
Intel® C++ Compiler for Linux* Systems
User's Guide

Document Number: 253254-031

i

Table Of Contents
Intel® C++ Compiler User's Guide ... 1

Disclaimer and Legal Information.. 1
Welcome to the Intel® C++ Compiler.. 1
What's New in This Release.. 2
Features and Benefits ... 2
Product Web Site and Support.. 3
System Requirements ... 3
FLEXlm* Electronic Licensing ... 3
Related Publications.. 4
How to Use This Document... 5

Compiler Options Quick Reference .. 6
New Options .. 6
Options Quick Reference Guide.. 9
Compiler Options Cross Reference... 30
Default Compiler Options .. 37
Deprecated and Unsupported Compiler Options .. 38

Volume I: Building Applications... 39
Building Applications from the Command Line ... 41
Building Applications in Eclipse* ... 43
Compilation Options .. 67
Linking ... 82
Debugging ... 83
Creating and Using Libraries... 87
gcc* Compatibility .. 95
Language Conformance.. 104

Volume II: Optimizing Applications ... 108
Optimization Levels ... 108
Floating-point Optimizations.. 110
Optimizing for Specific Processors.. 114
Interprocedural Optimizations ... 121
Profile-guided Optimizations ... 131
High-level Language Optimizations (HLO).. 150
Parallel Programming.. 155
Optimization Support Features.. 192

Reference... 202
Compiler Limits.. 202
Key Files .. 203
Diagnostics and Messages ... 207
Intel Math Library... 211
Intel® C++ Intrinsics Reference .. 243
Intel® C++ Class Libraries .. 382

1

Intel® C++ Compiler User's Guide
Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided
in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,
copyright or other intellectual property right. Intel products are not intended for use in medical, life saving,
or life sustaining applications.

This User�s Guide as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment
by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"
or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them.

The software described in this User�s Guide may contain software defects which may cause the product to
deviate from published specifications. Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386,
Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel
NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III
Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2004.

Welcome to the Intel® C++ Compiler
Welcome to the Intel® C++ Compiler. Before you use the compiler, see System Requirements.

Most Linux* distributions include the GNU* C library, assembler, linker, and others. The Intel C++
Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section of this User's Guide to gain an overview of
the topics presented. For the latest information, visit the Intel Web site:

http://www.intel.com/software/products/compilers/clin/

See Getting Started for basic information on running the compiler.

Intel® C++ Compiler for Linux* Systems User's Guide

2

What's New in This Release
New features for this version of the Intel® C++ Compiler include:

• New Eclipse IDE integration
• New compiler options
• New predefined macros
• Support for exported templates
• Support for template Instantiation
• Invoking the compiler with icc and icpc
• New defaults for gcc interoperability options
• Support for thread-local storage
• Support for high-level optimization for C on IA-32
• Support for additional debug information
• Deprecated compiler options

For further information on New Features, see the Release Notes.

Features and Benefits
The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as profile-guided optimization, prefetch instruction
and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2), the Intel
C++ Compiler provides high performance.

Feature Benefit

High Performance Achieve a significant performance gain by using optimizations

Support for Streaming
SIMD Extensions

Advantage of Intel microarchitecture

Automatic vectorizer Advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support Shared memory parallel programming

Floating-point
optimizations

Improved floating-point performance

Data prefetching Improved performance due to the accelerated data delivery

Interprocedural
optimizations

Larger application modules perform better

Profile-guided
optimization

Improved performance based on profiling frequently-used functions

Processor dispatch Taking advantage of the latest Intel architecture features while
maintaining object code compatibility with previous generations of
Intel® Pentium® processors (for IA-32-based systems only).

Intel® C++ Compiler User's Guide

3

Product Web Site and Support
For the latest information about Intel® C++ Compiler, visit:

http://www.intel.com/software/products/compilers/clin/

For specific details on the Itanium® architecture, visit the web site at

http://www.intel.com/software/products/browse/itanium.htm

System Requirements
IA-32 Processor System Requirements

• A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium 4
processor recommended).

• 128 MB of RAM (256 MB recommended).
• 100 MB of disk space.

Itanium® Processor System Requirements

• A computer with an Itanium processor.
• 256 MB of RAM.
• 100 MB of disk space.

Software Requirements

See the Release Notes for a complete list of system requirements.

FLEXlm* Electronic Licensing
The Intel® C++ Compiler uses Macrovision's FLEXlm* licensing technology. The compiler requires a
valid license file in the /licenses directory in the installation path. The default directory is
/opt/intel_cc_80/licenses. The license files have a .lic file extension.

If you require a counted license, see Using the Intel® License Manager for FLEXlm* (flex_ug.pdf).

Intel® C++ Compiler for Linux* Systems User's Guide

4

Related Publications
The following documents provide additional information relevant to the Intel® C++ Compiler:

• ISO/IEC 9989:1990, Programming Languages--C
• ISO/IEC 14882:1998, Programming Languages--C++.
• The Annotated C++ Reference Manual, Special Edition, Ellis, Margaret; Stroustrup, Bjarne, Addison

Wesley, 1991. Provides information on the C++ programming language.
• The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing Company, One

Jacob Way, Reading, MA 01867.
• The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W., Prentice Hall,

1988. Provides information on the K & R definition of the C language.
• C: A Reference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall, 1991.

Provides information on the ANSI standard and extensions of the C language.
• Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel Corporation,

doc. number 243190.
• Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel

Corporation, doc. number 243191.
• Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel Corporation,

doc. number 243192.
• Intel® Itanium® Assembler User's Guide.
• Intel® Itanium®-based Assembly Language Reference Manual.
• Itanium® Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel

Corporation, doc. number 245317-001.
• Itanium® Architecture Software Developer's Manual Vol. 2: System Architecture, Intel Corporation,

doc. number 245318-001.
• Itanium® Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel

Corporation, doc. number 245319-001.
• Itanium® Architecture Software Developer's Manual Vol. 4: Itanium® Processor Programmer's

Guide, Intel Corporation, doc. number 245319-001.
• Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.
• Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number 241618.
• Intel Architecture MMX(TM) Technology Programmer's Reference Manual, Intel Corporation, doc.

number 241618.
• Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc. number

242693.
• Pentium® II Processor Developer's Manual, Intel Corporation, doc. number 243502-001.
• Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.
• Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-005.

Most Intel documents are also available from the Intel Corporation Web site at
http://developer.intel.com/software/products/

Intel® C++ Compiler User's Guide

5

How to Use This Document
This User's Guide explains how to use the Intel® C++ Compiler. It provides information on how to get
started with the Intel C++ Compiler, how this compiler operates, and what capabilities it offers for high
performance. You learn how to use the standard and advanced compiler optimizations to gain maximum
performance of your application. This documentation assumes that you are familiar with the C++ standard
programming language and with the Intel processor architecture. You should also be familiar with the host
computer's operating system.

Note

This document explains how information and instructions apply differently to each targeted architecture. If
there is no specific indication to either architecture, the description is applicable to both architectures.

Notation Conventions

Style Definition

This type
style

indicates an element of syntax, a reserved word, a keyword, a file name, or
part of a program example (text appears in lowercase unless UPPERCASE is
required)

This type
style

indicates what you type as input

This type
style

indicates an argument on a command line or an option's argument

[items] indicates that the items enclosed in brackets are optional

{ item |
item }

indicates a set of choices from which you must select one

... (ellipses) indicates that an argument can be repeated several times

6

Compiler Options Quick Reference
Conventions Used in the Options Quick Reference Tables

Convention Definition

[-] If an option includes "[-]" as part of the definition, then the option
can be used to enable or disable the feature. For example, the -
c99[-] option can be used as -c99 (enable c99 support) or -c99-
(disable c99 support).

[n] Indicates that the value n in [] can be omitted or have various values.

Values in {} with
vertical bars

Used for option's version; for example, option -x{K|W|N|B|P} has
these versions: -xK, -xW, -xN, -xB, and -xP.

{n} Indicates that option must include one of the fixed values for n.

Words in this
style following an
option

Indicate option's required argument(s). Arguments are separated by
comma if more than one are required.

New Options
Some compiler options are only available on certain systems. In the following table, these options are
indicated with labels as follows:

Label Meaning

i32 Option available on IA-32-based systems

i32em Option available on Intel® Extended Memory 64 Technology (Intel® EM64T)
systems

i64 Option available on Itanium®-based systems

• If no label is present, the option is available on all supported systems
• If "only" appears in the label, that option is only available on the identified system

Compiler Options Quick Reference

7

The compiler options listed in the following table are new to this release.

Option Description Default

-cxxlib-gcc=GCC-root-dir Specifies the top-level location of
the gcc binaries and libraries.

OFF

-debug [no]inline_debug_info Produces enhanced source position
information for inlined code.

OFF

-debug [no]variable_locations Produces additional debug
information for scalar local variables
using a feature of the DWARF
object module format known as
location lists.

OFF

-debug extended Turns on the three -debug options:

• -debug inline_info
• -debug

variable_locations

OFF

-export Enable recognition of exported
templates. Supported in C++ mode
only.

OFF

-export_dir dir Specifies a directory name for the
exported template search path.

OFF

-fabi-version Directs the compiler to select a
specific ABI implementation.

OFF

-finline-functions Inline any function at the compiler's
discretion. Same as -ip.

OFF

-fno-exceptions The -fno-exceptions option
turns off exception handling table
generation, resulting in smaller code.
Any use of exception handling
constructs - try blocks, throw
statements will produce an error.
Exception specifications are parsed
but ignored. A preprocessor symbol
__EXCEPTIONS is defined when
this option is not used. It is
undefined when this option is
present.

OFF

-fno-implicit-inline-templates Do not emit code for implicit
instantiations of inline templates.
For C++ only.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

8

Option Description Default

-fno-implicit-templates Never emit code for non-inline
templates which are instantiated
implicitly (i.e. by use); only emit
code for explicit instantiations. For
C++ only.

OFF

-ftls-model=model Change thread-local storage model,
where model can be the following:

• global-dynamic
• local-dynamic
• initial-exec
• local-exec

OFF

-g0 Disable generation of symbolic
debug information.

OFF

-[no-]global-hoist Enables [disables] hoisting and
speculative loads of global variables.

OFF

-ipo[value] Enables interprocedural
optimizations across files. The
optional value argument controls
the maximum number of link-time
compilations (or number of object
files) that are spawned. The default
for value is 1 when value is not
specified for small applications. It
will generate two or more object
files for large applications.

OFF

-ipo_separate Creates one object file for every
source file. This option overrides -
ipo[value].

OFF

-kernel
(i64 only)

Generates code for inclusion in the
kernel. Prevents generation of
speculation as support may not be
available when code runs.
Suppresses software pipelining.

OFF

-MP Add a phony target for each
dependency.

OFF

-MQtarget Same as -MT, but quotes special
Make characters.

OFF

-MTtarget Change the default target rule for
dependency generation.

OFF

-Os Enable speed optimizations, but
disable some optimizations which
increase code size for small speed
benefit.

OFF

Compiler Options Quick Reference

9

Option Description Default

-Qlocation,gas,path Specifies the GNU assembler. OFF

-Qlocation,gld,path Specifies the GNU linker. OFF

-reserve-kernel-regs
(i64 only)

Reserves registers f12-f15 and
f32-f127 for use by the kernel.
These will not be used by the
compiler.

OFF

-std=gnu89 ISO C90 plus GNU extensions.
Includes some C99 features.

ON

-std=gnu++98 Same as -std=gnu89. OFF

-[no]traceback Generate [do not generate] extra
information in the object file that
allows the display of source file
traceback information at run time
when a severe error occurs.

OFF

Options Quick Reference Guide
Some compiler options are only available on certain systems. In the following table, these options are
indicated with labels as follows:

Label Meaning

i32 Option available on IA-32-based systems

i32em Option available on Intel® Extended Memory 64 Technology (Intel® EM64T)
systems

i64 Option available on Itanium®-based systems

• If no label is present, the option is available on all supported systems
• If "only" appears in the label, that option is only available on the identified system

Option Description Default

-A- Disables all predefined macros. OFF

-[no]align
(i32 only)

Analyze and reorder memory
layout for variables and arrays.

OFF

-Aname[(value)] Associates a symbol name with
the specified sequence of
value. Equivalent to an
#assert preprocessing
directive.

OFF

-alias_args[-] This option implies arguments
may be aliased [not aliased].

-
alias_args-

Intel® C++ Compiler for Linux* Systems User's Guide

10

Option Description Default

-ansi Equivalent to GNU* ANSI. OFF

-ansi_alias[-] -ansi_alias directs the
compiler to assume that the
program adheres to the rules
defined in the ISO C Standard.
If your program adheres to these
rules, then this option will allow
the compiler to optimize more
aggressively. If it doesn't adhere
to these rules, then it can cause
the compiler to generate
incorrect code.

-
ansi_alias-

-auto_ilp32 Specifies that the application
cannot exceed a 32-bit address
space, which allows the
compiler to use 32-bit pointers
whenever possible. To use this
option, you must also specify -
ipo[value]. Using the -
auto_ilp32 option on
programs that can exceed 32-bit
address space (2**32) may
cause unpredictable results
during program execution. This
option has no effect on Intel®
EM64T systems unless the -
axP or -xP option is also used.

OFF

-ax{K|W|N|B|P}
(i32, i32em)

Generates specialized code for
processor-specific codes K, W, N,
B, and P while also generating
generic IA-32 code.

• K = Intel® Pentium® III
and compatible Intel
processors

• W = Intel Pentium 4 and
compatible Intel processors

• N = Intel Pentium 4 and
compatible Intel processors

• B = Intel Pentium M and
compatible Intel processors

• P = Intel Pentium 4
processor with Streaming
SIMD Extensions 3 (SSE3)

Only the -axW and -axP
options are available on Intel®
EM64T.

OFF

Compiler Options Quick Reference

11

Option Description Default

-C Places comments in
preprocessed source output.

OFF

-c Stops the compilation process
after an object file has been
generated. The compiler
generates an object file for each
C or C++ source file or
preprocessed source file. Also
takes an assembler file and
invokes the assembler to
generate an object file.

OFF

-c99[-] Enables [disables] C99 support
for C programs.

OFF

-complex_limited_range[-] Enables the use of "delete basic
algebraic expansions" of some
arithmetic operations involving
data of type _Complex. This
can cause some performance
improvements in programs that
use _Complex arithmetic, but
values at the extremes of the
exponent range may not
compute correctly. Default is -
complex_limited_range-
.

OFF

-create_pch filename Manual creation of precompiled
header (filename.pchi).

OFF

-cxxlib-gcc[=GCC-root-dir] Link using C++ run-time
libraries provided with gcc. This
option is ON by default if your
gcc version is 3.2, 3.3, or 3.4.
Use the optional argument,
=GCC-root-dir, to specify
the top-level location of the gcc
binaries and libraries.

OFF

-cxxlib-icc Link using C++ run-time
libraries provided by Intel. This
option is ON by default if your
gcc version is less than 3.2.

OFF

-debug [no]inline_debug_info Produces enhanced source
position information for inlined
code.

OFF

-debug [no]variable_locations Produces additional debug
information for scalar local
variables using a feature of the
DWARF object module format
known as location lists.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

12

Option Description Default

-debug extended Turns on the three -debug
options:

• -debug inline_info
• -debug

variable_locations

OFF

-dM Output macro definitions in
effect after preprocessing (use
with -E).

OFF

-Dname[=value] Defines a macro name and
associates it with the specified
value. Equivalent to a
#define preprocessor
directive.

OFF

-dryrun Show driver tool commands, but
do not execute tools.

OFF

-dynamic-linkerfilename Selects a dynamic linker
(filename) other than the
default.

OFF

-E Stops the compilation process
after the C or C++ source files
have been preprocessed, and
writes the results to stdout.

OFF

-EP Preprocess to stdout omitting
#line directives.

OFF

-export Enable recognition of exported
templates. Supported in C++
mode only.

OFF

-export_dir dir Specifies a directory name for
the exported template search
path.

OFF

-falias Assume aliasing in program. ON

-fabi-version=n Directs the compiler to select a
specific ABI implementation.

OFF

Compiler Options Quick Reference

13

Option Description Default

-fast The -fast option maximizes
speed across the entire program.
For Itanium-based systems, -
fast sets -O3, -ipo, and -
static. For IA-32 and Intel®
EM64T systems, -fast sets -
O3, -ipo, -static, and -xP.
Note that on IA-32 and Intel®
EM64T systems, programs
compiled with the -xP option
will detect non-compatible
processors and generate an error
message during execution.

OFF

-fcode-asm Produce assembly file with
optional code annotations.
Requires -S.

OFF

-ffnalias Assume aliasing within
functions.

ON

-finline-functions Inline any function at the
compiler's discretion. Same as -
ip.

OFF

-fminshared Compilation is for the main
executable. Absolute addressing
can be used and non-position
independent code generated for
symbols that are at least
protected.

OFF

-fno-alias Assume no aliasing in program. OFF

-fno-common Enables the compiler to treat
common variables as if they
were defined, allowing the use
of gprel addressing of
common data variables.

OFF

-fno-exceptions The -fno-exceptions
option turns off exception
handling table generation,
resulting in smaller code. Any
use of exception handling
constructs - try blocks, throw
statements will produce an error.
Exception specifications are
parsed but ignored. A
preprocessor symbol
__EXCEPTIONS is defined
when this option is not used. It
is undefined when this option is
present.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

14

Option Description Default

-fno-fnalias Assume no aliasing within
functions, but assume aliasing
across calls.

OFF

-fno-implicit-inline-templates Do not emit code for implicit
instantiations of inline
templates. For C++ only.

OFF

-fno-implicit-templates Never emit code for non-inline
templates which are instantiated
implicitly (i.e. by use); only emit
code for explicit instantiations.
For C++ only.

OFF

-f[no-]rtti
(i32 and i64)

Enable [disable] RTTI support. -frtti

-fnsplit[-] Enables [disables] function
splitting. Default is ON with -
prof_use. To disable function
splitting when you use -
prof_use, also specify -
fnsplit-.

OFF

-fp
(i32, i32em)

Disable using the EBP register
as general purpose register.

OFF

-fpic, -fPIC For IA-32, this option generates
position independent code.
For Itanium-based systems, this
option generates code allowing
full symbol preemption.

OFF

-fp_port
(i32 only)

Round fp results at assignments
and casts. Some speed impact.

OFF

-fpstkchk
(i32 only)

Generates extra code after every
function call to assure the FP
stack is in the expected state.

OFF

-fr32
(i64 only)

Use only lower 32 floating-point
registers.

OFF

-fshort-enums Allocate as many bytes as
needed for enumerated types.

OFF

-fsource-asm Produce assemblable file with
optional code annotations.
Requires -S.

OFF

-fsyntax-only Same as -syntax. OFF

Compiler Options Quick Reference

15

Option Description Default

-ftls-model=model Change thread-local storage
model, where model can be
the following:

• global-dynamic
• local-dynamic
• initial-exec
• local-exec

OFF

-ftz[-]
(i32em, i64)

Flushes denormal results to zero.
The option is turned ON with -
O3.

OFF

-funsigned-bitfields Change default bitfield type to
unsigned.

OFF

-funsigned-char Change default char type to
unsigned.

OFF

-f[no]verbose-asm Produce assemblable file with
compiler comments.
Default: -fverbose-asm

ON

-fvisibility-default=file Space separated symbols listed
in the file argument will get
visibility set to default.

OFF

-fvisibility-extern=file Space separated symbols listed
in the file argument will get
visibility set to extern.

OFF

-fvisibility-hidden=file Space separated symbols listed
in the file argument will get
visibility set to hidden.

OFF

-fvisibility-internal=file Space separated symbols listed
in the file argument will get
visibility set to internal.

OFF

-fvisibility-protected=file Space separated symbols listed
in the file argument will get
visibility set to protected.

OFF

-fvisibility=
[extern|default|protected
|hidden|internal]

Global symbols (common and
defined data and functions) will
get the visibility attribute given
by default. Symbol visibility
attributes explicitly set in the
source code or using the symbol
visibility attribute file options
will override the -
fvisibility setting.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

16

Option Description Default

-fwritable-strings
(i32 only)

Ensure that string literals are
placed in a writable data section.

OFF

-g Generates symbolic debugging
information in the object code
for use by source-level
debuggers. The -g option
changes the default optimization
from -O2 to -O0.

OFF

-g0
(i32 only)

Disable generation of symbolic
debug information.

OFF

-gcc-name=name Use this option to specify the
location of g++ when compiler
cannot locate gcc C++ libraries.
For use with -cxxlib-gcc
configuration. Use this option
when referencing a non-standard
gcc installation.

OFF

-gcc-version=nnn This option provides compatible
behavior with gcc, where nnn
indicates the gcc version.

OFF

-[no-]global-hoist Enables [disables] hoisting and
speculative loads of global
variables.

OFF

-H Print "include" file order and
continue compilation.

OFF

-help Prints compiler options
summary.

OFF

-idirafterdir Add directory (dir) to the
second include file search path
(after -I).

OFF

-Idirectory Specifies an additional
directory to search for
include files.

OFF

-i_dynamic Link Intel provided libraries
dynamically.

OFF

-inline_debug_info Produces enhanced source
position information for inlined
code. It also provides enhanced
debug information useful for
function call traceback. To use
this option for debugging, you
must also specify -g.

OFF

Compiler Options Quick Reference

17

Option Description Default

-ip Enables interprocedural
optimizations for single file
compilation.

OFF

-IPF_fma[-]
(i64 only)

Enable [disable] the combining
of floating-point multiplies and
add/subtract operations.

OFF

-IPF_fltacc[-]
(i64 only)

Enable [disable] optimizations
that affect floating-point
accuracy.

OFF

-IPF_flt_eval_method0
(i64 only)

Floating-point operands
evaluated to the precision
indicated by the program.

OFF

-IPF_fp_relaxed[-]
(i64 only)

Enable [disable] use of faster but
slightly less accurate code
sequences for math functions,
such as divide and square root.

OFF

-IPF_fp_speculationmode
(i64 only)

Enable floating-point
speculations with the following
mode conditions:

• fast - speculate floating-
point operations

• safe - speculate only when
safe

• strict - same as off
• off - disables speculation

of floating-point operations

OFF

-ip_no_inlining Disables inlining that would
result from the -ip
interprocedural optimization, but
has no effect on other
interprocedural optimizations.

OFF

-ip_no_pinlining
(i32, i32em)

Disable partial inlining.
Requires -ip or -
ipo[value].

OFF

-ipo[n] Enables interprocedural
optimizations across files. The
optional n argument controls
the maximum number of link-
time compilations (or number of
object files) that are spawned.
The default for value is 1
when value is not specified.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

18

Option Description Default

-ipo_c Generates a multifile object file
(ipo_out.o) that can be used
in further link steps.

OFF

-ipo_obj Forces the compiler to create
real object files when used with
-ipo[value].

OFF

-ipo_S Generates a multifile
assemblable file named
ipo_out.s that can be used in
further link steps.

OFF

-ipo_separate Creates one object file for every
source file. This option
overrides -ipo[value].

OFF

-isystemdir Add directory dir to the start
of the system include path.

OFF

-ivdep_parallel
(i64 only)

This option indicates there is
absolutely no loop-carried
memory dependency in the loop
where the IVDEP directive is
specified.

OFF

-Kc++ Compile all source or
unrecognized file types as C++
source files.

OFF

-kernel
(i64 only)

Generates code for inclusion in
the kernel. Prevents generation
of speculation as support may
not be available when code runs.
Suppresses software pipelining.

OFF

-Knopic, -KNOPIC
(i64 only)

Use fpic instead of this option. ON for Itanium-
based systems
OFF for IA-32

-KPIC, -Kpic Use fpic instead of this option. OFF

-Ldirectory Instruct linker to search
directory for libraries.

OFF

-M Generates makefile dependency
lines for each source file, based
on the #include lines found
in the source file.

OFF

Compiler Options Quick Reference

19

Option Description Default

-march=cpu
(i32 only)

Generate code excusively for a
given cpu. Values for cpu are:

• pentiumpro - Intel
Pentium Pro processors

• pentiumii - Intel
Pentium II processors.

• pentiumiii - Intel
Pentium III processors.

• pentium4 - Intel Pentium
4 processors.

OFF

-mcpu=cpu Optimize for a specific cpu. For
IA-32, cpu values are:

• pentium - Optimize for
Pentium processor.

• pentiumpro - Optimize
for Pentium Pro, Pentium II
and Pentium III processors.

• pentium4 - Optimize for
Pentium 4 processor
(Default).

The only option available on
Intel® EM64T systems is -
mcpu=pentium4.
For Itanium-based Systems,
cpu values are:

• itanium - Optimize for
Itanium processor.

• itanium2 - Optimize for
Itanium 2 processor
(Default).

ON
pentium4
on IA-32

itanium2
on Itanium-
based
Systems

-MD Preprocess and compile.
Generate output file (.d
extension) containing
dependency information.

OFF

-MFfile Generate makefile dependency
information in file. Must
specify -M or -MM.

OFF

-MG Similar to -M, but treats missing
header files as generated files.

OFF

-MM Similar to -M, but does not
include system header files.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

20

Option Description Default

-MMD Similar to -MD, but does not
include system header files.

OFF

-mp Favors conformance to the
ANSI C and IEEE 754 standards
for floating-point arithmetic.

OFF

-mp1 Improve floating-point precision
(speed impact is less than -mp).

OFF

-MP Add a phony target for each
dependency.

OFF

-mrelax
(i64 only)

Pass -relax to the linker. ON

-mno-relax
(i64 only)

Do not pass -relax to the
linker.

OFF

-MQtarget Same as -MT, but quotes special
Make characters.

OFF

-mserialize-volatile
(i64 only)

Impose strict memory access
ordering for volatile data object
references.

OFF

-mno-serialize-volatile
(i64 only)

The compiler may suppress both
run-time and compile-time
memory access ordering for
volatile data object references.
Specifically, the .rel/.acq
completers will not be issued on
referencing loads and stores.

OFF

-MTtarget Change the default target rule
for dependency generation.

OFF

-nobss_init Places variables that are
initialized with zeroes in the
DATA section. Disables
placement of zero-initialized
variables in BSS (use DATA).

OFF

-no_cpprt Do not link in C++ run-time
libraries.

OFF

-nodefaultlibs Do not use standard libraries
when linking.

-no-gcc Do not predefine the
__GNUC__,
__GNUC_MINOR__, and
__GNUC_PATCHLEVEL__
macros.

OFF

Compiler Options Quick Reference

21

Option Description Default

-nolib_inline Disables inline expansion of
standard library functions.

OFF

-nostartfiles Do not use standard startup files
when linking.

OFF

-nostdinc Same as -X. OFF

-nostdlib Do not use standard libraries and
startup files when linking.

OFF

-O Same as -O1 on IA-32. Same as
-O2 on Itanium-based systems.

OFF

-O0 Disables optimizations. OFF

-O1 Enable optimizations. Optimizes
for speed. For Itanium compiler,
-O1 turns off software
pipelining to reduce code size.

ON
(i32)

-O2 Same as -O1 on IA-32. Same as
-O on Itanium-based systems.

ON
(i64)

-O3 Enable -O2 plus more
aggressive optimizations that
may increase the compilation
time. Impact on performance is
application dependent, some
applications may not see a
performance improvement.

OFF

-Obn Controls the compiler's inline
expansion. The amount of inline
expansion performed varies with
the value of n as follows:

• 0: Disables inlining.
• 1: Enables (default) inlining

of functions declared with
the __inline keyword.
Also enables inlining
according to the C++
language.

• 2: Enables inlining of any
function. However, the
compiler decides which
functions to inline. Enables
interprocedural
optimizations and has the
same effect as -ip.

OFF

-ofile Name output file. OFF

Intel® C++ Compiler for Linux* Systems User's Guide

22

Option Description Default

-openmp Enables the parallelizer to
generate multi-threaded code
based on the OpenMP*
directives. The -openmp option
works with both -O0 and any
optimization level of -O1, -O2,
and -O3.

OFF

-openmp_profile The -openmp_profile
option enables analysis of
OpenMP* applications with
Thread Profiler, which is
required to use this option.

OFF

-openmp_report{0|1|2} Controls the OpenMP
parallelizer's diagnostic levels.

OFF

-openmp_stubs Enables OpenMP programs to
compile in sequential mode. The
OpenMP directives are ignored
and a stub OpenMP library is
linked sequentially.

OFF

-opt_report Generates an optimization report
directed to stderr, unless -
opt_report_file is
specified.

OFF

-opt_report_filefilename Specifies the filename for the
optimization report. It is not
necessary to invoke -
opt_report when this option
is specified.

OFF

-opt_report_levellevel Specifies the verbosity level
of the output. Valid level
arguments:

• min
• med
• max

If a level is not specified,
min is used by default.

OFF

Compiler Options Quick Reference

23

Option Description Default

-opt_report_phasename Specifies the compilation name
for which reports are generated.
The option can be used multiple
times in the same compilation to
get output from multiple phases.
Valid name arguments:

• ipo: Interprocedural
Optimizer

• hlo: High Level Optimizer
• ilo: Intermediate

Language Scalar Optimizer
• ecg: Code Generator
• omp: OpenMP*
• all: All phases

OFF

-opt_report_routinesubstring Specifies a routine
substring. Reports from all
routines with names that include
substring as part of the
name are generated. By default,
reports for all routines are
generated.

OFF

-opt_report_help Displays all possible settings for
-opt_report_phase. No
compilation is performed.

OFF

-Os Enable speed optimizations, but
disable some optimizations
which increase code size for
small speed benefit.

OFF

-p Same as -qp. OFF

-P, -F Stops the compilation process
after C or C++ source files have
been preprocessed and writes
the results to files named
according to the compiler's
default file-naming conventions.

OFF

-parallel Detects parallel loops capable of
being executed safely in parallel
and automatically generates
multithreaded code for these
loops.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

24

Option Description Default

-par_report{0|1|2|3} Controls the auto-parallelizer's
diagnostic levels 0, 1, 2, or 3 as
follows:

• -par_report0: no
diagnostic information is
displayed.

• -par_report1: indicates
loops successfully auto-
parallelized (default).

• -par_report2: loops
successfully and
unsccessfully auto-
parallelized.

• -par_report3: same as
2 plus additional
information about any
proven or assumed
dependences inhibiting
auto-parallelization.

OFF

-par_threshold[n] Sets a threshold for the auto-
parallelization of loops based on
the probability of profitable
execution of the loop in parallel,
n=0 to 100. This option is used
for loops whose computation
work volume cannot be
determined at compile time.
Default: n=100.

OFF

-pc32
(i32, i32em)

Set internal FPU precision to 24-
bit significand.

OFF

-pc64
(i32, i32em)

Set internal FPU precision to 53-
bit significand.

OFF

-pc80
(i32, i32em)

Set internal FPU precision to 64-
bit significand.

ON

-pch Automatic processing for
precompiled headers.

OFF

-pch_dir dirname Directs the compiler to find
and/or create a file for
precompiled headers in
dirname.

OFF

-prec_div
(i32, i32em)

Disables the floating point
division-to-multiplication
optimization. Improves
precision of floating-point
divides.

OFF

Compiler Options Quick Reference

25

Option Description Default

-prefetch[-]
(i32 only)

Enables [disables] the insertion
of software prefetching by the
compiler. Default: -
prefetch.

ON

-prof_dir dirname Specify the directory
(dirname) to hold profile
information (*.dyn, *.dpi).

OFF

-prof_file filename Specify the filename for
profiling summary file.

OFF

-prof_format_32 By default, the Intel compiler
creates 64-bit profiling counters
(.dyn and .dpi). This option
creates 32-bit counters for
compatibility with the Intel C++
Compiler 7.0.

OFF

-prof_gen[x] Instruments the program to
prepare for instrumented
execution and also creates a new
static profile information file
(.spi). With the x qualifier,
extra source position is collected
which enables code coverage
tools.

OFF

-prof_use Uses dynamic feedback
information.

OFF

-Qinstall dir Sets dir as root of compiler
installation.

OFF

-Qlocation,tool,path Sets path as the location of the
tool specified by tool .

OFF

-Qoption,tool,list Passes an argument list to
another tool in the
compilation sequence, such as
the assembler or linker.

OFF

-qp Compile and link for function
profiling with UNIX* prof
tool

OFF

-rcd
(i32 only)

Disables changing of the FPU
rounding control. Enables fast
float-to-int conversions.

OFF

-reserve-kernel-regs
(i64 only)

Reserves registers f12-f15
and f32-f127 for use by the
kernel. These will not be used
by the compiler.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

26

Option Description Default

-[no]restrict Enables/disables pointer
disambiguation with the
restrict qualifier.

OFF

-S Generates assemblable files with
.s suffix, then stops the
compilation.

OFF

-scalar_rep[-] The -scalar_rep[-]
compiler option enables
[disables] scalar replacement
performed during loop
transformations.

OFF

-shared Produce a shared object. OFF

-shared-libcxa Link Intel libcxa C++ library
dynamically.

OFF

-sox[-]
(i32, i32em)

Enables [disables] the saving of
compiler options and version
information in the executable
file.

-sox-

-static Prevents linking with shared
libraries.

OFF

-static-libcxa Link Intel libcxa C++ library
statically.

OFF

-std=gnu89 ISO C90 plus GNU extensions.
Includes some C99 features.

ON

-std=gnu++98 Same as -std=gnu89. OFF

-strict_ansi Strict ANSI conformance
dialect.

OFF

-syntax Checks the syntax of a program
and stops the compilation
process after the C or C++
source files and preprocessed
source files have been parsed.
Generates no code and produces
no output files. Warnings and
messages appear on stderr.

OFF

-T file Direct linker to read link
commands from file.

OFF

-tcheck The -tcheck compiler option
enables analysis of threaded
applications with Intel® Thread
Checker, which is required to
use this option.

OFF

Compiler Options Quick Reference

27

Option Description Default

-tpp1
(i64 only)

Targets optimization for the
Itanium processor.

OFF

-tpp2
(i64 only)

Targets optimization for the
Itanium® 2 processor.
Generated code is compatible
with the Itanium processor.

ON

-tpp5
(i32 only)

Targets the optimizations for the
Pentium processor.

OFF

-tpp6
(i32 only)

Targets the optimizations for the
Pentium Pro, Pentium II and
Pentium III processors.

OFF

-tpp7
(i32, i32em)

Targets optimizations for the
Intel Pentium 4 processors.

ON

-[no]traceback Tells the compiler to generate
[not generate] extra information
in the object file to allow the
display of source file traceback
information at run time when a
severe error occurs.

OFF

-Uname Suppresses any definition of a
macro name. Equivalent to a
#undef preprocessing
directive.

OFF

-unrolln Disable loop unrolling for n=0. OFF

-unroll n Disable loop unrolling for n=0. OFF

-use_asm Produce objects through
assembler.

OFF

-use_msasm
(i32 only)

Accept the Microsoft* MASM-
style inlined assembly format
instead of GNU-style.

OFF

-use_pch filename Manual use of precompiled
header (filename.pchi).

OFF

-u symbol Pretend the symbol is
undefined.

OFF

-V Display compiler version
information.

OFF

-v Show driver tool commands and
execute tools.

Intel® C++ Compiler for Linux* Systems User's Guide

28

Option Description Default

-vec_report[n]
(i32, i32em)

Controls the amount of
vectorizer diagnostic
information.

• n = 0 no diagnostic
information

• n = 1 indicates vectorized
loops (DEFAULT)

• n = 2 indicates
vectorized/non-vectorized
loops

• n = 3 indicates
vectorized/non-vectorized
loops and prohibiting data
dependence information

• n = 4 indicates non-
vectorized loops

• n = 5 indicates non-
vectorized loops and
prohibiting data

OFF

-w Disable all warnings. OFF

-Wall Enable all warnings. OFF

-Wbrief Enable a mode in which a
shorter form of the diagnostic
output is used. When enabled,
the original source line is not
displayed and the error message
text is not wrapped when too
long to fit on a single line.

OFF

-Wcheck Performs compile-time code
checking for code that exhibits
non-portable behavior,
represents a possible unintended
code sequence, or possibly
affects operation of the program
because of a quiet change in the
ANSI C Standard.

OFF

-wn Control diagnostics.

• n = 0 displays errors (same
as -w)

• n = 1 displays warnings and
errors (DEFAULT)

• n = 2 displays remarks,
warnings, and errors

-w1

Compiler Options Quick Reference

29

Option Description Default

-wdL1[,L2,...] Disables diagnostics L1
through LN.

OFF

-weL1[,L2,...] Changes severity of diagnostics
L1 through LN to error.

OFF

-Werror Force warnings to be reported as
errors.

OFF

-wnn Limits the number of errors
displayed prior to aborting
compilation to n.

OFF

-wrL1[,L2,...] Changes the severity of
diagnostics L1 through LN to
remark.

OFF

-wwL1[,L2,...] Changes severity of diagnostics
L1 through LN to warning.

OFF

-Wl,o1[,o2,...] Pass options o1, o2, etc. to the
linker for processing.

OFF

-Wp,o1[,o2,...] Pass options o1, o2, etc. to the
preprocessor.

OFF

-Wp64
(i32em, i64)

Print diagnostics for 64-bit
porting.

OFF

-x type All source files found
subsequent to -x type will be
recognized as one of the
following types:

• c - C source file
• c++ - C++ source file
• c-header - C header file
• cpp-output - C

preprocessed file
• assembler - assemblable

file
• assembler-with-cpp -

Assemblable file that needs
to be preprocessed.

• none - Disable recognition
and revert to file extension.

OFF

-X Removes the standard
directories from the list of
directories to be searched for
include files.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

30

Option Description Default

-x{K|W|N|B|P}
(i32, i32em)

Generates specialized code for
processor-specific codes K, W, N,
B, and P.

• K = Intel® Pentium® III
and compatible Intel
processors

• W = Intel Pentium 4 and
compatible Intel processors

• N = Intel Pentium 4 and
compatible Intel processors

• B = Intel Pentium M and
compatible Intel processors

• P = Intel Pentium 4
processor with Streaming
SIMD Extensions 3 (SSE3)

Only the -xW and -xP options
are available on Intel® EM64T.

OFF

-Xlinker val Pass val directly to the linker
for processing.

OFF

-Zp{1|2|4|8|16} Packs structures on 1, 2, 4, 8, or
16 byte boundaries.

OFF

Compiler Options Cross Reference

Linux* Windows* Description Linux
Default

-A- /QA- Remove all
predefined macros.

OFF

-Aname[(val)] /QAname[(val)] Create an assertion
name having value
val.

OFF

-ansi /Za Enable/disable
assumption of ANSI
conformance.

ON

Compiler Options Quick Reference

31

Linux* Windows* Description Linux
Default

-ax{K|W|N|B|P} /Qax{K|W|N|B|P} Generates specialized
code for processor-
specific codes K, W, N,
B, and P while also
generating generic IA-
32 code.

• K = Intel®
Pentium® III and
compatible Intel
processors

• W = Intel Pentium
4 and compatible
Intel processors

• N = Intel Pentium
4 and compatible
Intel processors

• B = Intel Pentium
M and compatible
Intel processors

• P = Intel Pentium
4 processor with
Streaming SIMD
Extensions 3
(SSE3)

OFF

-C /C Don't strip comments. OFF

-c /c Compile to object
(.o) only, do not link.

OFF

-Dname[=value] /Dname[=value] Define macro. OFF

-E /E Preprocess to stdout. OFF

-fp /Oy- Use EBP-based stack
frame for all
functions.

OFF

-g /Zi Produce symbolic
debug information in
object file. The -g
option changes the
default optimization
from -O2 to -O0.

OFF

-H /QH Print include file
order.

OFF

-help /help Print help message
listing.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

32

Linux* Windows* Description Linux
Default

-Idirectory /Idirectory Add directory to
include file search
path.

OFF

-inline_debug_info /Qinline_debug_info Preserve the source
position of inlined
code instead of
assigning the call-site
source position to
inlined code.

OFF

-ip /Qip Enable single-file IP
optimizations (within
files).

OFF

-ip_no_inlining /Qip_no_inlining Optimize the behavior
of IP: disable full and
partial inlining
(requires -ip or -
ipo[value]).

OFF

-ipo[value] /Qipo[value] Enable multifile IP
optimizations
(between files).

OFF

-ipo_obj /Qipo_obj Optimize the behavior
of IP: force generation
of real object files
(requires -
ipo[value]).

OFF

-KPIC NA Generate position
independent code
(same as -Kpic).

OFF

-Kpic NA Generate position
independent code
(same as -KPIC).

OFF

-m NA Instruct linker to
produce map file.

OFF

-M /QM Generate makefile
dependency
information.

OFF

-mp /Op[-] Maintain floating-
point precision
(disables some
optimizations).

OFF

-mp1 /Qprec Improve floating-
point precision (speed
impact is less than -
mp).

OFF

Compiler Options Quick Reference

33

Linux* Windows* Description Linux
Default

-nobss_init /Qnobss_init Disable placement of
zero-initialized
variables in BSS (use
DATA).

OFF

-nolib_inline /Oi[-] Disable inline
expansion of intrinsic
functions.

OFF

-O /O2 OFF

-ofile /Fefile or /Fofile Name output file. OFF

-O0 /Od Disable optimizations. OFF

-O1 /O1 Optimizes for speed. OFF

-O2 /O2 ON

-P /EP Preprocess to file. OFF

-pc32 /Qpc 32 Set internal FPU
precision to 24-bit
significand.

OFF

-pc64 /Qpc 64 Set internal FPU
precision to 53-bit
significand.

OFF

-pc80 /Qpc 80 Set internal FPU
precision to 64-bit
significand.

ON

-prec_div /Qprec_div Improve precision of
floating-point divides
(some speed impact).

OFF

-prof_dirdirectory /Qprof_dirdirectory Specify directory for
profiling output files
(*.dyn and *.dpi).

OFF

-prof_filefilename /Qprof_filefilename Specify file name for
profiling summary
file.

OFF

-prof_gen[x] /Qprof_genx Instrument program
for profiling; with the
x qualifier, extra
information is
gathered.

OFF

-prof_use /Qprof_use Enable use of
profiling information
during optimization.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

34

Linux* Windows* Description Linux
Default

-Qinstall dir NA Set dir as root of
compiler installation.

OFF

-Qlocation,str,dir /Qlocation,tool,path Set dir as the
location of tool
specified by str.

OFF

-Qoption,str,opts /Qoption,tool,list Pass options opts to
tool specified by str.

OFF

-qp, -p NA Compile and link for
function profiling
with UNIX* gprof
tool.

OFF

-rcd /Qrcd Enable fast floating-
point-to-integer
conversions.

OFF

-restrict /Qrestrict Enable the restrict
keyword for
disambiguating
pointers.

OFF

-S /S Generates
assemblable files with
.s suffix, then stops
the compilation.

OFF

-sox[-] /Qsox Enable [disable]
saving of compiler
options and version in
the executable.

-sox-

-syntax /Zs Perform syntax check
only.

OFF

-tpp5 /G5 Optimize for Pentium
processor.

OFF

-tpp6 /G6 Optimize for Pentium
Pro, Pentium II and
Pentium III
processors.

OFF

-tpp7 /G7 Optimize for Pentium
4 processor.

OFF

Compiler Options Quick Reference

35

Linux* Windows* Description Linux
Default

-[no]traceback /[no]traceback Generate [do not
generate] extra
information in the
object file that allows
the display of source
file traceback
information at run
time when a severe
error occurs.

OFF

-Uname /Uname Remove predefined
macro.

OFF

-unroll0 /Qunroll0 Disable loop
unrolling.

OFF

-V /QV Display compiler
version information.

OFF

-w /w Display errors. OFF

-w2 /W4 Enable remarks,
warnings and errors.

-Wbrief /WL Produces less verbose
diagnostics.

OFF

-wn /Wn Control diagnostics.
Display errors (n=0).
Display warnings and
errors (n=1). Display
remarks, warnings,
and errors (n=2).

OFF

-wdL1[,L2,...] /Qwd[tag] Disable diagnostics
L1 through LN.

OFF

-weL1[,L2,...] /Qwe[tag] Change severity of
diagnostics L1
through LN to error.

OFF

-wnn /Qwn[tag] Print a maximum of n
errors.

OFF

-Wp64 /Wp64 Print diagnostics for
64-bit porting.

OFF

-wrL1[,L2,...] /Qwr[tag] Change severity of
diagnostics L1
through LN to remark.

OFF

-wwL1[,L2,...] /Qww[tag] Change severity of
diagnostics L1
through LN to
warning.

OFF

Intel® C++ Compiler for Linux* Systems User's Guide

36

Linux* Windows* Description Linux
Default

-X /X Remove standard
directories from
include file search
path.

OFF

-x{K|W|N|B|P} /Qx{K|W|N|B|P} Generates specialized
code for processor-
specific codes K, W, N,
B, and P while also
generating generic IA-
32 code.

• K = Intel®
Pentium® III and
compatible Intel
processors

• W = Intel Pentium
4 and compatible
Intel processors

• N = Intel Pentium
4 and compatible
Intel processors

• B = Intel Pentium
M and compatible
Intel processors

• P = Intel Pentium
4 processor with
Streaming SIMD
Extensions 3
(SSE3)

OFF

-Zp{1|2|4|8|16} /Zp[n] Packs structures on 1,
2, 4, 8, or 16 byte
boundaries.

OFF

Compiler Options Quick Reference

37

Default Compiler Options
Some compiler options are only available on certain systems. In the following table, these options are
indicated with labels as follows:

Label Meaning

i32 Option available on IA-32-based systems

i32em Option available on Intel® Extended Memory 64 Technology (Intel® EM64T)
systems

i64 Option available on Itanium®-based systems

• If no label is present, the option is available on all supported systems
• If "only" appears in the label, that option is only available on the identified system

Option Description

-alias_args Enable C/C++ rule that function arguments may be
aliased.

-ansi_alias Enable use of ANSI aliasing rules in optimizations; user
asserts that the program adheres to these rules.

-complex_limited_range- Disable the use of the basic algebraic expansions of some
complex arithmetic operations.

-falias Assume aliasing in program.

-ffnalias Assume aliasing within functions.

-frtti Support for RTTI.

-fverbose-asm Produce assembly file with compiler comments (requires
-S).

-mcpu=pentium4
(i32 only)

Optimizes for Intel® Pentium® 4 processor.

-mcpu=itanium2
(i64 only)

Optimizes for Intel® Itanium® 2 processor.

-O1 Same as -O2 on IA-32. Same as -O on Itanium-based
systems.

-pc80
(i32, i32em)

Set internal floating-point precision to 64-bit significand.

-prefetch Enables the insertion of software prefetching by the
compiler.

-sox- Disable saving of compiler options and version in the
executable.

Intel® C++ Compiler for Linux* Systems User's Guide

38

Option Description

-std=gnu89 ISO C90 plus GNU extensions. Includes some C99
features.

-tpp2
(i64 only)

Target optimization to the Itanium 2 processor.

-tpp7
(i32 only)

Target optimization to the Pentium 4 2 processor.

-w1 Display warnings and errors.

Deprecated and Unsupported Compiler Options
Deprecated Options

Occasionally, compiler options are marked as "deprecated." Deprecated options are still supported in the
current release, but are planned to be unsupported in future releases. The following options are deprecated
in this release of Intel® C++ Compiler:

• -Qansi

Deprecated options are not limited to this list.

Unsupported Options

Some Intel C++ Compiler options are no longer supported. If you use an unsupported option, the compiler
issues a warning, ignores the option, then proceeds with compilation. This version of the Intel C++
Compiler no longer supports the following compiler options:

• -axi
• -axM
• -xi
• -xM
• -0f_check
• -fdiv_check

Unsupported options are not limited to this list.

39

Volume I: Building Applications
Getting Started

You can Invoke the Compiler from a system command prompt, or you can use the compiler with the
Eclipse* Integrated Development Environment.

Getting Help

• Documentation conventions are described in How to Use This Document.
• If you are using the compiler from the command line, you can execute icc -help for a summary

of command-line options.
• If you need additional help in using the Intel C++ Compiler, see Product Web Site and Support.

Default Behavior of the Compiler

If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses the
following default settings:

• Produces executable output with filename a.out.
• Invokes options specified in a configuration file first. See Configuration Files.
• The location of shared objects is specified by the LD_LIBRARY_PATH environment variable.
• Sets 8 bytes as the strictest alignment constraint for structures.
• Displays error and warning messages.
• Performs standard optimizations using the default -O2 option. See Setting Optimization Levels.
• On operating systems that support characters in Unicode* (multi-byte) format, the compiler will

process file names containing these characters.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

Compilation Phases

To produce an executable file, the compiler performs by default the compile and link phases. When
invoked, the compiler driver determines which compilation phases to perform based on the file name
extension and the compilation options specified in the command line.

The compiler passes object files and any unrecognized file name to the linker. The linker then determines
whether the file is an object file (.o) or a library (.a). The compiler driver handles all types of input files
correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in this diagram:

Intel® C++ Compiler for Linux* Systems User's Guide

40

Application Development Cycle

Volume I: Building Applications

41

Building Applications from the Command Line
Invoking the Compiler

The ways to invoke Intel® C++ Compiler are as follows:

• Invoke directly: Running Compiler from the Command Line
• Use system make file: Running from the Command Line with make

Invoking the Compiler from the Command Line

There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. set the environment
2. invoke the compiler using icc or icpc

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations for the
various components. The Intel C++ Compiler installation includes shell scripts that you can use to set
environment variables. With the default compiler installation, these scripts are:

• /opt/intel_cc_80/bin/iccvars.sh
• /opt/intel_cc_80/bin/iccvars.csh

To run an environment script, enter one of the following on the command line:

prompt>source /opt/intel_cc_80/bin/iccvars.sh

or

prompt>source /opt/intel_cc_80/bin/iccvars.csh

If you want the script to run automatically when you start Linux*, add the same command to the end of
your startup file.

Sample .bash_profile entry for iccvars.sh:

set environment vars for Intel C++ compiler
source /opt/intel_cc_80/bin/iccvars.sh

Intel® C++ Compiler for Linux* Systems User's Guide

42

Invoking the Compiler with icc or icpc

You can invoke the Intel C++ Compiler on the command line with either icc or icpc.

• When you invoke the compiler with icc, the compiler builds C source files using C libraries and C
include files. If you use icc with a C++ source file, it will be compiled as a C++ file. Use icc to
link C object files.

• When you invoke the compiler with icpc the compiler builds C++ source files using C++ libraries
and C++ include files. If you use icpc with a C source file, it will be compiled as a C++ file. Use
icpc to link C++ object files.

Command-line Syntax

When you invoke the Intel C++ Compiler with icc or icpc, use the following syntax:

prompt>{icc|icpc} [options] file1 [file2 . . .]

Argument Description

options Indicates one or more command-line options. The compiler recognizes one
or more letters preceded by a hyphen (-). This includes linker options. See
the Options Quick Reference

file1,
file2 . . .

Indicates one or more files to be processed by the compilation system. You
can specify more than one file. Use a space as a delimiter for multiple files.

Example:

prompt>icpc -prec_div -axP -Bstatic my_source1.cpp my_source2.cpp

Invoking the Compiler from the Command Line with make

To run make from the command line using Intel® C++ Compiler, make sure that /usr/bin is in your
path. If you use a C shell, you can edit your .cshrc file and add:

setenv PATH /usr/bin:<full path to Intel compiler>

Note

To use the Intel compiler, your makefile must include the setting CC=icc. Use the same setting on the
command line to instruct the makefile to use the Intel compiler. If your makefile is written for gcc, the
GNU* C compiler, you will need to change those command line options not recognized by the Intel
compiler.

Then you can compile:

prompt>make -f my_makefile

Volume I: Building Applications

43

Compiler Input Files

The Intel® C++ Compiler recognizes the file name extensions listed in the following table:

Filename Interpretation

filename.a Object library

filename.i When you invoke the compiler with icc, the .i files are treated as C
source files. The .i files are treated as C++ sources if you compile with
icpc.

filename.o Compiled object module

filename.s Assembly file

filename.so Shared object file

filename.S Assembly file that requires preprocessing

filename.c C language source file

filename.C
filename.cc
filename.CC
filename.cpp
filename.cxx

C++ language source file

Building Applications in Eclipse*
The Intel® C++ Compiler for Linux (IA-32 only) includes a compiler integration with Eclipse* and the
C/C++ Development Tools* (CDT). This functionality is an optional part of the compiler installation. For
more information about CDT, see http://www.eclipse.org/cdt/.

The Intel C++ Compiler integration with the Eclipse/CDT integrated development environment lets you
develop, build, and run your C/C++ projects in a visual, interactive environment.

This section includes the following topics:

• Starting Eclipse*
• Using Online Help in Eclipse*
• Creating a New Project
• Setting Properties
• Standard and Managed Make Files

Intel® C++ Compiler for Linux* Systems User's Guide

44

Starting Eclipse*

After you have installed the following:

• Intel® C++ Compiler for 32-bit applications
• Eclipse* integrated development environment
• Java* Runtime Environment (JRE)
• C/C++ Development Tools (CDT)

you can execute the iccec shell script to start Eclipse from a directory where you have write permission.
With the default compiler installation, execute iccec as follows:

prompt>/opt/intel_cc_80/bin/iccec

You can also use iccec to pass Eclipse-specific parameters, such as:

• -data <path> - sets the location for the Eclipse workspace
• -showlocation - shows the location of the workspace in the Eclipse window title bar.

For example:

prompt>/opt/intel_cc_80/bin/iccec -data /cpp/eclipse -
showlocation

From the Eclipse Help menu, select Help Contents > Workbench User's Guide >Tasks > Running
Eclipse for the complete list of Eclipse startup parameters.

