

void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _nm st or eu_pd

Loads four, single-precision floating-point values, copying theminto
the four floating-point values of A No assunption is nmade for
al i gnment .

voi d | oadu(F32vec4 A, doubl e *p)
Corresponding intrinsic: _nm | oadu_ps

Stores the four, single-precision floating-point values of A No
assunption is made for alignnent.

431

Intel® C++ Compiler for Linux* Systems User's Guide

void storeu(float *p, F32vecd4 A);
Corresponding intrinsic: _nm St or eu_ps

Unpack Operators for Fvec Operators

Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_ | om F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm unpackl o_pd(a, b)

Selects and interleaves the higher, double-precision floating-point values from A and B.

F64vec2 R = unpack_hi gh(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _nm unpackhi _pd(a, b)

Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_| om F32vec4 A, F32vec4 B);
Corresponding intrinsic: _nm unpackl o_ps(a, b)

Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_hi gh(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _nm unpackhi _ps(a, b)

Move Mask Operator

Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point values of A,
as follows:

int i = nmove_nmask(F64vec2 A)
i := sign(al)<<l | sign(a0)<<0
Corresponding intrinsic: _nm _novenask_pd

Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point values of A,
as follows:

int i = nove_nask(F32vec4 A)
i :=sign(a3)<<3 | sign(a2)<<2 | sign(al)<<l | sign(a0)<<0
Corresponding intrinsic: _nm _novenask_ps

432

Classes Quick Reference

Reference

This appendix contains tables listing the class, functionality, and corresponding intrinsics for each class in
the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel C++ Compiler

intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operators | Corresponding 1128vecl, | 164vec, | F64vec2 | F32vec4d | F32vecl
Intrinsic I64vec2, |I32vec,
I32vec4, |I16vec,
I16vec8, |I8vec8
I8vecl6
&, &= _mm and_[x] si 128 si 64 pd ps ps
L, = _mmor _[X] si 128 si 64 pd ps ps
A A= _mm xor _[X] si 128 si 64 pd ps ps
Andnot _mm andnot [x] |si 128 si 64 pd N/A N/A
Arithmetic: Corresponding Intrinsics and Classes, Part 1
Operators | Corresponding | 164vec2 |132vec4 | 116vec8 | I8vecl6
Intrinsic
+, += _mm add_[x] epi 64 |epi32 |epil6 |epi8
-, = _mm sub_[x] epi 64 |epi32 |epil6 |epi8
*, *= _mm nul T o_[x] |N/A N/A epi 16 | N/A
/1= _mm.div_[x] N/A N/A N/A N/A
mul _high | _mmmul hi _[x] |N/A N/A epi 16 | N/A
mul _add | _mmnmadd [x] |N/A N/A epi 16 [N/A
sqrt _mmsqrt_[x] |N/A N/A N/A N/A
rcp _mmrcp_[x] N/A N/A N/A N/A
rcp_nr _mmrcp_[x N/A N/A N/A N/A
mm add[x
mmsub[x
_mmmul [X
rsgrt _mmrsqgrt_[x] | N/A N/A N/A N/A
rsqrt_nr |_mmrsqgrt_[x] |N/A N/A N/A N/A
mm sub[x
_mmonmul _[x

433

Intel® C++ Compiler for Linux* Systems User's Guide

Arithmetic: Corresponding Intrinsics and Classes, Part 2

Operators | Corresponding | 132vec2 | 116vec4 | I8vec8 | F64vec2 | F32vec4 | F32vecl
Intrinsic
+, += _mm add_|[x] pi 32 pi 16 pi 8 pd ps Ss
-, = _mm sub_[x] pi 32 pi 16 pi 8 pd ps ss
* k= _mmmullo_[X] |N/A pi 16 N/A pd ps Ss
/1= _mmdiv_[x] N/A N/A NA | pd ps ss
mul _high |_mmnul hi _[x] |N/A pi 16 N/A N/A N/A N/A
mul _add | _mmmadd [x] |N/A pi 16 N/A N/A N/A N/A
sqrt _mmsqrt_[x] N/A N/A N/A pd ps SS
rcp _mm.rcp_[x] N/A N/A N/A pd ps ss
rcp_nr _mmrcp_[x N/A N/A N/A pd ps ss
mm add[x
mmsub[x
_mmmul _[x
rsqrt _mmrsqgrt_[x] |N/A N/A N/A pd ps Ss
rsgrt_nr | _mmrsqgrt_[x] | N/A N/A N/A pd ps Ss
mmsub[Xx
_mmmul _[x