Volume I: Building Applications

45

Using Online Help in Eclipse*

The Intel® C++ Compiler integration with Eclipse*/CDT* includes online help. From the Eclipse toolbar,
select Help > Help Contents.

The Help Contents option lets you narrow your search for help information by presenting all the help
modules registered with Eclipse. Select Intel(R) C++ Compiler for Linux* to open the Compiler User's
Guide (this document). The Help Contents may also include links to the Eclipse Workbench User Guide,
the C/C++ Development User Guide, and other similar documents.

Intel® C++ Compiler for Linux* Systems User's Guide

46

Selecting a Different Browser

If you want to select a different browser to view the Help Contents, open Windows > Preferences > Help
from the Eclipse toolbar. Check Custom Browser (user defined program), then complete the necessary
information in the Custom Browser command text box. Click OK to complete your browser selection.

Volume I: Building Applications

47

Creating a New Project

To create a simple helloworld project, follow these steps after starting Eclipse*:

1. Select Window > Open Perspective > C/C++ Development.
2. From the Eclipse File menu, select New > Project. The New Project wizard opens with the

Select dialog to specify the kind of project you want to create. In the left column, select C from
the list. In the right column, select Managed Make C Project. Click Next to proceed.
See also Standard and Managed Make Files.

3. In the Name text box of the Managed Make C Project dialog, type helloworld. Check the
Use Default Location box, if not already checked. Click Next to proceed.

Intel® C++ Compiler for Linux* Systems User's Guide

48

4. From the Select a Target dialog, select Linux Executable Using Intel(R) C/C++ Compiler
from the Platform drop-down list. Check the Release and Debug configuration boxes. Click
Next to proceed.

5. The Additional Project Settings dialog lets you create dependencies between your new project
and other existing projects. There should not be any other existing projects at this point. Click
Finish to complete creation of your new helloworld project.

Volume I: Building Applications

49

6. If you are not currently in the C/C++ Development Perspective, you will see the Confirm
Perspective Switch dialog. Click Yes to proceed.

7. In the Navigator view, you should now see an entry for your helloworld project.

The next step is Adding a C Source File.

Intel® C++ Compiler for Linux* Systems User's Guide

50

Adding a C Source File

After Creating a New Project, you can add source files, then build and run your completed project. Follow
these steps to add a hello.c source file to the helloworld project.

1. From the Eclipse* File menu, select New > File. Enter hello.c in the File name text box of
the New File dialog. Click Finish to add the file to the helloworld project.

Volume I: Building Applications

51

2. Your Eclipse Preference settings in Window > Preferences > Workbench let you specify
Perform build automatically on resource modification. If this preference is checked,
Eclipse/CDT will attempt a build when hello.c is created. Since hello.c does not yet
include code, errors are indicated in the Tasks view and C-Build view near the bottom of the
screen. This is expected behavior, not a true error. Select Window > Show View > C/C++
Projects to view the project files.

Intel® C++ Compiler for Linux* Systems User's Guide

52

3. In the Editor view, add your code for hello.c. If you close hello.c in the Editor view,
you can open it by doulble-clicking on hello.c in the Navigator view.

When your code is complete, save your file using File > Save, then proceed to Building a Project.

Volume I: Building Applications

53

Building a Project

You can build your project by selecting Rebuild All from the Eclipse* Project menu.

See the Build results in the C-Build view.

The final step is Running a Project.

Intel® C++ Compiler for Linux* Systems User's Guide

54

Running a Project

After Building a Project, you can run your project by following these steps:

1. Select Run > Run As > C Local Application. When the C Local Application dialog appears,
click OK.

2. On the Launch Debug Configuration Selection dialog, select GDB Debugger, then click OK.

Volume I: Building Applications

55

3. After the executable runs, the output of hello.c appears in the Console view.

Intel® C++ Compiler for Linux* Systems User's Guide

56

Intel® C/C++ Error Parser

The Intel® C/C++ Error Parser lets you track compile-time errors in Eclipse*/CDT*. However, you must
enable the Error Parser to see the results:

1. On the Eclipse toolbar, select Window > Preferences.
2. On the Preferences dialog, select C/C++ > New Make Projects.
3. Click the Error Parsers tab. Check the Intel(R) C/C++ Error Parser selection to enable

this feature.

4. Click OK to update your choices and close the dialog.

Volume I: Building Applications

57

Using the Intel C/C++ Error Parser

If you introduce an error into your hello.c program, such as:

#include <xstdio.h>

then compile hello.c, the error is reported in the Tasks view and a marker appears in the source file
at the line where the error was detected.

Intel® C++ Compiler for Linux* Systems User's Guide

58

Setting Properties

The Intel® C++ Compiler integration with Eclipse*/CDT* lets you specify compiler, linker, and archiver
options. Follow these steps to set options for your project:

1. Select your project in the C/C++ Projects view.
2. From the Eclipse toolbar, select Project > Properties > C/C++ Build.
3. Under Configuration settings, click an option category for C Compiler or Linker. In the example

that follows, the options in the Floating Point category are displayed.

4. Check the option(s) you want to add to your project compilations, then open other categories if
necessary.

5. Click OK to complete your selections.

To reset properties to their default setting, click Restore Defaults. The Restore Defaults button appears on
each property page, but the Restore Defaults action applies to ALL property pages.

Volume I: Building Applications

59

Some properties use check boxes, while others use drop-down lists to specify a compiler option.

Several options let you specify arguments. Click New to add an argument to the list. Enter a valid argument
for the option, then click OK.

In this example, __NO_MATH_INLINES and __SIGNED_CHARS__ are specified as arguments for the -
U option.

If you want to specify an option that is not available from the Properties dialog, use the Command Line
category. Enter the command line options in the Additional Options text box just as you would enter them
on the command line.

For a complete list of options listed on the Properties page, see Properties for Supported Options.

Intel® C++ Compiler for Linux* Systems User's Guide

60

Properties for Supported Options

The options listed in the following tables are supported under the corresponding Option Category.

Compiler Options

Option
Category

Use Option
Name

Show startup banner -V

Include debug information -g

-O0
(default for Debug Config.)

-O1

-O2
(default for Release Config.)

-O3

Optimization level

-fast

-w0

-w1 (default)

General

Warning level

-w2

Provide frame pointers -fp

Disable prefetch insertion -prefetch

Enable interprocedural optimization for single file
compilation

-ip

Disable intrinsic inline expansion -nolib_inline

-Ob0

-Ob1

Inline function expansion

-Ob2

-tpp5

-tpp6

Optimize for Intel® processor

-tpp7 (default)

Optimization

Parallelization -parallel

Precompiled
Headers

Automatic Processing for Precompiled Headers -pch

-cxxlib-icc Preprocessor gcc compatibility options

-cxxlib-gcc

Volume I: Building Applications

61

Option
Category

Use Option
Name

-fabi-version

-gcc-version

Additional include directories -I

Ignore standard include path -X

Preprocessor definitions -D

Do not predefine _GNUC_, _GNUC_MINOR_,
_GNUC_PATCHLEVEL_ macros

-no-gcc

Undefine preprocessor definitions -U

Undefine all preprocessor definitions -A-

Enable use of ANSI aliasing rules in optimizations -ansi_alias

Disable C99 support -c99-

Recognize the restrict keyword -restrict

-openmp

Language

Process OpenMP* directives

-openmp_stubs

Treat warnings as errors -Werror

Allow usage messages -Wcheck

Enable equivalent of GNU* ANSI -ansi

Strict ANSI conformance dialect -strict_ansi

-openmp_report0

-openmp_report1

OpenMP report

-openmp_report2

-par_report0

-par_report1

-par_report2

Auto-parallelizer report

-par_report3

-vec_report0

-vec_report1

-vec_report2

-vec_report3

-vec_report4

Compilation
Diagnostics

Vectorizer report

-vec_report5

Intel® C++ Compiler for Linux* Systems User's Guide

62

Option
Category

Use Option
Name

Disable argument aliasing -alias_args-

Assume no aliasing in program -fno-alias

Allow gprel addressing of common data variables -fno-common

Allocate as many bytes as needed for enumerated
types

-fshort-enums

Change default bitfield type to unsigned -funsigned-bitfields

Change default char type to unsigned -funsigned-char

Store string literals in a writable section -fwritable-strings

Disable placement of zero-initialized variables in
.bss - use .data

-nobss_init

-fvisibility=extern

-fvisibility=default

-fvisibility=protected

-fvisibility=hidden

Default symbol visibility

-fvisibility=internal

-Zp1

-Zp2

-Zp4

-Zp8

Data

Structure member alignment

-Zp16 (default)

Improve floating-point consistency -mp

Round floating-point results -fp_port

Limit Complex range -complex_limited_range

Floating Point

Check floating-point stack -fpstkchk

Output Files Generate assembler source file -S

Generate position-independent code -fpic

-axK

-axN

-axB

Use Intel® processor extensions

-axP

-xK

Code
Generation

Require Intel® processor extensions

-xN

Volume I: Building Applications

63

Option
Category

Use Option
Name

-xB

-xP

Run-
time

Generate traceback information -traceback

Library Options

Maximize speed across entire program -fast

Enable interprocedural optimization for single file compilation -ip

Link with static libraries -static

Link Intel® libcxa C++ library statically -static-libcxa

Link with dynamic libraries -i_dynamic

Use no C++ libraries -no_cpprt

Use no system libraries -nodefaultlibs

-cxxlib-icc

-cxxlib-gcc

-fabi-version

gcc compatibility options

-gcc-version

-openmp Process OpenMP directives

-openmp_stubs

Additional libraries -l

Search directory for libraries -L

Libraries

Archiver options -r

Intel® C++ Compiler for Linux* Systems User's Guide

64

Standard and Managed Makefiles

When you create a new Intel C project in Eclipse*/CDT*, you can select either Standard Make C Project
or Managed Make C Project.

• Select Standard Make C Project if your project already includes a makefile.
• Use Managed Make C Project to build a makefile using Intel compiler-specific options assigned

from property pages.

Exporting Makefiles

If you created a Managed Make C Project, you can use Eclipse* to build a makefile that includes Intel
compiler options. See Setting Properties. When your project is complete, you can export your makefile and
project source files to another directory, then build your project from the command line using make.

Exporting makefiles

To export your makefile:

1. Select your project in the Eclipse C/C++ Projects view.
2. From the Eclipse File menu, select Export to launch the Export Wizard.

Volume I: Building Applications

65

3. On the Select dialog of the Export Wizard, select File system, then click Next.

4. On the File system dialog, check both the helloworld and Release directories in the left-hand pane.
Be sure all the project sources in the right-hand pane are also checked.

Note
You may deselect some files in the right-hand pane, such as the hello.o object file and
helloworld executable. However, you must also select Create directory structure for files in the
Options section to successfully create the export directory. This also applies to project files in the
helloworld directory.

Intel® C++ Compiler for Linux* Systems User's Guide

66

5. Use the Browse button to target the export to an existing directory. Eclipse can also create a new
directory for full paths entered in the To directory text box. If, for example, you specified
/cpp/export as the export directory, Eclipse creates two new sub-directories:

• /cpp/export/helloworld
• /cpp/export/helloworld/Release

6. Click Finish to complete the export.

Running make

In a terminal window, change to the /cpp/export/helloworld/Release directory, then run make
by typing:

make clean all

You should see the following output:

rm -rf hello.o helloworld
icc -O2 -w1 -Ob1 -tpp7 -unroll -par_threshold75 -wn100 -Zp16 -c
-o hello.o ../hello.c
icc -o helloworld hello.o

Volume I: Building Applications

67

Compilation Options
This section describes the Intel® C++ Compiler options that determine the compilation process and output.
By default, the compiler converts source code directly to an executable file. Appropriate options allow you
to control the process by directing the compiler to produce:

• Preprocessed files (.i) with the -P option.
• Assembly files (.s) with the -S option.
• Object files (.o) with the -c option.
• Executable files (.out) by default.

You can also name the output file or designate a set of options that are passed to the linker. If you specify a
phase-limiting option, the compiler produces a separate output file representing the output of the last phase
that completes for each primary input file.

Preprocessor Options

This section describes the options you can use to direct the operations of the preprocessor. Preprocessing
performs such tasks as macro substitution, conditional compilation, and file inclusion.

Option Description

-
Aname[(values,...)]

Associates a symbol name with the specified sequence of
values . Equivalent to an #assert preprocessing directive.

-A- Causes all predefined macros and assertions to be inactive.

-C Preserves comments in preprocessed source output.

-Dname[(value)] Defines the macro name and associates it with the specified
value . The default (-Dname) defines a macro with a
value of 1.

-E Directs the preprocessor to expand your source module and
write the result to standard output.

-EP Directs the preprocessor to expand your source module and
write the result to standard output. Does not include #line
directives in the output.

-P Directs the preprocessor to expand your source module and
store the result in a .i file in the current directory.

-Uname Suppresses any automatic definition for the specified macro
name .

Intel® C++ Compiler for Linux* Systems User's Guide

68

Preprocessing Only

Use the -E, -P or -EP option to preprocess your source files without compiling them. When using these
options, only the preprocessing phase of compilation is activated.

Using -E

When you specify the -E option, the compiler's preprocessor expands your source module and writes the
result to stdout. The preprocessed source contains #line directives, which the compiler uses to
determine the source file and line number. For example, to preprocess two source files and write them to
stdout, enter the following command:

prompt>icpc -E prog1.cpp prog2.cpp

Using -P

When you specify the -P option, the preprocessor expands your source module and directs the output to a
.i file instead of stdout. Unlike the -E option, the output from -P does not include #line number
directives. By default, the preprocessor creates the name of the output file using the prefix of the source file
name with a .i extension. You can change this by using the -ofile option. For example, the following
command creates two files named prog1.i and prog2.i, which you can use as input to another
compilation:

prompt>icpc -P prog1.cpp prog2.cpp

Caution

When you use the -P option, any existing files with the same name and extension are overwritten.

Using -EP

Using the -EP option directs the preprocessor to not include #line directives in the output. -EP is
equivalent to -E -P.

prompt>icpc -EP prog1.cpp prog2.cpp

Preserving Comments in Preprocessed Source Output

Use the -C option to preserve comments in your preprocessed source output. Comments following
preprocessing directives, however, are not preserved.

Preprocessing Directive Equivalents

You can use the -A, -D, and -U options as equivalents to preprocessing directives:

• -A is equivalent to a #assert preprocessing directive
• -D is equivalent to a #define preprocessing directive
• -U is equivalent to a #undef preprocessing directive

Volume I: Building Applications

69

Using -A

Use the -A option to make an assertion. Syntax: -Aname[(value)].

Argument Description

name Indicates an identifier for the assertion

value Indicates a value for the assertion. If a value is specified, it should be
quoted, along with the parentheses delimiting it.

For example, to make an assertion for the identifier fruit with the associated values orange and
banana use the following command:

prompt>icpc -A"fruit(orange,banana)" prog1.cpp

Using -D

Use the -D option to define a macro. Syntax: -Dname[=value].

Argument Description

name The name of the macro to define.

value Indicates a value to be substituted for name. If you do not enter a value, name is
set to 1. The value should be quoted if it contains non-alphanumerics.

For example, to define a macro called SIZE with the value 100 use the following command:

prompt>icpc -DSIZE=100 prog1.cpp

The -D option can also be used to define functions. For example:

prompt>icpc -D"f(x)=x" prog1.cpp

Using -U

Use the -U option to remove (undefine) a pre-defined macro. Syntax: -Uname.

Argument Description

name The name of the macro to undefine.

Note

If you use -D and -U in the same compilation, the compiler processes the -D option before -U, rather than
processing them in the order they appear on the command line.

Intel® C++ Compiler for Linux* Systems User's Guide

70

Predefined Macros

The Intel® C++ Compiler supports the predefined macros listed in the following table. The compiler also
includes predefined macros specified by the ISO/ANSI standard. See Conformance to the C Standard.

Macro Name Value Architecture

__BASE_FILE__ Name of source file Both

__cplusplus 1 Both

__EDG__ 1 Both

__EDG_VERSION__ 303 Both

__ELF__ 1 Both

__EXCEPTIONS Defined when -fno-
exceptions is not used.

IA-32 only

__GNUC__ 2 - if gcc version is less than 3.2
3 - if gcc version is 3.2, 3.3, or
3.4

Both

__gnu_linux__ 1 Both

__GNUC_MINOR__ 95 - if gcc version is less than
3.2
2 - if gcc version is 3.2
3 - if gcc version is 3.3
4 - if gcc version is 3.4

Both

__GNUC_PATCHLEVEL__ 0 Both

__GXX_ABI_VERSION 102 Both

__i386 1 IA-32 only

__i386__ 1 IA-32 only

i386 1 IA-32 only

__ia64 1 Itanium
architecture only

__ia64__ 1 Itanium
architecture only

ia64 1 Itanium
architecture only

__INTEL_COMPILER 810 Both

__INTEL_COMPILER_BUILD_DATE YYYYMMDD Both

__INTEL_CXXLIB_ICC 1 when -cxxlib_icc option
is specified during compilation.

Both

Volume I: Building Applications

71

Macro Name Value Architecture

__INTEL_RTTI__ 1 when -fno-rtti is not
specified.

Both

__INTEL_STRICT_ANSI__ 1 when -strict_ansi is
specified.

Both

_INTEGRAL_MAX_BITS 64 Itanium
architecture only

__itanium__ 1 Itanium
architecture only

__linux 1 Both

__linux__ 1 Both

linux 1 Both

__LONG_DOUBLE_SIZE__ 80 IA-32 only

__LONG_MAX__ 9223372036854775807L Itanium
architecture only

__lp64 1 Itanium
architecture only

__LP64__ 1 Itanium
architecture only

_LP64 1 Itanium
architecture only

__NO_INLINE__ 1 Both

__NO_MATH_INLINES 1 Both

__NO_STRING_INLINES 1 Both

__OPTIMIZE__ 1 Both

__PIC__ 1 when -fPIC is used. Both

__pic__ 1 when -fPIC is used. Both

_PGO_INSTRUMENT 1 when -prof_gen[x] is
used.

Both

__PTRDIFF_TYPE__ int
on IA-32
long
on Itanium
architecture

Both

__REGISTER_PREFIX__ (no value) Both

__SIGNED_CHARS__ 1 Both

Intel® C++ Compiler for Linux* Systems User's Guide

72

Macro Name Value Architecture

__SIZE_TYPE__ unsigned
on IA-32
unsigned long
on Itanium
architecture

Both

__unix 1 Both

__unix__ 1 Both

unix 1 Both

__USER_LABEL_PREFIX__ (no value) Both

__VERSION__ "Intel® C++ gcc 3.0 mode" Both

__WCHAR_T 1 Both

__WCHAR_TYPE__ long int
on IA-32
int
on Itanium
architecture

Both

__WINT_TYPE__ unsigned int Both

Suppress Macro Definition

Use the -Uname option to suppress any macro definition currently in effect for the specified name. The -
U option performs the same function as an #undef preprocessor directive. You can use the -no-gcc
option to disable the __GNUC_MINOR__, __GNUC_MINOR__, and __GNUC_PATCHLEVEL__ macros.

Customizing the Compilation Environment

For IA-32 and the Intel® Itanium® architecture, you will need to set a compilation environment. To
customize the environment used during compilation, you can specify:

• Environment Variables -- the paths where the compiler and other tools can search for specific files.
• Configuration Files -- the options to use with each compilation.
• Response Files -- the options and files to use for individual projects.
• Include Files -- the names and locations of source header files.

Volume I: Building Applications

73

Environment Variables

You can customize your environment by specifying paths where the compiler can search for special files
such as libraries and include files.

• LD_LIBRARY_PATH -- specifies the location for shared objects.
• PATH -- specifies the directories the system searches for binary executable files.
• ICCCFG -- specifies the configuration file for customizing compilations when invoking the compiler

using icc.
• ICPCCFG -- specifies the configuration file for customizing compilations when invoking the

compiler using icpc.
• Several environment variables are supported to specify the location for temporary files. The compiler

searches for the following variables in the order specified: TMP, TMPDIR, and TEMP. If none of these
variables are found, temporary files are stored in /tmp.

• IA32ROOT (IA32-based systems) -- points to the directory containing the bin, lib, include and
substitute header directories.

• IA64ROOT (Itanium®-based systems) -- points to the directory containing the bin, lib, include
and substitute header directories.

GNU* Environment Variables

The Intel C++ Compiler supports the following GNU environment variables:

• CPATH -- Path to include directory for C/C++ compilations
• C_INCLUDE_PATH -- Path include directory for C compilations
• CPLUS_INCLUDE_PATH -- Path include directory for C++ compilations.
• LIBRARY_PATH -- The value of LIBRARY_PATH is a colon-separated list of directories, much like

PATH.
• DEPENDENCIES_OUTPUT -- If this variable is set, its value specifies how to output dependencies

for Make based on the non-system header files processed by the compiler. System header files are
ignored in the dependency output.

• SUNPRO_DEPENDENCIES -- This variable is the same as DEPENDENCIES_OUTPUT, except that
system header files are not ignored.

Compilation Environment Options

The Intel® C++ Compiler installation includes shell scripts that you can use to set environment variables.
See Invoking the Compiler from the Command Line for more information.

Configuration Files

You can decrease the time you spend entering command-line options and ensure consistency by using the
configuration file to automate often-used command-line entries. You can insert any valid command-line
option into the configuration file. The compiler processes options in the configuration file in the order they
appear followed by the command-line options that you specify when you invoke the compiler.

Note

Options in the configuration file will be executed every time you run the compiler. If you have varying
option requirements for different projects, see Response Files.

Intel® C++ Compiler for Linux* Systems User's Guide

74

How to Use Configuration Files

The following example illustrates a basic configuration file. After you have written the .cfg file, simply
ensure it is in the same directory as the compiler's executable file when you run the compiler. The text
following the pound (#) character is recognized as a comment. The configuration file is icc.cfg.

Sample configuration file.
Define preprocessor macro MY_PROJECT.

-DMY_PROJECT

Additional directories to be searched
for INCLUDE files, before the default.

-I /project/include

Specifying the Location with ICCCFG

You can use the ICCCFG environment variable to specify the location of your configuration file:

ICCCFG=/cpp/config/my_options.cfg

Each time you invoke the compiler with icc, my_options.cfg is used as your configuration file. The
ICPCCFG environment variable is supported for invoking the compiler with icpc.

See Environment Variables.

Response Files

Use response files to specify options used during particular compilations. Response files are invoked as an
option on the command line. Options in a response file are inserted in the command line at the point where
the response file is invoked.

Sample Response Files

response file: response1.txt
compile with these options

-axP
-pch

end of response1 file

response file: response2.txt
compile with these options

-mp1
-strict_ansi

end of response2 file

Volume I: Building Applications

75

Use response files to decrease the time spent entering command-line options and to ensure consistency by
automating command-line entries. Use individual response files to maintain options for specific projects to
avoid editing the configuration file when changing projects.

Any number of options or file names can be placed on a line in the response file. Several response files can
be referenced in the same command line.

The syntax for using response files is as follows:

prompt>icpc @response1.txt source1.cpp @response2.txt source2.cpp

Note

An "at" sign (@) must precede the name of the response file on the command line.

Include Files

Include directories are searched in the default system areas and whatever is specified by the -
Idirectory option. For multiple search directories, multiple -Idirectory commands must be used.
The compiler searches directories for include files in the following order:

• directory of the source file that contains the include
• directories specified by the -I option

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default system areas. You can use the -X
option with the -I option to prevent the compiler from searching the default path for include files and
direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default path, do the
following:

prompt>icpc -X -I/alt/include prog.cpp

See also Searching for Include Files.

Searching for Include Files

By default, the compiler searches for the standard include files in the directories specified in the CPATH,
C_INCLUDE_PATH, and CPLUS_INCLUDE_PATH environment variables. You can indicate the location
of include files in the configuration file.

Intel® C++ Compiler for Linux* Systems User's Guide

76

How to Specify an Include Directory

Use the -Idirectory option to specify an additional directory in which to search for include files. For
multiple search directories, multiple -Idirectory commands must be used. Included files are brought
into the program with a #include preprocessor directive. The compiler searches directories for include
files in the following order:

• directory of the source file that contains the include
• directories specified by the -I option
• directories specified in the CPATH, C_INCLUDE_PATH, and CPLUS_INCLUDE_PATH

environment variables

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default path specified by the environment
variables.

You can use the -X option with the -I option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default path, do the
following:

prompt>icpc -X -I/alt/include source.cpp

Controlling Compilation

If no errors occur during processing, you can use the output files from a particular phase as input to a
subsequent compiler invocation. The following table describes the options to control the output:

Option Input Output

-P • Source files Preprocessed files (.i files).

-E • Source files Preprocesses source file and directs output to stdout.

-EP • Source files Preprocesses source file, directs output to stdout, and
omits line numbers.

-c • Source files
• Preprocessed

files

Compile to object only (.o), do not link.

-S • Source files
• Preprocessed

files

Generate assemblable files with .s suffix and stops the
compilation process.

Volume I: Building Applications

77

Option Input Output

-syntax • Source files
• Preprocessed

files

Emits diagnostic list of syntax errors to sdtout. There is
no output for source files free of syntax errors.

(Default) • Source files
• Preprocessed

files
• Assemblable

files
• Object files
• Libraries

Executable file (.out files).

Controlling Compilation Flow

Option Description

-c Stops the compilation process after an object file has been generated.
The compiler generates an object file for each C or C++ source file or
preprocessed source file. Also takes an assembler file and invokes the
assembler to generate an object file.

-Kpic, -KPIC Generate position-independent code.

-lname Link with a library indicated in name.

-nobss_init Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been
preprocessed and writes the results to files named according to the
compiler's default file-naming conventions.

-S Generates assemblable file only (with .s suffix), then stops the
compilation.

-sox[-] Enables [disables] the saving of compiler options and version
information in the executable file. Default is -sox-.

-Zp{1|2|4|8|16} Packs structures on 1, 2, 4, 8, or 16 byte boundaries.

Controlling Compilation Output

Option Description

-
oname

Produces an assembly file with the specified file name, or the default file name if
name is not specified.

-S Generates assemblable file only (with .s suffix), then stops the compilation.

Intel® C++ Compiler for Linux* Systems User's Guide

78

Specifying Alternate Tools and Paths

You can direct the compiler to specify alternate tools for preprocessing, compilation, assembly, and
linking. Further, you can invoke options specific to your alternate tools on the command line. The
following sections explain how to use -Qlocation and -Qoption to do this.

How to Specify an Alternate Component

Use -Qlocation to specify an alternate path for a tool. This option accepts two arguments using the
following syntax:

prompt>icpc -Qlocation,tool,path

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

gas Specifies the GNU assembler.

gld Specifies the GNU linker.

path is the complete path to the tool.

How to Pass Options to Other Programs

Use -Qoption to pass an option specified by optlist to a tool, where optlist is a comma-
separated list of options. The syntax for this command is the following:

prompt>icpc -Qoption,tool,optlist

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

optlist indicates one or more valid argument strings for the designated program. If the argument is a
command-line option, you must include the hyphen. If the argument contains a space or tab character, you
must enclose the entire argument in quotation characters (""). You must separate multiple arguments with
commas. The following example directs the linker to create a memory map when the compiler produces the
executable file from the source.

prompt>icpc -Qoption,link,-map,proto.map proto.cpp

Volume I: Building Applications

79

The -Qoption,link option in the preceding example is passing the -map option to the linker. This is
an explicit way to pass arguments to other tools in the compilation process. Also, you can use the -
Xlinker val to pass values (val) to the linker.

Monitoring Data Settings

The options described here provide monitoring of Intel compiler-generated code.

Specifying Structure Tag Alignments

You can specify an alignment constraint for structures and unions in two ways:

• Place a pack pragma in your source file, or
• Enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Flushing Denormal Values to Zero for Itanium-based Systems Only

Option -ftz flushes denormal results to zero when the application is in the gradual underflow mode. Use
this option if the denormal values are not critical to application behavior. Flushing the denormal values to
zero with -ftz may improve performance of your application. The default status of -ftz is OFF. By
default, the compiler lets results gradually underflow.

The -ftz switch only needs to be used on the source containing function main(). The effect of the -ftz
switch is to turn on FTZ mode for the process started by main(). The initial thread and any threads
subsequently created by that process will operate in FTZ mode.

Note

The -O3 option turns -ftz ON. Use -ftz- to disable flushing denormal results to zero.

Allocation of Zero-initialized Variables

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_init option, you can place any variables that are explicitly initialized with zeros in the DATA
section if required.

Intel® C++ Compiler for Linux* Systems User's Guide

80

Precompiled Header Files

The Intel® C++ Compiler supports precompiled header (PCH) files to significantly reduce compile times
using the following options:

• -pch
• -create_pch filename
• -use_pch filename
• -pch_dir dirname

Caution

Depending on how you organize the header files listed in your sources, these options may increase compile
times. See Organizing Source Files to learn how to optimize compile times using the PCH options.

-pch

The -pch option directs the compiler to use appropriate PCH files. If none are available, they are created
as sourcefile.pchi. This option supports multiple source files, such as the ones shown in Example 1:

Example 1 command line:
prompt>icpc -pch source1.cpp source2.cpp

Example 1 output when .pchi files do not exist:
"source1.cpp": creating precompiled header file "source1.pchi"
"source2.cpp": creating precompiled header file "source2.pchi"

Example 1 output when .pchi files do exist:
"source1.cpp": using precompiled header file "source1.pchi"
"source2.cpp": using precompiled header file "source2.pchi"

Note

The -pch option will use PCH files created from other sources if the headers files are the same. For
example, if you compile source1.cpp using -pch, then source1.pchi is created. If you then
compile source2.cpp using -pch, the compiler will use source1.pchi if it detects the same
headers.

-create_pch

Use the -create_pch filename option if you want the compiler to create a PCH file called
filename. Note the following regarding this option:

• The filename parameter must be specified.
• The filename parameter can be a full path name.
• The full path to filename must exist.
• The .pchi extension is not automatically appended to filename.
• This option cannot be used in the same compilation as -use_pch filename.
• The -create_pch filename option is supported for single source file compilations only.

Volume I: Building Applications

81

Example 2 command line:
prompt>icpc -create_pch /pch/source32.pchi source.cpp

Example 2 output:
"source.cpp": creating precompiled header file "/pch/source32.pchi"

-use_pch filename

This option directs the compiler to use the PCH file specified by filename. It cannot be used in the same
compilation as -create_pch filename. The -use_pch filename option supports full path
names and supports multiple source files when all source files use the same .pchi file.

Example 3 command line:
prompt>icpc -use_pch /pch/source32.pchi source.cpp

Example 3 output:
"source.cpp": using precompiled header file /pch/source32.pchi

-pch_dir dirname

Use the -pch_dir dirname option to specify the path (dirname) to the PCH file. You can use this
option with -pch, -create_pch filename, and -use_pch filename.

Example 4 command line:
prompt>icpc -pch -pch_dir /pch source32.cpp

Example 4 output:
"source32.cpp": creating precompiled header file /pch/source32.pchi

Organizing Source Files

If many of your source files include a common set of header files, place the common headers first, followed
by the #pragma hdrstop directive. This pragma instructs the compiler to stop generating PCH files.
For example, if source1.cpp, source2.cpp, and source3.cpp all include common.h, then place
#pragma hdrstop after common.h to optimize compile times.

#include "common.h"
#pragma hdrstop
#include "noncommon.h"

When you compile using the -pch option:

prompt>icpc -pch source1.cpp source2.cpp source3.cpp

the compiler will generate one PCH file for all three source files:

"source1.cpp": creating precompiled header file "source1.pchi"

"source2.cpp": using precompiled header file "source1.pchi"

"source3.cpp": using precompiled header file "source1.pchi"

Intel® C++ Compiler for Linux* Systems User's Guide

82

If you don't use #pragma hdrstop, a different PCH file is created for each source file if different
headers follow common.h, and the subsequent compile times will be longer. #pragma hdrstop has no
effect on compilations that do not use these PCH options.

Linking
This topic describes the options that let you control and customize the linking with tools and libraries and
define the output of the ld linker. See the ld man page for more information on the linker.

Option Description

-Ldirectory Instruct the linker to search directory for libraries.

-Qoption,tool,list Passes an argument list to another program in the compilation
sequence, such as the assembler or linker.

-shared Instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable.

-shared-libcxa -shared-libcxa has the opposite effect of -static-
libcxa. When it is used, the Intel-provided libcxa C++
library is linked in dynamically, allowing the user to override the
static linking behavior when the -static option is used. Note:
By default, all C++ standard and support libraries are linked
dynamically.

-i_dynamic Specifies that all Intel-provided libraries should be linked
dynamically.

-static Causes the executable to link all libraries statically, as opposed to
dynamically.
When -static is not used:

• /lib/ld-linux.so.2 is linked in
• all other libs are linked dynamically

When -static is used:

• /lib/ld-linux.so.2 is not linked in
• all other libs are linked statically

-static-libcxa By default, the Intel-provided libcxa C++ library is linked in
dynamically. Use -static-libcxa on the command line to
link libcxa statically, while still allowing the standard libraries
to be linked in by the default behavior.

-Bstatic This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

Volume I: Building Applications

83

Option Description

-Bdynamic This option is placed in the linker command line corresponding to
its location on the user command line. This option is used to
control the linking behavior of any library being passed in via the
command line.

Suppressing Linking

Use the -c option to suppress linking. For example, entering the following command produces the object
files file1.o and file2.o:

prompt>icpc -c file1.cpp file2.cpp

Note

The preceding command does not link these files to produce an executable file.

Debugging
This section describes the basic command-line options that you can use as tools to debug your compilation
and to display and check compilation errors. This section includes topics on:

• Preparing for Debugging
• Parsing for Syntax Only
• Optimizations and Debugging
• Options for Debug Information

Debuggers

The Intel® Debugger is included with the Intel® C++ Compiler, but installation is optional. The Intel
Debugger (idb) includes an environment script, idbvars.sh, which you need to run before executing
idb:

prompt>source /opt/intel_idb_80/bin/idbvars.sh

See the "Intel Debugger (IDB) Manual" (idb_debugger_manual.htm) for complete information on
using the Intel Debugger.

You can also use the GNU Debugger (gdb) to debug programs compiled with the Intel C++ Compiler.

Intel® C++ Compiler for Linux* Systems User's Guide

84

Preparing for Debugging

Use the -g option to direct the compiler to generate code to support symbolic debugging. For example:

prompt>icpc -g prog.cpp

The compiler does not support the generation of debugging information in assembly files. If you specify the
-g option, the resulting object file will contain debugging information, but the assembly file will not.

Note

The -g option changes the default optimization from -O2 to -O0.

Parsing for Syntax Only

Use the -syntax option to stop processing source files after they have been parsed for C++ language
errors. This option provides a method to quickly check whether sources are syntactically and semantically
correct. The compiler creates no output file. In the following example, the compiler checks prog.cpp.
and displays diagnostic information to the standard error output:

prompt>icpc -syntax prog.cpp

Optimizations and Debugging

This topic describes the command-line options that you can use to debug your compilation and to display
and check compilation errors. The options that enable you to get debug information while optimizing are as
follows:

Option Description

-O0 Disables optimizations. Enables the -fp option.

-g Generates symbolic debugging information and line numbers in the object
code for use by the source-level debuggers. Turns off -O2 and makes -
O0 the default unless -O1, -O2, or -O3 is explicitly specified in the
command line together with -g.

-fp
IA-32 only

Disable using the EBP register as general purpose register.

Option Effect on -fp

-O1, -O2, or -O3 Disables -fp.

-O0 Enables -fp.

Volume I: Building Applications

85

Combining Optimization and Debugging

The -O0 option turns off all optimizations so you can debug your program before any optimization is
attempted. To get the debug information, use the -g option. The compiler lets you generate code to support
symbolic debugging while -O1, -O2, or -O3 is specified on the command line along with -g, which
produces symbolic debug information in the object file.

Note that if you specify the -O1, -O2, or -O3 option with the -g option, some of the debugging
information returned may be inaccurate as a side-effect of optimization.

It is best to make your optimization and/or debugging choices explicit:

• If you need to debug your program excluding any optimization effect, use the -O0 option, which
turns off all the optimizations.

• If you need to debug your program with optimization enabled, then you can specify the -O1, -O2, or
-O3 option on the command line along with -g.

Note

The -g option slows down the program when -O1, -O2, or -O3 is not specified. In this case -g turns on -
O0 which is what slows the program down. If both -O2 and -g are specified, the code should run nearly
the same speed as if -g were not specified.

Refer to the following table for the summary of the effects of using the -g option with the optimization
options.

These
options

Produce these results

-g Debugging information produced, -O0 enabled (optimizations disabled), -
fp enabled for IA-32-targeted compilations.

-g -O1 Debugging information produced, -O1 optimizations enabled.

-g -O2 Debugging information produced, -O2 optimizations enabled.

-g -O3 -fp Debugging information produced, -O3 optimizations enabled, -fp enabled
for IA-32-targeted compilations.

Debugging and Assembling

The assembly file is generated without debugging information, but if you produce an object file,it will
contain debugging information. If you link the object file and then use the GDB debugger on it, you will
get full symbolic representation.

Intel® C++ Compiler for Linux* Systems User's Guide

86

Options for Debug Information

The Intel® C++ Compiler provides basic debugging information and new features for enhanced debugging
of optimized code. The basic debugging switches are listed in the following table.

Option Description

-debug all
-debug full

These options are equivalent to -g. They turn on production of basic debug
information. They are off by default.

-debug none This option turns off production of debug information. This option is on by
default.

The Intel C++ Compiler improves debuggability of optimized code through enhanced support for:

• tracebacks
• variable locations
• breakpoints and stepping

The options described in the following table control emission of enhanced debug information. They must
be used in conjunction with the -g option.

Option Description

-debug inline_info This option produces enhanced source position
information for inlined code. This leads to greater
accuracy when reporting the source location of any
instruction. It also provides more information to
debuggers for function call traceback. The Intel
debugger, idb, has been enhanced to use the richer
debug information to show simulated call frames for
inlined functions. This option is off by default.

-debug variable_locations This option produces additional debug information for
scalar local variables using a feature of the DWARF
object module format known as "location lists." The
runtime locations of local scalar variables are specified
more accurately using this feature, i.e. whether at a
given position in the code, a variable value is found in
memory or a machine register. The Intel debugger is
able to process location lists and display values of local
variables at runtime with improved accuracy. This
option is off by default.

-debug extended This option turns on the -debug options described
previously:

• -debug inline_info
• -debug variable_locations

Volume I: Building Applications

87

Note

When the compiler needs to choose between optimization and quality of debug information, optimization is
given priority.

Creating and Using Libraries
The Intel® C++ Compiler uses the GNU* C Library, Dinkumware* C++ Library, and the Standard C++
Library. These libraries are documented at the following Internet locations:

• GNU C Library -- http://www.gnu.org/software/libc/manual/
• Dinkumware C++ Library -- http://www.dinkumware.com/htm_cpl/lib_cpp.html
• Standard C++ Library -- http://gcc.gnu.org/onlinedocs/libstdc++/documentation.html

Creating Libraries

Libraries are simply an indexed collection of object files that are included as needed in a linked program.
Combining object files into a library makes it easy to distribute your code without disclosing the source. It
also reduces the number of command-line entries needed to compile your project.

Static Libraries

Executables generated using static libraries are no different than executables generated from individual
source or object files. Static libraries are not required at runtime, so you do not need to include them when
you distribute your executable. At compile time, linking to a static library is generally faster than linking to
individual source files.

To build a static library:

1. use the -c option to generate object files from the source files
prompt>icpc -c my_source1.cpp my_source2.cpp my_source3.cpp

2. use the GNU ar tool to create the library file from the object files
prompt>ar rc my_lib.a my_source1.o my_source2.o my_source3.o

3. compile and link your project with your new library
prompt>icpc main.cpp my_lib.a

If your library file and source files are in different directories, use the -Ldir option to indicate where
your library is located:

prompt>icpc -L/cpp/libs main.cpp my_lib.a

If you are using Interprocedural Optimization, see Creating a Library from IPO Objects using xiar.

Shared Libraries

Shared libraries, also referred to as dynamic libraries or Dynamic Shared Objects (DSO), are linked
differently than static libraries. At compile time, the linker insures that all the necessary symbols are either
linked into the executable, or can be linked at runtime from the shared library. Executables compiled from
shared libraries are smaller, but the shared libraries must be included with the executable to function
correctly. When multiple programs use the same shared library, only one copy of the library is required in
memory.

Intel® C++ Compiler for Linux* Systems User's Guide

88

To build a shared library:

1. use the -fPIC and -c options to generate object files from the source files
prompt>icpc -fPIC -c my_source1.cpp my_source2.cpp
my_source3.cpp

2. use the -shared option to create the library file from the object files
prompt>icpc -shared my_lib.so my_source1.o my_source2.o
my_source3.o

3. compile and link your project with your new library
prompt>icpc main.cpp my_lib.so

See also Intel® Shared Libraries and Compiling for Non-shared Libraries.

Default Libraries

The following libraries are supplied with the Intel® C++ Compiler:

Library Description

libguide.a
libguide.so

For OpenMP* implementation

libguide_stats.a
libguide_stats.so

OpenMP static library for the parallelizer tool with performance
statistics and profile information

libompstub.a Library that resolves references to OpenMP subroutines when
OpenMP is not in use

libsvml.a Short vector math library

libirc.a Intel support library for PGO and CPU dispatch

libimf.a
libimf.so

Intel math library

libcprts.a
libcprts.so
libcprts.so.5

Dinkumware* C++ Library

libunwind.a
libunwind.so
libunwind.so.5

Unwinder library

libcxa.a
libcxa.so
libcxa.so.5

Intel run time support for C++ features

libcxaguard.a
libcxaguard.so
libcxaguard.so.5

Used for interoperability support with the -cxxlib-gcc option.
See gcc Interoperability.

Volume I: Building Applications

89

When you invoke the -cxxlib-gcc option, the following replacements occur:

• libcprts is replaced with libstdc++ from the gcc* distribution (3.2 or newer)
• libcxa and libunwind are replaced by libgcc from the gcc distribution (3.2 or newer)

Caution

The Linux* system libraries and the compiler libraries are not built with the -align option. Therefore, if
you compile with the -align option and make a call to a compiler distributed or system library, and have
long long, double, or long double types in your interface, you will get the wrong answer due to
the difference in alignment. Any code built with -align cannot make calls to libraries that use these
types in their interfaces unless they are built with -align (in which case they will not work without -
align).

Math Libraries

The Intel math library, libimf.a, contains optimized versions of math functions found in the standard C
run-time library. The functions in libimf.a are optimized for program execution speed on Intel®
Pentium® III and Pentium 4 processors. The Itanium® compiler also includes a libimf.a designed to
optimize performance on Itanium-based systems. The Intel math library is linked by default.

See Managing Libraries and Intel Math Library.

Intel® Shared Libraries

By default, the Intel® C++ Compiler links Intel-provided C++ libraries dynamically. The GNU* and
Linux* system libraries are also linked dynamically.

Options for Shared Libraries

Option Description

-i_dynamic Use the -i_dynamic option to link Intel-provided C++ libraries
dynamically (default). This has the advantage of reducing the size of the
application binary, but it also requires the libraries to be on the systems
where the application runs.

-shared The -shared option instructs the compiler to build a Dynamic Shared
Object (DSO) instead of an executable. For more details, refer to the ld man
page documentation.

-fpic Use the -fpic option when building shared libraries. It is required for the
compilation of each object file included in the shared library.

See also Linking.

Intel® C++ Compiler for Linux* Systems User's Guide

90

Managing Libraries

The LD_LIBRARY_PATH environment variable contains a colon-separated list of directories in which the
linker will search for library (.a) files. If you want the linker to search additional libraries, you can add
their names to LD_LIBRARY_PATH, to the command line, or to a response file (see Note). In each case,
the names of these libraries are passed to the linker before the names of the Intel libraries that the driver
always specifies.

Note

Response files are processed at the location they appear on the command line. If libraries are specified in
the response file, references from object files seen after the response file will not be resolved in those
libraries.

Modifying LD_LIBRARY_PATH

If you want to add a directory, /libs for example, to the LD_LIBRARY_PATH, you can do either of the
following:

• command line: prompt>export LD_LIBRARY_PATH=/libs:$LD_LIBRARY_PATH
• startup file export LD_LIBRARY_PATH=/libs:$LD_LIBRARY_PATH

To compile file.cpp and link it with the library mylib.a, enter the following command:

prompt>icpc file.cpp mylib.a

The compiler passes file names to the linker in the following order:

1. the object file
2. any objects or libraries specified on the command line, in a response file, or in a configuration file
3. the Intel® Math Library, libimf.a

Compiling for Non-shared Libraries

This section includes information on:

• Global Symbols and Visibility Attributes
• Symbol Preemption
• Specifying Symbol Visibility Explicitly

• Other Visibility-related Command-line Options

Volume I: Building Applications

91

Global Symbols and Visibility Attributes

A global symbol is one that is visible outside the compilation unit (single source file and its include files) in
which it is declared. In C/C++, this means anything declared at file level without the static keyword.
For example:

int x = 5; // global data definition
extern int y; // global data reference
int five() // global function definition
{ return 5; }
extern int four(); // global function reference

A complete program consists of a main program file and possibly one or more shareable object (.so) files
that contain the definitions for data or functions referenced by the main program. Similarly, shareable
objects might reference data or functions defined in other shareable objects. Shareable objects are so called
because if more than one simultaneously executing process has the shareable object mapped into its virtual
memory, there is only one copy of the read-only portion of the object resident in physical memory. The
main program file and any shareable objects that it references are collectively called the components of the
program.

Each global symbol definition or reference in a compilation unit has a visibility attribute that controls how
(or if) it may be referenced from outside the component in which it is defined. There are five possible
values for visibility:

• EXTERNAL - The compiler must treat the symbol as though it is defined in another component. For
a definition, this means that the compiler must assume that the symbol will be overridden
(preempted) by a definition of the same name in another component. See Symbol Preemption. If a
function symbol has external visibility, the compiler knows that it must be called indirectly and can
inline the indirect call stub.

• DEFAULT - Other components can reference the symbol. Furthermore, the symbol definition may be
overridden (preempted) by a definition of the same name in another component.

• PROTECTED - Other components can reference the symbol, but it cannot be preempted by a
definition of the same name in another component.

• HIDDEN - Other components cannot directly reference the symbol. However, its address might be
passed to other components indirectly (for example, as an argument to a call to a function in another
component, or by having its address stored in a data item reference by a function in another
component).

• INTERNAL - The symbol cannot be referenced outside its defining component, either directly or
indirectly.

Static local symbols (in C/C++, declared at file scope or elsewhere with the keyword static) usually have
HIDDEN visibility--they cannot be referenced directly by other components (or, for that matter, other
compilation units within the same component), but they might be referenced indirectly.

Note

Visibility applies to references as well as definitions. A symbol reference's visibility attribute is an assertion
that the corresponding definition will have that visibility.

Intel® C++ Compiler for Linux* Systems User's Guide

92

Symbol Preemption

Sometimes you may need to use some of the functions or data items from a shareable object, but may wish
to replace others with your own definitions. For example, you may want to use the standard C runtime
library shareable object, libc.so, but to use your own definitions of the heap management routines
malloc() and free(). In this case it is important that calls to malloc() and free() within
libc.so call your definition of the routines and not the definitions present in libc.so. Your definition
should override, or preempt, the definition within the shareable object.

This feature of shareable objects is called symbol preemption. When the runtime loader loads a
component, all symbols within the component that have default visibility are subject to preemption by
symbols of the same name in components that are already loaded. Since the main program image is always
loaded first, none of the symbols it defines will be preempted.

The possibility of symbol preemption inhibits many valuable compiler optimizations because symbols with
default visibility are not bound to a memory address until runtime. For example, calls to a routine with
default visibility cannot be inlined because the routine might be preempted if the compilation unit is linked
into a shareable object. A preemptable data symbol cannot be accessed using GP-relative addressing
because the name may be bound to a symbol in a different component; the GP-relative address is not
known at compile time.

Symbol preemption is a very rarely used feature that has drastic negative consequences for compiler
optimization. For this reason, by default the compiler treats all global symbol definitions as non-
preemptable (i.e., protected visibility). Global references to symbols defined in other compilation units are
assumed by default to be preemptable (i.e., default visibility). In those rare cases when you need all global
definitions, as well as references, to be preemptable, specify the -fpic option to override this default.

Specifying Symbol Visibility Explicitly

You can explicitly set the visibility of an individual symbol using the visibility attribute on a data or
function declaration. For example:

int i __attribute__ ((visibility("default")));
void __attribute__ ((visibility("hidden"))) x () {...}
extern void y() __attribute__ ((visibilty("protected");

The visibility declaration attribute accepts one of the five keywords:

• external
• default
• protected
• hidden
• internal

The value of the visibility declaration attribute overrides the default set by the -fvisibility, -
fpic, or -fno-common attributes.

Volume I: Building Applications

93

If you have a number of symbols for which you wish to specify the same visibility attribute, you can
set the visibility using one of the five command line options:

• -fvisibility-external=file
• -fvisibility-default=file
• -fvisibility-protected=file
• -fvisibility-hidden=file
• -fvisibility-internal=file

where file is the pathname of a file containing a list of the symbol names whose visibility you wish to
set. The symbol names in the file are separated by white space (blanks, TAB characters, or newlines). For
example, the command line option:

-fvisibility-protected=prot.txt

where file prot.txt contains:

a
b c d

 e

sets protected visibility for symbols a, b, c, d, and e. This has the same effect as

__attribute__ ((visibility=("protected")))

on the declaration for each of the symbols. Note that these two ways to explicitly set visibility are mutually
exclusive--you may use __attribute((visibilty())) on the declaration, or specify the symbol
name in a file, but not both.

You can set the default visibility for symbols using one of the command line options:

• -fvisibility=external
• -fvisibility=default
• -fvisibility=protected
• -fvisibility=hidden
• -fvisibility=internal

This option sets the visiblity for symbols not specified in a visibility list file and that do not have
__attribute__((visibilty())) in their declaration. For example, the command line options:

-fvisibility=protected -fvisibility-default=prot.txt

where file prot.txt is as previously described, will cause all global symbols except a, b, c, d, and e to
have protected visibility. Those five symbols, however, will have default visibility and thus be
preemptable.

Intel® C++ Compiler for Linux* Systems User's Guide

94

Other Visibility-related Command-line Options

-fminshared

The -fminshared option specifies that the compilation unit will be part of a main program component
and will not be linked as part of a shareable object. Since symbols defined in the main program cannot be
preempted, this allows the compiler to treat symbols declared with default visibility as though they have
protected visibility (i.e., -fminshared implies -fvisibility=protected). Also, the compiler
need not generate position-independent code for the main program. It can use absolute addressing, which
may reduce the size of the global offset table (GOT) and may reduce memory traffic.

-fpic

The -fpic option specifies full symbol preemption. Global symbol definitions as well as global symbol
references get default (i.e., preemptable) visibility unless explicitly specified otherwise.

-fno-common

Normally a C/C++ file-scope declaration with no initializer and without the extern or static keyword

int i;

is represented as a common symbol. Such a symbol is treated as an external reference, except that if no
other compilation unit has a global definition for the name, the linker allocates memory for it. The -fno-
common option causes the compiler to treat what otherwise would be common symbols as global
definitions and to allocate memory for the symbol at compile time. This may permit the compiler to use
the more efficient GP-relative addressing mode when accessing the symbol.

Volume I: Building Applications

95

gcc* Compatibility
C language object files created with the Intel® C++ Compiler are binary compatible with the GNU gcc*
compiler and glibc*, the GNU C language library. You can use the Intel compiler or the gcc compiler to
pass object files to the linker. However, to correctly pass the Intel libraries to the linker, use the Intel
compiler. See Linking and Default Libraries for more information.

The Intel C++ Compiler provides many of the language extensions provided by the GNU C compiler, gcc,
and the GNU C++ compiler, g++.

gcc Extensions to the C Language

GNU C includes several, non-standard features not found in ISO standard C. This version of the Intel C++
Compiler supports most these extensions (listed in the following table). See http://www.gnu.org for more
information.

gcc Language Extension Intel
Support

GNU Description and Examples

Statements and Declarations in
Expressions

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Statement-Exprs.html#Statement%20Exprs

Locally Declared Labels Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Local-Labels.html#Local%20Labels

Labels as Values Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Labels-as-
Values.html#Labels%20as%20Values

Nested Functions No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Nested-Functions.html#Nested%20Functions

Constructing Function Calls No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Constructing-
Calls.html#Constructing%20Calls

Naming an Expression's Type Yes http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Naming-Types.html#Naming%20Types

Referring to a Type with typeof Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Typeof.html#Typeof

Generalized Lvalues Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Lvalues.html#Lvalues

Conditionals with Omitted
Operands

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Conditionals.html#Conditionals

Double-Word Integers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Long-Long.html#Long%20Long

Complex Numbers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Complex.html#Complex

Intel® C++ Compiler for Linux* Systems User's Guide

96

gcc Language Extension Intel
Support

GNU Description and Examples

Hex Floats Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Hex-Floats.html#Hex%20Floats

Arrays of Length Zero Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Zero-Length.html#Zero%20Length

Arrays of Variable Length Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Variable-Length.html#Variable%20Length

Macros with a Variable Number
of Arguments.

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Variadic-Macros.html#Variadic%20Macros

Slightly Looser Rules for Escaped
Newlines

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Escaped-
Newlines.html#Escaped%20Newlines

String Literals with Embedded
Newlines

Yes http://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/
Multi-line-Strings.html#Multi-line%20Strings

Non-Lvalue Arrays May Have
Subscripts

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Subscripting.html#Subscripting

Arithmetic on void-Pointers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Pointer-Arith.html#Pointer%20Arith

Arithmetic on Function-Pointers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Pointer-Arith.html#Pointer%20Arith

Non-Constant Initializers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Initializers.html#Initializers

Compound Literals Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Compound-
Literals.html#Compound%20Literals

Designated Initializers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Designated-Inits.html#Designated%20Inits

Cast to a Union Type Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Cast-to-Union.html#Cast%20to%20Union

Case Ranges Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Case-Ranges.html#Case%20Ranges

Mixed Declarations and Code Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Mixed-
Declarations.html#Mixed%20Declarations

Declaring Attributes of Functions Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Function-
Attributes.html#Function%20Attributes

Attribute Syntax Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Attribute-Syntax.html#Attribute%20Syntax

Volume I: Building Applications

97

gcc Language Extension Intel
Support

GNU Description and Examples

Prototypes and Old-Style
Function Definitions

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Function-
Prototypes.html#Function%20Prototypes

C++ Style Comments Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
C---Comments.html#C++%20Comments

Dollar Signs in Identifier Names Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Dollar-Signs.html#Dollar%20Signs

ESC Character in Constants Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Character-
Escapes.html#Character%20Escapes

Specifying Attributes of Variables Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Variable-
Attributes.html#Variable%20Attributes

Specifying Attributes of Types Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Type-Attributes.html#Type%20Attributes

Inquiring on Alignment of Types
or Variables

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Alignment.html#Alignment

Inline Function is As Fast As a
Macro

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Inline.html#Inline

Assembler Instructions with C
Expression Operands

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Extended-Asm.html#Extended%20Asm

Controlling Names Used in
Assembler Code

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Asm-Labels.html#Asm%20Labels

Variables in Specified Registers Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Explicit-Reg-
Vars.html#Explicit%20Reg%20Vars

Alternate Keywords Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Alternate-
Keywords.html#Alternate%20Keywords

Incomplete enum Types Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Incomplete-
Enums.html#Incomplete%20Enums

Function Names as Strings Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Function-Names.html#Function%20Names

Getting the Return or Frame
Address of a Function

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Return-Address.html#Return%20Address

Using Vector Instructions
Through Built-in Functions

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Vector-
Extensions.html#Vector%20Extensions

Intel® C++ Compiler for Linux* Systems User's Guide

98

gcc Language Extension Intel
Support

GNU Description and Examples

Other built-in functions provided
by GCC

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Other-Builtins.html#Other%20Builtins

Built-in Functions Specific to
Particular Target Machines

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Target-Builtins.html#Target%20Builtins

Pragmas Accepted by GCC No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Pragmas.html#Pragmas

Unnamed struct/union fields
within structs/unions

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Unnamed-Fields.html#Unnamed%20Fields

g++* Extensions to the C++ Language

GNU C++ includes several, non-standard features not found in ISO standard C++. This version of the Intel
C++ Compiler supports many of these extensions (listed in the following table). See http://www.gnu.org
for more information.

g++ Language
Extension

Intel
Support

GNU Description and Examples

Minimum and
Maximum operators in
C++

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Min-and-Max.html#Min%20and%20Max

When is a Volatile
Object Accessed?

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Volatiles.html#Volatiles

Restricting Pointer
Aliasing

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Restricted-Pointers.html#Restricted%20Pointers

Vague Linkage Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Vague-Linkage.html#Vague%20Linkage

Declarations and
Definitions in One
Header

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
C---Interface.html#C++%20Interface

Where's the Template? extern
template
supported

http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Template-
Instantiation.html#Template%20Instantiation

Extracting the function
pointer from a bound
pointer to member
function

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Bound-member-
functions.html#Bound%20member%20functions

C++-Specific Variable,
Function, and Type
Attributes

Yes http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
C---Attributes.html#C++%20Attributes

Java Exceptions No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Java-Exceptions.html#Java%20Exceptions

Volume I: Building Applications

99

g++ Language
Extension

Intel
Support

GNU Description and Examples

Deprecated Features No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Deprecated-Features.html#Deprecated%20Features

Backwards
Compatibility

No http://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/
Backwards-
Compatibility.html#Backwards%20Compatibility

Note

The Intel C++ Compiler supports gcc-style inline ASM if the assembler code uses AT&T* System V/386
syntax. See http://www.gnu.org/software/binutils/manual/gas-2.9.1/html_node/as_196.html for more
information.

gcc* Interoperability

C++ compilers are interoperable if they can link object files and libraries generated by one compiler with
object files and libraries generated by the second compiler, and the resulting executable runs successfully.
The Intel® C++ Compiler has made significant improvements towards interoperability and is highly
compatible with the GNU gcc* compiler. This section describes features of the Intel C++ Compiler that
provide interoperability with gcc. These features include:

• Compiler Options for Interoperability
• Predefined Macros for Interoperability

See gcc Compatibility for a detailed list of compatibility features.

Compiler Options for Interoperability

The Intel® C++ Compiler options that affect gcc* interoperability include:

• -gcc-name
• -gcc-version
• -cxxlib-gcc
• -cxxlib-icc
• -fabi-version
• -no-gcc (see Predefined Macros for Interoperability)

-gcc-name option

The -gcc-name=name option, used with -cxxlib-gcc, lets you specify the location of gcc if the
compiler cannot locate the gcc C++ libraries. Use this option when referencing a non-standard gcc
installation.

Intel® C++ Compiler for Linux* Systems User's Guide

100

-gcc-version option

The -gcc-version=nnn option provides compatible behavior with gcc, where nnn indicates the gcc
version. The -gcc-version option is ON by default, and the value of nnn depends on the version of
gcc installed on your system. This option selects the version of gcc with which you achieve ABI
interoperability.

Installed Version of gcc Default Value of -gcc-version

older than version 3.2 not set

3.2 320

3.3 330

3.4 340

-cxxlib-gcc option

The -cxxlib-gcc[=GCC-root-dir] option lets you to build your applications using the C++
libraries and header files included with the gcc compiler. They include:

• libstdc++ standard C++ header files
• libstdc++ standard C++ library
• libgcc C++ language support

Use the optional argument, =GCC-root-dir, to specify the top-level location for the gcc binaries and
libraries.

Note

The Intel C++ Compiler is compatible with gcc 3.2, 3.3, and 3.4. The -cxxlib-gcc option is ON by
default if you are using gcc 3.2, 3.3, or 3.4.

When you compile and link your application using the -cxxlib-gcc option, the resulting C++ object
files and libraries can interoperate with C++ object files and libraries generated by gcc 3.2. This means that
third-party C++ libraries built with gcc 3.2 will work with C++ code generated by the Intel Compiler.

The -cxxlib-gcc option can only be used on Linux distributions that include gcc 3.2. This is required
for C++ ABI conformance.

By default, the Intel C++ Compiler uses headers and libraries included with the product. If you are linking
with code compiled with g++, which was compiled against gnu C++ headers, then differences in the
headers might cause incompatibilities that result in run-time errors.

Volume I: Building Applications

101

If you build one shared library against the Intel C++ libraries, build a second shared library against the gnu
C++ libraries, and use both libraries in a single application, you will have two C++ run-time libraries in
use. Since the application might use symbols from both libraries, the following problems may occur:

• partially initialized libraries
• lost I/O operations from data put in unaccessed buffers
• other unpredictable results, such as jumbled output

The Intel C++ Compiler does not support more than one run-time library in one application.

Warning

If you successfully compile your application using more than one run-time library, the resulting program
will likely be very unstable, especially when new code is linked against the shared libraries.

You should use the -cxxlib-gcc option if your application includes source files generated by g++ and
source files generated by the Intel C++ Compiler. This option directs the Intel compiler to use the g++
header and library files to build one set of run-time libraries. As a result, your program should run
correctly.

-cxxlib-icc option

The -cxxlib-icc option directs the Intel compiler to use the C++ run-time libraries and C++ header
files included with the Intel compiler. They include:

• libcprts standard C++ headers
• libcprts standard C++ library
• libcxa and libunwind C++ language support

Note

The -cxxlib-icc option is ON by default if are using a gcc version less than 3.2.

-fabi-version

The -fabi-version=n option directs the compiler to select a specific ABI implementation. By default,
the Intel compiler uses the ABI implementation that corresponds to the installed version of gcc. Both gcc
3.2 and 3.3 are not fully ABI-compliant.

Value of n Description

n=0 Select most recent ABI implementation

n=1 Select g++ 3.2 compatible ABI implementation

n=2 Select most conformant ABI implementation

See http://www.codesourcerey.com for more information on ABI conformance.

Intel® C++ Compiler for Linux* Systems User's Guide

102

See Specifying Alternate Tools and Paths for information on using -Qlocation to specify the location of
the GNU assembler and linker.

Predefined Macros for Interoperability

The Intel® C++ Compiler and gcc* support the following predefined macros:

• __GNUC__
• __GNUC_MINOR__
• __GNUC_PATCHLEVEL__

You can specify the -no-gcc option to undefine these macros. If you need gcc interoperability (-
cxxlib-gcc), do not use the -no-gcc compiler option.

Warning

Not defining these macros results in different paths through system header files. These alternate paths may
be poorly tested or otherwise incompatible.

See also Predefined Macros and GNU Environment Variables.

gcc* Built-in Functions

This version of the Intel® C++ compiler supports the following gcc* built-in functions:

__builtin_abs
__builtin_labs
__builtin_cos
__builtin_cosf
__builtin_fabs
__builtin_fabsf
__builtin_memcmp
__builtin_memcpy
__builtin_sin
__builtin_sinf
__builtin_sqrt
__builtin_sqrtf
__builtin_strcmp
__builtin_strlen
__builtin_strncmp
__builtin_abort
__builtin_prefetch
__builtin_constant_p
__builtin_printf
__builtin_fprintf
__builtin_fscanf
__builtin_scanf
__builtin_fputs
__builtin_memset
__builtin_strcat
__builtin_strcpy
__builtin_strncpy
__builtin_exit
__builtin_strchr
__builtin_strspn
__builtin_strcspn

Volume I: Building Applications

103

__builtin_strstr
__builtin_strpbrk
__builtin_strrchr
__builtin_strncat
__builtin_alloca
__builtin_ffs
__builtin_index
__builtin_rindex
__builtin_bcmp
__builtin_bzero
__builtin_sinl
__builtin_cosl
__builtin_sqrtl
__builtin_fabsl
__builtin_frame_address (IA-32 only)
__builtin_return_address (IA-32 only)

For more information on gcc built-in functions, see http://gcc.gnu.org/onlinedocs/gcc-3.4.1/gcc/Other-
Builtins.html#Other%20Builtins

gcc* Function Attributes

This version of the Intel® C++ Compiler supports the following gcc* function attributes:

• noinline - prevents a function from being inlined
• always_inline - inlines the function even if no optimization is specified
• used - code - must be emitted for the function even if the function is not referenced

Example

int round_sqrt(int) __attribute__ ((always_inline));

In this example, the function round_sqrt() is inlined even if no optimization is specified.

Thread-local Storage

The Intel® C++ Compiler supports the storage class keyword __thread, which can be used in variable
definitions and declarations. Variables defined and declared this way are automatically allocated locally to
each thread:

__thread int i;

__thread struct state s;

extern __thread char *p;

Note

The __thread keyword is only recognized when the GNU compatibility version is 3.3 or higher. You
may need to specify the -gcc-version=330 compiler option to enable thread-local storage.

See also http://gcc.gnu.org/onlinedocs/gcc/Thread-Local.html.

Intel® C++ Compiler for Linux* Systems User's Guide

104

Language Conformance
Conformance Options

Option Description

-ansi Equivalent to GNU* ANSI

-strict_ansi Strict ANSI conformance dialect

Conformance to the C Standard

You can set the Intel® C++ Compiler to accept either

• ANSI conformance equivalent to GNU* ANSI with the -ansi option, or
• Strict ANSI conformance dialect with the -strict_ansi option

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language compilation
(ISO/IEC 9899:1990). This standard requires that conforming C compilers accept minimum translation
limits. This compiler exceeds all of the ANSI/ISO requirements for minimum translation limits.

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies in
accordance with this standard:

The compiler includess predefined macros in addition to those required by the standard.

Macro Value

__DATE__ The date of compilation as a string literal in the form Mmm dd
yyyy.

__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC__ The name __STDC__ is defined when compiling a C translation unit.

__STDC_HOSTED__ The integer 1.

__TIME__ The time of compilation as a string literal in the form hh:mm:ss.

Volume I: Building Applications

105

C99 Support

The following C99 features are supported in this version of the Intel C++ Compiler:

• restricted pointers (restrict keyword, available with -restrict). See Note.
• variable-length Arrays
• flexible array members
• complex number support (_Complex keyword)
• hexadecimal floating-point constants
• compound literals
• designated initializers
• mixed declarations and code
• macros with a variable number of arguments
• inline functions (inline keyword)
• boolean type (_Bool keyword)

Note

The -restrict option enables the recognition of the restrict keyword as defined by the ANSI
standard. By qualifying a pointer with the restrict keyword, the user asserts that an object accessed via
the pointer is only accessed via that pointer in the given scope. It is the user�s responsibility to use the
restrict keyword only when this assertion is true. In these cases, the use of restrict will have no
effect on program correctness, but may allow better optimization.

These features are not supported:

• #pragma STDC FP_CONTRACT
• #pragma STDC FENV_ACCESS
• #pragma STDC CX_LIMITED_RANGE
• long double (128-bit representations)

Conformance to the C++ Standard

The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language.

Exported Templates

The Intel® C++ Compiler supports exported templates using the following options:

Option Description

-export Enable recognition of exported templates. Supported in C++ mode
only.

-export_dir dir Specifies a directory name to be placed on the exported template
search path. The directories are used to find the definitions of
exported templates and are searched in the order in which they are
specified on the command-line. The current directory is always the
first entry on the search path.

Intel® C++ Compiler for Linux* Systems User's Guide

106

Exported templates are templates declared with the export keyword. Exporting a class template is
equivalent to exporting each of its static data members and each of its non-inline member functions. An
exported template is unique because its definition does not need to be present in a translation unit that uses
that template. For example, the following C++ program consists of two separate translation units:

// file1.cpp
#include <stdio.h>
static void trace() { printf("File 1\n"); }
export template<class T> T const& min(T const&, T const&);
int main() {
 trace();
 return min(2, 3);
}

// file2.cpp
#include <stdio.h>
static void trace() { printf("File 2\n"); }
export template<class T> T const& min(T const &a, T const &b) {
 trace();
 return a<b? a: b;
}

Note that these two files are separate translation units: one is not included in the other. That allows the two
functions trace() to coexist (with internal linkage).

Usage

prompt>icpc -export -export_dir /usr2/export/ -c file1.cpp

prompt>icpc -export -export_dir /usr2/export/ -c file2.cpp

prompt>icpc -export -export_dir /usr2/export/ file1.o file2.o

Template Instantiation

The Intel® C++ Compiler supports extern template, which lets you specify that a template in a specific
translation unit will not be instantiated because it will be instantiated in a different translation unit or
different library. The compiler now includes additional support for:

• inline template -- instantiates the compiler support data for the class (i.e. the vtable) for a class
without instantiating its members.

• static template -- instantiates the static data members of the template, but not the virtual tables or
member functions.

Volume I: Building Applications

107

You can now use the following options to gain more control over the point of template instantiation:

Option Description

-fno-implicit-templates Never emit code for non-inline templates which
are instantiated implicitly (i.e. by use). only
emit code for explicit instantiations.

-fno-implicit-inline-templates Do not emit code for implicit instantiations of
inline templates either. The default is to handle
inlines differently so that compilations, with
and without optimization, will need the same
set of explicit instantiations.

108

Volume II: Optimizing Applications
Optimization Levels

This section discusses the command-line options -O0, -O1, -O2, and -O3. The -O0 option disables
optimizations. Each of the other three turns on several compiler capabilities. To specify one of these
optimizations, take into consideration the nature and structure of your application as indicated in the more
detailed description of the options. In general terms -O1, -O2, and -O3 optimize as follows:

• -O1 -- code size and locality
• -O2 -- code speed; this is the default option
• -O3 -- enables -O2 with more aggressive optimizations.

These options behave similarly on IA-32 and Itanium® architectures, with some specifics that are detailed
in the sections that follow.

Setting Optimization Levels

The following table details the effects of the -O0, -O1, -O2, -O3, and -fast options. The table first
describes the characteristics shared by both IA-32 and Itanium® architectures and then explicitly describes
the specifics (if any) of the -On options� behavior on each architecture.

Option Effect

-O0 Disables optimizations.

-O1 Optimizes to favor code size and code locality. Disables loop unrolling. May
improve performance for applications with very large code size, any branches, and
execution time not dominated by code within loops. In most cases, -O2 is
recommended over -O1.
IA-32 systems: Disables intrinsics inlining to reduce code size.
Itanium-based systems: Disables software pipelining and global code scheduling.

-O2, -O ON by default. Optimizes for code speed. This is the generally recommended
optimization level.
Itanium-based systems: Enables software pipelining.

-O3 Enables -O2 optimizations and more aggressive optimizations such as loop and
memory access transformations. The -O3 optimizations may slow down code in
some cases compared to -O2 optimizations. Recommended for applications that
have loops that heavily use floating-point calculations and process large data sets.
IA-32 systems: In conjunction with -ax{K|W|N|B|P} and -x{K|W|N|B|P}
options, this option causes the compiler to perform more aggressive data
dependency analysis than for -O2. This may result in longer compilation times.

Volume II: Optimizing Applications

109

Option Effect

-fast The -fast option enhances execution speed across the entire program by
including the following options that can improve run-time performance:

• -O3 (maximum speed and high-level optimizations.
• -ipo (enables interprocedural optimizations across files)
• -static (prevents linking with shared libraries)
• -xP (specific optimization for Intel Pentium 4 processor with

Streaming SIMD Extensions 3). The -fast option does not include
-xP when compiling on Itanium®-based systems.

To override one of the options set by -fast, specify that option after the -fast
option on the command line. To target -fast optimizations for a specific
processor, use one of the -x options. For example:

prompt>icpc -fast -xW source_file.cpp

The options set by -fast may change from release to release.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your program:

Option Description

-O0 Disables optimizations. Enables the -fp option.

-mp Restricts optimizations that cause some minor loss or gain of precision in
floating-point arithmetic to maintain a declared level of precision and to
ensure that floating-point arithmetic more nearly conforms to the ANSI
and IEEE*standards.

-g Specifying the -g option turns off the default -O2 option and makes -
O0 the default unless -O1, -O2, or -O3 is explicitly specified in the
command line together with -g.

-nolib_inline Disables inline expansion of intrinsic functions.

Intel® C++ Compiler for Linux* Systems User's Guide

110

Note

You can turn off all optimizations for specific functions by using #pragma optimize. In the following
example, all optimization is turned off for function foo():

#pragma optimize("", off)
foo(){
...
}

Valid second arguments for #pragma optimize are "on" or "off." With the "on" argument, foo()
is compiled with the same optimization as the rest of the program. The compiler ignores first argument
values.

Floating-point Optimizations
Floating-point Arithmetic Precision

There are several compiler options that affect floating-point computations. In general, the options discussed
here let you decide between performance and accuracy. To achieve greater performance, it may be
necessary to sacrifice some degree of floating-point accuracy.

See also Floating-point Arithmetic Options for Itanum®-based Systems.

Options for IA-32 and Itanium®-based Systems

-mp Option

The -mp option restricts some optimizations to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards. Floating point intermediate
results are kept in full 10-byte internal precision. All spills and reloads of the X87 floating-point registers
utilize this internal format to prevent accidental loss of precision.

For most programs, specifying this option adversely affects performance. If you are not sure whether your
application needs this option, try compiling and running your program both with and without it to evaluate
the effects on performance versus precision. Alternatives to -mp include -xN (for the Intel® Pentium 4
processor or newer) and -mp1.

• user variables declared as floating-point types are not assigned to registers.
• whenever an expression is spilled (moved from a register to memory), it is spilled as 80 bits

(extended precision), not 64 bits (double precision).
• floating-point arithmetic comparisons conform to the IEEE 754 specification except for NaN

behavior.
• the exact operations specified in the code are performed. For example, division is never changed to

multiplication by the reciprocal.
• the compiler performs floating-point operations in the order specified without re-association.
• the compiler does not perform the constant-folding optimization on floating-point values. Constant

folding also eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For
example, code that adds 0.0 to a number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are also maintained.

Volume II: Optimizing Applications

111

• floating-point operations conform to ANSI C. When assignments to type float and double are
made, the precision is rounded from 80 bits (extended) down to 32 bits (float) or 64 bits (double).
When you do not specify -mp, the extra bits of precision are not always rounded before the variable
is reused.

• sets the -nolib_inline option, which disables inline functions expansion.

-mp1 Option

Use the -mp1 option to improve floating-point precision. -mp1 disables fewer optimizations and has less
impact on performance than -mp. -mp1 prevents the compiler from performing optimizations which
change NAN comparison semantics. It also causes all values used in comparisons to be truncated to
declared precision prior to use in the comparison. It also makes sure to use library routines which give
better precision results compared to the X87 transcendental instructions.

-complex_limited_range

This option enables the use of the basic algebraic expansions of some complex arithmetic operations. At the
loss of some exponent range, the -complex_limited_range option can allow for some performance
improvement in programs which utilize complex arithmetic. By default, the compiler disables this option
by using -complex_limited_range-.

Options for IA-32 Only

Caution

A change of the default precision control or rounding mode (for example, by using the -pc32 flag or by
user intervention) may affect the results returned by some of the mathematical functions.

-prec_div Option

With some optimizations, the Intel® C++ Compiler changes floating-point division computations into
multiplication by the reciprocal of the denominator. For example, A/B is computed as A x (1/B) to improve
the speed of the computation. However, for values of B greater than 2126, the value of 1/B is "flushed"
(changed) to 0. When it is important to maintain the value of 1/B, use -prec_div to disable the floating-
point division-to-multiplication optimization. The result of -prec_div is greater accuracy with some loss
of performance.

-pcn Option

Use the -pcn option to enable floating-point significand precision control. Some floating-point algorithms
are sensitive to the accuracy of the significand or fractional part of the floating-point value. For example,
iterative operations like division and finding the square root can run faster if you lower the precision with
the -pcn option. Set n to one of the following values to round the significand to the indicated number of
bits:

• -pc32: 24-bit significand (single precision)
• -pc64: 53-bit significand (double precision)
• -pc80: 64-bit significand (long double precision)

The default value for n is 80, indicating long double precision. This option allows full optimization. Using
this option does not have the negative performance impact of using the -Op option because only the
fractional part of the floating-point value is affected. The range of the exponent is not affected. The -pcn

Intel® C++ Compiler for Linux* Systems User's Guide

112

option causes the compiler to change the floating-point precision control when the main() function is
compiled. The program that uses -pcn must use main() as its entry point, and the file containing
main() must be compiled with -pcn.

-rcd Option

The Intel compiler uses the -rcd option to improve the performance of code that requires floating-point-
to-integer conversions. The optimization is obtained by controlling the change of the rounding mode. The
system default floating point rounding mode is round-to-nearest. This means that values are rounded during
floating point calculations. However, the C language requires floating point values to be truncated when a
conversion to an integer is involved. To do this, the compiler must change the rounding mode to truncation
before each floating-point-to-integer conversion and change it back afterwards. The -rcd option disables
the change to truncation of the rounding mode for all floating point calculations, including floating point-
to-integer conversions. Turning on this option can improve performance, but floating point conversions to
integer will not conform to C semantics.

-fp_port Option

The -fp_port option rounds floating-point results at assignments and casts. An impact on speed may
result.

-fpstkchk Option

When a function call returns a floating-point value, the return value should be placed at the top of the FP
stack. If the return value is unused, the compiler pops the value off the stack to keep the FP stack in the
correct state. However, if the application leaves out the function's prototype or incorrectly prototypes the
function, then the return value may remain on the stack. This may result in the FP stack filling up and
eventually overflowing.

Generally, when the FP stack overflows, a NaN value is put into FP calculations, and the program's results
differ. Unfortunately, the overflow point can be far away from the point of the actual bug. The -
fpchkstk option places code that would access violate immediately after an incorrect call occurred, thus
making it easier to locate these issues.

Floating-point Arithmetic Options for Itanium®-based Systems

The following options enable you to control the compiler optimizations for floating-point computations on
Itanium®-based systems:

• -ftz[-]
• -IPF_fma[-]
• -IPF_fp_speculationmode
• -IPF_flt_eval_method0
• -IPF_fltacc[-](Default:-IPF_fltacc-)
• -IPF_fp_relaxed[-]

Flush Denormal Results to Zero

Use the -ftz option to flush denormal results to zero.

Volume II: Optimizing Applications

113

Contraction of FP Multiply and Add/Subtract Operations

-IPF_fma[-] enables [disables] the contraction of floating-point multiply and add/subtract operations
into a single operation. Unless -mp is specified, the compiler contracts these operations whenever possible.
The -mp option disables the contractions. Use -IPF_fma and -IPF_fma- to override the default
compiler behavior. For example, a combination of -mp and -IPF_fma enables the compiler to contract
operations (on Itanium®-based systems only):

prompt>icpc -mp -IPF_fma prog.cpp

FP Speculation

-IPF_fp_speculationmode sets the compiler to speculate on floating-point operations in one of the
following modes:

• fast: sets the compiler to speculate on floating-point operations
• safe: enables the compiler to speculate on floating-point operations only when it is safe
• strict: disables the speculation of floating-point operations.
• off: disables the speculation on floating-point operations.

Note

-IPF_fp_speculationsafe is the default when -O0 is specified.

FP Operations Evaluation

-IPF_flt_eval_method0 directs the compiler to evaluate the expressions involving floating-point
operands in the precision indicated by the variable types declared in the program.

Controlling Accuracy of the FP Results

-IPF_fltacc[-] enables [disables] optimizations that affect floating-point accuracy. By default (-
IPF_fltacc-) the compiler may apply optimizations that reduce floating-point accuracy. You may use -
IPF_fltacc or -mp to improve floating-point accuracy, but at the cost of disabling some optimizations.

-IPF_fp_relaxed[-] enables [disables] use of faster but slightly less accurate code sequences for
math functions, such as divide and square root. As compared to strict IEEE* precision, using this option
slightly reduces the accuracy of floating-point calculations performed by these functions, usually limited to
the least significant digit.

Intel® C++ Compiler for Linux* Systems User's Guide

114

Optimizing for Specific Processors
Processor Optimization for IA-32 only

The -tpp{5|6|7} options optimize your application's performance for a specific Intel processor. The
resulting binary will also run on the other processors listed in the table. The Intel® C++ Compiler includes
gcc*-compatible versions of the -tpp options. These options are listed in the gcc* Version column.

Option gcc* Version Optimizes for

-tpp5 -mcpu=pentium Intel® Pentium® processors

-tpp6 -mcpu=pentiumpro Intel Pentium Pro, Intel Pentium II, and Intel Pentium III
processors

-tpp7 -mcpu=pentium4 Intel Pentium 4 processors, Intel Pentium M processors,
and Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3)

Note

The -tpp7 option is ON by default.

Example

The following invocations all result in a compiled binary optimized for Pentium 4. The same binary will
also run on Pentium, Pentium Pro, Pentium II, and Pentium III processors.

prompt>icpc prog.cpp

prompt>icpc -tpp7 prog.cpp

prompt>icpc -mcpu=pentium4 prog.cpp

Processor Optimization (Itanium®-based Systems only)

The -tpp{1|2} options optimize your application's performance for a specific Intel® Itanium®
processor. The resulting binary will also run on the processors listed in the table. The Intel® C++ Compiler
includes gcc*-compatible versions of the -tpp options. These options are listed in the gcc* Version
column.

Option gcc* Version Optimizes for

-tpp1 -mcpu=itanium Itanium processors

-tpp2 -mcpu=itanium2 Itanium 2 processors

Note

The -tpp2 option is ON by default.

Volume II: Optimizing Applications

115

Example

The following invocations all result in a compiled binary optimized for the Intel Itanium 2 processor. The
same binary will also run on Intel Itanium processors.

prompt>icpc prog.cpp

prompt>icpc -tpp2 prog.cpp

prompt>icpc -mcpu=itanium2 prog.cpp

Processor-specific Optimization (IA-32 only)

The -x{K|W|N|B|P} options target your program to run on a specific Intel processor by generating
specialized and optimized code. The resulting code might contain unconditional use of features that are not
supported on other processors.

Option Specific Optimization for...

-xK Intel® Pentium® III and compatible Intel processors.

-xW Intel Pentium 4 and compatible Intel processors.

-xN Intel Pentium 4 and compatible Intel processors. Programs compiled with this option
will detect non-compatible processors and generate an error message during
execution. This option also enables new optimizations in addition to Intel
processor-specific optimizations.

-xB Intel Pentium M and compatible Intel processors. Programs compiled with this
option will detect non-compatible processors and generate an error message during
execution. This option also enables new optimizations in addition to Intel
processor-specific optimizations.

-xP Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). Programs
compiled with this option will detect non-compatible processors and generate an
error message during execution. This option also enables new optimizations in
addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do not specify the -
x{K|W|N|B|P} option.

Example

The following invocation compiles prog.cpp for Intel Pentium 4 and compatible processors. The
resulting binary might not execute correctly on Pentium, Pentium Pro, Pentium II, Pentium III, or Pentium
with MMX technology processors, or on x86 processors not provided by Intel Corporation.

prompt>icpc -xW prog.cpp

Intel® C++ Compiler for Linux* Systems User's Guide

116

Caution

If a program compiled with -x{K|W|N|B|P} is executed on a non-compatible processor, it might fail
with an illegal instruction exception, or display other unexpected behavior. Executing programs compiled
with -xN, -xB, or -xP on unsupported processors (see table) will display the following run-time error:

Fatal Error : This program was not built to run on the processor in your
system.

Automatic Processor-specific Optimizations (IA-32 only)

The -ax{K|W|N|B|P} options direct the compiler to find opportunities to generate separate versions of
functions that take advantage of features that are specific to the specified Intel processor. If the compiler
finds such an opportunity, it first checks whether generating a processor-specific version of a function is
likely to result in a performance gain. If this is the case, the compiler generates both a processor-specific
version of a function and a generic version of the function. The generic version will run on any IA-32
processor.

At run time, one of the versions is chosen to execute, depending on the Intel processor in use. In this way,
the program can benefit from performance gains on more advanced Intel processors, while still working
properly on older IA-32 processors.

The disadvantages of using -ax{K|W|N|B|P} are:

• The size of the compiled binary increases because it contains processor-specific versions of some of
the code, as well as a generic version of the code.

• Performance is affected slightly by the run-time checks to determine which code to use.

Note

Applications that you compile with this option will execute on any IA-32 processor. If you specify both the
-x and -ax options, the -x option forces the generic code to execute only on processors compatible with
the processor type specified by the -x option.

Option Optimizes Your Code for...

-axK Intel Pentium III and compatible Intel processors.

-axW Intel Pentium 4 and compatible Intel processors.

-axN Intel Pentium 4 and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axB Intel Pentium M and compatible Intel processors. This option also enables new
optimizations in addition to Intel processor specific-optimizations.

-axP Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3). This option
also enables new optimizations in addition to Intel processor specific-optimizations.

Volume II: Optimizing Applications

117

Example

The following compilation will generate a single executable that includes:

• a generic version for use on any IA-32 processor
• a version optimized for Intel Pentium III processors, as long as there is a likely performance benefit
• a version optimized for Intel Pentium 4 processors, as long as there is a likely performance benefit

prompt>icpc -axKW prog.cpp

Manual CPU Dispatch (IA-32 only)

Use __declspec(cpu_specific) and __declspec(cpu_dispatch) in your code to generate
instructions specific to the Intel processor on which the application is running, and also to execute correctly
on other IA-32 processors.

Note

Manual CPU dispatch cannot be used to recognize Intel® Itanium® processors. The syntax of these
extended attributes is as follows:

• cpu_specific(cpuid)
• cpu_dispatch(cpuid-list)

The values for cpuid and cpuid-list are shown in the following tables:

Processor Values for cpuid

x86 processors not provided by Intel Corporation generic

Intel® Pentium® processors pentium

Intel Pentium processors with MMX� Technology pentium_mmx

Intel Pentium Pro processors pentium_pro

Intel Pentium II processors pentium_ii

Intel Pentium III processors pentium_iii

Intel Pentium III (exclude xmm registers) pentium_iii_no_xmm_regs

Intel Pentium 4 processors pentium_4

Intel Pentium M processors pentium_m

Intel Pentium 4 processor with Streaming SIMD
Extensions 3 (SSE3).

pentium_4_sse3

Values for cpuid-list

cpuid

cpuid-list, cpuid

Intel® C++ Compiler for Linux* Systems User's Guide

118

The attributes are not case sensitive. The body of a function declared with
__declspec(cpu_dispatch) must be empty, and is referred to as a stub (an empty-bodied function).

Use the following guidelines to implement automatic processor dispatch support:

1. Stub for cpu_dispatch must have a cpuid defined in cpu_specific elsewhere
If the cpu_dispatch stub for a function f contains the cpuid p, then a cpu_specific
definition of f with cpuid p must appear somewhere in the program; otherwise an unresolved
external error is reported. A cpu_specific function definition need not appear in the same
translation unit as the corresponding cpu_dispatch stub, unless the cpu_specific function is
declared static. The inline attribute is disabled for all cpu_specific and cpu_dispatch
functions.

2. Must have a stub for cpu_specific function
If a function f is defined as __declspec(cpu_specific(p)), then a cpu_dispatch stub
must also appear for f within the program; and p must be in the cpuid-list of that stub;
otherwise, that cpu_specific definition cannot be called nor generate an error condition.

3. Overrides command line settings
When a cpu_dispatch stub is compiled, its body is replaced with code that determines the
processor on which the program is running, then dispatches the "best" cpu_specific
implementation available as defined by the cpuid-list. The cpu_specific function optimizes
to the specified Intel processor regardless of command-line option settings.

Volume II: Optimizing Applications

119

Processor Dispatch Example

Here is an example of how these features can be used:

#include <mmintrin.h>
/* Pentium processor function does not use intrinsics to add
two arrays. */

__declspec(cpu_specific(pentium))
void array_sum(int *r, int *a, int *b,size_t l)
{
 for (; length > 0; l--)
 *result++ = *a++ + *b++;
}

/* Implementation for a Pentium processor with MMX technology
uses
an MMX instruction intrinsic to add four elements
simultaneously. */

__declspec(cpu_specific(pentium_MMX))
void array_sum(int *r,int const *a, int *b, size_t l)
{
 __m64 *mmx_result = (__m64 *)result;
 __m64 const *mmx_a = (__m64 const *)a;
 __m64 const *mmx_b = (__m64 const *)b;

 for (; length > 3; length -= 4)
 *mmx_result++ = _mm_add_pi16(*mmx_a++, *mmx_b++);

 /* The following code, which takes care of excess elements,
is not
 needed if the array sizes passed are known to be multiples
of four. */

 result = (unsigned short *)mmx_r;
 a = (unsigned short const *)mmx_a;
 b = (unsigned short const *)mmx_b;

 for (; length > 0; l--)
 *result++ = *a++ + *b++;
}

__declspec(cpu_dispatch(pentium, pentium_MMX))
void array_sum (int *r,int const *a, int *b, size_t l))

{

/* Empty function body informs the compiler to generate the
CPU-dispatch function listed in the cpu_dispatch clause. */

}

Processor-specific Runtime Checks, IA-32 Systems

The Intel® C++ Compiler optimizations take effect at run time. For IA-32 systems, the compiler enhances
processor-specific optimizations by inserting a code segment in the program that performs the run-time
checks described here.

Intel® C++ Compiler for Linux* Systems User's Guide

120

Check for Supported Processor with -xN, -xB, or -xP

To prevent execution errors, the compiler inserts code in the program to check for proper processor usage.
 Programs compiled with options -xN, -xB, or -xP will check at run time whether they are being executed
on the Intel® Pentium® 4 processor, Intel Pentium M processor, or the Intel Pentium 4 processor with
Streaming SIMD Extensions 3 (SSE3), respectively, or a compatible Intel processor. If the program is not
executed on one of these processors, the program terminates with an error.

Example

To optimize the program prog.cpp for the Intel Pentium 4 processor with Streaming SIMD Extensions 3
(SSE3), issue the following command:

prompt>icpc -xP prog.cpp

The resulting executable aborts if it is executed on a processor that does not support the Intel Pentium 4
processor with Streaming SIMD Extensions 3 (SSE3), such as the Intel Pentium III or Intel Pentium 4
processor.

If you intend to run your programs on multiple IA-32 processors, do not use the -x{} options that
optimize for processor-specific features; consider using -ax{} to attain processor specific performance
and portability among different processors.

Setting FTZ and DAZ Flags

Previously, the values of the flags flush-to-zero (FTZ) and denormals-as-zero (DAZ) for IA-32 processors
were off by default. However, even at the cost of losing IEEE compliance, turning these flags on
significantly increases the performance of programs with denormal floating-point values in the gradual
underflow mode run on the most recent IA-32 processors. Hence, for the Intel Pentium III, Pentium 4,
Pentium M, Intel Pentium 4 processor with Streaming SIMD Extensions 3 (SSE3), and compatible IA-32
processors, the compiler's default behavior is to turn these flags on. The compiler inserts code in the
program to perform a run-time check for the processor on which the program runs to verify it is one of the
afore-listed Intel processors.

Examples

• Executing a program on a Pentium III processor enables FTZ, but not DAZ.
• Executing a program on an Intel Pentium M processor or Intel Pentium 4 processor with Streaming

SIMD Extensions 3 (SSE3) enables both FTZ and DAZ.

These flags are only turned on by Intel processors that have been validated to support them.

For non-Intel processors, you can set the flags manually with the following macros:

Enable FTZ: _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON)

Enable DAZ: _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON)

The prototypes for these macros are in xmmintrin.h (FTZ) and pmmintrin.h (DAZ).

Volume II: Optimizing Applications

121

Interprocedural Optimizations
Use -ip and -ipo to enable interprocedural optimizations (IPO), which enable the compiler to analyze
your code to determine where you can benefit from the optimizations listed in tables that follow.

IA-32 and Itanium®-based applications

Optimization Affected Aspect of Program

Inline function expansion Calls, jumps, branches, and loops

Interprocedural constant propagation Arguments, global variables, and return values

Monitoring module-level static variables Further optimizations and loop invariant code

Dead code elimination Code size

Propagation of function characteristics Call deletion and call movement

Multifile optimization The same aspects as -ip, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program

Passing arguments in registers Calls and register usage

Loop-invariant code motion Further optimizations and loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural optimizer. For
function calls that the compiler believes are frequently executed, the compiler might decide to replace the
instructions of the call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures defined within the
current source file. However, when you use -ipo to specify multifile IPO, the compiler performs inline
function expansion for calls to procedures defined in separate files.

To disable the IPO optimizations, use the -O0 option.

Caution

The -ip and -ipo options can in some cases significantly increase compile time and code size.

-auto_ilp32 for Itanium-based Systems

On Itanium-based systems, the -auto_ilp32 option requires interprocedural analysis over the whole
program. This optimization allows the compiler to use 32-bit pointers whenever possible as long as the
application does not exceed a 32-bit address space. Using the -auto_ilp32 option on programs that
exceed 32-bit address space might cause unpredictable results during program execution.

Intel® C++ Compiler for Linux* Systems User's Guide

122

Because this optimization requires interprocedural analysis over the whole program, you must use the -
auto_ilp32 option with the -ipo option.

IPO Compilation Model

For the topics in this section, the term IPO generally refers to multi-file IPO.

When you use the -ipo option, the compiler collects information from individual program modules of a
program. Using this information, the compiler performs optimizations across modules. In order to do this,
the -ipo option is applied to both the compilation phase and the link phase.

One of the main benefits of IPO is that it enables more inlining. For information on inlining and the
minimum inlining criteria, see Criteria for Inline Function Expansion and Controlling Inline Expansion of
User Functions. Inlining and other optimizations are improved by profile information. For a description of
how to use IPO with profile information for further optimization, see Example of Profile-Guided
Optimization.

Compilation Phase

When using IPO, as each source file is compiled, the compiler stores an intermediate representation (IR) of
the source code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of IPO. Generating
mock files instead of real object files reduces the time spent in the IPO compilation phase. Each mock
object file contains the IR for its corresponding source file, but no real code or data. These mock objects
must be linked using the -ipo option or the xild tool. (See Creating a Multifile IPO Executable with
xild.)

Note
Failure to link "mock" objects with the -ipo option or xild will result in linkage errors. There are
situations where mock object files cannot be used. See Compilation with Real Object Files for more
information.

Linkage Phase

When you invoke the linker, adding -ipo to the command line causes the compiler to be invoked a final
time before the linker. The compiler performs IPO across all object files that have an IR. The compiler first
analyzes all of the summary information, and then finishes compiling the pieces of the application for
which it has IR. Having global information about the application while it is compiling individual pieces can
improve the quality of optimization.

Note
The compiler does not support multifile IPO for static libraries (.a files). See Compilation with Real
Object Files for more information.

When you use the -ipo option, the compiler attempts to detect a whole program automatically. If a whole
program is detected, the interprocedural constant propagation, stack frame alignment, data layout and
padding of common blocks perform more efficiently, while more dead functions get deleted. This option is
safe.

Volume II: Optimizing Applications

123

Command Line for Creating an IPO Executable

The command line options to enable IPO for compilations targeted for both the IA-32 and Itanium®
architectures are identical. To produce mock object files containing intermediate representation (IR),
compile your source files with -ipo as follows:

prompt>icpc -ipo -c a.cpp b.cpp c.cpp

This produces a.o, b.o, and c.o object files. These files contain Intel compiler IR corresponding to the
compiled source files a.cpp, b.cpp, and c.cpp. Using -c to stop compilation after generating .o files
is required.

You can now optimize interprocedurally by adding -ipo to your link command line. The following
example produces an executable named app:

prompt>icpc -oapp -ipo a.o b.o c.o

This command invokes the compiler on the objects containing IR and creates a new list of object(s) to be
linked. The command then calls GCC ld to link the specified object files and produce app, as specified by
the -o option. IPO is applied only to the object files that contain IR; otherwise the object file passes to link
stage.

Note
For the above step, you can use the xild tool instead of icpc.

The two steps described above can be combined, as shown in the following:

prompt>icpc -ipo -oapp a.f b.f c.f

Generating Multiple IPO Object Files

For the most part, IPO generates a single object file for the link-time compilation. This can be clumsy for
very large applications, perhaps even making it impossible to use -ipo on the application. The compiler
provides two ways to avoid this problem. The first way is a size-based heuristic, which automatically
causes the compiler to generate multiple object files for large link-time compilations. The second way is
using one of two explicit command line controls that tell the compiler to do multi-object IPO:

• -ipoN, where N indicates the number of object files to generate.
• -ipo_separate, which tells the compiler to generate a separate IPO object file for each source

file.

These options are alternatives to the -ipo option, that is, they indicate an IPO compilation. Explicitly
requesting a multi-object IPO compilation turns the size-based heuristic off.

The number of files generated by the link-time compilation is invisible unless either the -ipo_c or -
ipo_S option is used. In this case the compiler appends a number to the file name. For example, consider
this example:

prompt>icpc -ipo_separate -ipo_c a.o b.o c.o

Intel® C++ Compiler for Linux* Systems User's Guide

124

Here, a.o, b.o, and c.o all contain IR, so the compiler will generate ipo_out.o, ipo_out1.o,
ipo_out2.o, and ipo_out3.o.

The first object file contains global symbols. The other object files correspond to the source files.

This naming convention is also applied to user-specified names. For example:

prompt>icpc -ipo_separate -ipo_c -o appl.o a.o b.o c.o

This will generate appl.o, appl1.o, appl2.o, and appl3.o.

Capturing Intermediate Outputs of IPO

The -ipo_c and -ipo_S options are useful either for analyzing the effects of IPO, or when using IPO on
modules that do not make up a complete program.

Use the -ipo_c option to optimize across files and produce an object file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized object file.
The default name for this file is ipo_out.o. You can use the -o option to specify a different name. For
example:

prompt>icpc -tpp6 -ipo_c -ofilename a.cpp b.cpp c.cpp

Use the -ipo_S option to optimize across files and produce an assembly file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized assembly
file. The default name for this file is ipo_out.s. You can use the -o option to specify a different name.
For example:

prompt>icpc -tpp6 -ipo_S -ofilename a.cpp b.cpp c.cpp

The -ipo_c and -ipo_S options generate multiple outputs if multi-object IPO is being used. The name
of the first file is taken from the value of the -o option. The name of subsequent files is derived from this
file by appending a numeric value to the file name. For example, if the first object file is named foo.o, the
second object file will be named foo1.o.

The compiler generates a message indicating the name of each object or assembly file it is generating.
These files can be added to the real link step to build the final application.

Creating a Multifile IPO Executable Using xild

Use the Intel linker, xild, instead of step 2 in Command Line for Creating an IPO Executable. The xild
linker performs the following steps:

1. Invokes the compiler to perform IPO if objects containing IR are found.
2. Invokes GCC linker, ld, to link the application.

Volume II: Optimizing Applications

125

The command-line syntax for xild is the same as that of the GCC linker:

prompt>xild [<options>] <LINK_commandline>

where:

• [<options>] (optional) may include any GCC linker options or options supported only by xild.
• <LINK_commandline> is your linker command line containing a set of valid arguments to the ld.

To create app using IPO, use the option -ofilename as shown in the following example:

prompt>xild -oapp a.o b.o c.o

xild calls the compiler to perform IPO for objects containing IR and creates a new list of object(s) to be
linked. Then xild calls ld to link the object files that are specified in the new list and produce app.

Note

The -ipo option can reorder object files and linker arguments on the command line. Therefore, if your
program relies on a precise order of arguments on the command line, -ipo can affect the behavior of your
program.

The xild command supports the -ipo, -ipoN, and -ipo_separate options.

Usage Rules

You must use the Intel linker xild to link your application if:

• Your source files were compiled with the -ipo option
• You normally would invoke the GCC linker (ld) to link your application.

The xild Options

The additional options supported by xild may be used to examine the results of IPO. These options are
described in the following table.

-qipo_fa[file.s] Produces an assembly listing for the IPO compilation. You can
specify an optional name for the listing file, or a directory (with
the backslash) in which to place the file. The default listing
name is ipo_out.s.

-qipo_fo[file.o] Produces an object file for the IPO compilation. You can
specify an optional name for the object file, or a directory (with
the backslash) in which to place the file. The default object file
name is ipo_out.o.

-ipo_fcode-asm Adds code bytes to the assembly listing.

-ipo_fsource-asm Adds high-level source code to the assembly listing.

Intel® C++ Compiler for Linux* Systems User's Guide

126

-ipo_fverbose-asm,
-ipo_fnoverbose-asm

Enables and disables, respectively, inserting comments
containing version and options used in the assembly listing for
xild.

If the xild invocation leads to an IPO multi-object compilation (either because the application is big, or
because the user explicity asked for multiple objects), the first .s file takes its name from the -qipo_fa
option. The compiler derives the names of subsequent .s files by appending a number to the name, for
example, foo.s and foo1.s for -qipo_fafoo.s. The same is true for the -qipo_fo option.

Code Layout and Multi-Object IPO

One of the optimizations performed during an IPO compilation is code layout. IPO analysis determines a
layout order for all of the routines for which it has IR. If a single object is being generated, the compiler
generates the layout simply by compiling the routines in the desired order.

For a multi-object IPO compilation, the compiler must tell the linker about the desired order. The compiler
first puts each routine in a named text section (the first routine in .text00001, the second in
.text00002, and so forth). It then generates a linker script that tells the linker to first link contributions
from .text00001, then .text00002. This happens transparently when the same invocation is used for
both the link-time compilation and the final link.

However, the linker script must be taken into account by the user if -ipo_c or -ipo_S is used. With
these switches, the IPO compilation and actual link are done by different invocations. When this occurs, the
compiler will issue an informational message indicating that it is generating an explicit linker script,
ipo_layout.script.

When ipo_layout.script is generated, the typical response is to modify your link command to use
this script:

--script=ipo_layout.script

If your application already requires a custom linker script, you can place the necessary contents of
ipo_layout.script in your script. The layout-specific content of ipo_layout.script is at the
beginning of the description of the .text section. For example, to describe the layout order for 12
routines:

.text:
{
*(.text00001) *(.text00002) *(.text00003) *(.text00004) *(.text00005)
*(.text00006) *(.text00007) *(.text00008) *(.text00009) *(.text00010)
*(.text00011) *(.text00012)
...

For applications that already require a linker script, you can add this section of the .text section
description to the customized linker script. If you add these lines to your linker script, it is desirable to add
additional entries to account for future development. This is harmless, since the �*(�)� syntax makes these
contributions optional.

If you choose to not use the linker script your application will still build, but the layout order will be
random. This may have an adverse affect on application performance, particularly for large applications.

Volume II: Optimizing Applications

127

Compilation with Real Object Files

In certain situations you might need to generate real object files with -ipo. To force the compiler to
produce real object files instead of "mock" ones with IPO, you must specify -ipo_obj in addition to -
ipo.

Use of -ipo_obj is necessary under the following conditions:

• The objects produced by the compilation phase of -ipo will be placed in a static library without the
use of xiar. The compiler does not support multifile IPO for static libraries, so all static libraries are
passed to the linker. Linking with a static library that contains "mock" object files will result in
linkage errors because the objects do not contain real code or data. Specifying -ipo_obj causes the
compiler to generate object files that can be used in static libraries.

• Alternatively, if you create the static library using xiar, then the resulting static library will work as
a normal library.

• The objects produced by the compilation phase of -ipo might be linked without the -ipo option
and without the use of xiar.

• You want to generate an assembly listing for each source file (using -S) while compiling with -ipo.
If you use -ipo with -S, but without -ipo_obj, the compiler issues a warning and an empty
assembly file is produced for each compiled source file.

Implementing the .il Files with Version Numbers

An IPO compilation consists of two parts: the compile phase and the link phase. In the compile phase, the
compiler produces an intermediate language (IL) version of the users� code. In the link phase, the compiler
reads the IL and completes the compilation, producing a real object file or executable.

Generally, different compiler versions produce IL based on different definitions, and therefore the ILs from
different compilations can be incompatible. Intel® C++ Compiler assigns a unique version number with
each compiler�s IL definition. If a compiler attempts to read IL in a file with a version number other than its
own, the compilation proceeds, but the IL is discarded and not used in the compilation. The compiler then
issues a warning message about an incompatible IL detected and discarded.

IL in Libraries: More Optimizations

The IL produced by the Intel compiler is stored in a file with a .il suffix. Then the .il file is placed in
the library. If this library is used in an IPO compilation invoked with the same compiler as produced the IL
for the library, the compiler can extract the .il file from the library and use it to optimize the program.
For example, it is possible to inline functions defined in the libraries into your source code.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar. Given a list of objects, the library
manager will insert the objects into a named library to be used in subsequent link steps.

prompt>xiar cru user.a a.o b.o

The above command creates a library named user.a that contains the a.o and b.o objects.

Intel® C++ Compiler for Linux* Systems User's Guide

128

If, however, the objects have been created using -ipo -c, then the objects will not contain a valid object
but only the intermediate representation (IR) for that object file. For example:

prompt>icpc -ipo -c a.cpp b.cpp

will produce a.o and b.o that only contains IR to be used in a link time compilation. The library manager
will not allow these to be inserted in a library.

In this case, you must use the Intel library tool xild -ar. This program will invoke the compiler on the
IR saved in the object file and generate a valid object that can be inserted in a library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xild.

Using -ip with -Qoption Specifiers

You can adjust the Intel® C++ Compiler's optimization for a particular application by experimenting with
memory and interprocedural optimizations. Enter the -Qoption option with the applicable keywords to
select particular inline expansions and loop optimizations. The option must be entered with an -ip or -
ipo specification, as follows:

-ip[-Qoption,tool,opts]

where tool is C++ (c) and opts are -Qoption specifiers (see below). Also refer to Criteria for Inline
Function Expansion to see how these specifiers may affect the inlining heuristics of the compiler.

-Qoption Specifiers

If you specify -ip or -ipo without any -Qoption qualification, the compiler does the following:

• Expands functions in line
• Propagates constant arguments
• Passes arguments in registers
• Monitors module-level static variables

You can refine interprocedural optimizations by using the following -Qoption specifiers. To have an
effect, the -Qoption option must be entered with either -ip or -ipo also specified, as in this example:

-ip -Qoption,f,ip_specifier

Volume II: Optimizing Applications

129

where ip_specifier is one of the -Qoption specifiers described in the following table:

-Qoption Specifiers Description

-ip_args_in_regs=0 Disables the passing of arguments in registers. By
default, external functions can pass arguments in
registers when called locally. Normally, only static
functions can pass arguments in registers, provided
the address of the function is not taken and the
function does not use a variable number of
arguments.

-ip_ninl_max_stats=n Sets the valid number of intermediate language
statements for a function that is expanded in line. The
number n is a positive integer. The number of
intermediate language statements usually exceeds the
actual number of source language statements. The
default value for n is 230.

-ip_ninl_min_stats=n Sets the valid min number of intermediate language
statements for a function that is expanded in line. The
number n is a positive integer. The default value for
ip_ninl_min_stats is:
IA-32 compiler: ip_ninl_min_stats = 7
Itanium® compiler: ip_ninl_min_stats = 15

-ip_ninl_max_total_stats=n Sets the maximum increase in size of a function,
measured in intermediate language statements, due to
inlining. The number n is a positive integer. The
default value for n is 2000.