Shift Operators: Corresponding Intrinsics and Classes, Part 1

Operators | Corresponding | 1128vecl | I64vec? | 132vec4 | 116vec8 | I8vecl6
Intrinsic

>> >>= _mmsrl_[x] |[N/A epi 64 |epi32 |epil6 |N/A
mmsrli[X] | Nn/A epi 64 |epi32 |epil6 |n/A
_mmsra__[X] |n/A N/A epi 32 | epi 16 | /A
_mmsrai _[X] N/A N/A epi 32 |epi 16 N/A

<<, <<= _mmsll_[x] |N/A epi 64 |epi32 |epil6 |N/A
mmslhi[x] | n/A epi 64 |epi32 |epil6 |n\/A

434

Shift Operators: Corresponding Intrinsics and Classes, Part 2

Operators | Corresponding | I64vecl | 132vec?2 | I116vec4 | 18vec8
Intrinsic

>> >>= _mmsrl_[Xx] si 64 pi 32 pi 16 N/A
mmsrli[x] |si64 pi 32 pi 16 N/A
_mmsra__[X] |N/A pi 32 pi 16 N/A
_mmsrai _[X] | N/A pi 32 pi 16 N/A

<<, <<= _mm sl | [x] si 64 pi 32 pi 16 N/A
“mm sl | _[x] |si64 pi 32 pi 16 N/A

Comparison Operators: Corresponding Intrinsics and Classes, Part 1

Refere

nce

Operators | Corresponding I32vec4 | 116vec8 | I18vecl6 | 132vec?2 | 116vecd | 18vec8
Intrinsic
cnpeq _mm cnpeq_|[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
cnpneq _mm cnpeq_|[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
_mm andnot _[y]* |s1128 |[si128 |[si128 |si64 si 64 si 64
cnpgt _mm cnpgt _[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
cnpge _mm cnpge_|[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
_mm andnot _[y]* |s1128 |[si128 |[si128 |[sib64 si 64 si 64
cnpl t _mmecnplt_[Xx] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
crmpl e _mm cnpl e_[x] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
_mm andnot _[y]* |s1128 |[si128 |[si128 |[si64 si 64 si 64
cnpngt _mm cnpngt _[x] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
cnpnge _mmcrpnge_[x] | N/A N/A N/A N/A N/A N/A
chmpnlt | _mmecnmpnlt [x] | N/A N/A N/A N/A N/A N/A
cnmpnl e _mmcmpnle_[x] |N/A N/A N/A N/A N/A N/A

* Note that _mm andnot _

[y] intrinsics do not apply to the f vec classes.

435

Intel® C++ Compiler for Linux* Systems User's Guide

Comparison Operators: Corresponding Intrinsics and Classes, Part 2

Operators | Corresponding F64vec?2 | F32vec4 | F32vecl
Intrinsic
cnpeq _mm cnpeq_|[X] pd ps Ss
cnpneq _mm cnpeq_|[x] pd ps ss
_mm andnot _[y]*
cnpgt _mm cnpgt _[X] pd ps Ss
cnpge _mm cnpge_|[x] pd ps ss
_mm andnot _[y]*
cnpl t _mmecnplt_[Xx] pd ps Ss
cnpl e _mm cnpl e_[X] pd ps ss
_mm andnot _[y]*
cnpngt _mm cnpngt _[x] pd ps Ss
‘ cnpnge |_rrm_crrpnge_[X] ‘ pd | ps | ss
‘ cmpnl t |_rrm_crrpn| t _[x] ‘ pd | ps | ss
crpnl e _mm cnpnl e_[x] pd ps ss