The following command activates procedural and interprocedural optimizations on source.cpp and sets
the maximum increase in the number of intermediate language statements to five for each function:

prompt>icpc -ip -Qoption,c,-ip_ninl_max_stats=5 source.cpp

Intel® C++ Compiler for Linux* Systems User's Guide

130

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options shown in the
following summary:

Option Description

-ip_no_inlining This option is only useful if -ip is also specified. In this case, -
ip_no_inlining disables inlining that would result from the -
ip interprocedural optimizations, but has no effect on other
interprocedural optimizations.

-ip_no_pinlining Disables partial inlining; can be used if -ip or -ipo[value] is
also specified.

Criteria for Inline Function Expansion

Once the criteria are met, the compiler picks the routines whose inline expansion will provide the greatest
benefit to program performance. The inlining heuristics used by the compiler differ, based on whether or
not you use profile-guided optimizations (-prof_use). When you use profile-guided optimizations with
-ip or -ipo[value], the compiler uses the following heuristics:

• The default heuristic focuses on the most frequently executed call sites, based on the profile
information gathered for the program.

• By default, the compiler will not inline functions with more than 230 intermediate statements. You
can change this value by specifying the option -Qoption,c,-
ip_ninl_max_stats=new_value. Note: there is a higher limit for functions declared by the
user as inline or __inline.

• The default inline heuristic will stop inlining when direct recursion is detected.
• The default heuristic will always inline very small functions that meet the minimum inline criteria.

• Default for Itanium®-based applications: ip_ninl_min_stats=15.
• Default for IA-32 applications: ip_ninl_min_stats=7. This limit can be

modified with the option -Qoption,c,-ip_ninl_min_stats=new_value.

If you do not use profile-guided optimizations with -ip or -ipo[value], the compiler uses less
aggressive inlining heuristics:

• Inline a function if the inline expansion will not increase the size of the final program.
• Inline a function if it is declared with the inline or __inline keywords.

Volume II: Optimizing Applications

131

Profile-guided Optimizations
Profile-guided optimizations (PGO) tell the compiler which areas of an application are most frequently
executed. By knowing these areas, the compiler is able to use feedback from a previous compilation to be
more selective in optimizing the application. For example, the use of PGO often enables the compiler to
make better decisions about function inlining, thereby increasing the effectiveness of interprocedural
optimizations.

Instrumented Program

Profile-guided optimization creates an instrumented program from your source code and special code from
the compiler. Each time this instrumented code is executed, the instrumented program generates a dynamic
information file. When you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to optimize the execution of
the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of IPO and PGO vary.
This is due to each program having a different profile and different opportunities for optimizations. The
guidelines provided here help you determine if you can benefit by using IPO and PGO.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to predict at compile
time. An example is code that is heavy with error-checking in which the error conditions are false most of
the time. The "cold" error-handling code can be placed such that the branch is rarely mispredicted.
Eliminating the interleaving of "hot" and "cold" code improves instruction cache behavior. For example,
the use of PGO often enables the compiler to make better decisions about function inlining, thereby
increasing the effectiveness of interprocedural optimizations.

PGO Phases

The PGO methodology requires three phases:

• Phase 1: Instrumentation compilation and linking with -prof_gen[x]
• Phase 2: Instrumented execution by running the executable
• Phase 3: Feedback compilation with -prof_use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your code are the
most heavily used. If the data set provided to your program is very consistent and it elicits a similar
behavior on every execution, then PGO can probably help optimize your program execution. However,
different data sets can elicit different algorithms to be called. This can cause the behavior of your program
to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide noticeable
benefits. You have to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles.

When using -prof_gen[x] with the x qualifier, extra source position is collected which enables code
coverage tools, such as the Intel® C++ Compiler Code-coverage Tool. Without such tools, -prof_genx
does not provide better optimization and may slow parallel compile times.

Intel® C++ Compiler for Linux* Systems User's Guide

132

Basic PGO Options

Option Description

-prof_gen[x] Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution.

-prof_use Instructs the compiler to produce a profile-optimized executable and
merges available dynamic information (.dyn) files into a pgopti.dpi
file.

In cases where your code behavior differs greatly between executions, you have to ensure that the benefit
of the profile information is worth the effort required to maintain up-to-date profiles. In the basic profile-
guided optimization, the following options are used in the phases of the PGO:

Generating Instrumented Code

The -prof_gen[x] option instruments the program for profiling to get the execution count of each basic
block. It is used in Phase 1 of the PGO to instruct the compiler to produce instrumented code in your object
files in preparation for instrumented execution. Parallel make is automatically supported for -prof_genx
compilations.

Generating a Profile-optimized Executable

The -prof_use option is used in Phase 3 of the PGO to instruct the compiler to produce a profile-
optimized executable and merges available dynamic-information (.dyn) files into a pgopti.dpi file.

Note

The dynamic-information files are produced in Phase 2 when you run the instrumented executable.

If you perform multiple executions of the instrumented program, -prof_use merges the dynamic-
information files again and overwrites the previous pgopti.dpi file.

Disabling Function Splitting (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by -prof_use in Phase 3 to
improve code locality by splitting routines into different sections: one section to contain the cold or very
infrequently executed code and one section to contain the rest of the code (hot code).

You can use -fnsplit- to disable function splitting for the following reasons:

• Most importantly, to get improved debugging capability. In the debug symbol table, it is difficult to
represent a split routine, that is, a routine with some of its code in the hot code section and some of
its code in the cold code section.

• The -fnsplit- option disables the splitting within a routine but enables function grouping, an
optimization in which entire routines are placed either in the cold code section or the hot code
section. Function grouping does not degrade debugging capability.

• Another reason can arise when the profile data does not represent the actual program behavior, that
is, when the routine is actually used frequently rather than infrequently.

Volume II: Optimizing Applications

133

Example of Profile-guided Optimization

The three basic phases of PGO are:

• Instrumentation Compilation and Linking
• Instrumented Execution
• Feedback Compilation

Instrumentation Compilation and Linking

Use -prof_gen to produce an executable with instrumented information. Use also the -prof_dir
option as recommended for most programs, especially if the application includes the source files located in
multiple directories. -prof_dir ensures that the profile information is generated in one consistent place.
For example:

prompt>icpc -prof_gen -prof_dir /profdata -c a1.cpp a2.cpp a3.cpp
prompt>icpc a1.o a2.o a3.o

In place of the second command, you could use the linker directly to produce the instrumented program.

Instrumented Execution

Run your instrumented program with a representative set of data to create a dynamic information file.

prompt>./a.out

The resulting dynamic information file has a unique name and .dyn suffix every time you run a.o. The
instrumented file helps predict how the program runs with a particular set of data. You can run the program
more than once with different input data.

Feedback Compilation

Compile and link the source files with -prof_use to use the dynamic information to optimize your
program according to its profile:

prompt>icpc -prof_use -ipo a1.cpp a2.cpp a3.cpp

Besides the optimization, the compiler produces a pgopti.dpi file. You typically specify the default
optimizations (-O2) for phase 1, and specify more advanced optimizations with -ipo for phase 3. This
example used -O2 in phase 1 and -O2 -ipo in phase 3.

Note

The compiler ignores the -ipo options with -prof_gen[x]. With the x qualifier, extra information is
gathered.

Intel® C++ Compiler for Linux* Systems User's Guide

134

PGO Environment Variables

The following table describes environment values to determine the directory to store dynamic information
files or whether to overwrite pgopti.dpi. Refer to your operating system documentation for instructions
on how to specify environment values.

Profile-guided Optimization Environment Variables

Variable Description

PROF_DIR Specifies the directory in which dynamic information files are
created. This variable applies to all three phases of the profiling
process.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By default, during the
feedback compilation phase, the compiler merges the data from all
dynamic information files and creates a new pgopti.dpi file if
.dyn files are newer than an existing pgopti.dpi file. When this
variable is set, the compiler does not overwrite the existing
pgopti.dpi file. Instead, the compiler issues a warning and you
must remove the pgopti.dpi file if you want to use additional
dynamic information files.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file to look up profile summary information. By default, this
prevents you from:

• using the profile summary file (.dpi) if you move your application sources
• sharing the profile summary file with another user who is building identical application sources that

are located in a different directory

Source Relocation

To enable the movement of application sources, as well as the sharing of profile summary files, use
profmerge with the -src_old and -src_new options. For example:

prompt>profmerge -prof_dir <p1> -src_old <p2> -src_new <p3>

where:

• <p1> is the full path to dynamic information file (.dpi).
• <p2> is the old full path to source files.
• <p3> is the new full path to source files.

This command will read the pgopti.dpi file. For each function represented in the pgopti.dpi file,
whose source path begins with the <p2> prefix, profmerge replaces that prefix with <p3>. The
pgopti.dpi file is updated with the new source path information.

You can execute profmerge more than once on a given pgopti.dpi file. You may need to do this if
the source files are located in multiple directories. For example:

Volume II: Optimizing Applications

135

prompt>profmerge -prof_dir -src_old /src/prog_1 -src_new /src/prog_2

prompt>profmerge -prof_dir -src_old /proj_1 -src_new /proj_2

In the values specified for -src_old and -src_new, uppercase and lowercase characters are treated as
identical. Likewise, forward slash (/) and backward slash (\) characters are treated as identical.

Because the source relocation feature of profmerge modifies the pgopti.dpi file, you may wish to
make a backup copy of the file prior to performing the source relocation.

PGO API Support Overview

Profile Information Generation Support lets you control of the generation of profile information during the
instrumented execution phase of profile-guided optimizations. Normally, profile information is generated
by an instrumented application when it terminates by calling the standard exit() function. The functions
described in this section may be necessary in assuring that profile information is generated in the following
situations:

• when the instrumented application exits using a non-standard exit routine
• when instrumented application is a non-terminating application where exit() is never called
• when you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #include <pgouser.h> at
the top of any source file where the functions may be used.

The compiler sets a define for _PGO_INSTRUMENT when you compile with either -prof_gen or -
prof_genx.

Dumping Profile Information

void _PGOPTI_Prof_Dump(void);

Description

This function dumps the profile information collected by the instrumented application. The profile
information is recorded in a .dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application.
 Normally, _PGOPTI_Prof_Dump should be called just once. It is also possible to use this function in
conjunction with _PGOPTI_Prof_Reset() to generate multiple .dyn files (presumably from multiple
sets of input data).

Intel® C++ Compiler for Linux* Systems User's Guide

136

Example

// Selectively collect profile information for the portion
// of the application involved in processing input data.

input_data = get_input_data();

while(input_data)
{
 _PGOPTI_Prof_Reset();
 process_data(input_data);
 _PGOPTI_Prof_Dump();
 input_data = get_input_data();
}

Resetting the Dynamic Profile Counters

void _PGOPTI_Prof_Reset(void);

Description

This function resets the dynamic profile counters.

Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of the
instrumented application. See the example under PGOPTI_Prof_Dump().

Dumping and Resetting Profile Information

void _PGOPTI_Prof_Dump_And_Reset(void);

Description

This function may be called more than once. Each call will dump the profile information to a new .dyn
file. The dynamic profile counters are then reset, and execution of the instrumented application continues.

Recommended Usage

Periodic calls to this function allow a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided optimization. The
direct use of this function allows your application to control precisely when the profile information is
generated.

Volume II: Optimizing Applications

137

Interval Profile Dumping

void _PGOPTI_Set_Interval_Prof_Dump(int interval);

Description

This function activates Interval Profile Dumping and sets the approximate frequency at which dumps will
occur. The interval parameter is measured in milliseconds and specifies the time interval at which
profile dumping will occur. For example, if interval is set to 5000, then a profile dump and reset will
occur approximately every 5 seconds. The interval is approximate because the time check controlling the
dump and reset is only performed upon entry to any instrumented function in your application.

Note

• Setting interval to zero or a negative number will disable interval profile dumping.
• Setting interval to a very small value may cause the instrumented application to spend nearly all

of its time dumping profile information. Be sure to set interval to a large enough value so that the
application can perform actual work and collect substantial profile information.

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping. Note
that an alternative method of initiating Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_INTERVAL, to the desired interval value prior to starting the application. The intention
of Interval Profile Dumping is to allow a non-terminating application to be profiled with minimal changes
to the application source code.

Environment Variable

PROF_DUMP_INTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented application.
 See the Recommended Usage of _PGOPTI_Set_Interval_Prof_Dump for more information.

Code-coverage Tool

The Intel® C++ Compiler Code-coverage Tool can be used for both IA-32 and Itanium® architectures in a
number of ways to improve development efficiency, reduce defects, and increase application performance.
The major features of the Intel compiler Code-coverage Tool are:

• Visual presentation of the application's code coverage information with a code-coverage coloring
scheme

• Display of the dynamic execution counts of each basic block of the application
• Differential coverage or comparison of the profiles of the application's two runs

Intel® C++ Compiler for Linux* Systems User's Guide

138

Command-line Syntax

The syntax for this tool is as follows:

codecov [-codecov_option]

where -codecov_option is a tool option. If you do not use any option, the tool will provide the top-
level code coverage for your whole program.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description Default

-help Prints all the options of the code-coverage tool.

-spi file Sets the path name of the static profile information file
.spi.

pgopti.spi

-dpi file Sets the path name of the dynamic profile information file
.dpi.

pgopti.dpi

-prj Sets the project name.

-counts Generates dynamic execution counts.

-nopartial Treats partially covered code as fully covered code.

-comp Sets the filename that contains the list of files of interest.

-ref Finds the differential coverage with respect to ref_dpi_file.

-demang Demangles both function names and their arguments.

-mname Sets the name of the web-page owner.

-maddr Sets the email address of the web-page owner.

-bcolor Sets the html color name or code of the uncovered blocks. #ffff99

-fcolor Sets the html color name or code of the uncovered
functions.

#ffcccc

-pcolor Sets the html color name or code of the partially covered
code.

#fafad2

-ccolor Sets the html color name or code of the covered code. #ffffff

-ucolor Sets the html color name or code of the unknown code. #ffffff

Volume II: Optimizing Applications

139

Visual Presentation of the Application's Code Coverage

Based on the profile information collected from running the instrumented binaries when testing an
application, the Intel compiler creates HTML files using a code-coverage tool. These HTML files indicate
portions of the source code that were or were not exercised by the tests. When applied to the profile of the
performance workloads, the code-coverage information shows how well the training workload covers the
application's critical code. High coverage of performance-critical modules is essential to taking full
advantage of profile-guided optimizations.

The code-coverage tool can create two levels of coverage:

• Top level -- for a group of selected modules
• Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that were selected. The following
options are provided:

• You can select the modules of interest
• For the selected modules, the tool generates a list with their coverage information. The information

includes the total number of functions and blocks in a module and the portions that were covered.
• By clicking on the title of columns in the reported tables, the lists may be sorted in ascending or

descending order based on:
• basic block coverage
• function coverage
• function name.

The example that follows shows a top-level coverage summary for a project. By clicking on a module name
(for example, SAMPLE.C), the browser will display the coverage source view of that particular module.

Intel® C++ Compiler for Linux* Systems User's Guide

140

Browsing the Frames

The coverage tool creates frames that facilitate browsing through the code to identify uncovered code. The
top frame displays the list of uncovered functions while the bottom frame displays the list of covered
functions. For uncovered functions, the total number of basic blocks of each function is also displayed. For
covered functions, both the total number of blocks and the number of covered blocks as well as their ratio
(that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the corresponding function were
covered. The block coverage rate of that function is thus 66.67%. These lists can be sorted based on the
coverage rate, number of blocks, or function names. Function names are linked to the position in source
view where the function body starts. So, just by one click, the user can see the least-covered function in the
list and by another click the browser displays the body of the function. The user can then scroll down in the
source view and browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered functions as well as the
list of covered functions. The lists are reported in two distinct frames that provide easy navigation of the
source code. The lists can be sorted based on:

• the number of blocks within uncovered functions
• the block coverage in the case of covered functions
• the function names.

This example shows the coverage source view of SAMPLE.C.

Volume II: Optimizing Applications

141

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage categories:

• covered code
• uncovered basic blocks
• uncovered functions
• partially covered code
• unknown.

The default colors that the tool uses for presenting the coverage information are shown in the table that
follows.

This color Means

Covered code The portion of code colored in this color was exercised by the tests. The
default color can be overridden with the -ccolor option.

Uncovered
basic block

Basic blocks that are colored in this color were not exercised by any of the
tests. They were, however, within functions that were executed during the
tests. The default color can be overridden with the -bcolor option.

Uncovered
function

Functions that are colored in this color were never called during the tests. The
default color can be overridden with the -fcolor option.

Partially
covered code

More than one basic block was generated for the code at this position. Some
of the blocks were covered while some were not. The default color can be
overridden with the -pcolor option.

Unknown No code was generated for this source line. Most probably, the source at this
position is a comment, a header-file inclusion, or a variable declaration. The
default color can be overridden with the -ucolor option.

The default colors can be customized to be any valid HTML color by using the options mentioned for each
coverage category in the preceding table.

For code-coverage colored presentation, the coverage tool uses the following heuristic. Source characters
are scanned until reaching a position in the source that is indicated by the profile information as the
beginning of a basic block. If the profile information for that basic block indicates that a coverage category
changes, then the tool changes the color corresponding to the coverage condition of that portion of the
code, and the coverage tool inserts the appropriate color change in the HTML files.

Note

You need to interpret the colors in the context of the code. For instance, comment lines that follow a basic
block that was never executed would be colored in the same color as the uncovered blocks. Another
example is the closing brackets in C/C++ applications.

Intel® C++ Compiler for Linux* Systems User's Guide

142

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel compiler Code-coverage Tool is efficient coverage analysis of an
application' s subset of modules. This analysis is accomplished based on the selected option -comp of the
tool's execution.

You can generate the profile information for the whole application, or a subset of it, and then divide the
covered modules into different components and use the coverage tool to obtain the coverage information of
each individual component. If only a subset of the application modules is compiled with the -prof_genx
option, then the coverage information is generated only for those modules that are involved with this
compiler option, thus avoiding the overhead incurred for profile generation of other modules.

To specify the modules of interest, use the tool's -comp option. This option takes the name of a file as its
argument. That file must be a text file that includes the name of modules or directories you would like to
analyze:

codecov -prj Project_Name -comp component1

Note

Each line of the component file should include one, and only one, module name.

Any module of the application whose full path name has an occurrence of any of the names in the
component file will be selected for coverage analysis. For example, if a line of file component1 contains
mod1.cpp, then all modules in the application that have such a name will be selected. The user can
specify a particular module by giving more specific path information. For instance, if the line contains
/cmp1/mod1.cpp, then only those modules with the name mod1.cpp will be selected that are in a
directory named cmp1. If no component file is specified, then all files that have been compiled with -
prof_genx are selected for coverage analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the application, providing useful
information for both coverage and performance tuning.

The coverage tool can be configured to generate information about dynamic execution counts. This
configuration requires the -counts option. The counts information is displayed under the code after a ^
sign precisely under the source position where the corresponding basic block begins. If more than one basic
block is generated for the code at a source position (macros, for example), then the total number of such
blocks and the number of the blocks that were executed are also displayed in front of the execution count.

In certain situations, it may be desirable to consider all the blocks generated for a single source position as
one entity. In such cases, it is necessary to assume that all blocks generated for one source position are
covered when at least one of the blocks is covered. This assumption can be configured with the -
nopartial option. When this option is specified, decision coverage is disabled, and the related statistics
are adjusted accordingly. The code lines 11 and 12 indicate that the printf statement in line 12 was
covered. However, only one of the conditions in line 11 was ever true. With the -nopartial option, the
tool treats the partially covered code (like the code on line 11) as covered.

Volume II: Optimizing Applications

143

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's two runs: a reference run
and a new run identifying the code that is covered by the new run but not covered by the reference run.
This feature can be used to find the portion of the application�s code that is not covered by the application�s
tests but is executed when the application is run by a customer. It can also be used to find the incremental
coverage impact of newly added tests to an application�s test space.

The dynamic profile information of the reference run for differential coverage is specified by the -ref
option, such as in the following command:

codecov -prj Project_Name -dpi customer.dpi -ref appTests.dpi

The coverage statistics of a differential-coverage run shows the percentage of the code that was exercised
on a new run but was missed in the reference run. In such cases, the coverage tool shows only the modules
that included the code that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly. The code that has the same
coverage property (covered or not covered) on both runs is considered as covered code. Otherwise, if the
new run indicates that the code was executed while in the reference run the code was not executed, then the
code is treated as uncovered. On the other hand, if the code is covered in the reference run but not covered
in the new run, the differential-coverage source view shows the code as covered.

Running for Differential Coverage

To run the Code-Coverage Tool on an application, developers must provide the following three items:

• The application sources
• The .SPI file generated by Intel Compilers when compiling the application for the instrumented

binaries through the -prof_genx option
• The .DPI file generated by the Intel Compiler's profmerge tool that result from merging the

dynamic profile information files *.DYN or the .DPI file generated implicitly by Intel Compilers,
when compiling the application with the -prof_use option

Once the required files are available, the coverage tool may be launched from this command line:

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi

The -spi and -dpi options specify the paths to the corresponding files.

The Code-coverage Tool also has the following additional options for generating a link at the bottom of
each HTML page to send an electronic message to a named contact by using -mname and -maddr options.

codecov -prj Project_Name -mname John_Smith -maddr js@company.com

Intel® C++ Compiler for Linux* Systems User's Guide

144

Test-prioritization Tool

The Intel® compiler Test-prioritization Tool enables profile-guided optimizations to select and prioritize
application tests based on prior execution profiles of the application. The tool offers a potential of
significant time saving in testing and developing large-scale applications where testing is the major
bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool lets you select and prioritize the tests that are most relevant for any subset of the application's
code. When certain modules of an application are changed, the Test-prioritization Tool suggests the tests
that are most probably affected by the change. The tool analyzes the profile data from previous runs of the
application, discovers the dependency between the application's components and its tests, and uses this
information to guide the process of testing.

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code coverage. The advantages
of the tool usage can be summarized as follows:

• Minimizing the number of tests that are required to achieve a given overall coverage for any subset of
the application: the tool defines the smallest subset of the application tests that achieve exactly the
same code coverage as the entire set of tests.

• Reducing the turn-around time of testing: instead of spending a long time on finding a possibly large
number of failures, the tool enables the users to quickly find a small number of tests that expose the
defects associated with regressions caused by a change set.

• Selecting and prioritizing the tests to achieve certain level of code coverage in a minimal time based
on the data of the tests' execution time.

Command-line Syntax

The syntax for this tool is as follows:

tselect -dpi_list file

where -dpi_list is a required tool option that sets the path to the DPI list file that contains the list of
the .dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description

-help Prints all the options of the test-prioritization tool.

-spi file Sets the path name of the static profile information file .spi. Default
is pgopti.spi

-dpi_list file Sets the path name of the file that contains the name of the dynamic
profile information (.dpi) files. Each line of the file should contain
one .dpi name optionally followed by its execution time. The name
must uniquely identify the test.

Volume II: Optimizing Applications

145

Option Description

-prof_dpi file Sets the path name of the output report file.

-comp Sets the filename that contains the list of files of interest.

-cutoff value Terminates when the cumulative block coverage reaches value% of
pre-computed total coverage. value must be greater than 0.0 (for
example, 99.00). It may be set to 100.

-nototal Does not pre-compute the total coverage.

-mintime Minimizes testing execution time. The execution time of each test must
be provided on the same line of dpi_list file after the test name in
dd:hh:mm:ss format.

-verbose Generates more logging information about the program progress.

Usage Requirements

To run the Test-prioritization Tool on an application�s tests, the following files are required:

• The .spi file generated by the Intel compilers when compiling the application for the instrumented
binaries with the -prof_genx option.

• The .dpi files generated by the Intel compiler profmerge tool as a result of merging the dynamic
profile information .dyn files of each of the application tests. The user needs to apply the
profmerge tool to all .dyn files that are generated for each individual test and name the resulting
.dpi in a fashion that uniquely identifies the test. The profmerge tool merges all the .dyn files
that exist in the given directory.

Note

It is very important that you make sure that unrelated .dyn files, oftentimes from previous runs or from
other tests, are not present in that directory. Otherwise, profile information will be based on invalid profile
data. This can negatively impact the performance of optimized code as well as generate misleading
coverage information.

Note

For successful tool execution, you should:

• Name each test .dpi file so that the file names uniquely identify each test.
• Create a DPI list file: a text file that contains the names of all .dpi test files. The name of this file

serves as an input for the test-prioritization tool execution command. Each line of the DPI list file
should include one, and only one, .dpi file name. The name can optionally be followed by the
duration of the execution time for a corresponding test in the dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 informs that Test1 lasted 0 days, 0 hours, 60 minutes and
35 seconds. The execution time is optional. However, if it is not provided, then the tool will not prioritize
the test for minimizing execution time. It will prioritize to minimize the number of tests only.

Intel® C++ Compiler for Linux* Systems User's Guide

146

Usage Model

The chart that follows presents the Test-prioritization Tool usage model.

Here are the steps for a simple example (myApp.c) for IA-32 systems.

1. Set

PROF_DIR=/myApp/prof_dir

2. Issue command

prompt>icpc -prof_genx myApp.c

This command compiles the program and generates an instrumented binary as well as the corresponding
static profile information pgopti.spi.

3. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

Volume II: Optimizing Applications

147

4. Issue command

myApp < data1

Invocation of this command runs the instrumented application and generates one or more new dynamic
profile information files that have an extension .dyn in the directory specified by PROF_DIR.

5. Issue command

profmerge -prof_dpi Test1.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test1.dpi) that represents the
total profile information of the application on Test1.

6. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

7. Issue command

myApp < data2

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension .dyn in the directory specified by PROF_DIR.

8. Issue command

profmerge -prof_dpi Test2.dpi

At this step, the profmerge tool merges all the .dyn files into one file (Test2.dpi) that represents the
total profile information of the application on Test2.

9. Issue command

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

10. Issue command

myApp < data3

This command runs the instrumented application and generates one or more new dynamic profile
information files that have an extension .dyn in the directory specified by PROF_DIR.

11. Issue Command

profmerge -prof_dpi Test3.dpi

Intel® C++ Compiler for Linux* Systems User's Guide

148

At this step, the profmerge tool merges all the .dyn files into one file (Test3.dpi) that represents the
total profile information of the application on Test3.

12. Create a file named tests_list with three lines. The first line contains Test1.dpi, the second
line contains Test2.dpi, and the third line contains Test3.dpi.

When these items are available, the Test-prioritization Tool may be launched from the command line in
PROF_DIR directory as described in the following examples. In all examples, the discussion references the
same set of data.

Example 1 Minimizing the Number of Tests

tselect -dpi_list tests_list -spi pgopti.spi

where the -spi option specifies the path to the .spi file.

Here is a sample output from this run of the Test-prioritization Tool:

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00

Num %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options

1 87.50 45.65 37.50 Test3.dpi

2 100.00 52.17 50.00 Test2.dpi

In this example, the Test-prioritization Tool has provided the following information:

• By running all three tests, we achieve 52.17% block coverage and 50.00% function coverage.
• Test3 covers 45.65% of the basic blocks of the application, which is 87.50% of the total block

coverage that can be achieved from all three tests.
• By adding Test2, we achieve a cumulative block coverage of 52.17% or 100% of the total block

coverage of Test1, Test2, and Test3.
• Elimination of Test1 has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in the tests_list file:

Test1.dpi 00:00:60:35
Test2.dpi 00:00:10:15
Test3.dpi 00:00:30:45

The following command executes the Test-prioritization Tool to minimize the execution time with the -
mintime option:

tselect -dpi_list tests_list -spi pgopti.spi -mintime

Volume II: Optimizing Applications

149

Here is a sample output:

Total number of tests = 3
Total block coverage ~ 52.17
Total function coverage ~ 50.00
Total execution time = 1:41:35

num elapsedTime %RatCvrg %BlkCvrg %FncCvrg Test Name @ Options

1 10:15 75.00 39.13 25.00 Test2.dpi

2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would require one hour, 45 minutes,
and 35 seconds, while the selected tests would achieve the same total block coverage in only 41 minutes.

Note

The order of tests when prioritization is based on minimizing time (first Test2, then Test3) could be
different than when prioritization is done based on minimizing the number of tests. See the preceding
example: first Test3, then Test2. In Example 2, Test2 is the test that gives the highest coverage per
execution time. So, it is picked as the first test to run.

Using Other Options

The -cutoff option enables the Test-prioritization Tool to exit when it reaches a given level of basic
block coverage.

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the previous example, only Test3 will be selected, as it
achieves 45.65% block coverage, which corresponds to 87.50% of the total block coverage that is reached
from all three tests.

The Test-prioritization Tool does an initial merging of all the profile information to determine the total
coverage that is obtained by running all the tests. The -nototal option. enables you to skip this step. In
such a case, only the absolute coverage information will be reported, as the overall coverage remains
unknown.

Intel® C++ Compiler for Linux* Systems User's Guide

150

High-level Language Optimizations (HLO)
High-level optimizations exploit the properties of source code constructs (for example, loops and arrays) in
the applications developed in high-level programming languages, such as Fortran and C++. The high-level
optimizations include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam,
blocking, data prefetch, scalar replacement, data layout optimizations and loop unrolling techniques.

The option required to turn on the high-level optimizations is -O3. The scope of optimizations turned on by
-O3 is different for IA-32 and Itanium®-based applications. See Setting Optimization Levels.

IA-32 and Itanium®-based Applications

The -O3 option enables the -O2 option and adds more aggressive optimizations; for example, loop
transformation and prefetching. -O3 optimizes for maximum speed, but may not improve performance for
some programs.

IA-32 Applications

In conjunction with the vectorization options, -ax{K|W|N|B|P} and -x{K|W|N|B|P}, the -O3 option
causes the compiler to perform more aggressive data dependency analysis than the default -O2. This may
result in longer compilation times.

Itanium-based Applications

The -ivdep_parallel option asserts there is no loop-carried dependency in the loop where an IVDEP
directive is specified. This is useful for sparse matrix applications.

Loop Transformations

The loop transformation techniques include:

• Loop normalization
• Loop reversal
• Loop interchange and permutation
• Loop distribution
• Loop fusion
• Scalar replacement
• Absence of loop-carried memory dependency with IVDEP directive
• Runtime Data Dependencies checking (Itanium®-based systems only)

The loop transformations listed above are supported by data dependence. The loop transformation
techniques also include:

• Induction variable elimination
• Constant propagation
• Copy propagation
• Forward substitution
• Dead code elimination

Volume II: Optimizing Applications

151

In addition to the loop transformations listed for both IA-32 and Itanium® architectures above, the Itanium
architecture enables implementation of collapsing techniques.

Scalar Replacement

The goal of scalar replacement, which is enabled by -scalar_rep, is to reduce memory references. This
is done mainly by replacing array references with register references.

While the compiler replaces some array references with register references when -O1 or -O2 is specified,
more aggressive replacement is performed when -O3 and -scalar_rep are specified. For example, with
-O3 the compiler attempts replacement when there are loop-carried dependences or when data-dependence
analysis is required for memory disambiguation.

The -scalar_rep compiler option enables (default) scalar replacement performed during loop
transformations. The -scalar_rep- option disables this scalar replacement.

Loop Unrolling with -unroll

The -unroll[n] option is used in the following way:

• -unrolln specifies the maximum number of times you want to unroll a loop. The following
example unrolls a loop at most four times:

prompt>icpc -unroll4 a.cpp

To disable loop unrolling, specify n as 0. The following example disables loop unrolling:

prompt>icpc -unroll0 a.cpp

• -unroll (n omitted) lets the compiler decide whether to perform unrolling or not. This is the
default; the compiler uses default heuristics or defines n.

• -unroll0 (n = 0) disables the loop unroller.

The Itanium® compiler currently recognizes only n = 0; any other value is ignored.

Benefits and Limitations of Loop Unrolling

The benefits of loop unrolling are as follows:

• Unrolling eliminates branches and some of the code.
• Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies if you have

enough free registers to keep variables live.
• The Intel® Pentium® 4 and Intel® Xeon(TM) processors can correctly predict the exit branch for an

inner loop that has 16 or fewer iterations, if that number of iterations is predictable and there are no
conditional branches in the loop. Therefore, if the loop body size is not excessive, and the probable
number of iterations is known, unroll inner loops for:

• Pentium 4 processors, until they have a maximum of 16 iterations
• Pentium III or Pentium II processors, until they have a maximum of 4 iterations

Intel® C++ Compiler for Linux* Systems User's Guide

152

A potential limitation is that excessive unrolling, or unrolling of very large loops, can lead to increased
code size.

For more information on how to optimize with -unroll[n], refer to the Intel® Pentium® 4 and Intel®
Xeon™ Processor Optimization Reference Manual.

Absence of Loop-carried Memory Dependency

For Itanium®-based applications, the -ivdep_parallel option indicates there is absolutely no loop-
carried memory dependency in the loop where the IVDEP directive is specified. This technique is useful
for some sparse matrix applications. For example, the following loop requires -ivdep_parallel in
addition to the directive IVDEP to indicate there is no loop-carried dependencies.

#pragma ivdep
for (i=1; i<n; i++)
{
 e[ix[2][i]] = e[ix[2][i]]+1.0;
 e[ix[3][i]] = e[ix[3][i]]+2.0;
}

The following example shows that using this option and the IVDEP directive ensures there is no loop-
carried dependency for the store into a().

#pragma ivdep
for (j=0; j<n; j++)
{
 a[b[j]] = a[b[j]] + 1;
}

PREFETCH Directive

The PREFETCH directive is supported on Itanium®-based systems only.

Syntax:

#pragma prefetch var:hint:distance

where hint value can be 0 (T0), 1 (NT1), 2 (NT2), or 3 (NTA)

Volume II: Optimizing Applications

153

Example:

for (i=i0; i!=i1; i+=is) {

float sum = b[i];
int ip = srow[i];
int c = col[ip];

#pragma NOPREFETCH col
#pragma PREFETCH value:1:80
#pragma PREFETCH x:1:40

for(; ip<srow[i+1]; c=col[++ip])
sum -= value[ip] * x[c];
y[i] = sum;
}

Prefetching

The goal of prefetch insertion optimization is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache. The prefetch optimization is enabled or disabled by the -
prefetch[-] compiler option.

-prefetch enables (default) prefetch insertion optimization. Note that -O3 must be specified for this
option to work.

To disable prefetch insertion optimization, use -prefetch-.

To facilitate compiler optimization:

• Minimize use of global variables and pointers.
• Minimize use of complex control flow.
• Choose data types carefully and avoid type casting.

For more information on how to optimize with -prefetch[-], refer to the
Intel® Pentium® 4 and Intel Xeon Processor Optimization Reference Manual.

In addition to the -prefetch option, the _mm_prefetch intrinsic and PREFETCH compiler directive
are also available. The intrinsic prefetches data from the specified address on one memory cache line. The
compiler directive enables a data prefetch from memory.

Intel® C++ Compiler for Linux* Systems User's Guide

154

Key Tuning Techniques

Use the following techniques to tune your applications for Itanium®-based systems:

• Compile your program with the -O3 and -Qipo options. Use profile guided optimization (PGO)
whenever possible.

• Identify hot spots in your code.
• Turn on Optimization Report.
• Check why loops are not software pipelined.

• Use #pragma ivdep to indicate there is no dependence. You might need to
compile with the -ivdep_parallel option to absolutely specify no loop carried
dependence.

• Use #pragma swp to enable software pipelining (useful for lop-sided controls and
unknown loop count).

• Use #pragma loop count(n) when needed.
• Use of -ansi-alias is helpful. For example, for **p = *q, the ANSI rule

indicates the pointer and float data do not overlap.
• Add the restrict keyword to insure there is no aliasing.
• Use -alias_args- to indicate arguments are not aliased.
• Use -fno_alias only if pointers get traced back to the same base pointer.
• Use #pragma distribute point to split large loops (normally this is done

automatically).
• For C code, do not use unsigned int for loop indexes. HLO may skip optimization due to

possible subscripts overflow. If upper bounds are pointer references, assign it to a local variable
whenever possible.

• Is prefetch distance correct? Use #pragma prefetch to override the distance when it is
needed.

Volume II: Optimizing Applications

155

Parallel Programming
For parallel programming, the Intel® C++ Compiler supports both the OpenMP* 2.0 API and an automatic
parallelization capability. The following table lists the options that perform OpenMP and auto-
parallelization support.

Option Description

-openmp Enables the parallelizer to generate multithreaded code based
on the OpenMP directives. Default: OFF.

-openmp_report{0|1|2} Controls the OpenMP parallelizer's diagnostic levels.
Default: -openmp_report1.

-openmp_stubs Enables compilation of OpenMP programs in sequential
mode. The OpenMP directives are ignored and a stub
OpenMP library is linked. Default: OFF.

-parallel Enables the auto-parallelizer to generate multithreaded code
for loops that can be safely executed in parallel. Default:
OFF.

-par_threshold{n} Sets a threshold for the auto-parallelization of loops based on
the probability of profitable execution of the loop in parallel,
n=0 to 100. n=0 implies "always." Default: n=100.

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic levels.
Default: -par_report1

Note

When both -openmp and -parallel are specified on the command line, the -parallel option is
honored only in routines that do not contain OpenMP directives. For routines that contain OpenMP
directives, only the -openmp option is honored.

Vectorization

The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD instructions in the
MMX(TM), SSE, and SSE2 instruction sets. The vectorizer detects operations in the program that can be
done in parallel, and then converts the sequential program to process 2, 4, 8, or 16 elements in one
operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel C++ Compiler
vectorization on IA-32 systems only. The following list summarizes this section's contents.

• a quick reference of vectorization functionality and features
• descriptions of compiler switches to control vectorization
• descriptions of the C++ language features to control vectorization
• discussion and general guidelines on vectorization levels:

• automatic vectorization
• vectorization with user intervention

• examples demonstrating typical vectorization issues and resolutions

Intel® C++ Compiler for Linux* Systems User's Guide

156

Vectorizer Options

Option Description

-ax{K|W|N|B|P} Enables the vectorizer and generates specialized and generic IA-32
code. The generic code is usually slower than the specialized code.

-x{K|W|N|B|P} Turns on the vectorizer and generates processor-specific specialized
code.

-vec_reportn Controls the vectorizer's level of diagnostic messages:

• n =0 no diagnostic information is displayed.
• n =1 display diagnostics indicating loops successfully vectorized

(default).
• n =2 same as n =1, plus diagnostics indicating loops not

successfully vectorized.
• n =3 same as n =2, plus additional information about any proven

or assumed dependences.

Usage

If you use -c, -ipo with -vec_report{n} option or -c, -x{K|W|N|B|P} or -ax{K|W|N|B|P}
with -vec_report{n}, the compiler issues a warning and no report is generated.

To produce a report when using the aforementioned options, you need to add the -ipo_obj option. The
combination of -c and -ipo_obj produces a single file compilation, and hence does generate object
code, and eventually a report is generated.

The following commands generate a vectorization report:

• prompt>icpc -x{K|W|N|B|P} -vec_report3 file.cpp
• prompt>icpc -x{K|W|N|B|P} -ipo -ipo_obj -vec_report3 file.cpp
• prompt>icpc -c -x{K|W|N|B||P} -ipo -ipo_obj -vec_report3 file.cpp

The following commands do not generate a vectorization report:

• prompt>icpc -c -x{K|W|M|B|P} -vec_report3 file.cpp
• prompt>icpc -x{K|W|N|B|P} -ipo -vec_report3 file.cpp
• prompt>icpc -c -x{K|W|N|B|P} -ipo -vec_report3 file.cpp

Loop Parallelization and Vectorization

Combining the -parallel and -x{K|W|N|B|P} options instructs the compiler to attempt both
automatic loop parallelization and automatic loop vectorization in the same compilation. In most cases, the
compiler will consider outermost loops for parallelization and innermost loops for vectorization. If deemed
profitable, however, the compiler may even apply loop parallelization and vectorization to the same loop.

Volume II: Optimizing Applications

157

Note that in some cases successful loop parallelization (either automatically or by means of OpenMP*
directives) may affect the messages reported by the compiler for loop vectorization; for example, under the
-vec_report2 option indicating loops not successfully vectorized.

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and check
them against your code to eliminate ambiguities that prevent the compiler from achieving optimal
vectorization.

Guidelines for loop bodies:

• use straight-line code (a single basic block)
• use vector data only; that is, arrays and invariant expressions on the right hand side of assignments.

Array references can appear on the left hand side of assignments
• use only assignment statements

Avoid the following in loop bodies:

• function calls
• unvectorizable operations
• mixing vectorizable types in the same loop
• data-dependent loop exit conditions

Preparing your code for vectorization

To make your code vectorizable, you will often need to make some changes to your loops. However, you
should make only the changes needed to enable vectorization and no others. In particular, you should avoid
these common changes:

• do not unroll your loops, the compiler does this automatically
• do not decompose one loop with several statements in the body into several single-statement loops

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the case of
Streaming SIMD Extensions, the vector memory operations are limited to stride-1 accesses with a
preference to 16-byte-aligned memory references. This means that if the compiler abstractly recognizes a
loop as vectorizable, it still might not vectorize it for a distinct target architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common problem
with global pointers is that they often prevent the compiler from being able to prove two memory
references at distinct locations. Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, and memory operations
within the loop bodies.

Intel® C++ Compiler for Linux* Systems User's Guide

158

However, by understanding these limitations and by knowing how to interpret diagnostic messages, you
can modify your program to overcome the known limitations and enable effective vectorizations. The
following topics summarize the capabilities and restrictions of the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in serial loops.
Because vectorization rearranges the order in which operations are executed, any auto-vectorizer must have
at its disposal some form of data dependence analysis. The "Data-dependent Loop" example shows some
code that exhibits data dependence. The value of each element of an array is dependent on itself and its two
neighbors.

Data-dependent Loop

float data[N];
int i;

for (i=1; i<N-1; i++)
{
 data[i]=data[i-1]*0.25+data[i]*0.5+data[i+1]*0.25;
}

The loop in this example is not vectorizable because the write to the current element data[i] is
dependent on the use of the preceding element data[i-1], which has already been written to and
changed in the previous iteration. To see this, look at the access patterns of the array for the first two
iterations as shown in the following example:

Data Dependence Vectorization Patterns

for(i=0; i<100; i++)
a[i]=b[i];
has access pattern
read b[0]
write a[0]
read b[1]
write a[1]
i=1: READ data[0]
READ data[1]
READ data[2]
WRITE data[1]
i=2: READ data[1]
READ data[2]
READ data[3]
WRITE data[2]

In the normal sequential version of the loop shown, the value of data[1] read during the second iteration
was written into the first iteration. For vectorization, the iterations must be done in parallel, without
changing the semantics of the original loop.

Volume II: Optimizing Applications

159

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may overlap.
Given two references in a program, the conditions are defined by:

• whether the referenced variables may be aliases for the same (or overlapping) regions in memory,
• for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series of tests
that progressively increase in power as well as time and space costs. First, a number of simple tests are
performed in a dimension-by-dimension manner, since independence in any dimension will exclude any
dependence relationship. Multi-dimensional arrays references that may cross their declared dimension
boundaries can be converted to their linearized form before the tests are applied. Some of the simple tests
used are the fast GCD test, proving independence if the greatest common divisor of the coefficients of loop
indices cannot evenly divide the constant term, and the extended bounds test, which tests potential overlap
for the extreme values of subscript expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful hierarchical
dependence solver that uses Fourier-Motzkin elimination to solve the data dependence problem in all
dimensions.

Loop Constructs

Loops can be formed with the usual for and while constructs. However, the loops must have a single
entry and a single exit to be vectorized.

Correct Usage

while(i<n)
{
 // If branch is inside body of loop

 a[i]=b[i]*c[i];
 if(a[i]<0.0)
 {
 a[i]=0.0;
 }
 i++;
}

Incorrect Usage

while(i<n)
{
 if (condition) break;
 // 2nd exit.
 ++i;
}

Intel® C++ Compiler for Linux* Systems User's Guide

160

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example, fixed indexes
for loops determine the iterations. The loop iterations must be countable; that is, the number of iterations
must be expressed as one of the following:

• a constant
• a loop invariant term
• a linear function of outermost loop indices

Loops whose exit depends on computation are not countable. The following examples illustrate countable
and non-countable loop constructs.

Correct Usage for Countable Loop

// Exit condition specified by "N-1b+1"
count=N;

...

while(count!=1b)
{
 // 1b is not affected within loop
 a[i]=b[i]*x;
 b[i]=[i]+sqrt(d[i]);
 --count;
}

Correct Usage for Countable Loop

// Exit condition is "(n-m+2)/2"
i=0;
for(l=m; l<n; l+=2)
{
 a[i]=b[i]*x;
 b[i]=c[i]+sqrt(d[i]);
 ++i;
}

Incorrect Usage for Non-Countable Loop

i=0;

// Iterations dependent on a[i]
while(a[i]>0.0)
{
 a[i]=b[i]*c[i];
 ++i;
}

Volume II: Optimizing Applications

161

Types of Loops Vectorized

For integer loops, MMX(TM) technology and Streaming SIMD Extensions provide SIMD instructions for
most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved. A 32-bit shift-right
operator, for instance, is not vectorized if the final stored value is a 16-bit integer. Also, note that because
the MMX(TM) instructions and Streaming SIMD Extensions instruction sets are not fully orthogonal (byte
shifts, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, the
Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators +, -, *, and /. Also,
the Streaming SIMD Extensions provide SIMD instructions for the binary MIN, MAX, and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric functions SIN,
COS, TAN) are supported in software in a vector mathematical run-time library that is provided with the
Intel® C++ Compiler.

Strip Mining and Cleanup

Strip mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-
encodings of loops, as well as providing a means of improving memory performance. By fragmenting a
large loop into smaller segments or strips, this technique transforms the loop structure in two ways:

• It increases the temporal and spatial locality in the data cache if the data are reusable in different
passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of each "vector," or number of
operations being performed per SIMD operation. In the case of Streaming SIMD Extensions, this
vector, or strip length, is reduced by 4 times: four floating-point data items per single Streaming
SIMD Extensions single-precision floating-point SIMD operation are processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector
operation is done for a size less than or equal to the maximum vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Before Vectorization

i=0;
while(i<n)
{
 // Original loop code
 a[i]=b[i]+c[i];
 ++i;
}

Intel® C++ Compiler for Linux* Systems User's Guide

162

After Vectorization

// The vectorizer generates the following two loops
i=0;

while(i<(n-n%4))
{
 // Vector strip-mined loop
 // Subscript [i:i+3] denotes SIMD execution
 a[i:i+3]=b[i:i+3]+c[i:i+3];
 i=i+4;
}

while(i<n)
{
 // Scalar clean-up loop
 a[i]=b[i]+c[i];
 ++i;
}

Statements in the Loop Body

The vectorizable operations are different for floating-point and integer data.

Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root, max, and
min. Operation on double precision types is not permitted unless optimizing for a Pentium® 4 processor
system.

Integer Array Operations

The statements within the loop body may contain char, unsigned char, short, unsigned
short, int, and unsigned int. Calls to functions such as sqrt and fabs are also supported.
Arithmetic operations are limited to addition, subtraction, bitwise AND, OR, and XOR operators, division
(16-bit only), multiplication (16-bit only), min, and max. You can mix data types only if the conversion can
be done without a loss of precision. Some example operators where you can mix data types are
multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are allowed. In particular, note
that the special __m64 and __m128 datatypes are not vectorizable. The loop body cannot contain any
function calls. Use of the Streaming SIMD Extensions intrinsics (_mm_add_ps) are not allowed.

Language Support and Directives

This topic addresses language features that better help to vectorize code. The declspec(align(n))
declaration enables you to overcome hardware alignment constraints. The restrict qualifier and the
pragmas address the stylistic issues due to lexical scope, data dependence, and ambiguity resolution.

Volume II: Optimizing Applications

163

Language Support

Feature Description

__declspec(align(n)) Directs the compiler to align the
variable to an n-byte boundary.
Address of the variable is
address mod n=0.

__declspec(align(n,off)) Directs the compiler to align the
variable to an n-byte boundary
with offset off within each n-
byte boundary. Address of the
variable is address mod
n=off.

restrict Permits the disambiguator
flexibility in alias assumptions,
which enables more
vectorization.

__assume_aligned(a,n) Instructs the compiler to assume
that array a is aligned on an n-
byte boundary; used in cases
where the compiler has failed to
obtain alignment information.

#pragma ivdep Instructs the compiler to ignore
assumed vector dependencies.

#pragma vector{aligned|unaligned|always} Specifies how to vectorize the
loop and indicates that
efficiency heuristics should be
ignored.

#pragma novector Specifies that the loop should
never be vectorized

Multi-version Code

Multi-version code is generated by the compiler in cases where data dependence analysis fails to prove
independence for a loop due to the occurrence of pointers with unknown values. This functionality is
referred to as dynamic dependence testing.

Intel® C++ Compiler for Linux* Systems User's Guide

164

Pragma Scope

These pragmas control the vectorization of only the subsequent loop in the program, but the compiler does
not apply them to any nested loops. Each nested loop needs its own pragma preceding it in order for the
pragma to be applied. You must place a pragma only before the loop control statement.

#pragma vector always

Syntax: #pragma vector always

Definition: This pragma instructs the compiler to override any efficiency heuristic during the decision to
vectorize or not. #pragma vector always will vectorize non-unit strides or very unaligned memory
accesses.

Example:

for(i = 0; i <= N; i++)
{
 a[32*i] = b[99*i];
}

#pragma ivdep

Syntax: #pragma ivdep

Definition: This pragma instructs the compiler to ignore assumed vector dependences. To ensure correct
code, the compiler treats an assumed dependence as a proven dependence, which prevents vectorization.
This pragma overrides that decision. Only use this when you know that the assumed loop dependences
are safe to ignore.

The loop in this example will not vectorize with the ivdep pragma, since the value of k is not known
(vectorization would be illegal if k<0).

Example:

#pragma ivdep
for (i = 0; i < m; i++)
{
 a[i] = a[i + k] * c;
}

#pragma vector

Syntax: #pragma vector{aligned | unaligned}

Definition: The vector loop pragma means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the aligned (or unaligned) qualifier is used with
this pragma, the loop should be vectorized using aligned (or unaligned) operations. Specify one and
only one of aligned or unaligned.

Volume II: Optimizing Applications

165

Caution

If you specify aligned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code.

The loop in the following example uses the aligned qualifier to request that the loop be vectorized with
aligned instructions, as the arrays are declared in such a way that the compiler could not normally prove
this would be safe to do so.

Example:

void foo (float *a)
{
 #pragma vector aligned
 for (i = 0; i < m; i++)
 {
 a[i] = a[i] * c;
 }
}

The compiler has at its disposal several alignment strategies in case the alignment of data structures is not
known at compile-time. A simple example is shown (but several other strategies are supported as well). If,
in the loop, the alignment of a is unknown, the compiler will generate a prelude loop that iterates until the
array reference that occurs the most hits an aligned address. This makes the alignment properties of a
known, and the vector loop is optimized accordingly.

Alignment Strategies Example

float *a;
// alignment unknown
for (i = 0; i < 100; i++)
{
 a[i] = a[i] + 1.0f;
}

// dynamic loop peeling
p = a & 0x0f;
if (p != 0)
{
 p = (16 - p) / 4;
 for (i = 0; i < p; i++)
 {
 a[i] = a[i] + 1.0f;
 }
}

// loop with a aligned (will be vectorized accordingly)
for (i = p; i < 100; i++)
{
 a[i] = a[i] + 1.0f;
}

Intel® C++ Compiler for Linux* Systems User's Guide

166

#pragma novector

Syntax: #pragma novector

Definition: The novector loop pragma specifies that the loop should never be vectorized, even if it is
legal to do so. In this example, suppose you know the trip count (ub - lb) is too low to make
vectorization worthwhile. You can use #pragma novector to tell the compiler not to vectorize, even if
the loop is considered vectorizable.

Example:

void foo (int lb, int ub)
{
 #pragma novector
 for (j = lb; j < ub; j++)
 {
 a[j] = a[j] + b[j];
 }
}

#pragma vector nontemporal

Syntax: #pragma vector nontemporal

Definition: #pragma vector nontemporal results in streaming stores on Pentium® 4 based
systems. An example loop (float type) together with the generated assembly are shown in the example. For
large N, significant performance improvements result on a Pentium 4 systems over a non-streaming
implementation.

Example:

#pragma vector nontemporal
for (i = 0; i < N; i++)
 a[i] = 1;
 .B1.2:
movntps XMMWORD PTR _a[eax], xmm0
movntps XMMWORD PTR a[eax+16], xmm0
add eax, 32
cmp eax, 4096
jl .B1.2

Volume II: Optimizing Applications

167

Dynamic Dependence Testing Example

float *p, *q;
for (i = L; I <= U; i++)
{
 p[i] = q[i];
}
...
pL = p * 4*L;
pH = p + 4*U;
qL = q + 4*L;
qH = q + 4*U;
if (pH < qL || pL > qH)
{
 // loop without data dependence
 for (i = L; i <= U; i++)
 {
 p[i] = q[i];
 } else {
 for (i = L; i <= U; i++)
 {
 p[i] = q[i];
 }
}

Vectorization Examples

This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The following loop example, a vector copy operation, vectorizes because the compiler can prove dest[i]
and src[i] are distinct.

Vectorizable Copy Due To Unproven Distinction

void vec_copy(float *dest, float *src, int len)
{
 int i;
 for(i=0; i<len; i++;)
 {
 dest[i]=src[i];
 }
}

The restrict keyword in the following example indicates that the pointers refer to distinct objects.
Therefore, the compiler allows vectorization without generation of multi-version code.

Intel® C++ Compiler for Linux* Systems User's Guide

168

Using restrict to Prove Vectorizable Distinction

void vec_copy(float *restrict dest, float *restrict src, int
len)
{
 int i;
 for(i=0; i<len; i++)
 {
 dest[i]=src[i];
 }
}

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each structure or
array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit (DCU) split
due to misaligned data. The code loads the misaligned data across a 16-byte boundary, which results in an
additional memory access causing a six- to twelve-cycle stall. You can avoid the stalls if you know that the
data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary

For example, if you know that elements a[0] and b[0] are aligned on a 16-byte boundary, then the
following loop can be vectorized with the alignment option on (#pragma vector aligned):

Alignment of Pointers is Known

float *a, *b;
int i;

for(int i=0; i<10; i++)
{
 a[i]=b[i];
}

After vectorization, the loop is executed as shown here:

Volume II: Optimizing Applications

169

Vector and Scalar Clean-up Iterations

Both the vector iterations a[0:3] = b[0:3]; and a[4:7] = b[4:7]; can be implemented with aligned
moves if both the elements a[0] and b[0] (or, likewise, a[4] and b[4]) are 16-byte aligned.

Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate unexpected
behavior. Specifically, using aligned moves on unaligned data, will result in an illegal instruction
exception.

Data Alignment Examples

This example contains a loop that vectorizes but only with unaligned memory instructions. The compiler
can align the local arrays, but because lb is not known at compile-time. The correct alignment cannot be
determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time

void f(int lb)
{
 float z2[N], a2[N], y2[N], x2;
 for(i=lb; i<N; i++)
 {
 a2[i]=a2[i]*x2+y2[i];
 }
}

If you know that lb is a multiple of 4, you can align the loop with #pragma vector aligned as
shown in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4

void f(int lb)
{
 float z2[N], a2[N], y2[N], x2;
 assert(lb%4==0);

 #pragma vector aligned

 for(i=lb; i<N; i++)
 {
 a2[i]=a2[i]*x2+y2[i];
 }
}

Intel® C++ Compiler for Linux* Systems User's Guide

170

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example:

Typical Matrix Multiplication

for(i=0; i<N; i++)
{
 for(j=0; j<n; j++)
 {
 for(k=0; k<n; k++)
 {
 c[i][j]=c[i][j]+a[i][k]*b[k][j];
 }
 }
}

The use of b[k][j], is not a stride-1 reference and therefore will not normally be vectorizable. If the
loops are interchanged, however, all the references will become stride-1 as shown in the "Matrix
Multiplication With Stride-1" example.

Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

Matrix Multiplication With Stride-1

for(i = 0; i<N; i++)
{
 for(k=0; k<n; k++)
 {
 for(j=0; j<n; j++)
 {
 c[i][j]=c[i][j]+a[i][k]*b[k][j];
 }
 }
}

Auto-parallelization

The auto-parallelization feature of the Intel® C++ Compiler automatically translates serial portions of the
input program into equivalent multithreaded code. The auto-parallelizer analyzes the dataflow of the
program�s loops and generates multithreaded code for those loops which can be safely and efficiently
executed in parallel. This enables the potential exploitation of the parallel architecture found in symmetric
multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

• having to deal with the details of finding loops that are good worksharing candidates
• performing the dataflow analysis to verify correct parallel execution
• partitioning the data for threaded code generation as is needed in programming with OpenMP

directives.

Volume II: Optimizing Applications

171

The parallel run-time support provides the same run-time features found in OpenMP*, such as handling the
details of loop iteration modification, thread scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel applications quickly, the
programmer must explicitly identify specific portions of the application code that contain parallelism and
add the appropriate compiler directives. Auto-parallelization triggered by the -parallel option
automatically identifies those loop structures which contain parallelism. During compilation, the compiler
automatically attempts to decompose the code sequences into separate threads for parallel processing. No
other effort by the programmer is needed.

The following example illustrates how a loop�s iteration space can be divided so that it can be executed
concurrently on two threads:

Original Serial Code

for (i=1; i<100; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

Transformed Parallel Code

/* Thread 1 */
for (i=1; i<50; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

/* Thread 2 */
for (i=50; i<100; i++)
{
 a[i] = a[i] + b[i] * c[i];
}

Programming with Auto-parallelization

The auto-parallelization feature implements some concepts of OpenMP*, such as worksharing construct
(with the parallel for directive). This section provides specifics of auto-parallelization.

Guidelines for Effective Auto-parallelization Usage

A loop is parallelizable if:

• The loop is countable at compile time. This means that an expression representing how many times
the loop will execute (also called "the loop trip count") can be generated just before entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after READ) or ANTI (WRITE after
READ) loop-carried data dependences. A loop-carried data dependence occurs when the same
memory location is referenced in different iterations of the loop. At the compiler's discretion, a loop
may be parallelized if any assumed inhibiting loop-carried dependencies can be resolved by run-time
dependency testing.

Intel® C++ Compiler for Linux* Systems User's Guide

172

The compiler may generate a run-time test for the profitability of executing in parallel for loop with
loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

• Expose the trip count of loops whenever possible. Specifically use constants where the trip count is
known and save loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to carry dependent data,
for example, function calls, ambiguous indirect references, or global references.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

1. Data flow analysis
2. Loop classification
3. Dependence analysis
4. High-level parallelization
5. Data partitioning
6. Multi-threaded code generation

These steps include:

• Data flow analysis: compute the flow of data through the program
• Loop classification: determine loop candidates for parallelization based on correctness and efficiency

as shown by threshold analysis
• Dependence analysis: compute the dependence analysis for references in each loop nest
• High-level parallelization:

• analyze dependence graph to determine loops which can execute in parallel.
• compute run-time dependency

• Data partitioning: examine data reference and partition based on the following types of access:
shared, private, and firstprivate.

• Multi-threaded code generation:
• modify loop parameters
• generate entry/exit per threaded task
• generate calls to parallel runtime routines for thread creation and synchronization

Auto-parallelization: Enabling, Options, and Environment Variables

To enable the auto-parallelizer, use the -parallel option. The -parallel option detects parallel
loops capable of being executed safely in parallel and automatically generates multithreaded code for these
loops. An example of the command using auto-parallelization follows:

prompt>icpc -c -parallel prog.cpp

Volume II: Optimizing Applications

173

Auto-parallelization Options

The -parallel option enables the auto-parallelizer if the -O2 (or -O3) optimization option is also on
(the default is -O2). The -parallel option detects parallel loops capable of being executed safely in
parallel and automatically generates multithreaded code for these loops.

Option Description

-parallel Enables the auto-parallelizer

-par_threshold{1-100} Controls the work threshold needed for auto-parallelization.
Default: n=100.

-par_report{1|2|3} Controls the diagnostic messages from the auto-parallelizer.

Auto-parallelization Environment Variables

Variable Description Default

OMP_NUM_THREADS Controls the number of
threads used.

Number of processors currently installed
in the system while generating the
executable

OMP_SCHEDULE Specifies the type of
runtime scheduling.

static

Auto-parallelization Threshold Control and Diagnostics

Threshold Control

The -par_threshold[n] option sets a threshold for the auto-parallelization of loops based on the
probability of profitable execution of the loop in parallel. The value of n can be from 0 to 100. This option
is used for loops whose computation work volume cannot be determined at compile time. The threshold is
usually relevant when the loop trip count is unknown at compile time.

The -par_threshold[n] option has the following functionality:

• -par_threshold100 is executed by default, so loops get auto-parallelized only if profitable
parallel execution is almost certain.

• If you specify -par_threshold with designating a value for n, the compiler uses the default
value n=100.

• The intermediate 1 to 99 values represent the percentage probability for profitable speed-up. For
example, n=50 directs the compiler to parallelize only if there is a 50% probability of the code
speeding up if executed in parallel.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

Intel® C++ Compiler for Linux* Systems User's Guide

174

Diagnostics

The -par_report{0|1|2|3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

• -par_report0 = no diagnostic information is displayed.
• -par_report1 = indicates loops successfully auto-parallelized (default). Issues a "LOOP AUTO-

PARALLELIZED" message for parallel loops.
• -par_report2 = indicates successfully auto-parallelized loops as well as unsuccessful loops.
• -par_report3 = same as 2 plus additional information about any proven or assumed

dependencies inhibiting auto-parallelization (reasons for not parallelizing).

Example of Parallelization Diagnostics Report

This example shows output generated by -par_report3:

prompt>icpc -c -parallel -par_report3 prog.cpp

Sample Output

program prog
procedure: prog
serial loop: line 5: not a parallel candidate due to
statement at line 6
serial loop: line 9
flow data dependence from line 10 to line 10, due to "a"
12 Lines Compiled

where the program prog.cpp is as follows:

Sample prog.c

/* Assumed side effects */

for (i=1; i<10000; i++)
{
 a[i] = foo(i);
}

/* Actual dependence */

for (i=1; i<10000; i++)
{
 a[i] = a[i-1] + i;
}

Troubleshooting Tips

• Use -par_threshold0 to see if the compiler assumed there was not enough computational work
• Use -par_report3 to view diagnostics
• Use -ipo[value] to eliminate assumed side-effects done to function calls

Volume II: Optimizing Applications

175

Parallelization with OpenMP*

The Intel® C++ Compiler supports the OpenMP* C++ version 2.0 API specification. OpenMP provides
symmetric multiprocessing (SMP) with the following major features:

• Relieves the user from having to deal with the low-level details of iteration space partitioning, data
sharing, and thread scheduling and synchronization.

• Provides the benefit of the performance available from shared memory, multiprocessor systems.

The Intel C++ Compiler performs transformations to generate multithreaded code based on the user's
placement of OpenMP directives in the source program making it easy to add threading to existing
software. The Intel compiler supports all of the current industry-standard OpenMP directives, except
WORKSHARE, and compiles parallel programs annotated with OpenMP directives. In addition, the Intel
C++ Compiler provides Intel-specific extensions to the OpenMP C++ version 2.0 specification including
 run-time library routines and environment variables.

Note

As with many advanced features of compilers, you must properly understand the functionality of the
OpenMP directives in order to use them effectively and avoid unwanted program behavior.

See parallelization options summary for all of the options of the OpenMP feature in the Intel C++
Compiler.

For complete information on the OpenMP standard, visit the OpenMP Web site at http://www.openmp.org.
For OpenMP* C++ version 2.0 API specifications, see http://www.openmp.org/specs/.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the code with OpenMP
directives. The Intel C++ Compiler first processes the application and produces a multithreaded version of
the code which is then compiled. The output is a executable program with the parallelism implemented by
threads that execute parallel regions or constructs.

Targeting a Processor Run-time Check

While parallelzing a loop, the Intel compiler's loop parallelizer, OpenMP, tries to determine the optimal set
of configurations for a given processor. At run time, a check is performed to determine for which IA-32
processor OpenMP should optimize a given loop. See detailed information in the Processor-specific
Runtime Checks, IA-32 Systems.

Performance Analysis

For performance analysis of your program, you can use the Intel® VTune(TM) Performance Analyzer to
show performance information. You can obtain detailed information about which portions of the code
require the largest amount of time to execute and where parallel performance problems are located.

Intel® C++ Compiler for Linux* Systems User's Guide

176

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more definitions of the terms used
in parallel programming.

The Execution Flow

As previously mentioned, a program containing OpenMP* C++ API compiler directives begins execution
as a single process, called the master thread of execution. The master thread executes sequentially until the
first parallel construct is encountered.

In the OpenMP C++ API, the #pragma omp parallel directive defines the parallel construct. When
the master thread encounters a parallel construct, it creates a team of threads, with the master thread
becoming the master of the team. The program statements enclosed by the parallel construct are executed in
parallel by each thread in the team. These statements include routines called from within the enclosed
statements.

The statements enclosed lexically within a construct define the static extent of the construct. The dynamic
extent includes the static extent as well as the routines called from within the construct. When the
#pragma omp parallel directive reaches completion, the threads in the team synchronize, the team
is dissolved, and only the master thread continues execution. The other threads in the team enter a wait
state. You can specify any number of parallel constructs in a single program. As a result, thread teams can
be created and dissolved many times during program execution.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that are not in the
lexical extent of the parallel construct, but are in the dynamic extent, are called orphaned directives.
Orphaned directives allow you to execute major portions of your program in parallel with only minimal
changes to the sequential version of the program. Using this functionality, you can code parallel constructs
at the top levels of your program and use directives to control execution in any of the called routines. For
example:

int main(void)
{
 ...
 #pragma omp parallel
 {
 phase1();
 }
}

void phase1(void)
{
 ...
 #pragma omp for private(i) shared(n)
 for(i=0; i < n; i++)
 {
 some_work(i);
 }
}

This is an orphaned directive because the parallel region is not lexically present.

Volume II: Optimizing Applications

177

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel constructs. You
can control the data environment within parallel and worksharing constructs. Using directives and data
environment clauses on directives, you can:

• Privatize scope variables by using the THREADPRIVATE directive
• Control data scope attributes by using the THREADPRIVATE directive's clauses. The data scope

attribute clauses are:
• COPYIN
• DEFAULT
• PRIVATE
• FIRSTPRIVATE
• LASTPRIVATE
• REDUCTION
• SHARED

You can use several directive clauses to control the data scope attributes of variables for the duration of the
construct in which you specify them. If you do not specify a data scope attribute clause on a directive, the
default is SHARED for those variables affected by the directive.

Pseudo Code of the Parallel Processing Model

A sample pseudo program using some of the more common OpenMP directives is shown in the code
example that follows. This example also indicates the difference between serial regions and parallel
regions.

main() { // Begin serial execution

 ... // Only the master thread executes

#pragma omp parallel // Begin a Parallel Construct, form

 { // a team. This is Replicated Code

 ... // (each team member executes

 ... // the same code)

 //

#pragma omp sections

// Begin a Worksharing Construct

 { //

 #pragma omp section

// One unit of work

 {...} //

 #pragma omp section

// Another unit of work

 {...} //

 } // Wait until both units of work
complete

 ... // More Replicated Code

Intel® C++ Compiler for Linux* Systems User's Guide

178

 //

 #pragma omp for
nowait

// Begin a Worksharing Construct;

 for(...) { // each iteration is unit of work

 //

 ... // Work is distributed among the team
members

 //

 } // End of Worksharing Construct;

 // nowait was specified, so

 // threads proceed

 //

 #pragma omp critical

// Begin a Critical Section

 { //

 ... // Replicated Code, but only one

 // thread can execute it at a

 } // given time

 ... // More Replicated Code

 //

 #pragma omp barrier // Wait for all team members to arrive

 ... // More Replicated Code

 //

} // End of Parallel Construct;

 // disband team and continue

 // serial execution

 //

... // Possibly more Parallel constructs

 //

} // End serial execution

Volume II: Optimizing Applications

179

Compiling with OpenMP, Directive Format, and Diagnostics

To run the Intel® C++ Compiler in OpenMP* mode, invoke the compiler with the -openmp option:

prompt>icpc -openmp file.cpp

Before you run the multithreaded code, you can set the number of desired threads in the OpenMP
environment variable, OMP_NUM_THREADS. See OpenMP Environment Variables for further information.

-openmp Option

The -openmp option enables the parallelizer to generate multithreaded code based on the OpenMP
directives. The code can be executed in parallel on both uniprocessor and multiprocessor systems. The -
openmp option works with both -O0 (no optimization) and any optimization level of -O1, -O2 (default)
and -O3. Specifying -O0 with -openmp helps to debug OpenMP applications.

OpenMP Directive Format and Syntax

An OpenMP directive has the form:

#pragma omp directive-name [clause, ...] newline

where:

• #pragma omp -- Required for all OpenMP directives.
• directive-name -- A valid OpenMP directive. Must appear after the pragma and before any

clauses.
• clause -- Optional. Clauses can be in any order, and repeated as necessary unless otherwise

restricted.
• newline -- Required. Proceeds the structured block which is enclosed by this directive.

OpenMP Diagnostics

The -openmp_report{0|1|2} option controls the OpenMP parallelizer's diagnostic levels 0, 1, or 2
as follows:

• -openmp_report0 = no diagnostic information is displayed.
• -openmp_report1 = display diagnostics indicating loops, regions, and sections successfully

parallelized.
• -openmp_report2 = same as -openmp_report1 plus diagnostics indicating MASTER

constructs, SINGLE constructs, CRITICAL constructs, ORDERED constructs, ATOMIC directives,
etc. are successfully handled.

The default is -openmp_report1.

Intel® C++ Compiler for Linux* Systems User's Guide

180

OpenMP* Directives and Clauses

OpenMP Directives

Directive Name Description

parallel Defines a parallel region.

for Identifies an iterative work-sharing construct that specifies a region
in which the iterations of the associated loop should be executed in
parallel.

sections Identifies a non-iterative work-sharing construct that specifies a set
of constructs that are to be divided among threads in a team.

single Identifies a construct that specifies that the associated structured
block is executed by only one thread in the team.

parallel for A shortcut for a parallel region that contains a single for
directive. The parallel or for OpenMP directive must be
immediately followed by a for statement. If you place other
statement or an OpenMP directive between the parallel or for
directive and the for statement, the Intel C++ Compiler issues a
syntax error.

parallel sections Provides a shortcut form for specifying a parallel region containing
a single sections directive.

master Identifies a construct that specifies a structured block that is
executed by the master thread of the team.

critical[lock] Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barrier Synchronizes all the threads in a team.

atomic Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the threads in a team
have a consistent view of certain objects in memory.

ordered The structured block following an ordered directive is executed
in the order in which iterations would be executed in a sequential
loop.

threadprivate Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the
thread.

Volume II: Optimizing Applications

181

OpenMP Clauses

Clause Description

private Declares variables to be private to each thread in a team.

firstprivate Provides a superset of the functionality provided by the private clause.

lastprivate Provides a superset of the functionality provided by the private clause.

shared Shares variables among all the threads in a team.

default Enables you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

ordered The structured block following an ordered directive is executed in the
order in which iterations would be executed in a sequential loop.

if If the if(scalar_logical_expression) clause is present, the
enclosed code block is executed in parallel only if the
scalar_logical_expression evaluates to TRUE. Otherwise the
code block is serialized.

schedule Specifies how iterations of the for loop are divided among the threads of
the team.

copyin Provides a mechanism to assign the same name to threadprivate
variables for each thread in the team executing the parallel region.

OpenMP* Support Libraries

The Intel® C++ Compiler with OpenMP* support provides a production support library, libguide.a.
This library enables you to run an application under different execution modes. It is used for normal or
performance-critical runs on applications that have already been tuned.

Note

The libguide.lib library is linked dynamically, regardless of command-line options, to avoid
performance issues that are hard to debug.

Execution modes

The Intel compiler with OpenMP enables you to run an application under different execution modes that
can be specified at run time. The libraries support the serial, turnaround, and throughput modes. These
modes are selected by using the KMP_LIBRARY environment variable at run time.

Serial

The serial mode forces parallel applications to run on a single processor.

Intel® C++ Compiler for Linux* Systems User's Guide

182

Turnaround

In a dedicated (batch or single user) parallel environment where all processors are exclusively allocated to
the program for its entire run, it is most important to effectively utilize all of the processors all of the time.
The turnaround mode is designed to keep active all of the processors involved in the parallel computation
in order to minimize the execution time of a single job. In this mode, the worker threads actively wait for
more parallel work, without yielding to other threads.

Note

Avoid over-allocating system resources. This occurs if either too many threads have been specified, or if
too few processors are available at run time. If system resources are over-allocated, this mode will cause
poor performance. The throughput mode should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where the job stream
is not predictable, it may be better to design and tune for throughput. This minimizes the total time to run
multiple jobs simultaneously. In this mode, the worker threads will yield to other threads while waiting for
more parallel work.

The throughput mode is designed to make the program aware of its environment (that is, the system load)
and to adjust its resource usage to produce efficient execution in a dynamic environment. Throughput mode
is the default.

OpenMP* Environment Variables

This topic describes the OpenMP* environment variables (with the OMP_ prefix) and Intel-specific
environment variables (with the KMP_ prefix).

Standard Environment Variables

Variable Description Default

OMP_SCHEDULE Sets the runtime schedule type and chunk size. STATIC (no chunk
size specified)

OMP_NUM_THREADS Sets the number of threads to use during
execution.

Number of
processors

OMP_DYNAMIC Enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads.

FALSE

OMP_NESTED Enables (TRUE) or disables (FALSE) nested
parallelism.

FALSE

Volume II: Optimizing Applications

183

Intel Extension Environment Variables

Environment
Variable

Description Default

KMP_LIBRARY Selects the OpenMP run-time library throughput. The
options for the variable value are: serial,
turnaround, or throughput indicating the
execution mode. The default value of throughput
is used if this variable is not specified.

throughput
(execution
mode)

KMP_STACKSIZE Sets the number of bytes to allocate for each parallel
thread to use as its private stack. Use the optional
suffix b, k, m, g, or t, to specify bytes, kilobytes,
megabytes, gigabytes, or terabytes.

IA-32: 2m
Itanium®
compiler: 4m

OpenMP* Run-time Library Routines

OpenMP* provides several run-time library functions to assist you in managing your program in parallel
mode. Many of these functions have corresponding environment variables that can be set as defaults. The
run-time library functions enable you to dynamically change these factors to assist in controlling your
program. In all cases, a call to a run-time library function overrides any corresponding environment
variable.

The following table specifies the interfaces to these routines. The names for the routines are in user name
space. The omp.h and omp_lib.h header files are provided in the INCLUDE directory of your compiler
installation.

There are definitions for two different locks, omp_lock_kind and omp_nest_lock_kind, which are
used by the functions in the table that follows:

Execution Environment Routines

Function Description

omp_set_num_threads(nthreads) Sets the number of threads to use for
subsequent parallel regions.

omp_get_num_threads() Returns the number of threads that are being
used in the current parallel region.

omp_get_max_threads() Returns the maximum number of threads
that are available for parallel execution.

omp_get_thread_num() Returns the unique thread number of the
thread currently executing this section of
code.

omp_get_num_procs() Returns the number of processors available
to the program.

Intel® C++ Compiler for Linux* Systems User's Guide

184

Function Description

omp_in_parallel() Returns TRUE if called within the dynamic
extent of a parallel region executing in
parallel; otherwise returns FALSE.

omp_set_dynamic(dynamic_threads) Enables or disables dynamic adjustment of
the number of threads used to execute a
parallel region. If dynamic_threads is
TRUE, dynamic threads are enabled. If
dynamic_threads is FALSE, dynamic
threads are disabled. Dynamics threads are
disabled by default.

omp_get_dynamic() Returns TRUE if dynamic thread adjustment
is enabled, otherwise returns FALSE.

omp_set_nested(nested) Enables or disables nested parallelism. If
nested is TRUE, nested parallelism is
enabled. If nested is FALSE, nested
parallelism is disabled. Nested parallelism is
disabled by default.

omp_get_nested() Returns TRUE if nested parallelism is
enabled, otherwise returns FALSE.

Lock Routines

Function Description

omp_init_lock(lock) Initializes the lock associated with lock for use in
subsequent calls.

omp_destroy_lock(lock) Causes the lock associated with lock to become
undefined.

omp_set_lock(lock) Forces the executing thread to wait until the lock
associated with lock is available. The thread is
granted ownership of the lock when it becomes
available.

omp_unset_lock(lock) Releases the executing thread from ownership of
the lock associated with lock. The behavior is
undefined if the executing thread does not own the
lock associated with lock.

omp_test_lock(lock Attempts to set the lock associated with lock. If
successful, returns TRUE, otherwise returns FALSE.

omp_init_nest_lock(lock) Initializes the nested lock associated with lock for
use in the subsequent calls.

omp_destroy_nest_lock(lock) Causes the nested lock associated with lock to
become undefined.

Volume II: Optimizing Applications

185

Function Description

omp_set_nest_lock(lock) Forces the executing thread to wait until the nested
lock associated with lock is available. The thread
is granted ownership of the nested lock when it
becomes available.

omp_unset_nest_lock(lock) Releases the executing thread from ownership of
the nested lock associated with lock if the nesting
count is zero. Behavior is undefined if the executing
thread does not own the nested lock associated with
lock.

omp_test_nest_lock(lock) Attempts to set the nested lock associated with
lock. If successful, returns the nesting count,
otherwise returns zero.

Timing Routines

Function Description

omp_get_wtime() Returns a double-precision value equal to the elapsed wallclock time
(in seconds) relative to an arbitrary reference time. The reference time
does not change during program execution.

omp_get_wtick() Returns a double-precision value equal to the number of seconds
between successive clock ticks.

Intel Extensions

The Intel® C++ Compiler implements the following groups of functions as extensions to the OpenMP*
run-time library:

• getting and setting stack size for parallel threads
• memory allocation

The Intel extensions described in this section can be used for low-level debugging to verify that the library
code and application are functioning as intended. It is recommended to use these functions with caution
because using them requires the use of the -openmp_stubs command-line option to execute the
program sequentially. These functions are also generally not recognized by other vendor's OpenMP-
compliant compilers, which may cause the link stage to fail for these other compilers.

Note

The following functions require the pre-processor directive #include <omp.h>.

Intel® C++ Compiler for Linux* Systems User's Guide

186

Stack Size

In most cases, directives can be used in place of extensions. For example, the stack size of the parallel
threads may be set using the KMP_STACKSIZE environment variable rather than the
kmp_set_stacksize_s()function.

Note

A run-time call to an Intel extension takes precedence over the corresponding environment variable setting.
See the definitions of stack size functions in the Stack Size table.

Memory Allocation

The Intel® C++ Compiler implements a group of memory allocation functions as extensions to the
OpenMP run-time library to enable threads to allocate memory from a heap local to each thread. These
functions are kmp_malloc(), kmp_calloc(), and kmp_realloc(). The memory allocated by
these functions must also be freed by the kmp_free()function. While it is legal for the memory to be
allocated by one thread and kmp_free()'d by a different thread, this mode of operation has a slight
performance penalty. See the definitions of these functions in the Memory Allocation table.

Stack Size

Function Description

kmp_get_stacksize_s() Returns the number of bytes that will be allocated for
each parallel thread to use as its private stack. This
value can be changed with
kmp_set_stacksize_s() prior to the first
parallel region or with the KMP_STACKSIZE
environment variable.

kmp_get_stacksize() This function is provided for backwards compatibility
only. Use kmp_get_stacksize_s() for
compatibility across different families of Intel
processors.

kmp_set_stacksize_s(size) Sets to size the number of bytes that will be allocated
for each parallel thread to use as its private stack. This
value can also be set via the KMP_STACKSIZE
environment variable. In order for
kmp_set_stacksize_s() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the program.

kmp_set_stacksize(size) This function is provided for backward compatibility
only; use kmp_set_stacksize_s() for
compatibility across different families of Intel
processors.

Volume II: Optimizing Applications

187

Memory Allocation

Function Description

kmp_malloc(size) Allocate memory block of size bytes from thread-
local heap.

kmp_calloc(nelem, elsize) Allocate array of nelem elements of size elsize
from thread-local heap.

kmp_realloc(ptr, size) Reallocate memory block at address ptr and size
bytes from thread-local heap.

kmp_free(ptr) Free memory block at address ptr from thread-local
heap. Memory must have been previously allocated
with kmp_malloc(), kmp_calloc(), or
kmp_realloc().

Intel Workqueuing Model

The workqueuing model lets you parallelize control structures that are beyond the scope of those supported
by the OpenMP* model, while attempting to fit into the framework defined by OpenMP. In particular, the
workqueuing model is a flexible mechanism for specifying units of work that are not pre-computed at the
start of the worksharing construct. For single, for, and sections constructs all work units that can
be executed are known at the time the construct begins execution. The workqueuing pragmas taskq and
task relax this restriction by specifying an environment (the taskq) and the units of work (the tasks)
separately.

Workqueuing Constructs

taskq Pragma

The taskq pragma specifies the environment within which the enclosed units of work (tasks) are to be
executed. From among all the threads that encounter a taskq pragma, one is chosen to execute it initially.
Conceptually, the taskq pragma causes an empty queue to be created by the chosen thread, and then the
code inside the taskq block is executed single-threaded. All the other threads wait for work to be
enqueued on the conceptual queue. The task pragma specifies a unit of work, potentially executed by a
different thread. When a task pragma is encountered lexically within a taskq block, the code inside the
task block is conceptually enqueued on the queue associated with the taskq. The conceptual queue is
disbanded when all work enqueued on it finishes, and when the end of the taskq block is reached.

Control Structures

Many control structures exhibit the pattern of separated work iteration and work creation, and are naturally
parallelized with the workqueuing model. Some common cases are:

• while loops
• C++ iterators
• recursive functions.

Intel® C++ Compiler for Linux* Systems User's Guide

188

while Loops

If the computation in each iteration of a while loop is independent, the entire loop becomes the
environment for the taskq pragma, and the statements in the body of the while loop become the units of
work to be specified with the task pragma. The conditional in the while loop and any modifications to
the control variables are placed outside of the task blocks and executed sequentially to enforce the data
dependencies on the control variables.

C++ Iterators

C++ Standard Template Library (STL) iterators are very much like the while loops just described,
whereby the operations on the data stored in the STL are very distinct from the act of iterating over all the
data. If the operations are data-independent, they can be done in parallel as long as the iteration over the
work is sequential. This type of while loop parallelism is a generalization of the standard OpenMP*
worksharing for loops. In the worksharing for loops, the loop increment operation is the iterator and the
body of the loop is the unit of work. However, because the for loop iteration variable frequently has a
closed form solution, it can be computed in parallel and the sequential step avoided.

Recursive Functions

Recursive functions also can be used to specify parallel iteration spaces. The mechanism is similar to
specifying parallelism using the sections pragma, but is much more flexible because it allows arbitrary
code to sit between the taskq and the task pragmas, and because it allows recursive nesting of the
function to build a conceptual tree of taskq queues. The recursive nesting of the taskq pragmas is a
conceptual extension of OpenMP worksharing constructs to behave more like nested OpenMP parallel
regions. Just like nested parallel regions, each nested workqueuing construct is a new instance and is
encountered by exactly one thread. However, the major difference is that nested workqueuing constructs
do not cause new threads or teams to be formed, but rather re-use the threads from the team. This permits
very easy multi-algorithmic parallelism in dynamic environments, such that the number of threads need not
be committed at each level of parallelism, but instead only at the top level. From that point on, if a large
amount of work suddenly appears at an inner level, the idle threads from the outer level can assist in getting
that work finished. For example, it is very common in server environments to dedicate a thread to handle
each incoming request, with a large number of threads awaiting incoming requests. For a particular
request, its size may not be obvious at the time the thread begins handling it. If the thread uses nested
workqueuing constructs, and the scope of the request becomes large after the inner construct is started, the
threads from the outer construct can easily migrate to the inner construct to help finish the request.

Since the workqueuing model is designed to preserve sequential semantics, synchronization is inherent in
the semantics of the taskq block. There is an implicit team barrier at the completion of the taskq block
for the threads that encountered the taskq construct to ensure that all of the tasks specified inside of the
taskq block have finished execution. This taskq barrier enforces the sequential semantics of the
original program. Just like the OpenMP worksharing constructs, it is assumed you are responsible for
ensuring that either no dependences exist or that dependencies are appropriately synchronized between the
task blocks, or between code in a task block and code in the taskq block outside of the task blocks.

The syntax, semantics, and allowed clauses are designed to resemble OpenMP* worksharing constructs.
Most of the clauses allowed on OpenMP worksharing constructs have a reasonable meaning when applied
to the workqueuing pragmas.

Volume II: Optimizing Applications

189

taskq Construct

#pragma intel omp taskq [clause[[,]clause]...]
 structured-block

where clause can be any of the following:

• private (variable-list)
• firstprivate (variable-list)
• lastprivate (variable-list)
• reduction (operator : variable-list)
• ordered
• nowait

private

The private clause creates a private, default-constructed version for each object in variable-list
for the taskq. It also implies captureprivate on each enclosed task. The original object referenced
by each variable has an indeterminate value upon entry to the construct, must not be modified within the
dynamic extent of the construct, and has an indeterminate value upon exit from the construct.

firstprivate

The firstprivate clause creates a private, copy-constructed version for each object in variable-
list for the taskq. It also implies captureprivate on each enclosed task. The original object
referenced by each variable must not be modified within the dynamic extent of the construct and has an
indeterminate value upon exit from the construct.

lastprivate

The lastprivate clause creates a private, default-constructed version for each object in variable-
list for the taskq. It also implies captureprivate on each enclosed task. The original object
referenced by each variable has an indeterminate value upon entry to the construct, must not be modified
within the dynamic extent of the construct, and is copy-assigned the value of the object from the last
enclosed task after that task completes execution.

reduction

The reduction clause performs a reduction operation with the given operator in enclosed task constructs
for each object in variable-list. operator and variable-list are defined the same as in the
OpenMP Specifications.

ordered

The ordered clause performs ordered constructs in enclosed task constructs in original sequential
execution order. The taskq directive, to which the ordered is bound, must have an ordered clause
present.

Intel® C++ Compiler for Linux* Systems User's Guide

190

nowait

The nowait clause removes the implied barrier at the end of the taskq. Threads may exit the taskq
construct before completing all the task constructs queued within it.

task Construct

#pragma intel omp task [clause[[,]clause]...]
 structured-block

where clause can be any of the following:

• private(variable-list)
• captureprivate(variable-list)

private

The private clause creates a private, default-constructed version for each object in variable-list
for the task. The original object referenced by the variable has an indeterminate value upon entry to the
construct, must not be modified within the dynamic extent of the construct, and has an indeterminate value
upon exit from the construct.

captureprivate

The captureprivate clause creates a private, copy-constructed version for each object in variable-
list for the task at the time the task is enqueued. The original object referenced by each variable
retains its value but must not be modified within the dynamic extent of the task construct.

Combined parallel and taskq Construct

#pragma intel omp parallel taskq [clause[[,]clause]...]
 structured-block

where clause can be any of the following:

• if(scalar-expression)
• num_threads(integer-expression)
• copyin(variable-list)
• default(shared | none)
• shared(variable-list)
• private(variable-list)
• firstprivate(variable-list)
• lastprivate(variable-list)
• reduction(operator : variable-list)
• ordered

Clause descriptions are the same for parallel and taskq construct.

Volume II: Optimizing Applications

191

Example Function

The test1 function is a natural candidate to be parallelized using the workqueuing model. You can
express the parallelism by annotating the loop with a parallel taskq pragma and the work in the loop body
with a task pragma. The parallel taskq pragma specifies an environment for the while loop in which
to enqueue the units of work specified by the enclosed task pragma. Thus, the loop�s control structure and
the enqueuing are executed single-threaded, while the other threads in the team participate in dequeuing the
work from the taskq queue and executing it. The captureprivate clause ensures that a private copy
of the link pointer p is captured at the time each task is being enqueued, hence preserving the sequential
semantics.

void test1(LIST p)
{
 #pragma intel omp parallel taskq shared(p)
 {
 while (p != NULL)
 {
 #pragma intel omp task captureprivate(p)
 {
 do_work1(p);
 }
 p = p->next;
 }
 }
}

Examples of OpenMP* Usage

The following examples show how to use the OpenMP* feature.

A Simple Difference Operator

This example shows a simple parallel loop where the amount of work in each iteration is different.
Dynamic scheduling is used to get good load balancing. The for has a nowait because there is an
implicit barrier at the end of the parallel region.

void for_1 (float a[], float b[], int n)
{
 int i, j;
 #pragma omp parallel shared(a,b,n) private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++)
 {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }
 }
}

Intel® C++ Compiler for Linux* Systems User's Guide

192

Two Difference Operators

The following example uses two parallel loops fused to reduce fork/join overhead. The first for has a
nowait because all the data used in the second loop is different than all the data used in the first loop.

void for_2 (float a[], float b[], float c[], \
float d[], int n, int m)
{
 int i, j;
 #pragma omp parallel shared(a,b,c,d,n,m) private(i,j)
 {
 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < n; i++)
 {
 for(j = 0; j <= i; j++)
 b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)])/2.0;
 }

 #pragma omp for schedule(dynamic,1) nowait
 for(i = 1; i < m; i++)
 {
 for(j = 0; j <= i; j++)
 d[j + m*i] = (c[j + m*i] + c[j + m*(i-1)])/2.0;
 }
 }
}

Optimization Support Features
This section describes language extensions to the Intel® C++ Compiler that let you optimize your source
code directly. Examples are included of optimizations supported by Intel extended directives and library
routines that enhance and/or help analyze performance.

Compiler Directives

This section discusses the language extended directives used in:

• Software Pipelining
• Loop Count and Loop Distribution
• Loop Unrolling
• Prefetching
• Vectorization

Pipelining for Itanium®-based Applications

The swp and noswp directives indicate preference for a loop to get software-pipelined or not. The swp
directive does not help data dependence, but overrides heuristics based on profile counts or lop-sided
control flow. The syntax for this directive is:

#pragma swp

#pragma noswp

Volume II: Optimizing Applications

193

Example of swp Directive

#pragma swp
for (i=0; i<m ; i++)
{
 if (a[i]==0)
 {
 b[i]=a[i]+1;
 }
 else
 {
 b[i]=a[i]*2;
 }
}

The software pipelining optimization triggered by the swp directive applies instruction scheduling to
certain innermost loops, allowing instructions within a loop to be split into different stages, allowing
increased instruction level parallelism. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Loops chosen for software pipelining are always innermost loops that do not contain
procedure calls that are not inlined. Because the optimizer no longer considers fully unrolled loops as
innermost loops, fully unrolling loops can allow an additional loop to become the innermost loop. You can
request and view the optimization report to see whether software pipelining was applied (see Optimizer
Report Generation).

Loop Count and Loop Distribution

loop count (n) Directive

The loop count (n) directive indicates the loop count is likely to be n. The syntax for this directive
is:

#pragma loop count (n)

where n is an integer constant. The value of loop count affects heuristics used in software pipelining,
vectorization and loop-transformations.

Example of loop count (n) Directive

#pragma loop count (10000)

for(i=0; i<m; i++)
{
 //swp likely to occur in this loop
 a[i]=b[i]+1.2;
}

Intel® C++ Compiler for Linux* Systems User's Guide

194

distribute point Directive

The distribute point directive indicates to the compiler a preference of performing loop
distribution. The syntax for this directive is:

#pragma distribute point

Loop distribution may cause large loops be distributed into smaller ones. This may enable software
pipelining for more loops. If the directive is placed inside a loop, the distribution is performed after the
directive and any loop-carried dependency is ignored. If the directive is placed before a loop, the compiler
will determine where to distribute and data dependency is observed. Only one distribute directive is
supported when placed inside the loop.

Example of distribute point Directive

#pragma distribute point

for(i=1; i<m; i++)
{
 b[i]=a[i]+1;

 ...

 //Compiler will automatically
 //decide where to distribute.
 //Data dependency is observed.

 c[i]=a[i]+b[i];

 ...

 d[i]=c[i]+1;
}

for(i=1; i<m; i++)
{
 b[i]=a[i]+1;

 ...

 #pragma distribute point

 //Distribution will start here,
 //ignoring all loop-carried dependency.

 sub(a,n);
 c[i]=a[i]+b[i];

 ...

 d[i]=c[i]+1;
}

Volume II: Optimizing Applications

195

Loop Unrolling Support

unroll Directive

The unroll directive (unroll(n)|nounroll) tells the compiler how many times to unroll a counted
loop. The syntax for this directive is:

#pragma unroll

#pragma unroll(n)

#pragma nounroll

where n is an integer constant from 0 through 255. The unroll directive must precede the for statement
for each for loop it affects. If n is specified, the optimizer unrolls the loop n times. If n is omitted, or if it
is outside the allowed range, the optimizer assigns the number of times to unroll the loop. The unroll
directive overrides any setting of loop unrolling from the command line. The directive can be applied only
for the innermost nested loop. If applied to the outer loops, it is ignored. The compiler generates correct
code by comparing n and the loop count.

Example of unroll Directive

#pragma unroll(4)

for(i=1; i<m; i++)
{
 b[i]=a[i]+1;
 d[i]=c[i]+1;
}

Prefetching Support

prefetch Directive

The prefetch and noprefetch directives assert that the data prefetches are generated or not generated
for some memory references. This affects the heuristics used in the compiler. The syntax for this directive
is:

#pragma noprefetch

#pragma prefetch

#pragma prefetch a,b

If the expression a[j] is used within a loop, by placing prefetch a in front of the loop, the compiler
will insert prefetches for a[j+d] within the loop, where d is determined by the compiler. This directive is
supported when option -O3 is on.

Intel® C++ Compiler for Linux* Systems User's Guide

196

Example of prefetch Directive

#pragma noprefetch b
#pragma prefetch a

for(i=0; i<m; i++)
{
 a[i]=b[i]+1;
}

Vectorization Support (IA-32)

The vector directives control the vectorization of the subsequent loop in the program, but the compiler
does not apply them to nested loops. Each nested loop needs its own directive preceding it. You must place
the vector directive before the loop control statement.

vector always Directive

The vector always directive instructs the compiler to override any efficiency heuristic during the
decision to vectorize or not, and will vectorize non-unit strides or very unaligned memory accesses.

Example of vector always Directive

#pragma vector always

for(i=0; i<=N; i++)
{
 a[32*i]=b[99*i];
}

ivdep Directive

The ivdep directive instructs the compiler to ignore assumed vector dependences. To ensure correct code,
the compiler treats an assumed dependence as a proven dependence, which prevents vectorization. This
directive overrides that decision. Use ivdep only when you know that the assumed loop dependences are
safe to ignore. The loop in the following example will not vectorize with the ivdep, since the value of k is
not known (vectorization would be illegal if k<0).

Example of ivdep Directive

#pragma ivdep

for(i=0; i<m; i++)
{
 a[i]=a[i+k]*c;
}

Volume II: Optimizing Applications

197

vector aligned Directive

The vector aligned directive means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the aligned or unaligned qualifier is used, the
loop should be vectorized using aligned or unaligned operations. Specify either aligned or
unaligned, but not both.

Caution

If you specify aligned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code. The loop in the following
example uses the aligned qualifier to request that the loop be vectorized with aligned instructions, as
the arrays are declared in such a way that the compiler could not normally prove this would be safe to do
so.

Example of vector aligned Directive

#void foo(float *a)
{
 #pragma vector aligned
 for(i=0; i<m; i++)
 {
 a[i]=a[i]*c;
 }
}

The compiler includes several alignment strategies in case the alignment of data structures is not known at
compile time. A simple example follows, but several other strategies are supported as well. If, in the
following loop, the alignment of a is unknown, the compiler will generate a prelude loop that iterates until
the array reference that occurs the most hits an aligned address. This makes the alignment properties of a
known, and the vector loop is optimized accordingly.

Intel® C++ Compiler for Linux* Systems User's Guide

198

Example of Alignment Strategies

float *a;

//Alignment unknown
for(i=0; i<100; i++)
{
 a[i]=a[i]+1.0f;
}

//Dynamic loop peeling
p=a & 0x0f;
if(p!=0)
{
 p=(16-p)/4;
 for(i=0; i<p; i++)
 {
 a[i]=a[i]+1.0f;
 }
}

//Loop with a aligned.
//Will be vectorized accordingly.
for(i=p; i<100; i++)
{
 a[i]=a[i]+1.0f;
}

novector Directive

The novector directive specifies that the loop should never be vectorized, even if it is legal to do so. In
this example, suppose you know the trip count (ub - lb) is too low to make vectorization worthwhile.
You can use novector to tell the compiler not to vectorize, even if the loop is considered vectorizable.

Example of novector Directive

void foo(int lb, int ub)
{
 #pragma novector
 for(j=lb; j<ub; j++)
 {
 a[j]=a[j]+b[j];
 }
}

Volume II: Optimizing Applications

199

Optimizer Report Generation

The Intel® C++ Compiler provides options to generate and manage optimization reports:

• -opt_report generates an optimization report and directs it to stderr. By default, the compiler
does not generate optimization reports.

• -opt_report_filefilename generates an optimization report and directs it to a file specified
in filename.

• -opt_report_level{min|med|max} specifies the detail level of the optimization report. The
min argument provides the minimal summary and max produces the full report. The default is -
opt_report_levelmin.

• -opt_report_routinefileroutine_substring generates reports from all routines with
names containing the substring as part of their name. If not specified, reports from all routines
are generated. By default, the compiler generates reports for all routines.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase argument of the -
opt_report_phasephase option. The option can be used multiple times on the same command line to
generate reports for multiple optimizers. Currently, the following optimizer reports are supported.

Optimizer
Logical
Name

Optimizer Full Name

ipo Interprocedural Optimizer

hlo High Level Optimizer

ilo Intermediate Language Scalar Optimizer

ecg Code Generator

omp Open MP

all All phases

When one of the logical names for optimizers is specified, all reports from that optimizer are generated.

For example, -opt_report_phaseipo -opt_report_phaseecg generates reports from the
interprocedural optimizer and the code generator.

Intel® C++ Compiler for Linux* Systems User's Guide

200

Each of the optimizers can potentially have specific optimizations within them. Each of these optimizations
are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

ipo_inline Interprocedural Optimizer, inline expansion of functions

ipo_constant_propagation Interprocedural Optimizer, constant propagation

ipo_function_reorder Interprocedural Optimizer, function reorder

ilo_constant_propagation Intermediate Language Scalar Optimizer, constant
propagation

ilo_copy_propagation Intermediate Language Scalar Optimizer, copy
propagation

ecg_software_pipelining Code Generator, software pipelining

All optimization reports that have a matching prefix with the specified optimizer are generated. For
example, if -opt_report_phase ilo_co is specified, a report from both the constant propagation
and the copy propagation are generated.

The Availability of Report Generation

The -opt_report_help option lists the logical names of optimizers available for report generation.

Volume II: Optimizing Applications

201

Timing Your Application

How fast your application executes is one indication of performance. When timing the speed of
applications, consider the following circumstances:

• Run program timings when other users are not active. Your timing results can be affected by one or
more CPU-intensive processes also running while doing your timings.

• Try to run the program under the same conditions each time to provide the most accurate results,
especially when comparing execution times of a previous version of the same program. Use the same
system (processor model, amount of memory, version of the operating system, and so on) if possible.

• If you do need to change systems, you should measure the time using the same version of the
program on both systems, so you know each system's effect on your timings.

• For programs that run for less than a few seconds, run several timings to ensure that the results are
not misleading. Certain overhead functions, like loading external programs, might influence short
timings considerably.

• If your program displays a lot of text, consider redirecting the output from the program. Redirecting
output from the program will change the times reported because of reduced screen I/O.

The following program illustrates a model for program timing:

/* Sample Timing */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void)
{
 clock_t start, finish;
 long loop;
 double duration, loop_calc;
 start = clock();
 for(loop=0; loop <= 2000; loop++)
 {
 loop_calc = 123.456 * 789;

 //printf() inculded to facilitate example
 printf("\nThe value of loop is: %d", loop);
 }
 finish = clock();
 duration = (double)(finish - start)/CLOCKS_PER_SEC;
 printf("\n%2.3f seconds\n", duration);
}

202

Reference
Compiler Limits

The following table shows the size or number of each item that the compiler can process. All capacities
shown in the table are tested values; the actual number can be greater than the number shown.

Item Tested Values

Control structure nesting (block nesting) 512

Conditional compilation nesting 512

Declarator modifiers 512

Parenthesis nesting levels 512

Significant characters, internal identifier 2048

External identifier name length 64K

Number of external identifiers/file 128K

Number of identifiers in a single block 2048

Number of macros simultaneously defined 128K

Number of parameters to a function call 512

Number of parameters per macro 512

Number of characters in a string 128K

Bytes in an object 512K

Include file nesting depth 512

Case labels in a switch 32K

Members in one structure or union 32K

Enumeration constants in one enumeration 8192

Levels of structure nesting 320

Size of arrays 2 GB

Reference

203

Key Files
Key Files Summary for IA-32 Compiler

The following tables list and briefly describe files that are installed for use by the IA-32 version of the
compiler.

/bin Files

File Description

codecov Code-coverage tool

iccvars.sh
iccvars.csh

Batch file to set environment variables

icc
icpc

Scripts that check for license file and call compiler driver

iccbin
icpcbin

Compiler drivers

mcpcom Intel® C++ Compiler

iccbin
icpcbin

Compiler drivers

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

tselect Test-prioritization tool

xiar Tool used for Interprocedural Optimizations

xild Tool used for Interprocedural Optimizations

/include Files

File Description

dvec.h SSE 2 intrinsics for Class Libraries

emm_func.h Header file for SSE2 intrinsics (used by emmintrin.h)

emmintrin.h Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard float.h

fvec.h SSE intrinsics for Class Libraries

iso646.h Standard header file

ivec.h MMX(TM) instructions intrinsics for Class Libraries

limits.h Standard header file

Intel® C++ Compiler for Linux* Systems User's Guide

204

File Description

mathf.h Principal header file for legacy Intel Math Library

mathimf.h Principal header file for current Intel Math Library

mmintrin.h Intrinsics for MMX instructions

omp.h Principal header file OpenMP*

omp_lib.h Header file for OpenMP

pgouser.h For use in the instrumentation compilation phase of profile-guided
optimizations

pmmintrin.h Principal header file SSE3 intrinsics

proto.h

sse2mmx.h Principal header file for Streaming SIMD Extensions 2 intrinsics

stdarg.h Replacement header for standard stdarg.h

stdbool.h Defines _Bool keyword

stddef.h Standard header file

syslimits.h

varargs.h Replacement header for standard varargs.h

xarg.h Header file used by stdargs.h and varargs.h

xmm_func.h.h Header file for Streaming SIMD Extensions

xmm_utils.h Utilities for Streaming SIMD Extensions

xmmintrin.h Principal header file for Streaming SIMD Extensions intrinsics

/lib Files

Library Description

libguide.a
libguide.so

For OpenMP* implementation

libguide_stats.a
libguide_stats.so

OpenMP static library for the parallelizer tool with performance
statistics and profile information

libompstub.a Library that resolves references to OpenMP subroutines when
OpenMP is not in use

libsvml.a Short vector math library

libirc.a Intel support library for PGO and CPU dispatch

libimf.a Intel math library

libimf.so Intel math library

Reference

205

Library Description

libcprts.a
libcprts.so
libcprts.so.3

Dinkumware* C++ Library

libunwind.a
libunwind.so
libunwind.so.3

Unwinder library

libcxa.a
libcxa.so
libcxa.so.3

Intel run time support for C++ features

libcxaguard.a
libcxaguard.so
libcxaguard.so.3

Used for interoperability support with the -cxxlib-gcc option.
See gcc Interoperability.

Key Files Summary for Itanium® Compiler

The following tables list and briefly describe files that are installed for use by the Itanium® compiler.

/bin Files

File Description

codecov Code-coverage tool

iccvars.sh Batch file to set environment variables

icc.cfg Configuration file for use from command line

icc
icpc

Scripts that check for license file and call compiler driver

iccbin
icpcbin

Compiler drivers

mcpcom Intel® C++ Compiler

iccbin
icpcbin

Compiler drivers

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

tselect Test-prioritization tool

xiar Tool used for Interprocedural Optimizations

xild Tool used for Interprocedural Optimizations

Intel® C++ Compiler for Linux* Systems User's Guide

206

/include Files

File Description

emmintrin.h Principal header file for SSE2 intrinsics

float.h IEEE 754 version of standard float.h

fvec.h SSE intrinsics for Class Libraries

ia64intrin.h

ia64regs.h Standard header file

iso646.h Standard header file

ivec.h MMX(TM) instructions intrinsics for Class Libraries

limits.h Standard header file

mathimf.h Principal header file for current Intel Math Library

mmintrin.h Intrinsics for MMX instructions

omp.h Principal header file OpenMP*

pgouser.h For use in the instrumentation compilation phase of profile-guided
optimizations

proto.h

sse2mmx.h Principal header file for Streaming SIMD Extensions 2 intrinsics

stdarg.h Replacement header for standard stdarg.h

stdbool.h Defines _Bool keyword

stddef.h Standard header file

syslimits.h

varargs.h Replacement header for standard varargs.h

xarg.h Header file used by stdargs.h and varargs.h

xmmintrin.h Principal header file for Streaming SIMD Extensions intrinsics

Reference

207

/lib Files

File Description

libcprts.a C++ standard language library

libcxa.so C++ language library indicating I/O data location

libirc.a Intel-specific library (optimizations)

libm.a Math library

libguide.a OpenMP library

libguide.so Shared OpenMP library

libmofl.a Multiple Object Format Library, used by the Intel assembler

libmofl.so Shared Multiple Object Format Library, used by the Intel assembler

libunwinder.a Unwinder library

libintrins.a Intrinsic functions library

Diagnostics and Messages
This section describes the various messages that the compiler produces. These messages include the sign-
on message and diagnostic messages for remarks, warnings, or errors. The compiler always displays any
diagnostic message, along with the erroneous source line, on the standard output.

This section also describes how to control the severity of diagnostic messages.

Diagnostic Messages

Option Description

-w0 Display errors (same as -w)

-w1 Display warnings and errors (DEFAULT)

-w2 Display remarks, warnings, and errors

Intel® C++ Compiler for Linux* Systems User's Guide

208

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source file. These
diagnostics have the following format:

filename (linenum): type [#nn]: message

filename Indicates the name of the source file currently being processed.

linenum Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or
catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or
catastrophes are not assigned a number.

message Describes the diagnostic.

The following is an example of a warning message:

tantst.cpp(3): warning #328: Local variable "increment" never used.

The compiler can also display internal error messages on the standard error. If your compilation produces
any internal errors, contact your Intel representative. Internal error messages are in the following form:

FATAL COMPILER ERROR: message

Suppressing Warning Messages with lint Comments

The UNIX lint program attempts to detect features of a C or C++ program that are likely to be bugs,
non-portable, or wasteful. The compiler recognizes three lint-specific comments:

1. /*ARGSUSED*/
2. /*NOTREACHED*/
3. /*VARARGS*/

Like the lint program, the compiler suppresses warnings about certain conditions when you place these
comments at specific points in the source.