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding I32vec4 | I116vec8 | I8vecl6 | 132vec?2 | I116vec4 | 18vec8
Intrinsic
sel ect _eq |_mm cnpeq_][X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
~mmand_[y si 128 |si 128 |si 128 |si64 si 64 si 64
_mm andnot _[y]* |si 128 |sil1l28 |sil28 |[sib64 si 64 si 64
mm or _[vy] si 128 |si 128 |si128 |si64 si 64 si 64
sel ect _neq | _mm cnpeq_|[X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
mmand[y si 128 |[si 128 |sil28 |si64 si 64 si 64
_mm andnot _[y]* |si 128 |sil1l28 |[sil28 |[sib64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si128 |si64 si 64 si 64
select _gt | _mmecnpgt [X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
“nmmand_[y si 128 |si 128 |si128 |si64 si 64 si 64
“mm andnot _[y]* |si128 |si128 |sil1l28 |si64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si128 |si64 si 64 si 64
sel ect_ge |_mm cnpge_ [X] epi 32 |epil6 |[epi8 pi 32 pi 16 pi 8
mm and[si 128 |[si 128 |sil1l28 |si64 si 64 si 64
_mm andnot _[y]* |si 128 |sil1l28 |sil1l28 |[sib64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si 128 |si64 si 64 si 64
select It | _mmecenplt [X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
“mm and_[V] si 128 |si 128 |si 128 |si64 si 64 si 64
_nm andnot _[y]* |si128 |si128 |si128 |si64 si 64 si 64
_mmor _[vy] si 128 |si 128 |si 128 |si64 si 64 si 64
select_le |_mmcnple_ [X] epi 32 |epil6 |epi8 pi 32 pi 16 pi 8
~mm and_[vYy] si 128 |si 128 |si 128 |si64 si 64 si 64
mm andnot _[y]* |si 128 |sil1l28 |sil28 |si64 si 64 si 64
mm or _[y] si 128 |si 128 |si128 |si64 si 64 si 64

436

Reference

Operators Corresponding I32vec4 | I116vec8 | 18vecl6 | 132vec?2 | 116vecd | I18vec8
Intrinsic

sel ect _ngt | _mm cnpgt _[X] N/A N/A N/A N/A N/A N/A

sel ect _nge | _nm cnpge_[X] N/A N/A N/A N/A N/A N/A

select_nlt | _mmecnplt_[X] N/A N/A N/A N/A N/A N/A

select_nle |_nmcnpl e_[x] N/A N/A N/A N/A N/A N/A

* Note that _nm andnot _[y] intrinsics do not apply to the f vec classes.

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 2

Operators

Corresponding
Intrinsic

F64vec?2

F32vec4

F32vecl

sel ect _eq

mm cnpeq][x]

pd

ps

SS

sel ect _neq

pd

ps

SS

sel ect gt

QD
S5 3
ek
=1
2
=25
<
*

pd

ps

SS

sel ect _ge

_[x]

_[yl~*

533333

pd

ps

SS

select It

_[x]

_[yl~*

5333

oL Y®O
=33
| o

>

o]

—

pd

ps

SS

select le

3|3

pd

ps

SS

sel ect _ngt

pd

ps

SS

sel ect _nge

mm cnpge[x]

pd

ps

SS

sel ect_nlt

mmecenplt[X]

pd

ps

sel ect _nle

mm cnpl e[X]

pd

ps

SS

437

Intel® C++ Compiler for Linux* Systems User's Guide

Packing and Unpacking Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding I64vec? | I32vec4 | I116vec8 | I8vecl6 | I32vec?2
Intrinsic

unpack_hi gh | _mm unpackhi [x] |epi 64 |epi32 |epil6 |epi8 pi 32

unpack | ow | _mm unpackl o_[x] ‘ epi 64 ‘ epi 32 |epi 16 |epi 8 | pi 32

pack_sat _mm packs_[x] N/A epi 32 |epil6 |[N/A pi 32
packu_sat _mm packus_[x] N/A N/A epi 16 |N/A N/A
sat _add _mm adds_[x] N/A N/A epi 16 |[epi 8 N/A
sat_sub _mm subs_[x] N/A N/A epi 16 |[epi 8 N/A