Suppressing Warning Messages or Enabling Remarks

Use the -w or -Wn option to suppress warning messages or to enable remarks during the preprocessing and
compilation phases. You can enter the option with one of the following arguments:

Option Description

-w0 Display only errors (same as -w)

-w1 Display warnings and errors (DEFAULT)

-w2 Display remarks, warnings, and errors

Reference

209

For some compilations, you might not want warnings for known and benign characteristics, such as the
K&R C constructs in your code. For example, the following command compiles newprog.cpp and
displays compiler errors, but not warnings:

prompt>icpc -W0 newprog.cpp

Use the -ww, -we, or -wd option to indicate specific diagnostics.

Option Description

-wwL1[L2,...,Ln] Changes the severity of diagnostics L1 through Ln to warning.

-weL1[L2,...,Ln] Changes the severity of diagnostics L1 through Ln to error.

-wdL1[L2,...,Ln] Disables diagnostics L1 through Ln.

Example

/* test.c */

int main()
{
 int x=0;
}

If you compile test.c using the -Wall option (enable all warnings), the compiler will emit warning
#177:

prompt>icc -Wall test.c

remark #177: variable 'x' was declared but never referenced

To disable warning #177, use the -wd option:

prompt>icc -Wall -wd177 test.c

Likewise, using the -we option will result in a compile-time error:

prompt>icc -Wall -we177 test.c

error #177: variable 'x' was declared but never referenced

compilation aborted for test.c

Intel® C++ Compiler for Linux* Systems User's Guide

210

Limiting the Number of Errors Reported

Use the -wnn option to limit the number of error messages displayed before the compiler aborts. By
default, if more than 100 errors are displayed, compilation aborts.

Option Description

-wnn/i Limit the number of error diagnostics that will be displayed prior to aborting
compilation to n. Remarks and warnings do not count towards this limit.

For example, the following command line specifies that if more than 50 error messages are displayed
during the compilation of a.cpp, compilation aborts.

prompt>icpc -wn50 -c a.cpp

Remark Messages

These messages report common, but sometimes unconventional, use of C or C++. The compiler does not
print or display remarks unless you specify level 4 for the -W option, as described in Suppressing Warning
Messages or Enabling Remarks. Remarks do not stop translation or linking. Remarks do not interfere with
any output files. The following are some representative remark messages:

• function declared implicitly
• type qualifiers are meaningless in this declaration
• controlling expression is constant

Reference

211

Intel Math Library
The Intel® C++ Compiler includes a mathematical software library containing highly optimized and very
accurate mathematical functions. These functions are commonly used in scientific or graphic applications,
as well as other programs that rely heavily on floating-point computations. Support for C99 _Complex
data types is included by using the -c99 compiler option. The mathimf.h header file includes
prototypes for the library functions. See Using the Intel Math Library. For a complete list of the functions
available, refer to the Function List in this section.

Math Libraries for IA-32 and Itanium®-based Systems

The math library linked to an application depends on the compilation or linkage options specified.

Library Description

libimf.a Default static math library.

libimf.so Default shared math library.

Using the Intel Math Library

To use the Intel math library, include the header file, mathimf.h, in your program. Here are two example
programs that illustrate the use of the math library.

Intel® C++ Compiler for Linux* Systems User's Guide

212

Example Using Real Functions

// real_math.c

#include <stdio.h>
#include <mathimf.h>

int main() {

float fp32bits;
double fp64bits;
long double fp80bits;
long double pi_by_four = 3.141592653589793238/4.0;

// pi/4 radians is about 45 degrees.

fp32bits = (float) pi_by_four; // float approximation to pi/4
fp64bits = (double) pi_by_four; // double approximation to
pi/4
fp80bits = pi_by_four; // long double (extended)
approximation to pi/4

// The sin(pi/4) is known to be 1/sqrt(2) or approximately
.7071067

printf("When x = %8.8f, sinf(x) = %8.8f \n", fp32bits,
sinf(fp32bits));
printf("When x = %16.16f, sin(x) = %16.16f \n", fp64bits,
sin(fp64bits));
printf("When x = %20.20Lf, sinl(x) = %20.20f \n", fp80bits,
sinl(fp80bits));

return 0;
}

Compiling real_math.c:

prompt>icc real_math.c

The output of a.out will look like this:

When x = 0.78539816, sinf(x) = 0.70710678
When x = 0.7853981633974483, sin(x) = 0.7071067811865475
When x = 0.78539816339744827900, sinl(x) =
0.70710678118654750275

Reference

213

Example Using Complex Functions

// complex_math.c

#include <stdio.h>
#include <mathimf.h>

int main()
{

float _Complex c32in,c32out;
double _Complex c64in,c64out;
double pi_by_four= 3.141592653589793238/4.0;

c64in = 1.0 + __I__* pi_by_four;

// Create the double precision complex number 1 + (pi/4) * i
// where i is the imaginary unit.

c32in = (float _Complex) c64in;

// Create the float complex value from the double complex
value.

c64out = cexp(c64in);
c32out = cexpf(c32in);

// Call the complex exponential,
// cexp(z) = cexp(x+iy) = e^ (x + i y) = e^x * (cos(y) + i
sin(y))

printf("When z = %7.7f + %7.7f i, cexpf(z) = %7.7f + %7.7f i
\n"
,crealf(c32in),cimagf(c32in),crealf(c32out),cimagf(c32out));
printf("When z = %12.12f + %12.12f i, cexp(z) = %12.12f +
%12.12f i \n"
,creal(c64in),cimag(c64in),creal(c64out),cimagf(c64out));

return 0;
}

prompt>icc complex_math.c

The output of a.out will look like this:

When z = 1.0000000 + 0.7853982 i, cexpf(z) = 1.9221154 +
1.9221156 i
When z = 1.000000000000 + 0.785398163397 i, cexp(z) =
1.922115514080 + 1.922115514080 i

Note

_Complex data types are supported in C but not in C++ programs.

Intel® C++ Compiler for Linux* Systems User's Guide

214

Exception Conditions

If you call a math function using argument(s) that may produce undefined results, an error number is
assigned to the system variable errno. Math function errors are usually domain errors or range errors.

Domain errors result from arguments that are outside the domain of the function. For example, acos is
defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(-2) or acos(3)
results in a domain error, where the return value is QNaN.

Range errors occur when a mathematically valid argument results in a function value that exceeds the
range of representable values for the floating-point data type. Attempting to evaluate exp(1000) results
in a range error, where the return value is INF.

When domain or range error occurs, the following values are assigned to errno:

• domain error (EDOM): errno = 33
• range error (ERANGE): errno = 34

The following example shows how to read the errno value for an EDOM and ERANGE error.

// errno.c

#include <errno.h>
#include <mathimf.h>
#include <stdio.h>

int main(void)
{
 double neg_one=-1.0;
 double zero=0.0;

 // The natural log of a negative number is considered a
domain error - EDOM
 printf("log(%e) = %e and errno(EDOM) = %d
\n",neg_one,log(neg_one),errno);

 // The natural log of zero is considered a range error -
ERANGE
 printf("log(%e) = %e and errno(ERANGE) = %d
\n",zero,log(zero),errno);
}

The output of errno.c will look like this:

log(-1.000000e+00) = nan and errno(EDOM) = 33
log(0.000000e+00) = -inf and errno(ERANGE) = 34

For the math functions in this section, a corresponding value for errno is listed when applicable.

Reference

215

Other Considerations

Some math functions are inlined automatically by the compiler. The functions actually inlined may vary
and may depend on any vectorization or processor-specific compilation options used. For more
information, see Criteria for Inline Expansion of Functions.

A change of the default precision control or rounding mode may affect the results returned by some of the
mathematical functions. See Floating-point Arithmetic Precision.

It's necessary to include the -c99 compiler option when compiling programs that require support for
_Complex data types.

Trigonometric Functions

The Intel Math library supports the following trigonometric functions:

ACOS

Description: The acos function returns the principal value of the inverse cosine of x in the range [0, pi]
radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acos(double x);
long double acosl(long double x);
float acosf(float x);

ACOSD

Description: The acosd function returns the principal value of the inverse cosine of x in the range [0,180]
degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acosd(double x);
long double acosdl(long double x);
float acosdf(float x);

ASIN

Description: The asin function returns the principal value of the inverse sine of x in the range [-pi/2,
+pi/2] radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asin(double x);
long double asinl(long double x);
float asinf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

216

ASIND

Description: The asind function returns the principal value of the inverse sine of x in the range [-90,90]
degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asind(double x);
long double asindl(long double x);
float asindf(float x);

ATAN

Description: The atan function returns the principal value of the inverse tangent of x in the range [-pi/2,
+pi/2] radians.

Calling interface:
double atan(double x);
long double atanl(long double x);
float atanf(float x);

ATAN2

Description: The atan2 function returns the principal value of the inverse tangent of y/x in the range [-
pi, +pi] radians.

errno: EDOM, for x = 0 and y = 0

Calling interface:
double atan2(double y, double x);
long double atan2l(long double y, long double x);
float atan2f(float y, float x);

ATAND

Description: The atand function returns the principal value of the inverse tangent of x in the range [-
90,90] degrees.

Calling interface:
double atand(double x);
long double atandl(long double x);
float atandf(float x);

Reference

217

ATAN2D

Description: The atan2d function returns the principal value of the inverse tangent of y/x in the range [-
180, +180] degrees.

errno: EDOM, for x = 0 and y = 0.

Calling interface:
double atan2d(double x, double y);
long double atan2dl(long double x, long double y);
float atan2df(float x, float y);

COS

Description: The cos function returns the cosine of x measured in radians. This function may be inlined
with the Itanium® compiler.

Calling interface:
double cos(double x);
long double cosl(long double x);
float cosf(float x);

COSD

Description: The cosd function returns the cosine of x measured in degrees.

Calling interface:
double cosd(double x);
long double cosdl(long double x);
float cosdf(float x);

COT

Description: The cot function returns the cotangent of x measured in radians.

errno: ERANGE, for overflow conditions at x = 0.

Calling interface:
double cot(double x);
long double cotl(long double x);
float cotf(float x);

COTD

Description: The cotd function returns the cotangent of x measured in degrees.

errno: ERANGE, for overflow conditions at x = 0.

Calling interface:
double cotd(double x);
long double cotdl(long double x);
float cotdf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

218

SIN

Description: The sin function returns the sine of x measured in radians. This function may be inlined
with the Itanium® compiler.

Calling interface:
double sin(double x);
long double sinl(long double x);
float sinf(float x);

SINCOS

Description: The sincos function returns both the sine and cosine of x measured in radians. This
function may be inlined with the Itanium® compiler.

Calling interface:
void sincos(double x, double *sinval, double *cosval);
void sincosl(long double x, long double *sinval, long double *cosval);
void sincosf(float x, float *sinval, float *cosval);

SINCOSD

Description: The sincosd function returns both the sine and cosine of x measured in degrees.

Calling interface:
void sincosd(double x, double *sinval, double *cosval);
void sincosdl(long double x, long double *sinval, long double *cosval);
void sincosdf(float x, float *sinval, float *cosval);

SIND

Description: The sind function computes the sine of x measured in degrees.

Calling interface:
double sind(double x);
long double sindl(long double x);
float sindf(float x);

TAN

Description: The tan function returns the tangent of x measured in radians.

Calling interface:
double tan(double x);
long double tanl(long double x);
float tanf(float x);

Reference

219

TAND

Description: The tand function returns the tangent of x measured in degrees.

errno: ERANGE, for overflow conditions

Calling interface:
double tand(double x);
long double tandl(long double x);
float tandf(float x);

Hyperbolic Functions

The Intel Math library supports the following hyperbolic functions:

ACOSH

Description: The acosh function returns the inverse hyperbolic cosine of x.

errno: EDOM, for x < 1

Calling interface:
double acosh(double x);
long double acoshl(long double x);
float acoshf(float x);

ASINH

Description: The asinh function returns the inverse hyperbolic sine of x.

Calling interface:
double asinh(double x);
long double asinhl(long double x);
float asinhf(float x);

ATANH

Description: The atanh function returns the inverse hyperbolic tangent of x.

errno: EDOM, for x < 1
errno: ERANGE, for x = 1

Calling interface:
double atanh(double x);
long double atanhl(long double x);
float atanhf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

220

COSH

Description: The cosh function returns the hyperbolic cosine of x, (ex + e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double cosh(double x);
long double coshl(long double x);
float coshf(float x);

SINH

Description: The sinh function returns the hyperbolic sine of x, (ex - e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double sinh(double x);
long double sinhl(long double x);
float sinhf(float x);

SINHCOSH

Description: The sinhcosh function returns both the hyperbolic sine and hyperbolic cosine of x.

errno: ERANGE, for overflow conditions

Calling interface:
void sinhcosh(double x, float *sinval, float *cosval);
void sinhcoshl(long double x, long double *sinval, long double *cosval);
void sinhcoshf(float x, float *sinval, float *cosval);

TANH

Description: The tanh function returns the hyperbolic tangent of x, (ex - e-x) / (ex + e-x).

Calling interface:
double tanh(double x);
long double tanhl(long double x);
float tanhf(float x);

Reference

221

Exponential Functions

The Intel Math library supports the following exponential functions:

CBRT

Description: The cbrt function returns the cube root of x.

Calling interface:
double cbrt(double x);
long double cbrtl(long double x);
float cbrtf(float x);

EXP

Description: The exp function returns e raised to the x power, ex. This function may be inlined by the
Itanium® compiler.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp(double x);
long double expl(long double x);
float expf(float x);

EXP10

Description: The exp10 function returns 10 raised to the x power, 10x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp10(double x);
long double exp10l(long double x);
float exp10f(float x);

EXP2

Description: The exp2 function returns 2 raised to the x power, 2x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp2(double x);
long double exp2l(long double x);
float exp2f(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

222

EXPM1

Description: The expm1 function returns e raised to the x power minus 1, ex - 1.

errno: ERANGE, for overflow conditions

Calling interface:
double expm1(double x);
long double expm1l(long double x);
float expm1f(float x);

FREXP

Description: The frexp function converts a floating-point number x into signed normalized fraction in
[1/2, 1) multiplied by an integral power of two. The signed normalized fraction is returned, and the integer
exponent stored at location exp.

Calling interface:
double frexp(double x, int *exp);
long double frexp(long double x, int *exp);
float frexpf(float x, int *exp);

HYPOT

Description: The hypot function returns the square root of (x2 + y2).

errno: ERANGE, for overflow conditions

Calling interface:
double hypot(double x, double y);
long double hypotl(long double x, long double y);
float hypotf(float x, float y);

ILOGB

Description: The ilogb function returns the exponent of x base two as a signed int value.

errno: ERANGE, for x = 0

Calling interface:
int ilogb(double x);
int ilogbl(long double x);
int ilogbf(float x);

INVSQRT

Description: The invsqrt function returns the inverse square root.

Calling interface:
double invsqrt(double x);
long double invsqrtl(long double x);
float invsqrtf(float x);

Reference

223

LDEXP

Description: The ldexp function returns x*2exp, where exp is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);
float ldexpf(float x, int exp);

LOG

Description: The log function returns the natural log of x, ln(x). This function may be inlined by the
Itanium® compiler.

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log(double x);
long double logl(long double x);
float logf(float x);

LOG10

Description: The log10 function returns the base-10 log of x, log10(x). This function may be inlined by
the Itanium® compiler.

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log10(double x);
long double log10l(long double x);
float log10f(float x);

LOG1P

Description: The log1p function returns the natural log of (x+1), ln(x + 1).

errno: EDOM, for x < -1
errno: ERANGE, for x = -1

Calling interface:
double log1p(double x);
long double log1pl(long double x);
float log1pf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

224

LOG2

Description: The log2 function returns the base-2 log of x, log2(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log2(double x);
long double log2l(long double x);
float log2f(float x;

LOGB

Description: The logb function returns the signed exponent of x.

errno: EDOM, for x = 0

Calling interface:
double logb(double x);
long double logbl(long double x);
float logbf(float x);

POW

Description: The pow function returns x raised to the power of y, xy.

Calling interface:

errno: EDOM, for x = 0 and y < 0
errno: EDOM, for x < 0 and y is a non-integer
errno: ERANGE, for overflow and underflow conditions

double pow(double x, double y);
long double powl(double x, double y);
float powf(float x, float y);

SCALB

Description: The scalb function returns x*2y, where y is a floating-point value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalb(double x, double y);
long double scalbl(long double x, long double y);
float scalbf(float x, float y);

Reference

225

SCALBN

Description: The scalbn function returns x*2n, where n is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbn(double x, int n);
long double scalbnl (long double x, int n);
float scalbnf(float x, int n);

SCALBLN

Description: The scalbln function returns x*2n, where n is a long integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbln(double x, long int n);
long double scalblnl (long double x, long int n);
float scalblnf(float x, long int n);

SQRT

Description: The sqrt function returns the correctly rounded square root.

errno: EDOM, for x < 0

Calling interface:
double sqrt(double x);
long double sqrtl(long double x);
float sqrtf(float x);

Special Functions

The Intel Math library supports the following special functions:

ANNUITY

Description: The annuity function computes the present value factor for an annuity, (1 - (1+x)(-y)
) / x, where x is a rate and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double annuity(double x, double y);
long double annuity(double x, double y);
float annuityf(float x, double y);

Intel® C++ Compiler for Linux* Systems User's Guide

226

COMPOUND

Description: The compound function computes the compound interest factor, (1+x)y, where x is a rate
and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double compound(double x, double y);
long double compound(double x, double y);
float compoundf(float x, double y);

ERF

Description: The erf function returns the error function value.

Calling interface:
double erf(double x);
long double erfl(long double x);
float erff(float x);

ERFC

Description: The erfc function returns the complementary error function value.

errno: ERANGE, for underflow conditions

Calling interface:
double erfc(double x);
long double erfcl(long double x);
float erfcf(float x);

GAMMA

Description: The gamma function returns the value of the logarithm of the absolute value of gamma.

errno: ERANGE, for overflow conditions when x is a negative integer.

Calling interface:
double gamma(double x);
long double gammal(long double x);
float gammaf(float x);

GAMMA_R

Description: The gamma_r function returns the value of the logarithm of the absolute value of gamma.
The sign of the gamma function is returned in the integer signgam.

Calling interface:
double gamma_r(double x, int *signgam);
double gammal_r(long double x, int *signgam);
float gammaf_r(float x, int *signgam);

Reference

227

J0

Description: Computes the Bessel function (of the first kind) of x with order 0.

Calling interface:
double j0(double x);
double j0l(long double x);
float j0f(float x);

J1

Description: Computes the Bessel function (of the first kind) of x with order 1.

Calling interface:
double j1(double x);
double j1l(long double x);
float j1f(float x);

JN

Description: Computes the Bessel function (of the first kind) of x with order n.

Calling interface:
double jn(int n, double x);
double jnl(int n, long double x);
float jnf(int n, float x);

LGAMMA

Description: The lgamma function returns the value of the logarithm of the absolute value of gamma.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma(double x);
long double lgammal(long double x);
float lgammaf(float x);

LGAMMA_R

Description: The lgamma_r function returns the value of the logarithm of the absolute value of gamma.
The sign of the gamma function is returned in the integer signgam.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma_r(double x, int *signgam);
long double lgamma_r(double x, int *signgam);
float lgammaf_r(float x, int *signgam);

Intel® C++ Compiler for Linux* Systems User's Guide

228

TGAMMA

Description: The tgamma function computes the gamma function of x.

errno: EDOM, for x=0 or negative integers.

Calling interface:
double tgamma(double x);
long double tgammal(long double x);
float tgammaf(float x);

Y0

Description: Computes the Bessel function (of the second kind) of x with order 0.

errno: EDOM, for x <= 0

Calling interface:
double y0(double x);
double y0l(long double x);
float y0f(float x);

Y1

Description: Computes the Bessel function (of the second kind) of x with order 1.

errno: EDOM, for x <= 0

Calling interface:
double y1(double x);
double y1l(long double x);
float y1f(float x);

YN

Description: Computes the Bessel function (of the second kind) of x with order n.

errno: EDOM, for x <= 0

Calling interface:
double yn(int n, double x);
double ynl(int n, long double x);
float ynf(int n, float x);

Reference

229

Nearest Integer Functions

The Intel Math library supports the following nearest integer functions:

CEIL

Description: The ceil function returns the smallest integral value not less than x as a floating-point
number. This function may be inlined with the Itanium® compiler.

Calling interface:
double ceil(double x);
long double ceill(long double x);
float ceilf(float x);

FLOOR

Description: The floor function returns the largest integral value not greater than x as a floating-point
value. This function may be inlined with the Itanium® compiler.

Calling interface:
double floor(double x);
long double floorl(long double x);
float floorf(float x);

LLRINT

Description: The llrint function returns the rounded integer value (according to the current rounding
direction) as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llrint(double x);
long long int llrintl(long double x);
long long int llrintf(float x);

LLROUND

Description: The llround function returns the rounded integer value as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llround(double x);
long long int llroundl(long double x);
long long int llroundf(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

230

LRINT

Description: The lrint function returns the rounded integer value (according to the current rounding
direction) as a long int.

Calling interface:
long int lrint(double x);
long int lrintl(long double x);
long int lrintf(float x);

LROUND

Description: The lround function returns the rounded integer value as a long int. Halfway cases are
rounded away from zero.

errno: ERANGE, for values too large

Calling interface:
long int lround(double x);
long int lroundl(long double x);
long int lroundf(float x);

MODF

Description: The modf function returns the value of the signed fractional part of x and stores the integral
part at x *iptr as a floating-point number.

Calling interface:
double modf(double x, double *iptr);
long double modfl(long double x, long double *iptr);
float modff(float x, float *iptr);

NEARBYINT

Description: The nearbyint function returns the rounded integral value as a floating-point number,
using the current rounding direction.

Calling interface:
double nearbyint(double x);
long double nearbyintl(long double x);
float nearbyintf(float x);

RINT

Description: The rint function returns the rounded integral value as a floating-point number, using the
current rounding direction.

Calling interface:
double rint(double x);
long double rintl(long double x);
float rintf(float x);

Reference

231

ROUND

Description: The round function returns the nearest integral value as a floating-point number. Halfway
cases are rounded away from zero.

Calling interface:
double round(double x);
long double roundl(long double x);
float roundf(float x);

TRUNC

Description: The trunc function returns the truncated integral value as a floating-point number.

Calling interface:
double trunc(double x);
long double truncl(long double x);
float truncf(float x);

Remainder Functions

The Intel Math library supports the following remainder functions:

FMOD

Description: The fmod function returns the value x-n*y for integer n such that if y is nonzero, the result
has the same sign as x and magnitude less than the magnitude of y.

errno: EDOM, for x = 0

Calling interface:
double fmod(double x, double y);
long double fmodl(long double x, long double y);
float fmodf(float x, float y);

REMAINDER

Description: The remainder function returns the value of x REM y as required by the IEEE standard.

Calling interface:
double remainder(double x, double y);
long double remainderl(long double x, long double y);
float remainderf(float x, float y);

Intel® C++ Compiler for Linux* Systems User's Guide

232

REMQUO

Description: The remquo function returns the value of x REM y. In the object pointed to by quo the
function stores a value whose sign is the sign of x/y and whose magnitude is congruent modulo 224 of the
integral quotient of x/y, where n is an implementation-defined integer greater than or equal to 3.

Calling interface:
double remquo(double x, double y, int *quo);
long double remquol(long double x, long double y, int *quo);
float remquof(float x, float y, int *quo);

Miscellaneous Functions

The Intel Math library supports the following miscellaneous functions:

COPYSIGN

Description: The copysign function returns the value with the magnitude of x and the sign of y.

Calling interface:
double copysign(double x, double y);
long double copysignl(long double x, long double y);
float copysignf(float x, float y);

FABS

Description: The fabs function returns the absolute value of x.

Calling interface:
double fabs(double x);
long double fabsl(long double x);
float fabsf(float x);

FDIM

Description: The fdim function returns the positive difference value, x-y (for x > y) or +0 (for x ≤ y).

errno: ERANGE, for values too large

Calling interface:
double fdim(double x, double y);
long double fdiml(long double x, long double y);
float fdimf(float x, float y);

FINITE

Description: The finite function returns 1 if x is not a NaN or +/- infinity. Otherwise 0 is returned..

Calling interface:
int finite(double x);
int finitel(long double x);
int finitef(float x);

Reference

233

FMA

Description: The fma functions return (x*y)+z.

Calling interface:
double fma(double x, double y, long double z);
long double fmal(long double x, long double y, long double z);
float fmaf(float x, float y, long double z);

FMAX

Description: The fmax function returns the maximum numeric value of its arguments.

Calling interface:
double fmax(double x, double y);
long double fmaxl(long double x, long double y);
float fmaxf(float x, float y);

FMIN

Description: The fmin function returns the minimum numeric value of its arguments.

Calling interface:
double fmin(double x, double y);
long double fminl(long double x, long double y);
float fminf(float x, float y);

FPCLASSIFY

Description: The fpclassify function returns the value of the number classification macro appropriate
to the value of its argument.

Calling interface:
double fpclassify(double x);
long double fpclassifyl(long double x);
float fpclassifyf(float x);

ISFINITE

Description: The isfinite function returns 1 if x is not a NaN or +/- infinity. Otherwise 0 is returned..

Calling interface:
int isfinite(double x);
int isfinitel(long double x);
int isfinitef(float x);

Intel® C++ Compiler for Linux* Systems User's Guide

234

ISGREATER

Description: The isgreater function returns 1 if x is greater than y. This function does not raise the
invalid floating-point exception.

Calling interface:
int isgreater(double x, double y);
int isgreaterl(long double x, long double y);
int isgreaterf(float x, float y);

ISGREATEREQUAL

Description: The isgreaterequal function returns 1 if x is greater than or equal to y. This function
does not raise the invalid floating-point exception.

Calling interface:
int isgreaterequal(double x, double y);
int isgreaterequall(long double x, long double y);
int isgreaterequalf(float x, float y);

ISINF

Description: The isinf function returns a non-zero value if and only if its argument has an infinite value.

Calling interface:
int isinf(double x);
int isinfl(long double x);
int isinff(float x);

ISLESS

Description: The isless function returns 1 if x is less than y. This function does not raise the invalid
floating-point exception.

Calling interface:
int isless(double x, double y);
int islessl(long double x, long double y);
int islessf(float x, float y);

ISLESSEQUAL

Description: The islessequal function returns 1 if x is less than or equal to y. This function does not
raise the invalid floating-point exception.

Calling interface:
int islessequal(double x, double y);
int islessequall(long double x, long double y);
int islessequalf(float x, float y);

Reference

235

ISLESSGREATER

Description: The islessgreater function returns 1 if x is less than or greater than y. This function
does not raise the invalid floating-point exception.

Calling interface:
int islessgreater(double x, double y);
int islessgreaterl(long double x, long double y);
int islessgreaterf(float x, float y);

ISNAN

Description: The isnan function returns a non-zero value if and only if x has a NaN value.

Calling interface:
int isnan(double x);
int isnanl(long double x);
int isnanf(float x);

ISNORMAL

Description: The isnormal function returns a non-zero value if and only if x is normal.

Calling interface:
int isnormal(double x);
int isnormall(long double x);
int isnormalf(float x);

ISUNORDERED

Description: The isunordered function returns 1 if either x or y is a NaN. This function does not raise
the invalid floating-point exception.

Calling interface:
int isunordered(double x, double y);
int isunorderedl(long double x, long double y);
int isunorderedf(float x, float y);

NEXTAFTER

Description: The nextafter function returns the next representable value in the specified format after x
in the direction of y.

errno: ERANGE, for values too large

Calling interface:
double nextafter(double x, double y);
long double nextafterl(long double x, long double y);
float nextafterf(float x, float y);

Intel® C++ Compiler for Linux* Systems User's Guide

236

NEXTTOWARD

Description: The nexttoward function returns the next representable value in the specified format after
x in the direction of y. If x equals y, then the function returns y converted to the type of the function.

errno: ERANGE, for values too large

Calling interface:
double nexttoward(double x, double y);
long double nexttowardl(long double x, long double y);
float nexttowardf(float x, float y);

SIGNBIT

Description: The signbit function returns a non-zero value if and only if the sign of x is negative.

Calling interface:
int signbit(double x);
int signbitl(long double x);
int signbitf(float x);

SIGNIFICAND

Description: The significand function returns the significand of x in the interval [1,2). For x equal to
zero, NaN, or +/- infinity, the original x is returned.

Calling interface:
double significand(double x);
long double significandl(long double x);
float significandf(float x);

Complex Functions

The Intel Math library supports the following complex functions:

CABS

Description: The cabs function returns the complex absolute value of z.

Calling interface:
double cabs(double _Complex z);
long double cabsl(long double _Complex z);
float cabsf(float _Complex z);

CACOS

Description: The cacos function returns the complex inverse cosine of z.

Calling interface:
double _Complex cacos(double _Complex z);
long double _Complex cacosl(long double _Complex z);
float _Complex cacosf(float _Complex z);

Reference

237

CACOSH

Description: The cacosh function returns the complex inverse hyperbolic cosine of z.

Calling interface:
double _Complex cacosh(double _Complex z);
long double _Complex cacoshl(long double _Complex z);
float _Complex cacoshf(float _Complex z);

CARG

Description: The carg function returns the value of the argument in the interval [-pi, +pi].

Calling interface:
double carg(double _Complex z);
long double cargl(long double _Complex z);
float cargf(float _Complex z);

CASIN

Description: The casin function returns the complex inverse sine of z.

Calling interface:
double _Complex casin(double _Complex z);
long double _Complex casinl(long double _Complex z);
float _Complex casinf(float _Complex z);

CASINH

Description: The casinh function returns the complex inverse hyperbolic sine of z.

Calling interface:
double _Complex casinh(double _Complex z);
long double _Complex casinhl(long double _Complex z);
float _Complex casinhf(float _Complex z);

CATAN

Description: The catan function returns the complex inverse tangent of z.

Calling interface:
double _Complex catan(double _Complex z);
long double _Complex catanl(long double _Complex z);
float _Complex catanf(float _Complex z);

CATANH

Description: The catanh function returns the complex inverse hyperbolic tangent of z.

Calling interface:
double _Complex catanh(double _Complex z);
long double _Complex catanhl(long double _Complex z);
float _Complex catanhf(float _Complex z);

Intel® C++ Compiler for Linux* Systems User's Guide

238

CCOS

Description: The ccos function returns the complex cosine of z.

Calling interface:
double _Complex ccos(double _Complex z);
long double _Complex ccosl(long double _Complex z);
float _Complex ccosf(float _Complex z);

CCOSH

Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:
double _Complex ccosh(double _Complex z);
long double _Complex ccoshl(long double _Complex z);
float _Complex ccoshf(float _Complex z);

CEXP

Description: The cexp function computes ez.

Calling interface:
double _Complex cexp(double _Complex z);
long double _Complex cexpl(long double _Complex z);
float _Complex cexpf(float _Complex z);

CEXP2

Description: The cexp function computes 2z.

Calling interface:
double _Complex cexp2(double _Complex z);
long double _Complex cexp2l(long double _Complex z);
float _Complex cexp2f(float _Complex z);

CEXP10

Description: The cexp10 function computes 10z.

Calling interface:
double _Complex cexp10(double _Complex z);
long double _Complex cexp10l(long double _Complex z);
float _Complex cexp10f(float _Complex z);

CIMAG

Description: The cimag function returns the imaginary part value of z.

Calling interface:
double cimag(double _Complex z);
long double cimagl(long double _Complex z);
float cimagf(float _Complex z);

Reference

239

CIS

Description: The cis function returns the cosine and sine (as a complex value) of z measured in radians.

Calling interface:
double _Complex cis(double z);
long double _Complex cisl(long double z);
float _Complex cisf(float z);

CISD

Description: The cis function returns the cosine and sine (as a complex value) of z measured in degrees.

Calling interface:
double _Complex cis(double z);
long double _Complex cisl(long double z);
float _Complex cisf(float z);

CLOG

Description: The clog function returns the complex natural logarithm of z.

Calling interface:
double _Complex clog(double _Complex z);
long double _Complex clogl(long double _Complex z);
float _Complex clogf(float _Complex z);

CLOG2

Description: The clog2 function returns the complex logarithm base 2 of z.

Calling interface:
double _Complex clog2(double _Complex z);
long double _Complex clog2l(long double _Complex z);
float _Complex clog2f(float _Complex z);

CLOG10

Description: The clog10 function returns the complex logarithm base 10 of z.

Calling interface:
double _Complex clog10(double _Complex z);
long double _Complex clog10l(long double _Complex z);
float _Complex clog10f(float _Complex z);

Intel® C++ Compiler for Linux* Systems User's Guide

240

CONJ

Description: The conj function returns the complex conjugate of z, by reversing the sign of its imaginary
part.

Calling interface:
double _Complex conj(double _Complex z);
long double _Complex conjl(long double _Complex z);
float _Complex conjf(float _Complex z);

CPOW

Description: The cpow function returns the complex power function, xy .

Calling interface:
double _Complex cpow(double _Complex x, double _Complex y);
long double _Complex cpowl(long double _Complex x, double _Complex y);
float _Complex cpowf(float _Complex x, float _Complex y);

CPROJ

Description: The cproj function returns a projection of z onto the Riemann sphere.

Calling interface:
double _Complex cproj(double _Complex z);
long double _Complex cprojl(long double _Complex z);
float _Complex cprojf(float _Complex z);

CREAL

Description: The creal function returns the real part value of z.

Calling interface:
double creal(double _Complex z);
long double creall(long double _Complex z);
float crealf(float _Complex z);

CSIN

Description: The csin function returns the complex sine of z.

Calling interface:
double _Complex csin(double _Complex z);
long double _Complex csinl(long double _Complex z);
float _Complex csinf(float _Complex z);

Reference

241

CSINH

Description: The csinh function returns the complex hyperbolic sine of z.

Calling interface:
double _Complex csinh(double _Complex z);
long double _Complex csinhl(long double _Complex z);
float _Complex csinhf(float _Complex z);

CSQRT

Description: The csqrt function returns the complex square root of z.

Calling interface:
double _Complex csqrt(double _Complex z);
long double _Complex csqrtl(long double _Complex z);
float _Complex csqrtf(float _Complex z);

CTAN

Description: The ctan function returns the complex tangent of z.

Calling interface:
double _Complex ctan(double _Complex z);
long double _Complex ctanl(long double _Complex z);
float _Complex ctanf(float _Complex z);

CTANH

Description: The ctanh function returns the complex hyperbolic tangent of z.

Calling interface:
double _Complex ctanh(double _Complex z);
long double _Complex ctanhl(long double _Complex z);
float _Complex ctanhf(float _Complex z);

Intel® C++ Compiler for Linux* Systems User's Guide

242

C99 Macros

The Intel Math library and mathimf.h header file support the following C99 macros:

int fpclassify(x);

int isfinite(x);

int isgreater(x, y);

int isgreaterequal(x, y);

int isinf(x);

int isless(x, y);

int islessequal(x, y);

int islessgreater(x, y);

int isnan(x);

int isnormal(x);

int isunordered(x, y);

int signbit(x);

See also, Miscellaneous Functions.

Reference

243

Intel® C++ Intrinsics Reference
The Intel® Pentium® 4 processor and other Intel processors have instructions to enable development of
optimized multimedia applications. The instructions are implemented through extensions to previously
implemented instructions. This technology uses the single instruction, multiple data (SIMD) technique. By
processing data elements in parallel, applications with media-rich bit streams are able to significantly
improve performance using SIMD instructions. The Intel® Itanium® processor also supports these
instructions.

The most direct way to use these instructions is to inline the assembly language instructions into your
source code. However, this can be time-consuming and tedious, and assembly language inline
programming is not supported on all compilers. Instead, Intel provides easy implementation through the use
of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C variables
instead of hardware registers. Using these intrinsics frees programmers from having to program in
assembly language and manage registers. In addition, the compiler optimizes the instruction scheduling so
that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium instructions
that cannot be generated using the standard constructs of the C and C++ languages. The Intel® C++
Compiler also supports general purpose intrinsics that work across all IA-32 and Itanium-based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191

Intel® C++ Compiler for Linux* Systems User's Guide

244

Intrinsics Availability on Intel Processors

Processors: MMX(TM)
Technology
Intrinsics

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium
Processor
Instructions

Itanium
Processor

X X N/A X

Pentium 4
Processor

X X X N/A

Pentium III
Processor

X X N/A N/A

Pentium II
Processor

X N/A N/A N/A

Pentium with
MMX
Technology

X N/A N/A N/A

Pentium Pro
Processor

N/A N/A N/A N/A

Pentium
Processor

N/A N/A N/A N/A

Benefits of Using Intrinsics

The major benefit of using intrinsics is that you now have access to key features that are not available using
conventional coding practices. Intrinsics enable you to code with the syntax of C function calls and
variables instead of assembly language. Most MMX(TM) technology, Streaming SIMD Extensions, and
Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic that implements that instruction
directly. This frees you from managing registers and enables the compiler to optimize the instruction
scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new features:

• new Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing
• new Data Types--Enable packing of up to 16 elements of data in one register

The Streaming SIMD Extensions 2 intrinsics are defined only for IA-32, not for Itanium®-based systems.
Streaming SIMD Extensions 2 operate on 128 bit quantities - 2 64-bit double precision floating point
values. The Itanium architecture does not support parallel double precision computation, so Streaming
SIMD Extensions 2 are not implemented on Itanium-based systems.

Reference

245

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX instructions
use eight 64-bit registers (mm0 to mm7) which are aliased on the floating-point stack registers.

MMX(TM) Technology Registers

Streaming SIMD Extensions Registers

The Streaming SIMD Extensions use eight 128-bit registers (xmm0 to xmm7).

These new data registers enable the processing of data elements in parallel. Because each register can hold
more than one data element, the processor can process more than one data element simultaneously. This
processing capability is also known as single-instruction multiple data processing (SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing registers
and assembly programming. Further, the compiler optimizes the instruction scheduling so that your
executable runs faster.

Note

The MM and XMM registers are the SIMD registers used by the IA-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the Itanium-
based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit general registers and
the 64-bit significand of the 80-bit floating-point register.

Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are used as the
operands to these intrinsic functions. The following table shows the data type availability marked with "X".

Intel® C++ Compiler for Linux* Systems User's Guide

246

New Data Types Available

New Data
Type

MMX(TM)
Technology

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Itanium®
Processor

__m64 X X X X

__m128 N/A X X X

__m128d N/A N/A X X

__m128i N/A N/A X X

__m64 Data Type

The __m64 data type is used to represent the contents of an MMX register, which is the register that is
used by the MMX technology intrinsics. The __m64 data type can hold eight 8-bit values, four 16-bit
values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __m128 data type is used to represent the contents of a Streaming SIMD Extension register used by
the Streaming SIMD Extension intrinsics. The __m128 data type can hold four 32-bit floating values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values.

The compiler aligns __m128 local and global data to 16-byte boundaries on the stack. To align integer,
float, or double arrays, you can use the declspec statement.

New Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

• Use new data types only on either side of an assignment, as a return value, or as a parameter. You
cannot use it with other arithmetic expressions (+, -, etc).

• Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

• Use new data types only with the respective intrinsics described in this documentation. The new data
types are supported on both sides of an assignment statement: as parameters to a function call, and as
a return value from a function call.

Reference

247

Naming and Usage Syntax

Most of the intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and
sub for subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two
letters of each suffix denotes whether the data is packed (p), extended
packed (ep), or scalar (s). The remaining letters denote the type:

• s single-precision floating point
• d double-precision floating point
• i128 signed 128-bit integer
• i64 signed 64-bit integer
• u64 unsigned 64-bit integer
• i32 signed 32-bit integer
• u32 unsigned 32-bit integer
• i16 signed 16-bit integer
• u16 unsigned 16-bit integer
• i8 signed 8-bit integer
• u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};

__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);

__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

Intel® C++ Compiler for Linux* Systems User's Guide

248

Intrinsic Syntax

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where,

data_type Is the return data type, which can be either void, int, __m64,
__m128, __m128d, __m128i, __int64. Intrinsics that can be
implemented across all IA may return other data types as well, as
indicated in the intrinsic syntax definitions.

intrinsic_name Is the name of the intrinsic, which behaves like a function that you can
use in your C++ code instead of inlining the actual instruction.

parameters Represents the parameters required by each intrinsic.

Intrinsics For All IA

The intrinsics in this section function across all IA-32 and Itanium®-based platforms. They are offered as a
convenience to the programmer. They are grouped as follows:

• Integer Arithmetic Related
• Floating-Point Related
• String and Block Copy Related
• Miscellaneous

Integer Arithmetic Related

Intrinsic Description

int abs(int) Returns the absolute value of an
integer.

long labs(long) Returns the absolute value of a
long integer.

unsigned long _lrotl(unsigned long
value, int shift)

Rotates bits left for an unsigned
long integer.

unsigned long _lrotr(unsigned long
value, int shift)

Rotates bits right for an unsigned
long integer.

unsigned int __rotl(unsigned int
value, int shift)

Rotates bits left for an unsigned
integer.

unsigned int __rotr(unsigned int
value, int shift)

Rotates bits right for an unsigned
integer.

Reference

249

Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Floating-point Related

Intrinsic Description

double fabs(double) Returns the absolute value of a floating-point value.

double log(double) Returns the natural logarithm ln(x), x>0, with
double precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with single
precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0, with
double precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0, with
single precision.

double exp(double) Returns the exponential function with double
precision.

float expf(float) Returns the exponential function with single
precision.

double pow(double, double) Returns the value of x to the power y with double
precision.

float powf(float, float) Returns the value of x to the power y with single
precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the arccosine of x with double precision

float acosf(float) Returns the arccosine of x with single precision

double acosh(double) Compute the inverse hyperbolic cosine of the
argument with double precision.

float acoshf(float) Compute the inverse hyperbolic cosine of the
argument with single precision.

double asin(double) Compute arc sine of the argument with double
precision.

Intel® C++ Compiler for Linux* Systems User's Guide

250

Intrinsic Description

float asinf(float) Compute arc sine of the argument with single
precision.

double asinh(double) Compute inverse hyperbolic sine of the argument
with double precision.

float asinhf(float) Compute inverse hyperbolic sine of the argument
with single precision.

double atan(double) Compute arc tangent of the argument with double
precision.

float atanf(float) Compute arc tangent of the argument with single
precision.

double atanh(double) Compute inverse hyperbolic tangent of the argument
with double precision.

float atanhf(float) Compute inverse hyperbolic tangent of the argument
with single precision.

float cabs(double)** Computes absolute value of complex number.

double ceil(double) Computes smallest integral value of double
precision argument not less than the argument.

float ceilf(float) Computes smallest integral value of single precision
argument not less than the argument.

double cosh(double) Computes the hyperbolic cosine of double precison
argument.

float coshf(float) Computes the hyperbolic cosine of single precison
argument.

float fabsf(float) Computes absolute value of single precision
argument.

double floor(double) Computes the largest integral value of the double
precision argument not greater than the argument.

float floorf(float) Computes the largest integral value of the single
precision argument not greater than the argument.

double fmod(double) Computes the floating-point remainder of the
division of the first argument by the second
argument with double precison.

float fmodf(float) Computes the floating-point remainder of the
division of the first argument by the second
argument with single precison.

double hypot(double,
double)

Computes the length of the hypotenuse of a right
angled triangle with double precision.

float hypotf(float) Computes the length of the hypotenuse of a right
angled triangle with single precision.

Reference

251

Intrinsic Description

double rint(double) Computes the integral value represented as double
using the IEEE rounding mode.

float rintf(float) Computes the integral value represented with single
precision using the IEEE rounding mode.

double sinh(double) Computes the hyperbolic sine of the double
precision argument.

float sinhf(float) Computes the hyperbolic sine of the single precision
argument.

float sqrtf(float) Computes the square root of the single precision
argument.

double tanh(double) Computes the hyperbolic tangent of the double
precision argument.

float tanhf(float) Computes the hyperbolic tangent of the single
precision argument.

* Not implemented on Itanium®-based systems.

** double in this case is a complex number made up of two single precision (32-bit floating point)
elements (real and imaginary parts).

String and Block Copy Related

The following are not implemented as intrinsics on Itanium®-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all
characters in
a string to a
fixed value.

void *memcmp(const void *cs, const void *ct, size_t n) Compares
two regions
of memory.
Return <0 if
cs<ct, 0 if
cs=ct, or
>0 if cs>ct.

void *memcpy(void *s, const void *ct, size_t n) Copies from
memory.
Returns s.

void *memset(void * s, int c, size_t n) Sets memory
to a fixed
value.
Returns s.

Intel® C++ Compiler for Linux* Systems User's Guide

252

Intrinsic Description

char *strcat(char * s, const char * ct) Appends to a
string.
Returns s.

int *strcmp(const char *, const char *) Compares
two strings.
Return <0 if
cs<ct, 0 if
cs=ct, or
>0 if cs>ct.

char *strcpy(char * s, const char * ct) Copies a
string.
Returns s.

size_t strlen(const char * cs) Returns the
length of
string cs.

int strncmp(char *, char *, int) Compare two
strings, but
only
specified
number of
characters.

int strncpy(char *, char *, int) Copies a
string, but
only
specified
number of
characters.

Miscellaneous Intrinsics

The intrinsic functions listed here are common to IA-32 and the Itanium® architecture.

Intrinsic Description

_abnormal_termination(void) Can be invoked only by termination
handlers. Returns TRUE if the
termination handler is invoked as a
result of a premature exit of the
corresponding try-finally region.

void *_alloca(int) Allocates the buffers.

extern int _bit_scan_forward(int x) Returns the bit index of the least
significant set bit of x. If x is 0, the
result is undefined.

Reference

253

Intrinsic Description

extern int _bit_scan_reverse(int) Returns the bit index of the most
significant set bit of x. If x is 0, the
result is undefined.

extern int _bswap(int) Reverses the byte order of x. Bits 0-7
are swapped with bits 24-31, and bits 8-
15 are swapped with bits 16-23.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

void _enable() Enables the interrupt.

void _disable() Disables the interrupt.

int _in_byte(int) Intrinsic that maps to the IA-32
instruction IN. Transfer data byte from
port specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32
instruction IN. Transfer double word
from port specified by argument.

int _in_word(int) Intrinsic that maps to the IA-32
instruction IN. Transfer word from port
specified by argument.

int _inp(int) Same as _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32
instruction OUT. Transfer data byte in
second argument to port specified by
first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32
instruction OUT. Transfer double word
in second argument to port specified by
first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32
instruction OUT. Transfer word in
second argument to port specified by
first argument.

int _outp(int, int) Same as _out_byte

int _outpd(int, int) Same as _out_dword

int _outpw(int, int) Same as _out_word

extern int _popcnt32(int x) Returns the number of set bits in x.

Intel® C++ Compiler for Linux* Systems User's Guide

254

Intrinsic Description

extern __int64 _rdtsc(void) Returns the current value of the
processor's 64-bit time stamp counter.

extern __int64 _rdpmc(int p) Returns the current value of the 40-bit
performance monitoring counter
specified by p.

int _setjmp(jmp_buf)* A fast version of setjmp(), which
bypasses the termination handling.
Saves the callee-save registers, stack
pointer and return address.

MMX(TM) Technology Intrinsics

Support for MMX(TM) Technology

MMX(TM) technology is an extension to the Intel architecture (IA) instruction set. The MMX instruction
set adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight registers
can be directly addressed using the register names mm0 to mm7.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

The EMMS Instruction: Why You Need It

Using EMMS is like emptying a container to accommodate new content. For instance, MMX(TM)
instructions automatically enable an FP tag word in the register to enable use of the __m64 data type. This
resets the FP register set to alias it as the MMX register set. To enable the FP register set again, reset the
register state with the EMMS instruction or via the _mm_empty() intrinsic.

Reference

255

Why You Need EMMS to Reset After an MMX(TM) Instruction

Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-point
instruction can result in unexpected execution or poor performance.

EMMS Usage Guidelines

The guidelines when to use EMMS are:

• Do not use on Itanium®-based systems. There are no special registers (or overlay) for the MMX(TM)
instructions or Streaming SIMD Extensions on Itanium-based systems even though the intrinsics are
supported.

• Use _mm_empty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction -- for example, before calculations on float, double or long double. You must be
aware of all situations when your code generates an MMX instruction with the Intel® C++ Compiler,
i.e.:

• when using an MMX technology intrinsic
• when using Streaming SIMD Extension integer intrinsics that use the __m64 data

type
• when referencing an __m64 data type variable
• when using an MMX instruction through inline assembly

• Do not use _mm_empty() before an MMX instruction, since using _mm_empty() before an
MMX instruction incurs an operation with no benefit (no-op).

• Use different functions for operations that use FP instructions and those that use MMX instructions.
This eliminates the need to empty the multimedia state within the body of a critical loop.

• Use _mm_empty() during runtime initialization of __m64 and FP data types. This ensures
resetting the register between data type transitions.

• See the "Correct Usage" coding example.

Intel® C++ Compiler for Linux* Systems User's Guide

256

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z);
float f = init();

__m64 x = _m_paddd(y, z);
float f = (_mm_empty(), init());

For more documentation on EMMS, visit the http://developer.intel.com Web site.

MMX(TM) Technology General Support Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Corresponding
Instruction

Operation Signed Saturation

_m_empty _mm_empty EMMS Empty MM
state

-- --

_m_from_int _mm_cvtsi32_si64 MOVD Convert
from int

-- --

_m_to_int _mm_cvtsi64_si32 MOVD Convert
from int

-- --

_m_packsswb _mm_packs_pi16 PACKSSWB Pack Yes Yes

_m_packssdw _mm_packs_pi32 PACKSSDW Pack Yes Yes

_m_packuswb _mm_packs_pu16 PACKUSWB Pack No Yes

_m_punpckhbw _mm_unpackhi_pi8 PUNPCKHBW Interleave -- --

_m_punpckhwd _mm_unpackhi_pi16 PUNPCKHWD Interleave -- --

_m_punpckhdq _mm_unpackhi_pi32 PUNPCKHDQ Interleave -- --

_m_punpcklbw _mm_unpacklo_pi8 PUNPCKLBW Interleave -- --

_m_punpcklwd _mm_unpacklo_pi16 PUNPCKLWD Interleave -- --

_m_punpckldq _mm_unpacklo_pi32 PUNPCKLDQ Interleave -- --

void _m_empty(void)

Empty the multimedia state.

__m64 _m_from_int(int i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero-extended to 64 bits.

int _m_to_int(__m64 m)

Convert the lower 32 bits of the __m64 object m to an integer.

Reference

257

__m64 _m_packsswb(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with signed saturation, and
pack the four 16-bit values from m2 into the upper four 8-bit values of the result with signed saturation.

__m64 _m_packssdw(__m64 m1, __m64 m2)

Pack the two 32-bit values from m1 into the lower two 16-bit values of the result with signed saturation,
and pack the two 32-bit values from m2 into the upper two 16-bit values of the result with signed
saturation.

__m64 _m_packuswb(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with unsigned saturation,
and pack the four 16-bit values from m2 into the upper four 8-bit values of the result with unsigned
saturation.

__m64 _m_punpckhbw(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the high half of m1 with the four values from the high half of m2. The
interleaving begins with the data from m1.

__m64 _m_punpckhwd(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the high half of m1 with the two values from the high half of m2. The
interleaving begins with the data from m1.

__m64 _m_punpckhdq(__m64 m1, __m64 m2)

Interleave the 32-bit value from the high half of m1 with the 32-bit value from the high half of m2. The
interleaving begins with the data from m1.

__m64 _m_punpcklbw(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the low half of m1 with the four values from the low half of m2. The
interleaving begins with the data from m1.

__m64 _m_punpcklwd(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the low half of m1 with the two values from the low half of m2. The
interleaving begins with the data from m1.

__m64 _m_punpckldq(__m64 m1, __m64 m2)

Interleave the 32-bit value from the low half of m1 with the 32-bit value from the low half of m2. The
interleaving begins with the data from m1.

Intel® C++ Compiler for Linux* Systems User's Guide

258

MMX(TM) Technology Packed Arithmetic Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mmintrin.h header file.