Packing and Unpacking Operators: Corresponding Intrinsics and Classes, Part 2

Operators Cor_res_ponding I16vec4 | I8vec8 | F64vec2 | F32vec4 | F32vecl
Intrinsic

unpack_hi gh | _mm unpackhi [x] |pi 16 pi 8 pd ps N/A
unpack | ow | _mm unpacklo [x] |pi 16 pi 8 pd ps N/A
pack_sat _mm packs_[x] pi 16 N/A N/A N/A N/A
packu_sat _mm packus_[x] pulé6 N/A N/A N/A N/A

sat _add _mm adds_[x] pi 16 pi 8 pd ps Ss
sat_sub _mm subs_[x] pi 16 pi 8 pi 16 pi 8 pd

Conversions Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic
F64vec2Tol nt _mmcvttsd_si 32

F32vec4ToF64vec2 | _mm cvtps_pd

F64vec2ToF32vec4 | _mm cvt pd_ps

| nt ToF64vec?2 _mm cvtsi 32_sd

F32vec4Tol nt _mmcvtt_ss2si

‘ F32vec4Tol s32vec?2 |_rrm_cvt t ps_pi 32

‘ I nt ToF32vec4 |_rrm_cvt si 32_ss

| s32vec2ToF32vec4 | _nmm cvt pi 32_ps

438

Reference

Programming Example

This sample program uses the F32vec4 class to average the elements of a 20 element floating point array.

/1 1nclude Stream ng SIMD Extension Class Definitions
#i ncl ude <fvec. h>

/1 Shuffle any 2 single precision floating point froma
/1 into low 2 SP FP and shuffle any 2 SP FP fromb

/1 into high 2 SP FP of destination

#defi ne SHUFFLE(a, b,i) (F32vec4) mmshuffle _ps(a,b,i)

#i ncl ude <stdio. h>

#def i ne Sl ZE 20

/1 d obal variables
float result;
_MM ALIGN 16 float array[Sl ZE];

/***

/
/1 Function: Add20ArrayEl enents
/
/

/ Add all the elements of a 20 el enent array
/***

voi d Add20ArrayEl enents (F32vec4 *array, float *result)

F32vec4 vecO, vecl,
vecO = _mmload_ps ((float *) array); // Load array's first
4 floats

//***

/1 Add all elements of the array, 4 elenents at a tine

//**

vecO += array[1l]; // Add elenments 5-8

vecO += array[2]; // Add elenments 9-12
vecO += array[3]; // Add elements 13-16
vecO += array[4]; // Add elements 17-20

khkhkkhkhkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhdhhhddhdhdhkhdhkrkkhrkhr*x*%

/1
/1 There are now 4 partial suns.

// Add the 2 lowers to the 2 raises,
/1 then add those 2 results together
/1

khkhkkhkhkhkhkhkhhhhkhhhkhhhkhhhkhhdhhhdhhhdhhhdhdhrhhkhdhkrkhrkk k*x*

vecl = SHUFFLE(vecl, vecO, 0x40);

vecO += vecl;

vecl = SHUFFLE(vecl, vecO, 0x30);

vecO += vecl;

vecO = SHUFFLE(vecO, vecO, 2);

_mmstore_ss (result, vecO); // Store the final sum

}
void main(int argc, char *argv[])
{

int i;

/1 Initialize the array

for (i=0; i < SIZE; i++)

{

array[i] = (float) i;
}

439

Intel® C++ Compiler for Linux* Systems User's Guide

/1 Call function to add all array el enents
Add20Ar r ayEl enents (array, &result);

/1 Print average array el enment val ue

printf ("Average of all array values = %\n",

printf ("The correct answer Is %\n\n\n",

9.

5)

result/20.);

440