Packed Arithmetic Intrinsics, Part 1

Intrinsic
Name

Alternate Name Corresponding
Instruction

Operation Signed

_m_paddb _mm_add_pi8 PADDB Addition --

_m_paddw _mm_add_pi16 PADDW Addition --

_m_paddd _mm_add_pi32 PADDD Addition --

_m_paddsb _mm_adds_pi8 PADDSB Addition Yes

_m_paddsw _mm_adds_pi16 PADDSW Addition Yes

_m_paddusb _mm_adds_pu8 PADDUSB Addition No

_m_paddusw _mm_adds_pu16 PADDUSW Addition No

_m_psubb _mm_sub_pi8 PSUBB Subtraction --

_m_psubw _mm_sub_pi16 PSUBW Subtraction --

_m_psubd _mm_sub_pi32 PSUBD Subtraction --

_m_psubsb _mm_subs_pi8 PSUBSB Subtraction Yes

_m_psubsw _mm_subs_pi16 PSUBSW Subtraction Yes

_m_psubusb _mm_subs_pu8 PSUBUSB Subtraction No

_m_psubusw _mm_subs_pu16 PSUBUSW Subtraction No

_m_pmaddwd _mm_madd_pi16 PMADDWD Multiplication --

_m_pmulhw _mm_mulhi_pi16 PMULHW Multiplication Yes

_m_pmullw _mm_mullo_pi16 PMULLW Multiplication --

Packed Arithmetic Intrinsics, Part 2

Intrinsic
Name

Alternate Name Corresponding
Instruction

Argument
Values/Bits

Result
Values/Bits

_m_paddb _mm_add_pi8 PADDB 8/8 8/8

_m_paddw _mm_add_pi16 PADDW 4/16 4/16

_m_paddd _mm_add_pi32 PADDD 2/32 2/32

_m_paddsb _mm_adds_pi8 PADDSB 8/8 8/8

_m_paddsw _mm_adds_pi16 PADDSW 4/16 4/16

Reference

259

Intrinsic
Name

Alternate Name Corresponding
Instruction

Argument
Values/Bits

Result
Values/Bits

_m_paddusb _mm_adds_pu8 PADDUSB 8/8 8/8

_m_paddusw _mm_adds_pu16 PADDUSW 4/16 4/16

_m_psubb _mm_sub_pi8 PSUBB 8/8 8/8

_m_psubw _mm_sub_pi16 PSUBW 4/16 4/16

_m_psubd _mm_sub_pi32 PSUBD 2/32 2/32

_m_psubsb _mm_subs_pi8 PSUBSB 8/8 8/8

_m_psubsw _mm_subs_pi16 PSUBSW 4/16 4/16

_m_psubusb _mm_subs_pu8 PSUBUSB 8/8 8/8

_m_psubusw _mm_subs_pu16 PSUBUSW 4/16 4/16

_m_pmaddwd _mm_madd_pi16 PMADDWD 4/16 2/32

_m_pmulhw _mm_mulhi_pi16 PMULHW 4/16 4/16 (high)

_m_pmullw _mm_mullo_pi16 PMULLW 4/16 4/16 (low)

__m64 _m_paddb(__m64 m1, __m64 m2)

Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

__m64 _m_paddw(__m64 m1, __m64 m2)

Add the four 16-bit values in m1 to the four 16-bit values in m2.

__m64 _m_paddd(__m64 m1, __m64 m2)

Add the two 32-bit values in m1 to the two 32-bit values in m2.

__m64 _m_paddsb(__m64 m1, __m64 m2)

Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2 using saturating arithmetic.

__m64 _m_paddsw(__m64 m1, __m64 m2)

Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2 using saturating arithmetic.

__m64 _m_paddusb(__m64 m1, __m64 m2)

Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in m2 and using saturating
arithmetic.

Intel® C++ Compiler for Linux* Systems User's Guide

260

__m64 _m_paddusw(__m64 m1, __m64 m2)

Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in m2 using saturating
arithmetic.

__m64 _m_psubb(__m64 m1, __m64 m2)

Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

__m64 _m_psubw(__m64 m1, __m64 m2)

Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

__m64 _m_psubd(__m64 m1, __m64 m2)

Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

__m64 _m_psubsb(__m64 m1, __m64 m2)

Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in m1 using saturating
arithmetic.

__m64 _m_psubsw(__m64 m1, __m64 m2)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in m1 using saturating
arithmetic.

__m64 _m_psubusb(__m64 m1, __m64 m2)

Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit values in m1 using saturating
arithmetic.

__m64 _m_psubusw(__m64 m1, __m64 m2)

Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit values in m1 using saturating
arithmetic.

__m64 _m_pmaddwd(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-bit intermediate results,
which are then summed by pairs to produce two 32-bit results.

__m64 _m_pmulhw(__m64 m1, __m64 m2)

Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and produce the high 16 bits of
the four results.

__m64 _m_pmullw(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the low 16 bits of the four
results.

Reference

261

MMX(TM) Technology Shift Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Shift
Direction

Shift
Type

Corresponding
Instruction

_m_psllw _mm_sll_pi16 left Logical PSLLW

_m_psllwi _mm_slli_pi16 left Logical PSLLWI

_m_pslld _mm_sll_pi32 left Logical PSLLD

_m_pslldi _mm_slli_pi32 left Logical PSLLDI

_m_psllq _mm_sll_si64 left Logical PSLLQ

_m_psllqi _mm_slli_si64 left Logical PSLLQI

_m_psraw _mm_sra_pi16 right Arithmetic PSRAW

_m_psrawi _mm_srai_pi16 right Arithmetic PSRAWI

_m_psrad _mm_sra_pi32 right Arithmetic PSRAD

_m_psradi _mm_srai_pi32 right Arithmetic PSRADI

_m_psrlw _mm_srl_pi16 right Logical PSRLW

_m_psrlwi _mm_srli_pi16 right Logical PSRLWI

_m_psrld _mm_srl_pi32 right Logical PSRLD

_m_psrldi _mm_srli_pi32 right Logical PSRLDI

_m_psrlq _mm_srl_si64 right Logical PSRLQ

_m_psrlqi _mm_srli_si64 right Logical PSRLQI

__m64 _m_psllw(__m64 m, __m64 count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros.

__m64 _m_psllwi(__m64 m, int count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_pslld(__m64 m, __m64 count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.

__m64 _m_pslldi(__m64 m, int count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

Intel® C++ Compiler for Linux* Systems User's Guide

262

__m64 _m_psllq(__m64 m, __m64 count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.

__m64 _m_psllqi(__m64 m, int count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psraw(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in the sign bit.

__m64 _m_psrawi(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

__m64 _m_psrad(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in the sign bit.

__m64 _m_psradi(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in the sign bit. For the best
performance, count should be a constant.

__m64 _m_psrlw(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in zeros.

__m64 _m_psrlwi(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psrld(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in zeros.

__m64 _m_psrldi(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psrlq(__m64 m, __m64 count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.

Reference

263

__m64 _m_psrlqi(__m64 m, int count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_m_pand _mm_and_si64 Bitwise AND PAND

_m_pandn _mm_andnot_si64 Logical NOT PANDN

_m_por _mm_or_si64 Bitwise OR POR

_m_pxor _mm_xor_si64 Bitwise Exclusive OR PXOR

__m64 _m_pand(__m64 m1, __m64 m2)

Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _m_pandn(__m64 m1, __m64 m2)

Perform a logical NOT on the 64-bit value in m1 and use the result in a bitwise AND with the 64-bit value
in m2.

__m64 _m_por(__m64 m1, __m64 m2)

Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _m_pxor(__m64 m1, __m64 m2)

Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

MMX(TM) Technology Compare Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Comparison Number
of
Elements

Element
Bit Size

Corresponding
Instruction

_m_pcmpeqb _mm_cmpeq_pi8 Equal 8 8 PCMPEQB

_m_pcmpeqw _mm_cmpeq_pi16 Equal 4 16 PCMPEQW

_m_pcmpeqd _mm_cmpeq_pi32 Equal 2 32 PCMPEQD

_m_pcmpgtb _mm_cmpgt_pi8 Greater Than 8 8 PCMPGTB

Intel® C++ Compiler for Linux* Systems User's Guide

264

Intrinsic
Name

Alternate
Name

Comparison Number
of
Elements

Element
Bit Size

Corresponding
Instruction

_m_pcmpgtw _mm_cmpgt_pi16 Greater Than 4 16 PCMPGTW

_m_pcmpgtd _mm_cmpgt_pi32 Greater Than 2 32 PCMPGTD

__m64 _m_pcmpeqb(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are equal to the respective 8-bit values in m2 set the respective 8-bit
resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpeqw(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are equal to the respective 16-bit values in m2 set the respective 16-bit
resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpeqd(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are equal to the respective 32-bit values in m2 set the respective 32-bit
resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpgtb(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are greater than the respective 8-bit values in m2 set the respective 8-bit
resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpgtw(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are greater than the respective 16-bit values in m2 set the respective
16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpgtd(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are greater than the respective 32-bit values in m2 set the respective
32-bit resulting values to all ones, otherwise set them all to zeros.

MMX(TM) Technology Set Intrinsics

The prototypes for MMX(TM) technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Operation Number of
Elements

Element
Bit Size

Signed Reverse
Order

_mm_setzero_si64 set to zero 1 64 No No

_mm_set_pi32 set integer values 2 32 No No

_mm_set_pi16 set integer values 4 16 No No

_mm_set_pi8 set integer values 8 8 No No

Reference

265

Intrinsic
Name

Operation Number of
Elements

Element
Bit Size

Signed Reverse
Order

_mm_set1_pi32 set integer values 2 32 Yes No

_mm_set1_pi16 set integer values 4 16 Yes No

_mm_set1_pi8 set integer values 8 8 Yes No

_mm_setr_pi32 set integer values 2 32 No Yes

_mm_setr_pi16 set integer values 4 16 No Yes

_mm_setr_pi8 set integer values 8 8 No Yes

Note

In the following descriptions regarding the bits of the MMX register, bit 0 is the least significant and bit 63
is the most significant.

__m64 _mm_setzero_si64()

PXOR
Sets the 64-bit value to zero.
r := 0x0

__m64 _mm_set_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values.
r0 := i0
r1 := i1

__m64 _mm_set_pi16(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values.
r0 := w0
r1 := w1
r2 := w2
r3 := w3

__m64 _mm_set_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

(composite) Sets the 8 signed 8-bit integer values.
r0 := b0
r1 := b1
...
r7 := b7

__m64 _mm_set1_pi32(int i)

Sets the 2 signed 32-bit integer values to i.
r0 := i
r1 := i

Intel® C++ Compiler for Linux* Systems User's Guide

266

__m64 _mm_set1_pi16(short s)

(composite) Sets the 4 signed 16-bit integer values to w.
r0 := w
r1 := w
r2 := w
r3 := w

__m64 _mm_set1_pi8(char b)

(composite) Sets the 8 signed 8-bit integer values to b
r0 := b
r1 := b
...
r7 := b

__m64 _mm_setr_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values in reverse order.
r0 := i0
r1 := i1

__m64 _mm_setr_pi16(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values in reverse order.
r0 := w0
r1 := w1
r2 := w2
r3 := w3

__m64 _mm_setr_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.
r0 := b0
r1 := b1
...
r7 := b7

MMX(TM) Technology Intrinsics on Itanium® Architecture

MMX(TM) technology intrinsics provide access to the MMX technology instruction set on Itanium®-based
systems. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent both in
name and functionality to the set of IA-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names generate the
same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Reference

267

Data Types

The C data type __m64 is used when using MMX technology intrinsics. It can hold eight 8-bit values, four
16-bit values, two 32-bit values, or one 64-bit value.

The __m64 data type is not a basic ANSI C data type. Therefore, observe the following usage restrictions:

• Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" + ", " - ", and so on).

• Use the new data type as objects in aggregates, such as unions, to access the byte elements and
structures; the address of an __m64 object may be taken.

• Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel® Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel® Architecture Software
Developer's Manual, Volume 2.

Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming SIMD Extensions (SSE)
in the Intel® C++ Compiler. These topics explain the following features of the intrinsics:

• Floating Point Intrinsics
• Arithmetic Operation Intrinsics
• Logical Operation Intrinsics
• Comparison Intrinsics
• Conversion Intrinsics
• Load Operations
• Set Operations
• Store Operations
• Cacheability Support
• Integer Intrinsics
• Memory and Initialization Intrinsics
• Miscellaneous Intrinsics
• Using Streaming SIMD Extensions on Itanium® Architecture

The prototypes for SSE intrinsics are in the xmmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Floating-point Intrinsics for Streaming SIMD Extensions

You should be familiar with the hardware features provided by the Streaming SIMD Extensions (SSE)
when writing programs with the intrinsics. The following are four important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful that they may
consist of more than one machine-language instruction.

• Floating-point data loaded or stored as __m128 objects must be generally 16-byte-aligned.

Intel® C++ Compiler for Linux* Systems User's Guide

268

• Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to
the nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined.
Therefore, FP operations using NaN arguments will not match the expected behavior of the
corresponding assembly instructions.

Arithmetic Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic Instruction Operation R0 R1 R2 R3

_mm_add_ss ADDSS Addition a0
[op]
b0

a1 a2 a3

_mm_add_ps ADDPS Addition a0
[op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_sub_ss SUBSS Subtraction a0
[op]
b0

a1 a2 a3

_mm_sub_ps SUBPS Subtraction a0
[op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_mul_ss MULSS Multiplication a0
[op]
b0

a1 a2 a3

_mm_mul_ps MULPS Multiplication a0
[op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_div_ss DIVSS Division a0
[op]
b0

a1 a2 a3

_mm_div_ps DIVPS Division a0
[op]
b0

a1
[op]
b1

a2
[op]
b2

a3
[op]
b3

_mm_sqrt_ss SQRTSS Squared Root [op]
a0

a1 a2 a3

_mm_sqrt_ps SQRTPS Squared Root [op]
a0

[op]
b1

[op]
b2

[op]
b3

_mm_rcp_ss RCPSS Reciprocal [op]
a0

a1 a2 a3

_mm_rcp_ps RCPPS Reciprocal [op]
a0

[op]
b1

[op]
b2

[op]
b3

_mm_rsqrt_ss RSQRTSS Reciprocal
Square Root

[op]
a0

a1 a2 a3

_mm_rsqrt_ps RSQRTPS Reciprocal
Squared Root

[op]
a0

[op]
b1

[op]
b2

[op]
b3

Reference

269

Intrinsic Instruction Operation R0 R1 R2 R3

_mm_min_ss MINSS Computes
Minimum

[op](
a0,b0)

a1 a2 a3

_mm_min_ps MINPS Computes
Minimum

[op](
a0,b0)

[op]
(a1,
b1)

[op]
(a2,
b2)

[op]
(a3,
b3)

_mm_max_ss MAXSS Computes
Maximum

[op](
a0,b0)

a1 a2 a3

_mm_max_ps MAXPS Computes
Maximum

[op](
a0,b0)

[op]
(a1,
b1)

[op]
(a2,
b2)

[op]
(a3,
b3)

__m128 _mm_add_ss(__m128 a, __m128 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b; the upper 3 SP FP values are
passed through from a.
r0 := a0 + b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_add_ps(__m128 a, __m128 b)

Adds the four SP FP values of a and b.
r0 := a0 + b0
r1 := a1 + b1
r2 := a2 + b2
r3 := a3 + b3

__m128 _mm_sub_ss(__m128 a, __m128 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed through from a.
r0 := a0 - b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sub_ps(__m128 a, __m128 b)

Subtracts the four SP FP values of a and b.
r0 := a0 - b0
r1 := a1 - b1
r2 := a2 - b2
r3 := a3 - b3

__m128 _mm_mul_ss(__m128 a, __m128 b)

Multiplies the lower SP FP values of a and b; the upper 3 SP FP values are passed through from a.
r0 := a0 * b0
r1 := a1 ; r2 := a2 ; r3 := a3

Intel® C++ Compiler for Linux* Systems User's Guide

270

__m128 _mm_mul_ps(__m128 a, __m128 b)

Multiplies the four SP FP values of a and b.
r0 := a0 * b0
r1 := a1 * b1
r2 := a2 * b2
r3 := a3 * b3

__m128 _mm_div_ss(__m128 a, __m128 b)

Divides the lower SP FP values of a and b; the upper 3 SP FP values are passed through from a.
r0 := a0 / b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_div_ps(__m128 a, __m128 b)

Divides the four SP FP values of a and b.
r0 := a0 / b0
r1 := a1 / b1
r2 := a2 / b2
r3 := a3 / b3

__m128 _mm_sqrt_ss(__m128 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values are passed through.
r0 := sqrt(a0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sqrt_ps(__m128 a)

Computes the square roots of the four SP FP values of a.
r0 := sqrt(a0)
r1 := sqrt(a1)
r2 := sqrt(a2)
r3 := sqrt(a3)

__m128 _mm_rcp_ss(__m128 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the upper 3 SP FP values are
passed through.
r0 := recip(a0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_rcp_ps(__m128 a)

Computes the approximations of reciprocals of the four SP FP values of a.
r0 := recip(a0)
r1 := recip(a1)
r2 := recip(a2)
r3 := recip(a3)

__m128 _mm_rsqrt_ss(__m128 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP value of a; the upper 3
SP FP values are passed through.
r0 := recip(sqrt(a0))
r1 := a1 ; r2 := a2 ; r3 := a3

Reference

271

__m128 _mm_rsqrt_ps(__m128 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP values of a.
r0 := recip(sqrt(a0))
r1 := recip(sqrt(a1))
r2 := recip(sqrt(a2))
r3 := recip(sqrt(a3))

__m128 _mm_min_ss(__m128 a, __m128 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP values are passed through
from a.
r0 := min(a0, b0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_min_ps(__m128 a, __m128 b)

Computes the minimum of the four SP FP values of a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m128 _mm_max_ss(__m128 a, __m128 b)

Computes the maximum of the lower SP FP values of a and b; the upper 3 SP FP values are passed
through from a.
r0 := max(a0, b0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_max_ps(__m128 a, __m128 b)

Computes the maximum of the four SP FP values of a and b.
r0 := max(a0, b0)
r1 := max(a1, b1)
r2 := max(a2, b2)
r3 := max(a3, b3)

Intel® C++ Compiler for Linux* Systems User's Guide

272

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
Instruction

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Logical NOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive OR XORPS

__m128 _mm_and_ps(__m128 a, __m128 b)

Computes the bitwise And of the four SP FP values of a and b.
r0 := a0 & b0
r1 := a1 & b1
r2 := a2 & b2
r3 := a3 & b3

__m128 _mm_andnot_ps(__m128 a, __m128 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.
r0 := ~a0 & b0
r1 := ~a1 & b1
r2 := ~a2 & b2
r3 := ~a3 & b3

__m128 _mm_or_ps(__m128 a, __m128 b)

Computes the bitwise OR of the four SP FP values of a and b.
r0 := a0 | b0
r1 := a1 | b1
r2 := a2 | b2
r3 := a3 | b3

__m128 _mm_xor_ps(__m128 a, __m128 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.
r0 := a0 ^ b0
r1 := a1 ^ b1
r2 := a2 ^ b2
r3 := a3 ^ b3

Reference

273

Comparisons for Streaming SIMD Extensions

Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP FP values of a
and b are compared, and a 32-bit mask is returned; the upper three SP FP values are passed through from a.
The mask is set to 0xffffffff for each element where the comparison is true and 0x0 where the
comparison is false.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Comparison Corresponding
Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

_mm_cmple_ps Less Than or Equal CMPLEPS

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmpnle_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

Intel® C++ Compiler for Linux* Systems User's Guide

274

Intrinsic
Name

Comparison Corresponding
Instruction

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ps Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

_mm_ucomieq_ss Equal UCOMISS

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

__m128 _mm_cmpeq_ss(__m128 a, __m128 b)

Compare for equality.
r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpeq_ps(__m128 a, __m128 b)

Compare for equality.
r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffff : 0x0
r2 := (a2 == b2) ? 0xffffffff : 0x0
r3 := (a3 == b3) ? 0xffffffff : 0x0

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

Compare for less-than.
r0 := (a0 < b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

Compare for less-than.
r0 := (a0 < b0) ? 0xffffffff : 0x0
r1 := (a1 < b1) ? 0xffffffff : 0x0
r2 := (a2 < b2) ? 0xffffffff : 0x0
r3 := (a3 < b3) ? 0xffffffff : 0x0

Reference

275

__m128 _mm_cmple_ss(__m128 a, __m128 b)

Compare for less-than-or-equal.
r0 := (a0 <= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmple_ps(__m128 a, __m128 b)

Compare for less-than-or-equal.
r0 := (a0 <= b0) ? 0xffffffff : 0x0
r1 := (a1 <= b1) ? 0xffffffff : 0x0
r2 := (a2 <= b2) ? 0xffffffff : 0x0
r3 := (a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

Compare for greater-than.
r0 := (a0 > b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

Compare for greater-than.
r0 := (a0 > b0) ? 0xffffffff : 0x0
r1 := (a1 > b1) ? 0xffffffff : 0x0
r2 := (a2 > b2) ? 0xffffffff : 0x0
r3 := (a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

Compare for greater-than-or-equal.
r0 := (a0 >= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

Compare for greater-than-or-equal.
r0 := (a0 >= b0) ? 0xffffffff : 0x0
r1 := (a1 >= b1) ? 0xffffffff : 0x0
r2 := (a2 >= b2) ? 0xffffffff : 0x0
r3 := (a3 >= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Compare for inequality.
r0 := (a0 != b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

Compare for inequality.
r0 := (a0 != b0) ? 0xffffffff : 0x0
r1 := (a1 != b1) ? 0xffffffff : 0x0
r2 := (a2 != b2) ? 0xffffffff : 0x0
r3 := (a3 != b3) ? 0xffffffff : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

276

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Compare for not-less-than.
r0 := !(a0 < b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

Compare for not-less-than.
r0 := !(a0 < b0) ? 0xffffffff : 0x0
r1 := !(a1 < b1) ? 0xffffffff : 0x0
r2 := !(a2 < b2) ? 0xffffffff : 0x0
r3 := !(a3 < b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

Compare for not-less-than-or-equal.
r0 := !(a0 <= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

Compare for not-less-than-or-equal.
r0 := !(a0 <= b0) ? 0xffffffff : 0x0
r1 := !(a1 <= b1) ? 0xffffffff : 0x0
r2 := !(a2 <= b2) ? 0xffffffff : 0x0
r3 := !(a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

Compare for not-greater-than.
r0 := !(a0 > b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

Compare for not-greater-than.
r0 := !(a0 > b0) ? 0xffffffff : 0x0
r1 := !(a1 > b1) ? 0xffffffff : 0x0
r2 := !(a2 > b2) ? 0xffffffff : 0x0
r3 := !(a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.
r0 := !(a0 >= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.
r0 := !(a0 >= b0) ? 0xffffffff : 0x0
r1 := !(a1 >= b1) ? 0xffffffff : 0x0
r2 := !(a2 >= b2) ? 0xffffffff : 0x0
r3 := !(a3 >= b3) ? 0xffffffff : 0x0

Reference

277

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

Compare for ordered.
r0 := (a0 ord? b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

Compare for ordered.
r0 := (a0 ord? b0) ? 0xffffffff : 0x0
r1 := (a1 ord? b1) ? 0xffffffff : 0x0
r2 := (a2 ord? b2) ? 0xffffffff : 0x0
r3 := (a3 ord? b3) ? 0xffffffff : 0x0

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

Compare for unordered.
r0 := (a0 unord? b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

Compare for unordered.
r0 := (a0 unord? b0) ? 0xffffffff : 0x0
r1 := (a1 unord? b1) ? 0xffffffff : 0x0
r2 := (a2 unord? b2) ? 0xffffffff : 0x0
r3 := (a3 unord? b3) ? 0xffffffff : 0x0

int _mm_comieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise
0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise 0
is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

278

int _mm_comige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal to
b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise
0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise 0
is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than or equal to b, 1 is
returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or equal to
b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

Reference

279

Conversion Operations for Streaming SIMD Extensions

The conversions operations are listed in the following table followed by a description of each intrinsic with
the most recent mnemonic naming convention. The alternate name is provided in case you have used these
intrinsics before.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Corresponding
Instruction

_mm_cvt_ss2si _mm_cvtss_si32 CVTSS2SI

_mm_cvt_ps2pi _mm_cvtps_pi32 CVTPS2PI

_mm_cvtt_ss2si _mm_cvttss_si32 CVTTSS2SI

_mm_cvtt_ps2pi _mm_cvttps_pi32 CVTTPS2PI

_mm_cvt_si2ss _mm_cvtsi32_ss CVTSI2SS

_mm_cvt_pi2ps _mm_cvtpi32_ps CVTTPS2PI

_mm_cvtpi16_ps composite

_mm_cvtpu16_ps composite

_mm_cvtpi8_ps composite

_mm_cvtpu8_ps composite

_mm_cvtpi32x2_ps composite

_mm_cvtps_pi16 composite

_mm_cvtps_pi8 composite

int _mm_cvt_ss2si(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current rounding mode.
r := (int)a0

__m64 _mm_cvt_ps2pi(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the current rounding mode,
returning the integers in packed form.
r0 := (int)a0
r1 := (int)a1

int _mm_cvtt_ss2si(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.
r := (int)a0

Intel® C++ Compiler for Linux* Systems User's Guide

280

__m64 _mm_cvtt_ps2pi(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation, returning the integers in
packed form.
r0 := (int)a0
r1 := (int)a1

__m128 _mm_cvt_si2ss(__m128, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed through from
a.
r0 := (float)b
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cvt_pi2ps(__m128, __m64)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two SP FP values
are passed through from a.
r0 := (float)b0
r1 := (float)b1
r2 := a2
r3 := a3

__inline __m128 _mm_cvtpi16_ps(__m64 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpu16_ps(__m64 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpi8_ps(__m64 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpu8_ps(__m64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

Reference

281

__inline __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to four
single precision FP values.
r0 := (float)a0
r1 := (float)a1
r2 := (float)b0
r3 := (float)b1

__inline __m64 _mm_cvtps_pi16(__m128 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.
r0 := (short)a0
r1 := (short)a1
r2 := (short)a2
r3 := (short)a3

__inline __m64 _mm_cvtps_pi8(__m128 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer values of the result.
r0 := (char)a0
r1 := (char)a1
r2 := (char)a2
r3 := (char)a3

Load Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

__m128 _mm_load_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.
r0 := *p
r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load_ps1(float * p)

Loads a single SP FP value, copying it into all four words.
r0 := *p
r1 := *p
r2 := *p
r3 := *p

__m128 _mm_load_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.
r0 := p[0]
r1 := p[1]
r2 := p[2]
r3 := p[3]

Intel® C++ Compiler for Linux* Systems User's Guide

282

__m128 _mm_loadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.
r0 := p[0]
r1 := p[1]
r2 := p[2]
r3 := p[3]

__m128 _mm_loadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.
r0 := p[3]
r1 := p[2]
r2 := p[1]
r3 := p[0]

Set Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

__m128 _mm_set_ss(float w)

Sets the low word of an SP FP value to w and clears the upper three words.
r0 := w
r1 := r2 := r3 := 0.0

__m128 _mm_set_ps1(float w)

Sets the four SP FP values to w.
r0 := r1 := r2 := r3 := w

__m128 _mm_set_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.
r0 := w
r1 := x
r2 := y
r3 := z

__m128 _mm_setr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.
r0 := z
r1 := y
r2 := x
r3 := w

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.
r0 := r1 := r2 := r3 := 0.0

Reference

283

Store Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

void _mm_store_ss(float * p, __m128 a)

Stores the lower SP FP value.
*p := a0

void _mm_store_ps1(float * p, __m128 a)

Stores the lower SP FP value across four words.
p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void _mm_store_ps(float *p, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.
p[0] := a0
p[1] := a1
p[2] := a2
p[3] := a3

void _mm_storeu_ps(float *p, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.
p[0] := a0
p[1] := a1
p[2] := a2
p[3] := a3

void _mm_storer_ps(float * p, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.
p[0] := a3
p[1] := a2
p[2] := a1
p[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.
r0 := b0
r1 := a1
r2 := a2
r3 := a3

Intel® C++ Compiler for Linux* Systems User's Guide

284

Cacheability Support Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The instruction
does not modify the architectural state. This intrinsic provides especially significant performance gain.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin_loop:pause
cmp eax, A
jne spin_loop

In this example, the program spins until memory location A matches the value in register eax. The code
sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the attempt
to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop

Critical Section

// critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause;
// spin-loop hint
cmp 0, A ;
// check lock availability
jne spin_loop
jmp get_lock
// continue: other code

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for processor type
(a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors which
use the PAUSE as a hint there can be significant performance benefit.

Reference

285

Integer Intrinsics Using Streaming SIMD Extensions

The integer intrinsics are listed in the following table followed by a description of each intrinsic with the
most recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_m_pextrw _mm_extract_pi16 Extract on of four words PEXTRW

_m_pinsrw _mm_insert_pi16 Insert a word PINSRW

_m_pmaxsw _mm_max_pi16 Compute the maximum PMAXSW

_m_pmaxub _mm_max_pu8 Compute the maximum,
unsigned

PMAXUB

_m_pminsw _mm_min_pi16 Compute the minimum PMINSW

_m_pminub _mm_min_pu8 Compute the minimum,
unsigned

PMINUB

_m_pmovmskb _mm_movemask_pi8 Create an eight-bit mask PMOVMSKB

_m_pmulhuw _mm_mulhi_pu16 Multiply, return high bits PMULHUW

_m_pshufw _mm_shuffle_pi16 Return a combination of
four words

PSHUFW

_m_maskmovq _mm_maskmove_si64 Conditional Store MASKMOVQ

_m_pavgb _mm_avg_pu8 Compute rounded average PAVGB

_m_pavgw _mm_avg_pu16 Compute rounded average PAVGW

_m_psadbw _mm_sad_pu8 Compute sum of absolute
differences

PSADBW

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

int _m_pextrw(__m64 a, int n)

Extracts one of the four words of a. The selector n must be an immediate.
r := (n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3))

__m64 _m_pinsrw(__m64 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an immediate.
r0 := (n==0) ? d : a0;
r1 := (n==1) ? d : a1;
r2 := (n==2) ? d : a2;
r3 := (n==3) ? d : a3;

Intel® C++ Compiler for Linux* Systems User's Guide

286

__m64 _m_pmaxsw(__m64 a, __m64 b)

Computes the element-wise maximum of the words in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m64 _m_pmaxub(__m64 a, __m64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

__m64 _m_pminsw(__m64 a, __m64 b)

Computes the element-wise minimum of the words in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m64 _m_pminub(__m64 a, __m64 b)

Computes the element-wise minimum of the unsigned bytes in a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

int _m_pmovmskb(__m64 a)

Creates an 8-bit mask from the most significant bits of the bytes in a.
r := sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

__m64 _m_pmulhuw(__m64 a, __m64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate results.
r0 := hiword(a0 * b0)
r1 := hiword(a1 * b1)
r2 := hiword(a2 * b2)
r3 := hiword(a3 * b3)

__m64 _m_pshufw(__m64 a, int n)

Returns a combination of the four words of a. The selector n must be an immediate.
r0 := word (n&0x3) of a
r1 := word ((n>>2)&0x3) of a
r2 := word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

Reference

287

void _m_maskmovq(__m64 d, __m64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector n determines
whether the corresponding byte in d will be stored.
if (sign(n0)) p[0] := d0
if (sign(n1)) p[1] := d1
...
if (sign(n7)) p[7] := d7

__m64 _m_pavgb(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned bytes in a and b.
t = (unsigned short)a0 + (unsigned short)b0
r0 = (t >> 1) | (t & 0x01)
...
t = (unsigned short)a7 + (unsigned short)b7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

__m64 _m_pavgw(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned words in a and b.
t = (unsigned int)a0 + (unsigned int)b0
r0 = (t >> 1) | (t & 0x01)
...
t = (unsigned word)a7 + (unsigned word)b7
r7 = (unsigned short)((t >> 1) | (t & 0x01))

__m64 _m_psadbw(__m64 a, __m64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b, returning he value in the
lower word. The upper three words are cleared.
r0 = abs(a0-b0) +... + abs(a7-b7)
r1 = r2 = r3 = 0

Memory and Initialization Using Streaming SIMD Extensions

This section describes the load, set, and store operations, which let you load and store data into
memory. The load and set operations are similar in that both initialize __m128 data. However, the set
operations take a float argument and are intended for initialization with constants, whereas the load
operations take a floating point argument and are intended to mimic the instructions for loading data from
memory. The store operation assigns the initialized data to the address.

Intel® C++ Compiler for Linux* Systems User's Guide

288

The intrinsics are listed in the following table. Syntax and a brief description are contained the following
topics.

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_mm_load_ss Load the low value and
clear the three high values

MOVSS

_mm_load_ps1 _mm_load1_ps Load one value into all four
words

MOVSS +
Shuffling

_mm_load_ps Load four values, address
aligned

MOVAPS

_mm_loadu_ps Load four values, address
unaligned

MOVUPS

_mm_loadr_ps Load four values, in
reverse order

MOVAPS +
Shuffling

_mm_set_ss Set the low value and clear
the three high values

Composite

_mm_set_ps1 _mm_set1_ps Set all four words with the
same value

Composite

_mm_set_ps Set four values, address
aligned

Composite

_mm_setr_ps Set four values, in reverse
order

Composite

_mm_setzero_ps Clear all four values Composite

_mm_store_ss Store the low value MOVSS

_mm_store_ps1 _mm_store1_ps Store the low value across
all four words. The address
must be 16-byte aligned.

Shuffling +
MOVSS

_mm_store_ps Store four values, address
aligned

MOVAPS

_mm_storeu_ps Store four values, address
unaligned

MOVUPS

_mm_storer_ps Store four values, in
reverse order

MOVAPS +
Shuffling

_mm_move_ss Set the low word, and pass
in three high values

MOVSS

_mm_getcsr Return register contents STMXCSR

_mm_setcsr Control Register LDMXCSR

Reference

289

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_mm_prefetch

_mm_stream_pi

_mm_stream_ps

_mm_sfence

_mm_cvtss_f32

__m128 _mm_load_ss(float const*a)

Loads an SP FP value into the low word and clears the upper three words.
r0 := *a
r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load_ps1(float const*a)

Loads a single SP FP value, copying it into all four words.
r0 := *a
r1 := *a
r2 := *a
r3 := *a

__m128 _mm_load_ps(float const*a)

Loads four SP FP values. The address must be 16-byte-aligned.
r0 := a[0]
r1 := a[1]
r2 := a[2]
r3 := a[3]

__m128 _mm_loadu_ps(float const*a)

Loads four SP FP values. The address need not be 16-byte-aligned.
r0 := a[0]
r1 := a[1]
r2 := a[2]
r3 := a[3]

__m128 _mm_loadr_ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.
r0 := a[3]
r1 := a[2]
r2 := a[1]
r3 := a[0]

Intel® C++ Compiler for Linux* Systems User's Guide

290

__m128 _mm_set_ss(float a)

Sets the low word of an SP FP value to a and clears the upper three words.
r0 := c
r1 := r2 := r3 := 0.0

__m128 _mm_set_ps1(float a)

Sets the four SP FP values to a.
r0 := r1 := r2 := r3 := a

__m128 _mm_set_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs.
r0 := a
r1 := b
r2 := c
r3 := d

__m128 _mm_setr_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs in reverse order.
r0 := d
r1 := c
r2 := b
r3 := a

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.
r0 := r1 := r2 := r3 := 0.0

void _mm_store_ss(float *v, __m128 a)

Stores the lower SP FP value.
*v := a0

void _mm_store_ps1(float *v, __m128 a)

Stores the lower SP FP value across four words.
v[0] := a0
v[1] := a0
v[2] := a0
v[3] := a0

void _mm_store_ps(float *v, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.
v[0] := a0
v[1] := a1
v[2] := a2
v[3] := a3

Reference

291

void _mm_storeu_ps(float *v, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.
v[0] := a0
v[1] := a1
v[2] := a2
v[3] := a3

void _mm_storer_ps(float *v, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.
v[0] := a3
v[1] := a2
v[2] := a1
v[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.
r0 := b0
r1 := a1
r2 := a2
r3 := a3

unsigned int _mm_getcsr(void)

Returns the contents of the control register.

void _mm_setcsr(unsigned int i)

Sets the control register to the value specified.

void _mm_prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location "closer" to the processor. The
value sel specifies the type of prefetch operation: the constants _MM_HINT_T0, _MM_HINT_T1,
_MM_HINT_T2, and _MM_HINT_NTA should be used for IA-32, corresponding to the type of prefetch
instruction. The constants _MM_HINT_T1, _MM_HINT_NT1, _MM_HINT_NT2, and _MM_HINT_NTA
should be used for Itanium®-based systems.

void _mm_stream_pi(__m64 *p, __m64 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the caches. This intrinsic requires
you to empty the multimedia state for the mmx register. See The EMMS Instruction: Why You Need It and
When to Use It topic.

void _mm_stream_ps(float *p, __m128 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the caches. The address must be 16-
byte-aligned.

Intel® C++ Compiler for Linux* Systems User's Guide

292

void _mm_sfence(void)

(uses SFENCE) Guarantees that every preceding store is globally visible before any subsequent store.

float _mm_cvtss_f32(__m128 a)

This intrinsic extracts a single precision floating point value from the first vector element of an __m128. It
does so in the most effecient manner possible in the context used. This intrinsic doesn't map to any specific
SSE instruction.

Miscellaneous Intrinsics Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions (SSE) intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
Instruction

_mm_shuffle_ps Shuffle SHUFPS

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_loadh_pi Load High MOVHPS reg, mem

_mm_storeh_pi Store High MOVHPS mem, reg

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_loadl_pi Load Low MOVLPS reg, mem

_mm_storel_pi Store Low MOVLPS mem, reg

_mm_movemask_ps Create four-bit mask MOVMSKPS

__m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

Selects four specific SP FP values from a and b, based on the mask imm8. The mask must be an
immediate. See Macro Function for Shuffle Using Streaming SIMD Extensions for a description of the
shuffle semantics.

__m128 _mm_unpackhi_ps(__m128 a, __m128 b)

Selects and interleaves the upper two SP FP values from a and b.
r0 := a2
r1 := b2
r2 := a3
r3 := b3

Reference

293

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)

Selects and interleaves the lower two SP FP values from a and b.
r0 := a0
r1 := b0
r2 := a1
r3 := b1

__m128 _mm_loadh_pi(__m128, __m64 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.
r0 := a0
r1 := a1
r2 := *p0
r3 := *p1

void _mm_storeh_pi(__m64 *p, __m128 a)

Stores the upper two SP FP values to the address p.
*p0 := a2
*p1 := a3

__m128 _mm_movehl_ps(__m128 a, __m128 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The upper 2 SP FP values
of a are passed through to the result.
r3 := a3
r2 := a2
r1 := b3
r0 := b2

__m128 _mm_movelh_ps(__m128 a, __m128 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The lower 2 SP FP values
of a are passed through to the result.
r3 := b1
r2 := b0
r1 := a1
r0 := a0

__m128 _mm_loadl_pi(__m128 a, __m64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two values are
passed through from a.
r0 := *p0
r1 := *p1
r2 := a2
r3 := a3

void _mm_storel_pi(__m64 *p, __m128 a)

Stores the lower two SP FP values of a to the address p.
*p0 := a0
*p1 := a1

Intel® C++ Compiler for Linux* Systems User's Guide

294

int _mm_movemask_ps(__m128 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.
r := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)

Using Streaming SIMD Extensions on Itanium® Architecture

The Streaming SIMD Extensions (SSE) intrinsics provide access to Itanium® instructions for Streaming
SIMD Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are
equivalent both in name and functionality to the set of IA-32-based SSE intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided by SSE.
Keep the following issues in mind:

• Certain intrinsics are provided only for compatibility with previously-defined IA-32 intrinsics. Using
them on Itanium-based systems probably leads to performance degradation.

• Floating-point (FP) data loaded stored as __m128 objects must be 16-byte-aligned.
• Some intrinsics require that their arguments be immediates -- that is, constant integers (literals), due

to the nature of the instruction.

Data Types

The new data type __m128 is used with the SSE intrinsics. It represents a 128-bit quantity composed of
four single-precision FP values. This corresponds to the 128-bit IA-32 Streaming SIMD Extensions
register.

The compiler aligns __m128 local data to 16-byte boundaries on the stack. Global data of these types is
also 16 byte-aligned. To align integer, float, or double arrays, you can use the declspec
alignment.

Because Itanium instructions treat the SSE registers in the same way whether you are using packed or
scalar data, there is no __m32 data type to represent scalar data. For scalar operations, use the __m128
objects and the "scalar" forms of the intrinsics; the compiler and the processor implement these operations
with 32-bit memory references. But, for better performance the packed form should be substituting for the
scalar form whenever possible.

The address of a __m128 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

SSE intrinsics are defined for the __m128 data type, a 128-bit quantity consisting of four single-precision
FP values. SIMD instructions for Itanium-based systems operate on 64-bit FP register quantities containing
two single-precision floating-point values. Thus, each __m128 operand is actually a pair of FP registers
and therefore each intrinsic corresponds to at least one pair of Itanium instructions operating on the pair of
FP register operands.

Reference

295

Compatibility versus Performance

Many of the SSE intrinsics for Itanium-based systems were created for compatibility with existing IA-32
intrinsics and not for performance. In some situations, intrinsic usage that improved performance on IA-32
will not do so on Itanium-based systems. One reason for this is that some intrinsics map nicely into the IA-
32 instruction set but not into the Itanium instruction set. Thus, it is important to differentiate between
intrinsics which were implemented for a performance advantage on Itanium-based systems, and those
implemented simply to provide compatibility with existing IA-32 code.

The following intrinsics are likely to reduce performance and should only be used to initially port legacy
code or in non-critical code sections:

• Any SSE scalar intrinsic (_ss variety) - use packed (_ps) version if possible
• comi and ucomi SSE comparisons - these correspond to IA-32 COMISS and UCOMISS instructions

only. A sequence of Itanium instructions are required to implement these.
• Conversions in general are multi-instruction operations. These are particularly expensive:

_mm_cvtpi16_ps, _mm_cvtpu16_ps, _mm_cvtpi8_ps, _mm_cvtpu8_ps,
_mm_cvtpi32x2_ps, _mm_cvtps_pi16, _mm_cvtps_pi8

• SSE utility intrinsic _mm_movemask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation intrinsics
(rcp and rsqrt) are much faster than the true div and sqrt intrinsics.

Macro Function for Shuffle Using Streaming SIMD Extensions

The Streaming SIMD Extensions (SSE) provide a macro function to help create constants that describe
shuffle operations. The macro takes four small integers (in the range of 0 to 3) and combines them into an
8-bit immediate value used by the SHUFPS instruction.

Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Intel® C++ Compiler for Linux* Systems User's Guide

296

Macro Functions to Read and Write the Control Registers

The following macro functions enable you to read and write bits to and from the control register. For
details, see Set Operations. For Itanium®-based systems, these macros do not allow you to access all of the
bits of the FPSR. See the descriptions for the getfpsr() and setfpsr() intrinsics in the Native
Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments

_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

 _MM_EXCEPT_DENORM

Macro Definitions
Write to and read from the sixth-least significant control
register bit, respectively.

_MM_EXCEPT_OVERFLOW

 _MM_EXCEPT_UNDERFLOW

 _MM_EXCEPT_INEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

Exception Mask Macros Macro Arguments

_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

 _MM_MASK_DENORM

Macro Definitions
Write to and read from the seventh through twelfth
control register bits, respectively.
Note: All six exception mask bits are always affected.
Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

 _MM_MASK_UNDERFLOW

 _MM_MASK_INEXACT

Reference

297

The following example masks the overflow and underflow exceptions and unmasks all other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

Rounding Mode Macro Arguments

_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

Macro Definition
Write to and read from bits thirteen and fourteen of the
control register.

_MM_ROUND_UP

 _MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO) {
/* Rounding mode is round toward zero */
}

Flush-to-Zero Mode Macro Arguments

_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

Macro Function for Matrix Transposition

The Streaming SIMD Extensions (SSE) also provide the following macro function to transpose a 4 by 4
matrix of single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

The arguments row0, row1, row2, and row3 are __m128 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments row0, row1,
row2, and row3 where row0 now holds column 0 of the original matrix, row1 now holds column 1 of
the original matrix, and so on.

Intel® C++ Compiler for Linux* Systems User's Guide

298

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
_MM_TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

Streaming SIMD Extensions 2

This section describes the C++ language-level features supporting the Intel® Pentium® 4 processor
Streaming SIMD Extensions 2 (SSE2) in the Intel® C++ Compiler, which are divided into two categories:

• Floating-Point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (__m128d).

• Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and initialization
intrinsics for the extended-precision integer data type (__m128i).

Note

The Pentium 4 processor SSE2 intrinsics are defined only for IA-32 platforms, not Itanium®-based
platforms. Pentium 4 processor SSE2 operate on 128 bit quantities -- 2 64-bit double precision floating
point values. The Itanium processor does not support parallel double precision computation, so Pentium 4
processor SSE2 are not implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Streaming SIMD Extensions 2 External Architecture
Specification (EAS) and other Pentium 4 processor manuals available for download from the
developer.intel.com web site. You should be familiar with the hardware features provided by the StSE2
when writing programs with the intrinsics. The following are three important issues to keep in mind:

• Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

• Data loaded or stored as __m128d objects must be generally 16-byte-aligned.
• Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to

the nature of the instruction.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Reference

299

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Floating-point Arithmetic Operations for Streaming SIMD Extensions 2

The arithmetic operations for the Streaming SIMD Extensions 2 (SSE2) are listed in the following table.
The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Operation R0
Value

R1
Value

_mm_add_sd ADDSD Addition a0 [op]
b0

a1

_mm_add_pd ADDPD Addition a0 [op]
b0

a1 [op]
b1

_mm_sub_sd SUBSD Subtraction a0 [op]
b0

a1

_mm_sub_pd SUBPD Subtraction a0 [op]
b0

a1 [op]
b1

_mm_mul_sd MULSD Multiplication a0 [op]
b0

a1

_mm_mul_pd MULPD Multiplication a0 [op]
b0

a1 [op]
b1

_mm_div_sd DIVSD Division a0 [op]
b0

a1

_mm_div_pd DIVPD Division a0 [op]
b0

a1 [op]
b1

_mm_sqrt_sd SQRTSD Computes Square
Root

a0 [op]
b0

a1

_mm_sqrt_pd SQRTPD Computes Square
Root

a0 [op]
b0

a1 [op]
b1

_mm_min_sd MINSD Computes Minimum a0 [op]
b0

a1

_mm_min_pd MINPD Computes Minimum a0 [op]
b0

a1 [op]
b1

_mm_max_sd MAXSD Computes Maximum a0 [op]
b0

a1

_mm_max_pd MAXPD Computes Maximum a0 [op]
b0

a1 [op]
b1

Intel® C++ Compiler for Linux* Systems User's Guide

300

__m128d _mm_add_sd(__m128d a, __m128d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper DP FP value is
passed through from a.
r0 := a0 + b0
r1 := a1

__m128d _mm_add_pd(__m128d a, __m128d b)

Adds the two DP FP values of a and b.
r0 := a0 + b0
r1 := a1 + b1

__m128d _mm_sub_sd(__m128d a, __m128d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.
r0 := a0 - b0
r1 := a1

__m128d _mm_sub_pd(__m128d a, __m128d b)

Subtracts the two DP FP values of b from a.
r0 := a0 - b0
r1 := a1 - b1

__m128d _mm_mul_sd(__m128d a, __m128d b)

Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from a.
r0 := a0 * b0
r1 := a1

__m128d _mm_mul_pd(__m128d a, __m128d b)

Multiplies the two DP FP values of a and b.
r0 := a0 * b0
r1 := a1 * b1

__m128d _mm_div_sd(__m128d a, __m128d b)

Divides the lower DP FP values of a and b. The upper DP FP value is passed through from a.
r0 := a0 / b0
r1 := a1

__m128d _mm_div_pd(__m128d a, __m128d b)

Divides the two DP FP values of a and b.
r0 := a0 / b0
r1 := a1 / b1

__m128d _mm_sqrt_sd(__m128d a, __m128d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is passed through from a.
r0 := sqrt(b0)
r1 := a1

Reference

301

__m128d _mm_sqrt_pd(__m128d a)

Computes the square roots of the two DP FP values of a.
r0 := sqrt(a0)
r1 := sqrt(a1)

__m128d _mm_min_sd(__m128d a, __m128d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is passed through
from a.
r0 := min (a0, b0)
r1 := a1

__m128d _mm_min_pd(__m128d a, __m128d b)

Computes the minima of the two DP FP values of a and b.
r0 := min(a0, b0)
r1 := min(a1, b1)

__m128d _mm_max_sd(__m128d a, __m128d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value is passed through
from a.
r0 := max (a0, b0)
r1 := a1

__m128d _mm_max_pd(__m128d a, __m128d b)

Computes the maxima of the two DP FP values of a and b.
r0 := max(a0, b0)
r1 := max(a1, b1)

Floating-point Logical Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the emmintrin.h header file.

__m128d _mm_and_pd(__m128d a, __m128d b)

(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.
r0 := a0 & b0
r1 := a1 & b1

__m128d _mm_andnot_pd(__m128d a, __m128d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit
value in a.
r0 := (~a0) & b0
r1 := (~a1) & b1

__m128d _mm_or_pd(__m128d a, __m128d b)

(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.
r0 := a0 | b0
r1 := a1 | b1

Intel® C++ Compiler for Linux* Systems User's Guide

302

__m128d _mm_xor_pd(__m128d a, __m128d b)

(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.
r0 := a0 ^ b0
r1 := a1 ^ b1

Floating-point Comparison Operations for Streaming SIMD Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP FP values of a
and b are compared, and a 64-bit mask is returned; the upper DP FP value is passed through from a. The
mask is set to 0xffffffffffffffff for each element where the comparison is true and 0x0 where the
comparison is false. The r following the instruction name indicates that the operands to the instruction are
reversed in the actual implementation. The comparison intrinsics for the Streaming SIMD Extensions 2
(SSE2) are listed in the following table followed by detailed descriptions.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Compare
For:

_mm_cmpeq_pd CMPEQPD Equality

_mm_cmplt_pd CMPLTPD Less Than

_mm_cmple_pd CMPLEPD Less Than or Equal

_mm_cmpgt_pd CMPLTPDr Greater Than

_mm_cmpge_pd CMPLEPDr Greater Than or Equal

_mm_cmpord_pd CMPORDPD Ordered

_mm_cmpunord_pd CMPUNORDPD Unordered

_mm_cmpneq_pd CMPNEQPD Inequality

_mm_cmpnlt_pd CMPNLTPD Not Less Than

_mm_cmpnle_pd CMPNLEPD Not Less Than or Equal

_mm_cmpngt_pd CMPNLTPDr Not Greater Than

_mm_cmpnge_pd CMPLEPDr Not Greater Than or Equal

_mm_cmpeq_sd CMPEQSD Equality

_mm_cmplt_sd CMPLTSD Less Than

_mm_cmple_sd CMPLESD Less Than or Equal

_mm_cmpgt_sd CMPLTSDr Greater Than

_mm_cmpge_sd CMPLESDr Greater Than or Equal

_mm_cmpord_sd CMPORDSD Ordered

_mm_cmpunord_sd CMPUNORDSD Unordered

Reference

303

Intrinsic
Name

Corresponding
Instruction

Compare
For:

_mm_cmpneq_sd CMPNEQSD Inequality

_mm_cmpnlt_sd CMPNLTSD Not Less Than

_mm_cmpnle_sd CMPNLESD Not Less Than or Equal

_mm_cmpngt_sd CMPNLTSDr Not Greater Than

_mm_cmpnge_sd CMPNLESDR Not Greater Than or Equal

_mm_comieq_sd COMISD Equality

_mm_comilt_sd COMISD Less Than

_mm_comile_sd COMISD Less Than or Equal

_mm_comigt_sd COMISD Greater Than

_mm_comige_sd COMISD Greater Than or Equal

_mm_comineq_sd COMISD Not Equal

_mm_ucomieq_sd UCOMISD Equality

_mm_ucomilt_sd UCOMISD Less Than

_mm_ucomile_sd UCOMISD Less Than or Equal

_mm_ucomigt_sd UCOMISD Greater Than

_mm_ucomige_sd UCOMISD Greater Than or Equal

_mm_ucomineq_sd UCOMISD Not Equal

__m128d _mm_cmpeq_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for equality.
r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than b.
r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 < b1) ? 0xffffffffffffffff : 0x0

___m128d _mm_cmple_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than or equal to b.
r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 <= b1) ? 0xffffffffffffffff : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

304

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than b.
r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than or equal to b.
r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 >= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for ordered.
r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 ord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for unordered.
r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 unord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpneq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for inequality.
r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 != b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than b.
r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 < b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than or equal to b.
r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than b.
r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.
r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 >= b1) ? 0xffffffffffffffff : 0x0

Reference

305

__m128d _mm_cmpeq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is passed through from a.
r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value is passed through
from a.
r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := i1

__m128d _mm_cmple_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP value is passed
through from a.
r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is passed through
from a.
r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP value is
passed through from a.
r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed through from a.
r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is passed through from
a.
r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpneq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed through from
a.
r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0
r1 := a1

Intel® C++ Compiler for Linux* Systems User's Guide

306

__m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is passed
through from a.
r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP value is
passed through from a.
r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is passed
through from a.
r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP FP value is
passed through from a.
r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

int _mm_comieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise
0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise 0
is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

Reference

307

int _mm_comige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal to
b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned. Otherwise
0 is returned.
r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned. Otherwise 0
is returned.
r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal to b, 1 is
returned. Otherwise 0 is returned.
r := (a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1 is
returned. Otherwise 0 is returned.
r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or equal to
b, 1 is returned. Otherwise 0 is returned.
r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is returned.
Otherwise 0 is returned.
r := (a0 != b0) ? 0x1 : 0x0

Floating-point Conversion Operations for Streaming SIMD Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as _mm_cvtpd_ps result in a loss of precision. The rounding mode used in such cases
is determined by the value in the MXCSR register. The default rounding mode is round-to-nearest. Note
that the rounding mode used by the C and C++ languages when performing a type conversion is to truncate.

Intel® C++ Compiler for Linux* Systems User's Guide

308

The _mm_cvttpd_epi32 and _mm_cvttsd_si32 intrinsics use the truncate rounding mode
regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) are listed in the following
table followed by detailed descriptions.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Return
Type

Parameters

_mm_cvtpd_ps CVTPD2PS __m128 (__m128d a)

_mm_cvtps_pd CVTPS2PD __m128d (__m128 a)

_mm_cvtepi32_pd CVTDQ2PD __m128d (__m128i a)

_mm_cvtpd_epi32 CVTPD2DQ __m128i (__m128d a)

_mm_cvtsd_si32 CVTSD2SI int (__m128d a)

_mm_cvtsd_ss CVTSD2SS __m128 (__m128 a, __m128d b)

_mm_cvtsi32_sd CVTSI2SD __m128d (__m128d a, int b)

_mm_cvtss_sd CVTSS2SD __m128d (__m128d a, __m128 b)

_mm_cvttpd_epi32 CVTTPD2DQ __m128i (__m128d a)

_mm_cvttsd_si32 CVTTSD2SI int (__m128d a)

_mm_cvtpd_pi32 CVTPD2PI __m64 (__m128d a)

_mm_cvttpd_pi32 CVTTPD2PI __m64 (__m128d a)

_mm_cvtpi32_pd CVTPI2PD __m128d (__m64 a)

_mm_cvtsd_f64 None double (__m128d a)

__m128 _mm_cvtpd_ps(__m128d a)

Converts the two DP FP values of a to SP FP values.
r0 := (float) a0
r1 := (float) a1
r2 := 0.0 ; r3 := 0.0

__m128d _mm_cvtps_pd(__m128 a)

Converts the lower two SP FP values of a to DP FP values.
r0 := (double) a0
r1 := (double) a1

__m128d _mm_cvtepi32_pd(__m128i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.
r0 := (double) a0
r1 := (double) a1

Reference

309

__m128i _mm_cvtpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.
r0 := (int) a0
r1 := (int) a1
r2 := 0x0 ; r3 := 0x0

int _mm_cvtsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.
r := (int) a0

__m128 _mm_cvtsd_ss(__m128 a, __m128d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are passed through.
r0 := (float) b0
r1 := a1; r2 := a2 ; r3 := a3

__m128d _mm_cvtsi32_sd(__m128d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed through.
r0 := (double) b
r1 := a1

__m128d _mm_cvtss_sd(__m128d a, __m128 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is passed
through.
r0 := (double) b0
r1 := a1

__m128i _mm_cvttpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.
r0 := (int) a0
r1 := (int) a1
r2 := 0x0 ; r3 := 0x0

int _mm_cvttsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.
r := (int) a0

__m64 _mm_cvtpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.
r0 := (int) a0
r1 := (int) a1

__m64 _mm_cvttpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values using truncate.
r0 := (int) a0
r1 := (int) a1

Intel® C++ Compiler for Linux* Systems User's Guide

310

__m128d _mm_cvtpi32_pd(__m64 a)

Converts the two 32-bit signed integer values of a to DP FP values.
r0 := (double) a0
r1 := (double) a1

_mm_cvtsd_f64(__m128d a)

This intrinsic extracts a double precision floating point value from the first vector element of an __m128d.
It does so in the most efficient manner possible in the context used. This intrinsic does not map to any
specific SSE2 instruction.

Floating-point Memory and Initialization Operations for Streaming SIMD
Extensions 2

This section describes the load, set, and store operations, which let you load and store data into
memory. The load and set operations are similar in that both initialize __m128d data. However, the
set operations take a double argument and are intended for initialization with constants, while the load
operations take a double pointer argument and are intended to mimic the instructions for loading data from
memory. The store operation assigns the initialized data to the address.

Note

There is no intrinsic for move operations. To move data from one register to another, a simple assignment,
A = B, suffices, where A and B are the source and target registers for the move operation.

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the emmintrin.h header file.

Floating-point Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

__m128d _mm_load_pd(double const*dp)

(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte aligned.
r0 := p[0]
r1 := p[1]

__m128d _mm_load1_pd(double const*dp)

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both elements. The address p need not
be 16-byte aligned.
r0 := *p
r1 := *p

Reference

311

__m128d _mm_loadr_pd(double const*dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The address p must be 16-byte
aligned.
r0 := p[1]
r1 := p[0]

__m128d _mm_loadu_pd(double const*dp)

(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte aligned.
r0 := p[0]
r1 := p[1]

__m128d _mm_load_sd(double const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address p need not be 16-byte
aligned.
r0 := *p
r1 := 0.0

__m128d _mm_loadh_pd(__m128d a, double const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result. The lower DP FP value is
passed through from a. The address p need not be 16-byte aligned.
r0 := a0
r1 := *p

__m128d _mm_loadl_pd(__m128d a, double const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result. The upper DP FP value is
passed through from a. The address p need not be 16-byte aligned.
r0 := *p
r1 := a1

Floating-point Set Operations for Streaming SIMD Extensions 2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

__m128d _mm_set_sd(double w)

(composite) Sets the lower DP FP value to w and sets the upper DP FP value to zero.
r0 := w
r1 := 0.0

__m128d _mm_set1_pd(double w)

(composite) Sets the 2 DP FP values to w.
r0 := w
r1 := w

Intel® C++ Compiler for Linux* Systems User's Guide

312

__m128d _mm_set_pd(double w, double x)

(composite) Sets the lower DP FP value to x and sets the upper DP FP value to w.
r0 := x
r1 := w

__m128d _mm_setr_pd(double w, double x)

(composite) Sets the lower DP FP value to w and sets the upper DP FP value to x.
r0 := w
r1 := x

__m128d _mm_setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.
r0 := 0.0
r1 := 0.0

__m128d _mm_move_sd(__m128d a, __m128d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is passed
through from a.
r0 := b0
r1 := a1

Floating-point Store Operations for Streaming SIMD Extensions 2

The following store operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

void _mm_store_sd(double *dp, __m128d a)

(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.
*dp := a0

void _mm_store1_pd(double *dp, __m128d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The address dp must be 16-byte
aligned.
dp[0] := a0
dp[1] := a0

void _mm_store_pd(double *dp, __m128d a)

(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte aligned.
dp[0] := a0
dp[1] := a1

void _mm_storeu_pd(double *dp, __m128d a)

(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte aligned.
dp[0] := a0
dp[1] := a1

Reference

313

void _mm_storer_pd(double *dp, __m128d a)

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The address dp must be 16-byte
aligned.
dp[0] := a1
dp[1] := a0

void _mm_storeh_pd(double *dp, __m128d a)

(uses MOVHPD) Stores the upper DP FP value of a.
*dp := a1

void _mm_storel_pd(double *dp, __m128d a)

(uses MOVLPD) Stores the lower DP FP value of a.
*dp := a0

Integer Arithmetic Operations for Streaming SIMD Extensions 2

The integer arithmetic operations for Streaming SIMD Extensions 2 (SSE2) are listed in the following table
followed by their descriptions. The packed arithmetic intrinsics for SSE2 are listed in the Floating-point
Arithmetic Operations topic.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Instruction Operation

_mm_add_epi8 PADDB Addition

_mm_add_epi16 PADDW Addition

_mm_add_epi32 PADDD Addition

_mm_add_si64 PADDQ Addition

_mm_add_epi64 PADDQ Addition

_mm_adds_epi8 PADDSB Addition

_mm_adds_epi16 PADDSW Addition

_mm_adds_epu8 PADDUSB Addition

_mm_adds_epu16 PADDUSW Addition

_mm_avg_epu8 PAVGB Computes Average

_mm_avg_epu16 PAVGW Computes Average

_mm_madd_epi16 PMADDWD Multiplication/Addition

_mm_max_epi16 PMAXSW Computes Maxima

_mm_max_epu8 PMAXUB Computes Maxima

_mm_min_epi16 PMINSW Computes Minima

Intel® C++ Compiler for Linux* Systems User's Guide

314

Intrinsic Instruction Operation

_mm_min_epu8 PMINUB Computes Minima

_mm_mulhi_epi16 PMULHW Multiplication

_mm_mulhi_epu16 PMULHUW Multiplication

_mm_mullo_epi16 PMULLW Multiplication

_mm_mul_su32 PMULUDQ Multiplication

_mm_mul_epu32 PMULUDQ Multiplication

_mm_sad_epu8 PSADBW Computes Difference/Adds

_mm_sub_epi8 PSUBB Subtraction

_mm_sub_epi16 PSUBW Subtraction

_mm_sub_epi32 PSUBD Subtraction

_mm_sub_si64 PSUBQ Subtraction

_mm_sub_epi64 PSUBQ Subtraction

_mm_subs_epi8 PSUBSB Subtraction

_mm_subs_epi16 PSUBSW Subtraction

_mm_subs_epu8 PSUBUSB Subtraction

_mm_subs_epu16 PSUBUSW Subtraction

__mm128i _mm_add_epi8(__m128i a, __m128i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1
...
r15 := a15 + b15

__mm128i _mm_add_epi16(__m128i a, __m128i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1
...
r7 := a7 + b7

__m128i _mm_add_epi32(__m128i a, __m128i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1
r2 := a2 + b2
r3 := a3 + b3

Reference

315

__m64 _mm_add_si64(__m64 a, __m64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.
r := a + b

__m128i _mm_add_epi64(__m128i a, __m128i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit integers in b.
r0 := a0 + b0
r1 := a1 + b1

__m128i _mm_adds_epi8(__m128i a, __m128i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating arithmetic.
r0 := SignedSaturate(a0 + b0)
r1 := SignedSaturate(a1 + b1)
...
r15 := SignedSaturate(a15 + b15)

__m128i _mm_adds_epi16(__m128i a, __m128i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using saturating arithmetic.
r0 := SignedSaturate(a0 + b0)
r1 := SignedSaturate(a1 + b1)
...
r7 := SignedSaturate(a7 + b7)

__m128i _mm_adds_epu8(__m128i a, __m128i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating arithmetic.
r0 := UnsignedSaturate(a0 + b0)
r1 := UnsignedSaturate(a1 + b1)
...
r15 := UnsignedSaturate(a15 + b15)

__m128i _mm_adds_epu16(__m128i a, __m128i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using saturating arithmetic.
r0 := UnsignedSaturate(a0 + b0)
r1 := UnsignedSaturate(a1 + b1)
...
r15 := UnsignedSaturate(a7 + b7)

__m128i _mm_avg_epu8(__m128i a, __m128i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers in b and
rounds.
r0 := (a0 + b0) / 2
r1 := (a1 + b1) / 2
...
r15 := (a15 + b15) / 2

Intel® C++ Compiler for Linux* Systems User's Guide

316

__m128i _mm_avg_epu16(__m128i a, __m128i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in b and
rounds.
r0 := (a0 + b0) / 2
r1 := (a1 + b1) / 2
...
r7 := (a7 + b7) / 2

__m128i _mm_madd_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Adds the signed 32-
bit integer results pairwise and packs the 4 signed 32-bit integer results.
r0 := (a0 * b0) + (a1 * b1)
r1 := (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * b5)
r3 := (a6 * b6) + (a7 * b7)

__m128i _mm_max_epi16(__m128i a, __m128i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from
b.
r0 := max(a0, b0)
r1 := max(a1, b1)
...
r7 := max(a7, b7)

__m128i _mm_max_epu8(__m128i a, __m128i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers
from b.
r0 := max(a0, b0)
r1 := max(a1, b1)
...
r15 := max(a15, b15)

__m128i _mm_min_epi16(__m128i a, __m128i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from
b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

__m128i _mm_min_epu8(__m128i a, __m128i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit integers
from b.
r0 := min(a0, b0)
r1 := min(a1, b1)
...
r15 := min(a15, b15)

Reference

317

__m128i _mm_mulhi_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Packs the upper 16-
bits of the 8 signed 32-bit results.
r0 := (a0 * b0)[31:16]
r1 := (a1 * b1)[31:16]
...
r7 := (a7 * b7)[31:16]

__m128i _mm_mulhi_epu16(__m128i a, __m128i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers from b. Packs the upper
16-bits of the 8 unsigned 32-bit results.
r0 := (a0 * b0)[31:16]
r1 := (a1 * b1)[31:16]
...
r7 := (a7 * b7)[31:16]

__m128i_mm_mullo_epi16(__m128i a, __m128i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from
b. Packs the lower 16-bits of the 8 signed or unsigned 32-bit results.
r0 := (a0 * b0)[15:0]
r1 := (a1 * b1)[15:0]
...
r7 := (a7 * b7)[15:0]

__m64 _mm_mul_su32(__m64 a, __m64 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-bit integer
result.
r := a0 * b0

__m128i _mm_mul_epu32(__m128i a, __m128i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b. Packs the 2 unsigned
64-bit integer results.
r0 := a0 * b0
r1 := a2 * b2

__m128i _mm_sad_epu8(__m128i a, __m128i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b. Sums the upper 8 differences and lower 8 differences, and packs the resulting 2 unsigned
16-bit integers into the upper and lower 64-bit elements.
r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)
r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0
r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)
r5 := 0x0 ; r6 := 0x0 ; r7 := 0x0

__m128i _mm_sub_epi8(__m128i a, __m128i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit integers of a.
r0 := a0 - b0
r1 := a1 - b1
...
r15 := a15 - b15

Intel® C++ Compiler for Linux* Systems User's Guide

318

__m128i_mm_sub_epi16(__m128i a, __m128i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or unsigned 16-bit integers of a.
r0 := a0 - b0
r1 := a1 - b1
...
r7 := a7 - b7

__m128i _mm_sub_epi32(__m128i a, __m128i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a.
r0 := a0 - b0
r1 := a1 - b1
r2 := a2 - b2
r3 := a3 - b3

__m64 _mm_sub_si64 (__m64 a, __m64 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.
r := a - b

__m128i _mm_sub_epi64(__m128i a, __m128i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or unsigned 64-bit integers in a.
r0 := a0 - b0
r1 := a1 - b1

__m128i _mm_subs_epi8(__m128i a, __m128i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using saturating
arithmetic.
r0 := SignedSaturate(a0 - b0)
r1 := SignedSaturate(a1 - b1)
...
r15 := SignedSaturate(a15 - b15)

__m128i _mm_subs_epi16(__m128i a, __m128i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a using saturating
arithmetic.
r0 := SignedSaturate(a0 - b0)
r1 := SignedSaturate(a1 - b1)
...
r7 := SignedSaturate(a7 - b7)

__m128i _mm_subs_epu8(__m128i a, __m128i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using saturating
arithmetic.
r0 := UnsignedSaturate(a0 - b0)
r1 := UnsignedSaturate(a1 - b1)
...
r15 := UnsignedSaturate(a15 - b15)

Reference

319

__m128i _mm_subs_epu16(__m128i a, __m128i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a using saturating
arithmetic.
r0 := UnsignedSaturate(a0 - b0)
r1 := UnsignedSaturate(a1 - b1)
...
r7 := UnsignedSaturate(a7 - b7)

Integer Logical Operations for Streaming SIMD Extensions 2

The following four logical-operation intrinsics and their respective instructions are functional as part of
Streaming SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

__m128i _mm_and_si128(__m128i a, __m128i b)

(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.
r := a & b

__m128i _mm_andnot_si128(__m128i a, __m128i b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit
value in a.
r := (~a) & b

__m128i _mm_or_si128(__m128i a, __m128i b)

(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
r := a | b

__m128i _mm_xor_si128(__m128i a, __m128i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.
r := a ^ b

Integer Shift Operations for Streaming SIMD Extensions 2

The shift-operation intrinsics for Streaming SIMD Extensions 2 (SSE2) and the description for each are
listed in the following table.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Shift
Direction

Shift
Type

Corresponding
Instruction

_mm_slli_si128 Left Logical PSLLDQ

_mm_slli_epi16 Left Logical PSLLW

_mm_sll_epi16 Left Logical PSLLW

_mm_slli_epi32 Left Logical PSLLD

Intel® C++ Compiler for Linux* Systems User's Guide

320

Intrinsic Shift
Direction

Shift
Type

Corresponding
Instruction

_mm_sll_epi32 Left Logical PSLLD

_mm_slli_epi64 Left Logical PSLLQ

_mm_sll_epi64 Left Logical PSLLQ

_mm_srai_epi16 Right Arithmetic PSRAW

_mm_sra_epi16 Right Arithmetic PSRAW

_mm_srai_epi32 Right Arithmetic PSRAD

_mm_sra_epi32 Right Arithmetic PSRAD

_mm_srli_si128 Right Logical PSRLDQ

_mm_srli_epi16 Right Logical PSRLW

_mm_srl_epi16 Right Logical PSRLW

_mm_srli_epi32 Right Logical PSRLD

_mm_srl_epi32 Right Logical PSRLD

_mm_srli_epi64 Right Logical PSRLQ

_mm_srl_epi64 Right Logical PSRLQ

__m128i _mm_slli_si128(__m128i a, int imm)

Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate.
r := a << (imm * 8)

__m128i _mm_slli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.
r0 := a0 << count
r1 := a1 << count
...
r7 := a7 << count

__m128i _mm_sll_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.
r0 := a0 << count
r1 := a1 << count
...
r7 := a7 << count

Reference

321

__m128i _mm_slli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.
r0 := a0 << count
r1 := a1 << count
r2 := a2 << count
r3 := a3 << count

__m128i _mm_sll_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.
r0 := a0 << count
r1 := a1 << count
r2 := a2 << count
r3 := a3 << count

__m128i _mm_slli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.
r0 := a0 << count
r1 := a1 << count

__m128i _mm_sll_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.
r0 := a0 << count
r1 := a1 << count

__m128i _mm_srai_epi16(__m128i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.
r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count

__m128i _mm_sra_epi16(__m128i a, __m128i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.
r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count

__m128i _mm_srai_epi32(__m128i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.
r0 := a0 >> count
r1 := a1 >> count
r2 := a2 >> count
r3 := a3 >> count

Intel® C++ Compiler for Linux* Systems User's Guide

322

__m128i _mm_sra_epi32(__m128i a, __m128i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.
r0 := a0 >> count
r1 := a1 >> count
r2 := a2 >> count
r3 := i3 >> count

__m128i _mm_srli_si128(__m128i a, int imm)

Shifts the 128-bit value in a right by imm bytes while shifting in zeros. imm must be an immediate.
r := srl(a, imm*8)

__m128i _mm_srli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
...
r7 := srl(a7, count)

__m128i _mm_srl_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
...
r7 := srl(a7, count)

__m128i _mm_srli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
r2 := srl(a2, count)
r3 := srl(a3, count)

__m128i _mm_srl_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)
r2 := srl(a2, count)
r3 := srl(a3, count)

__m128i _mm_srli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)

Reference

323

__m128i _mm_srl_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.
r0 := srl(a0, count)
r1 := srl(a1, count)

Integer Comparison Operations for Streaming SIMD Extensions 2

The comparison intrinsics for Streaming SIMD Extensions 2 (SSE2) and descriptions for each are listed in
the following table.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Instruction Comparison Elements Size of
Elements

_mm_cmpeq_epi8 PCMPEQB Equality 16 8

_mm_cmpeq_epi16 PCMPEQW Equality 8 16

_mm_cmpeq_epi32 PCMPEQD Equality 4 32

_mm_cmpgt_epi8 PCMPGTB Greater Than 16 8

_mm_cmpgt_epi16 PCMPGTW Greater Than 8 16

_mm_cmpgt_epi32 PCMPGTD Greater Than 4 32

_mm_cmplt_epi8 PCMPGTBr Less Than 16 8

_mm_cmplt_epi16 PCMPGTWr Less Than 8 16

_mm_cmplt_epi32 PCMPGTDr Less Than 4 32

__m128i _mm_cmpeq_epi8(__m128i a, __m128i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit integers in b for
equality.
r0 := (a0 == b0) ? 0xff : 0x0
r1 := (a1 == b1) ? 0xff : 0x0
...
r15 := (a15 == b15) ? 0xff : 0x0

__m128i _mm_cmpeq_epi16(__m128i a, __m128i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit integers in b for
equality.
r0 := (a0 == b0) ? 0xffff : 0x0
r1 := (a1 == b1) ? 0xffff : 0x0
...
r7 := (a7 == b7) ? 0xffff : 0x0

Intel® C++ Compiler for Linux* Systems User's Guide

324

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned 32-bit integers in b for
equality.
r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffff : 0x0
r2 := (a2 == b2) ? 0xffffffff : 0x0
r3 := (a3 == b3) ? 0xffffffff : 0x0

__m128i _mm_cmpgt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for greater than.
r0 := (a0 > b0) ? 0xff : 0x0
r1 := (a1 > b1) ? 0xff : 0x0
...
r15 := (a15 > b15) ? 0xff : 0x0

__m128i _mm_cmpgt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than.
r0 := (a0 > b0) ? 0xffff : 0x0
r1 := (a1 > b1) ? 0xffff : 0x0
...
r7 := (a7 > b7) ? 0xffff : 0x0

__m128i _mm_cmpgt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than.
r0 := (a0 > b0) ? 0xffff : 0x0
r1 := (a1 > b1) ? 0xffff : 0x0
r2 := (a2 > b2) ? 0xffff : 0x0
r3 := (a3 > b3) ? 0xffff : 0x0

__m128i _mm_cmplt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for less than.
r0 := (a0 < b0) ? 0xff : 0x0
r1 := (a1 < b1) ? 0xff : 0x0
...
r15 := (a15 < b15) ? 0xff : 0x0

__m128i _mm_cmplt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.
r0 := (a0 < b0) ? 0xffff : 0x0
r1 := (a1 < b1) ? 0xffff : 0x0
...
r7 := (a7 < b7) ? 0xffff : 0x0

__m128i _mm_cmplt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than.
r0 := (a0 < b0) ? 0xffff : 0x0
r1 := (a1 < b1) ? 0xffff : 0x0
r2 := (a2 < b2) ? 0xffff : 0x0
r3 := (a3 < b3) ? 0xffff : 0x0

Reference

325

Integer Conversions Operations for Streaming SIMD Extensions 2

The following two conversion intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

__m128i _mm_cvtsi32_si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an __m128i object. Copies the sign
bit of a into the upper 96 bits of the __m128i object.
r0 := a
r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0

int _mm_cvtsi128_si32(__m128i a)

(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.
r := a0

__m128 _mm_cvtepi32_ps(__m128i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.
r0 := (float) a0
r1 := (float) a1
r2 := (float) a2
r3 := (float) a3

__m128i _mm_cvtps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.
r0 := (int) a0
r1 := (int) a1
r2 := (int) a2
r3 := (int) a3

__m128i _mm_cvttps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.
r0 := (int) a0
r1 := (int) a1
r2 := (int) a2
r3 := (int) a3

Integer Memory and Initialization Operations for Streaming SIMD Extensions 2

The integer load, set, and store intrinsics and their respective instructions provide memory and
initialization operations for the Streaming SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

• Load Operations
• Set Operations
• Store Operations

Intel® C++ Compiler for Linux* Systems User's Guide

326

Integer Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

__m128i _mm_load_si128(__m128i const*p)

(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.
r := *p

__m128i _mm_loadu_si128(__m128i const*p)

(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.
r := *p

__m128i _mm_loadl_epi64(__m128i const*p)

(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result, zeroing
the upper 64 bits of the result.
r0:= *p[63:0]
r1:=0x0

Integer Set Operations for SSE2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

__m128i _mm_set_epi64(__m64 q1, __m64 q0)

Sets the 2 64-bit integer values.
r0 := q0
r1 := q1

__m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.
r0 := i0
r1 := i1
r2 := i2
r3 := i3

__m128i _mm_set_epi16(short w7, short w6, short w5, short w4, short w3,
short w2, short w1, short w0)

Sets the 8 signed 16-bit integer values.
r0 := w0
r1 := w1
...
r7 := w7

Reference

327

__m128i _mm_set_epi8(char b15, char b14, char b13, char b12, char b11,
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values.
r0 := b0
r1 := b1
...
r15 := b15

__m128i _mm_set1_epi64(__m64 q)

Sets the 2 64-bit integer values to q.
r0 := q
r1 := q

__m128i _mm_set1_epi32(int i)

Sets the 4 signed 32-bit integer values to i.
r0 := i
r1 := i
r2 := i
r3 := i

__m128i _mm_set1_epi16(short w)

Sets the 8 signed 16-bit integer values to w.
r0 := w
r1 := w
...
r7 := w

__m128i _mm_set1_epi8(char b)

Sets the 16 signed 8-bit integer values to b.
r0 := b
r1 := b
...
r15 := b

__m128i _mm_setr_epi64(__m64 q0, __m64 q1)

Sets the 2 64-bit integer values in reverse order.
r0 := q0
r1 := q1

__m128i _mm_setr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.
r0 := i0
r1 := i1
r2 := i2
r3 := i3

Intel® C++ Compiler for Linux* Systems User's Guide

328

__m128i _mm_setr_epi16(short w0, short w1, short w2, short w3, short w4,
short w5, short w6, short w7)

Sets the 8 signed 16-bit integer values in reverse order.
r0 := w0
r1 := w1
...
r7 := w7

__m128i _mm_setr_epi8(char b15, char b14, char b13, char b12, char b11,
char b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3,
char b2, char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.
r0 := b0
r1 := b1
...
r15 := b15

__m128i _mm_setzero_si128()

Sets the 128-bit value to zero.
r := 0x0

Integer Store Operations for Streaming SIMD Extensions 2

The following store operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2 (SSE2).

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

void _mm_store_si128(__m128i *p, __m128i b)

(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.
*p := a

void _mm_storeu_si128(__m128i *p, __m128i b)

(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.
*p := a

void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The high bit of each byte in the
selector n determines whether the corresponding byte in d will be stored. Address p need not be 16-byte
aligned.
if (n0[7]) p[0] := d0
if (n1[7]) p[1] := d1
...
if (n15[7]) p[15] := d15

void _mm_storel_epi64(__m128i *p, __m128i q)

(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.
*p[63:0]:=a0

Reference

329

Macro Function for Shuffle

The Streaming SIMD Extensions 2 (SSE2) provide a macro function to help create constants that describe
shuffle operations. The macro takes two small integers (in the range of 0 to 1) and combines them into an
2-bit immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

You can view the two integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Cacheability Support Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the emmintrin.h header file.

void _mm_stream_pd(double *p, __m128d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches. The address p must be 16-
byte aligned. If the cache line containing address p is already in the cache, the cache will be updated.
p[0] := a0
p[1] := a1

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated. Address p must be 16-byte aligned.
*p := a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line containing address p is
already in the cache, the cache will be updated.
*p := a

Intel® C++ Compiler for Linux* Systems User's Guide

330

void _mm_clflush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the coherency domain.

void _mm_lfence(void)

Guarantees that every load instruction that precedes, in program order, the load fence instruction is globally
visible before any load instruction which follows the fence in program order.

void _mm_mfence(void)

Guarantees that every memory access that precedes, in program order, the memory fence instruction is
globally visible before any memory instruction which follows the fence in program order.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The instruction
does not modify the architectural state. This intrinsic provides especially significant performance gain.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin loop:pause
cmp eax, A
jne spin_loop

In this example, the program spins until memory location A matches the value in register eax. The code
sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the attempt
to get a lock has failed.

get_lock: mov eax, 1
xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop
critical_section code
mov A, 0 ; Release lock
jmp continue
spin_loop: pause ; Spin-loop hint
cmp 0, A ; Check lock availability
jne spin_loop
jmp get_lock
continue:

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for processor type

Reference

331

(a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors which
use the PAUSE as a hint there can be significant performance benefit.

Miscellaneous Operations for Streaming SIMD Extensions 2

The miscellaneous intrinsics for Streaming SIMD Extensions 2 (SSE2) are listed in the following table
followed by their descriptions.

The prototypes for SSE2 intrinsics are in the emmintrin.h header file.

Intrinsic Corresponding
Instruction

Operation

_mm_packs_epi16 PACKSSWB Packed Saturation

_mm_packs_epi32 PACKSSDW Packed Saturation

_mm_packus_epi16 PACKUSWB Packed Saturation

_mm_extract_epi16 PEXTRW Extraction

_mm_insert_epi16 PINSRW Insertion

_mm_movemask_epi8 PMOVMSKB Mask Creation

_mm_shuffle_epi32 PSHUFD Shuffle

_mm_shufflehi_epi16 PSHUFHW Shuffle

_mm_shufflelo_epi16 PSHUFLW Shuffle

_mm_unpackhi_epi8 PUNPCKHBW Interleave

_mm_unpackhi_epi16 PUNPCKHWD Interleave

_mm_unpackhi_epi32 PUNPCKHDQ Interleave

_mm_unpackhi_epi64 PUNPCKHQDQ Interleave

_mm_unpacklo_epi8 PUNPCKLBW Interleave

_mm_unpacklo_epi16 PUNPCKLWD Interleave

_mm_unpacklo_epi32 PUNPCKLDQ Interleave

_mm_unpacklo_epi64 PUNPCKLQDQ Interleave

_mm_movepi64_pi64 MOVDQ2Q move

_m128i_mm_movpi64_epi64 MOVQ2DQ move

_mm_move_epi64 MOVQ move

Intel® C++ Compiler for Linux* Systems User's Guide

332

__m128i _mm_packs_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.
r0 := SignedSaturate(a0)
r1 := SignedSaturate(a1)
...
r7 := SignedSaturate(a7)
r8 := SignedSaturate(b0)
r9 := SignedSaturate(b1)
...
r15 := SignedSaturate(b7)

__m128i _mm_packs_epi32(__m128i a, __m128i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates.
r0 := SignedSaturate(a0)
r1 := SignedSaturate(a1)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(b1)
r6 := SignedSaturate(b2)
r7 := SignedSaturate(b3)

__m128i _mm_packus_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.
r0 := UnsignedSaturate(a0)
r1 := UnsignedSaturate(a1)
...
r7 := UnsignedSaturate(a7)
r8 := UnsignedSaturate(b0)
r9 := UnsignedSaturate(b1)
...
r15 := UnsignedSaturate(b7)

int _mm_extract_epi16(__m128i a, int imm)

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector imm must be
an immediate.
r := (imm == 0) ? a0 :
((imm == 1) ? a1 :
...
(imm == 7) ? a7)

__m128i _mm_insert_epi16(__m128i a, int b, int imm)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector imm must be an
immediate.
r0 := (imm == 0) ? b : a0;
r1 := (imm == 1) ? b : a1;
...
r7 := (imm == 7) ? b : a7;

Reference

333

int _mm_movemask_epi8(__m128i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and
zero extends the upper bits.
r := a15[7] << 15 |
a14[7] << 14 |
...
a1[7] << 1 |
a0[7]

__m128i _mm_shuffle_epi32(__m128i a, int imm)

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. The shuffle value, imm, must be
an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_shufflehi_epi16(__m128i a, int imm)

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_shufflelo_epi16(__m128i a, int imm)

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_unpackhi_epi8(__m128i a, __m128i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit
integers in b.
r0 := a8 ; r1 := b8
r2 := a9 ; r3 := b9
...
r14 := a15 ; r15 := b15

__m128i _mm_unpackhi_epi16(__m128i a, __m128i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit
integers in b.
r0 := a4 ; r1 := b4
r2 := a5 ; r3 := b5
r4 := a6 ; r5 := b6
r6 := a7 ; r7 := b7

__m128i _mm_unpackhi_epi32(__m128i a, __m128i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit
integers in b.
r0 := a2 ; r1 := b2
r2 := a3 ; r3 := b3

Intel® C++ Compiler for Linux* Systems User's Guide

334

__m128i _mm_unpackhi_epi64(__m128i a, __m128i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned 64-bit
integer in b.
r0 := a1 ; r1 := b1

__m128i _mm_unpacklo_epi8(__m128i a, __m128i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit
integers in b.
r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1
...
r14 := a7 ; r15 := b7

__m128i _mm_unpacklo_epi16(__m128i a, __m128i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned 16-bit
integers in b.
r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1
r4 := a2 ; r5 := b2
r6 := a3 ; r7 := b3

__m128i _mm_unpacklo_epi32(__m128i a, __m128i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2 signed or unsigned 32-bit
integers in b.
r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1

__m128i _mm_unpacklo_epi64(__m128i a, __m128i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned 64-bit
integer in b.
r0 := a0 ; r1 := b0

__m64 _mm_movepi64_pi64(__m128i a)

Returns the lower 64 bits of a as an __m64 type.
r0 := a0 ;

__128i _mm_movpi64_pi64(__m64 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.
r0 := a0 ; r1 := 0X0 ;

__128i _mm_move_epi64(__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.
r0 := a0 ; r1 := 0X0 ;

Reference

335

Additional Miscellaneous Intrinsics

The prototypes for Streaming SIMD Extensions 2 (SSE2) intrinsics are in the emmintrin.h header file.

__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

(uses UNPCKHPD) Interleaves the upper DP FP values of a and b.
r0 := a1
r1 := b1

__m128d _mm_unpacklo_pd(__m128d a, __m128d b)

(uses UNPCKLPD) Interleaves the lower DP FP values of a and b.
r0 := a0
r1 := b0

int _mm_movemask_pd(__m128d a)

(uses MOVMSKPD) Creates a two-bit mask from the sign bits of the two DP FP values of a.
r := sign(a1) << 1 | sign(a0)

__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the mask i. The mask must be
an immediate. See Macro Function for Shuffle for a description of the shuffle semantics.

Intrinsics for Casting Support

This version of the Intel C++ Compiler supports casting between various SP, DP, and INT vector types.
These intrinsics do not convert values; they just change the type.

extern __m128 _mm_castpd_ps(__m128d in);

extern __m128i _mm_castpd_si128(__m128d in);

extern __m128d _mm_castps_pd(__m128 in);

extern __m128i _mm_castps_si128(__m128 in);

extern __m128 _mm_castsi128_ps(__m128i in);

extern __m128d _mm_castsi128_pd(__m128i in);

Intel® C++ Compiler for Linux* Systems User's Guide

336

Streaming SIMD Extensions 3

The Intel® C++ intrinsics listed in this section are designed for the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3). They will not function correctly on other IA-32 processors. New
SSE3 intrinsics include:

• Floating-point Vector Intrinsics
• Integer Vector Intrinsics
• Miscellaneous Intrinsics
• Macro Functions

The prototypes for these intrinsics are in the pmmintrin.h header file.

Note

You can also use the single ia32intrin.h header file for any IA-32 intrinsics.

Floating-point Vector Intrinsics for Streaming SIMD Extensions 3

The floating-point intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

Single-precision Floating-point Vector Intrinsics

extern __m128 _mm_addsub_ps(__m128 a, __m128 b);

Subtracts even vector elements while adding odd vector elements.
r0 := a0 - b0;
r1 := a1 + b1;
r2 := a2 - b2;
r3 := a3 + b3;

extern __m128 _mm_hadd_ps(__m128 a, __m128 b);

Adds adjacent vector elements.
r0 := a0 + a1;
r1 := a2 + a3;
r2 := b0 + b1;
r3 := b2 + b3;

extern __m128 _mm_hsub_ps(__m128 a, __m128 b);

Subtracts adjacent vector elements.
r0 := a0 - a1;
r1 := a2 - a3;
r2 := b0 - b1;
r3 := b2 - b3;

Reference

337

extern __m128 _mm_movehdup_ps(__m128 a);

Duplicates odd vector elements into even vector elements.
r0 := a1;
r1 := a1;
r2 := a3;
r3 := a3;

extern __m128 _mm_moveldup_ps(__m128 a);

Duplicates even vector elements into odd vector elements.
r0 := a0;
r1 := a0;
r2 := a2;
r3 := a2;

Double-precision Floating-point Vector Intrinsics

extern __m128d _mm_addsub_pd(__m128d a, __m128d b);

Adds upper vector element while subtracting lower vector element.
r0 := a0 - b0;
r1 := a1 + b1;

extern __m128d _mm_hadd_pd(__m128d a, __m128d b);

Adds adjacent vector elements.
r0 := a0 + a1;
r1 := b0 + b1;

extern __m128d _mm_hsub_pd(__m128d a, __m128d b);

Subtracts adjacent vector elements.
r0 := a0 - a1;
r1 := b0 - b1;

extern __m128d _mm_loaddup_pd(double const * dp);

Duplicates a double value into upper and lower vector elements.
r0 := *dp;
r1 := *dp;

extern __m128d _mm_movedup_pd(__m128d a);

Duplicates lower vector element into upper vector element.
r0 := a0;
r1 := a0;

Intel® C++ Compiler for Linux* Systems User's Guide

338

Integer Vector Intrinsics for Streaming SIMD Extensions 3

The integer vector intrinsic listed here is designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

extern __m128i _mm_lddqu_si128(__m128i const *p);

Loads an unaligned 128-bit value. This differs from movdqu in that it can provide higher performance in
some cases. However, it also may provide lower performance than movdqu if the memory value being
read was just previously written.
r := *p;

Macro Functions for Streaming SIMD Extensions 3

The macro function intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

_MM_SET_DENORMALS_ZERO_MODE(x)

Macro arguments: one of __MM_DENORMALS_ZERO_ON, _MM_DENORMALS_ZERO_OFF
This causes "denormals are zero" mode to be turned on or off by setting the appropriate bit of the
control register.

_MM_GET_DENORMALS_ZERO_MODE()

No arguments. This returns the current value of the denormals are zero mode bit of the control register.

Miscellaneous Intrinsics for Streaming SIMD Extensions 3

The miscellaneous intrinsics listed here are designed for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3).

The prototypes for these intrinsics are in the pmmintrin.h header file.

extern void _mm_monitor(void const *p, unsigned extensions, unsigned
hints);

Generates the MONITOR instruction. This sets up an address range for the monitor hardware using p to
provide the logical address, and will be passed to the monitor instruction in register eax. The extensions
parameter contains optional extensions to the monitor hardware which will be passed in ecx. The hints
parameter will contain hints to the monitor hardware, which will be passed in edx. A non-zero value for
extensions will cause a general protection fault.

extern void _mm_mwait(unsigned extensions, unsigned hints);

Generates the MWAIT instruction. This instruction is a hint that allows the processor to stop execution and
enter an implementation-dependent optimized state until occurrence of a class of events. In future processor
designs extensions and hints parameters may be used to convey additional information to the processor. All

Reference

339

non-zero values of extensions and hints are reserved. A non-zero value for extensions will cause a general
protection fault.

Intrinsics for Itanium® Instructions

This section lists and describes the native intrinsics for Itanium® instructions. These intrinsics cannot be
used on the IA-32 architecture. The intrinsics for Itanium instructions give programmers access to Itanium
instructions that cannot be generated using the standard constructs of the C and C++ languages.

The prototypes for these intrinsics are in the ia64intrin.h header file.

Native Intrinsics for Itanium® Instructions

The prototypes for these intrinsics are in the ia64intrin.h header file.

Integer Operations

Intrinsic Corresponding
Instruction

__int64 _m64_dep_mr(__int64 r,
__int64 s, const int pos, const
int len)

dep (Deposit)

__int64 _m64_dep_mi(const int v,
__int64 s, const int p, const int
len)

dep (Deposit)

__int64 _m64_dep_zr(__int64 s,
const int pos, const int len)

dep.z (Deposit)

__int64 _m64_dep_zi(const int v,
const int pos, const int len)

dep.z (Deposit)

__int64 _m64_extr(__int64 r,
const int pos, const int len)

extr (Extract)

__int64 _m64_extru(__int64 r,
const int pos, const int len)

extr.u (Extract)

__int64 _m64_xmal(__int64 a,
__int64 b, __int64 c)

xma.l (Fixed-point multiply add using
the low 64 bits of the 128-bit result. The
result is signed.)

__int64 _m64_xmalu(__int64 a,
__int64 b, __int64 c)

xma.lu (Fixed-point multiply add using
the low 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _m64_xmah(__int64 a,
__int64 b, __int64 c)

xma.h (Fixed-point multiply add using
the high 64 bits of the 128-bit result. The
result is signed.)

__int64 _m64_xmahu(__int64 a,
__int64 b, __int64 c)

xma.hu (Fixed-point multiply add using
the high 64 bits of the 128-bit result. The
result is unsigned.)

__int64 _m64_popcnt(__int64 a) popcnt (Population count)

Intel® C++ Compiler for Linux* Systems User's Guide

340

Intrinsic Corresponding
Instruction

__int64 _m64_shladd(__int64 a,
const int count, __int64 b)

shladd (Shift left and add)

__int64 _m64_shrp(__int64 a,
__int64 b, const int count)

shrp (Shift right pair)

FSR Operations

Intrinsic Description

void _fsetc(int
amask, int omask)

Sets the control bits of FPSR.sf0. Maps to the fsetc.sf0
r, r instruction. There is no corresponding instruction to read
the control bits. Use _mm_getfpsr().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR.sf0). Maps to the fclrf.sf0 instruction.

__int64 _m64_dep_mr(__int64 r, __int64 s, const int pos, const int len)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit position and the result is
returned. The deposited bit field begins at bit position pos and extends to the left (toward the most
significant bit) the number of bits specified by len.

__int64 _m64_dep_mi(const int v, __int64 s, const int p, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s at an arbitrary bit position
and the result is returned. The deposited bit field begins at bit position p and extends to the left (toward the
most significant bit) the number of bits specified by len.

__int64 _m64_dep_zr(__int64 s, const int pos, const int len)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an arbitrary bit position and
the result is returned. The deposited bit field begins at bit position pos and extends to the left (toward the
most significant bit) the number of bits specified by len.

__int64 _m64_dep_zi(const int v, const int pos, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all zeros at an arbitrary
bit position and the result is returned. The deposited bit field begins at bit position pos and extends to the
left (toward the most significant bit) the number of bits specified by len.

__int64 _m64_extr(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and sign extended. The extracted
field begins at position pos and extends len bits to the left. The sign is taken from the most significant bit
of the extracted field.

Reference

341

__int64 _m64_extru(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and zero extended. The extracted
field begins at position pos and extends len bits to the left.

__int64 _m64_xmal(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit signed
result. The 64-bit value c is zero-extended and added to the product. The least significant 64 bits of the sum
are then returned.

__int64 _m64_xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit unsigned
result. The 64-bit value c is zero-extended and added to the product. The least significant 64 bits of the sum
are then returned.

__int64 _m64_xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit signed
result. The 64-bit value c is zero-extended and added to the product. The most significant 64 bits of the
sum are then returned.

__int64 _m64_xmahu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce a full 128-bit unsigned
result. The 64-bit value c is zero-extended and added to the product. The most significant 64 bits of the
sum are then returned.

__int64 _m64_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the resulting sum is
returned.

__int64 _m64_shladd(__int64 a, const int count, __int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

__int64 _m64_shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits. The least significant
64 bits of the result are returned.

Intel® C++ Compiler for Linux* Systems User's Guide

342

Lock and Atomic Operation Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64
_InterlockedExchange8(volatile unsigned
char *Target, unsigned __int64 value)

Map to the xchg1 instruction.
Atomically write the least
significant byte of its 2nd
argument to address specified
by its 1st argument.

unsigned __int64
_InterlockedCompareExchange8_rel(volatile
unsigned char *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Compare and exchange
atomically the least significant
byte at the address specified by
its 1st argument. Maps to the
cmpxchg1.rel instruction
with appropriate setup.

unsigned __int64
_InterlockedCompareExchange8_acq(volatile
unsigned char *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as the previous intrinsic,
but using acquire semantic.

unsigned __int64
_InterlockedExchange16(volatile unsigned
short *Target, unsigned __int64 value)

Map to the xchg2 instruction.
Atomically write the least
significant word of its 2nd
argument to address specified
by its 1st argument.

unsigned __int64
InterlockedCompareExchange16 rel(volatile

unsigned short *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Compare and exchange
atomically the least significant
word at the address specified
by its 1st argument. Maps to
the cmpxchg2.rel
instruction with appropriate
setup.

unsigned __int64
InterlockedCompareExchange16 acq(volatile

unsigned short *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as the previous intrinsic,
but using acquire semantic.

int _InterlockedIncrement(volatile int
*addend

Atomically increment by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedDecrement(volatile int
*addend

Atomically decrement by one
the value specified by its
argument. Maps to the
fetchadd4 instruction.

int _InterlockedExchange(volatile int
*Target, long value

Do an exchange operation
atomically. Maps to the
xchg4 instruction.

Reference

343

Intrinsic Description

int _InterlockedCompareExchange(volatile
int *Destination, int Exchange, int
Comparand

Do a compare and exchange
operation atomically. Maps to
the cmpxchg4 instruction
with appropriate setup.

int _InterlockedExchangeAdd(volatile int
*addend, int increment

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cmpxchg4 instruction to
guarantee atomicity.

int _InterlockedAdd(volatile int *addend,
int increment)

Same as the previous intrinsic,
but returns new value, not the
original one.

void *
_InterlockedCompareExchangePointer(void *
volatile *Destination, void *Exchange,
void *Comparand)

Map the exch8 instruction;
Atomically compare and
exchange the pointer value
specified by its first argument
(all arguments are pointers)

unsigned __int64
_InterlockedExchangeU(volatile unsigned
int *Target, unsigned __int64 value)

Atomically exchange the 32-
bit quantity specified by the 1st
argument. Maps to the xchg4
instruction.

unsigned __int64
_InterlockedCompareExchange_rel(volatile
unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg4.rel
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

unsigned __int64
_InterlockedCompareExchange_acq(volatile
unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as the previous intrinsic,
but map the cmpxchg4.acq
instruction.

void _ReleaseSpinLock(volatile int *x) Release spin lock.

__int64 _InterlockedIncrement64(volatile
__int64 *addend)

Increment by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedDecrement64(volatile
__int64 *addend)

Decrement by one the value
specified by its argument.
Maps to the fetchadd
instruction.

__int64 _InterlockedExchange64(volatile
__int64 *Target, __int64 value)

Do an exchange operation
atomically. Maps to the xchg
instruction.

Intel® C++ Compiler for Linux* Systems User's Guide

344

Intrinsic Description

unsigned __int64
_InterlockedExchangeU64(volatile unsigned
__int64 *Target, unsigned __int64 value)

Same as
InterlockedExchange64
(for unsigned quantities).

unsigned __int64
InterlockedCompareExchange64 rel(volatile

unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg.rel
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

unsigned __int64
InterlockedCompareExchange64 acq(volatile

unsigned __int64 *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg.acq
instruction with appropriate
setup. Atomically compare and
exchange the value specified
by the first argument (a 64-bit
pointer).

__int64
_InterlockedCompareExchange64(volatile
__int64 *Destination, __int64 Exchange,
__int64 Comparand)

Same as the previous intrinsic
for signed quantities.

int64 InterlockedExchangeAdd64(volatile
__int64 *addend, __int64 increment)

Use compare and exchange to
do an atomic add of the
increment value to the addend.
Maps to a loop with the
cmpxchg instruction to
guarantee atomicity

int64 InterlockedAdd64(volatile int64
*addend, __int64 increment);

Same as the previous intrinsic,
but returns the new value, not
the original value. See Note.

Note

_InterlockedSub64 is provided as a macro definition based on _InterlockedAdd64.

#define _InterlockedSub64(target, incr) _InterlockedAdd64((target),(-
(incr))).

Uses cmpxchg to do an atomic sub of the incr value to the target. Maps to a loop with the cmpxchg
instruction to guarantee atomicity.

Reference

345

Load and Store

You can use the load and store intrinsic to force the strict memory access ordering of specific data objects.
This intended use is for the case when the user suppresses the strict memory access ordering by using the -
serialize-volatile- option.

Intrinsic Prototype Description

__st1_rel void __st1_rel(void *dst, const
char value);

Generates an st1.rel
instruction.

__st2_rel void __st2_rel(void *dst, const
short value);

Generates an st2.rel
instruction.

__st4_rel void __st4_rel(void *dst, const
int value);

Generates an st4.rel
instruction.

__st8_rel void __st8_rel(void *dst, const
__int64 value);

Generates an st8.rel
instruction.

__ld1_acq unsigned char __ld1_acq(void
*src);

Generates an ld1.acq
instruction.

__ld2_acq unsigned short __ld2_acq(void
*src);

Generates an ld2.acq
instruction.

__ld4_acq unsigned int __ld4_acq(void
*src);

Generates an ld4.acq
instruction.

__ld8_acq unsigned __int64 __ld8_acq(void
*src);

Generates an ld8.acq
instruction.

Operating System Related Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64
__getReg(const int
whichReg)

Gets the value from a hardware register based on
the index passed in. Produces a corresponding mov
= r instruction. Provides access to the following
registers:
See Register Names for getReg() and setReg().

void __setReg(const int
whichReg, unsigned __int64
value)

Sets the value for a hardware register based on the
index passed in. Produces a corresponding mov =
r instruction.
See Register Names for getReg() and setReg().

unsigned __int64
__getIndReg(const int
whichIndReg, __int64 index)

Return the value of an indexed register. The index
is the 2nd argument; the register file is the first
argument.

Intel® C++ Compiler for Linux* Systems User's Guide

346

Intrinsic Description

void __setIndReg(const int
whichIndReg, __int64 index,
unsigned __int64 value)

Copy a value in an indexed register. The index is
the 2nd argument; the register file is the first
argument.

void *__ptr64 _rdteb(void) Gets TEB address. The TEB address is kept in r13
and maps to the move r=tp instruction

void __isrlz(void) Executes the serialize instruction. Maps to the
srlz.i instruction.

void __dsrlz(void) Serializes the data. Maps to the srlz.d
instruction.

unsigned __int64
__fetchadd4_acq(unsigned
int *addend, const int
increment)

Map the fetchadd4.acq instruction.

unsigned __int64
__fetchadd4_rel(unsigned
int *addend, const int
increment)

Map the fetchadd4.rel instruction.

unsigned __int64
__fetchadd8_acq(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.acq instruction.

unsigned __int64
__fetchadd8_rel(unsigned
__int64 *addend, const int
increment)

Map the fetchadd8.rel instruction.

void __fwb(void) Flushes the write buffers. Maps to the fwb
instruction.

void __ldfs(const int
whichFloatReg, void *src)

Map the ldfs instruction. Load a single precision
value to the specified register.

void __ldfd(const int
whichFloatReg, void *src)

Map the ldfd instruction. Load a double
precision value to the specified register.

void __ldfe(const int
whichFloatReg, void *src)

Map the ldfe instruction. Load an extended
precision value to the specified register.

void __ldf8(const int
whichFloatReg, void *src)

Map the ldf8 instruction.

void __ldf_fill(const int
whichFloatReg, void *src)

Map the ldf.fill instruction.

void __stfs(void *dst,
const int whichFloatReg)

Map the sfts instruction.

void __stfd(void *dst,
const int whichFloatReg)

Map the stfd instruction.

void __stfe(void *dst,
const int whichFloatReg)

Map the stfe instruction.

Reference

347

Intrinsic Description

void __stf8(void *dst,
const int whichFloatReg)

Map the stf8 instruction.

void __stf_spill(void *dst,
const int whichFloatReg)

Map the stf.spill instruction.

void __mf(void) Executes a memory fence instruction. Maps to the
mf instruction.

void __mfa(void) Executes a memory fence, acceptance form
instruction. Maps to the mf.a instruction.

void __synci(void) Enables memory synchronization. Maps to the
sync.i instruction.

void __thash(__int64) Generates a translation hash entry address. Maps to
the thash r = r instruction.

void __ttag(__int64) Generates a translation hash entry tag. Maps to the
ttag r=r instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache (Map
itc.d instruction).

void __itci(__int64 pa) Insert an entry into the instruction translation cache
(Map itc.i).

void __itrd(__int64
whichTransReg, __int64 pa)

Map the itr.d instruction.

void __itri(__int64
whichTransReg, __int64 pa)

Map the itr.i instruction.

void __ptce(__int64 va) Map the ptc.e instruction.

void __ptcl(__int64 va,
__int64 pagesz)

Purges the local translation cache. Maps to the
ptc.l r, r instruction.

void __ptcg(__int64 va,
__int64 pagesz)

Purges the global translation cache. Maps to the
ptc.g r, r instruction.

void __ptcga(__int64 va,
__int64 pagesz)

Purges the global translation cache and ALAT.
Maps to the ptc.ga r, r instruction.

void __ptri(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the ptr.i
r, r instruction.

void __ptrd(__int64 va,
__int64 pagesz)

Purges the translation register. Maps to the ptr.d
r, r instruction.

__int64 __tpa(__int64 va) Map the tpa instruction.

void __invalat(void) Invalidates ALAT. Maps to the invala
instruction.

void __invala (void) Same as void __invalat(void)

void __invala_gr(const int
whichGeneralReg)

whichGeneralReg = 0-127

Intel® C++ Compiler for Linux* Systems User's Guide

348

Intrinsic Description

void __invala_fr(const int
whichFloatReg)

whichFloatReg = 0-127

void __break(const int) Generates a break instruction with an immediate.

void __nop(const int) Generate a nop instruction.

void __debugbreak(void) Generates a Debug Break Instruction fault.

void __fc(__int64) Flushes a cache line associated with the address
given by the argument. Maps to the fc instruction.

void __sum(int mask) Sets the user mask bits of PSR. Maps to the sum
imm24 instruction.

void __rum(int mask) Resets the user mask.

__int64
_ReturnAddress(void)

Get the caller's address.

void __lfetch(int lfhint,
void *y)

Generate the lfetch.lfhint instruction. The
value of the first argument specifies the hint type.

void __lfetch_fault(int
lfhint, void *y)

Generate the lfetch.fault.lfhint
instruction. The value of the first argument
specifies the hint type.

void __lfetch_excl(int
lfhint, void *y)

Generate the lfetch.excl.lfhint
instruction. The value {0|1|2|3} of the first
argument specifies the hint type.

void
__lfetch_fault_excl(int
lfhint, void *y)

Generate the lfetch.fault.excl.lfhint
instruction. The value of the first argument
specifies the hint type.

unsigned int
__cacheSize(unsigned int
cacheLevel)

__cacheSize(n) returns the size in bytes of
the cache at level n. 1 represents the first-level
cache. 0 is returned for a non-existent cache level.
For example, an application may query the cache
size and use it to select block sizes in algorithms
that operate on matrices.

void __memory_barrier(void) Creates a barrier across which the compiler will
not schedule any data access instruction. The
compiler may allocate local data in registers across
a memory barrier, but not global data.

void __ssm(int mask) Sets the system mask. Maps to the ssm imm24
instruction.

void __rsm(int mask) Resets the system mask bits of PSR. Maps to the
rsm imm24 instruction.

Reference

349

Conversion Intrinsics

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Description

__int64 _m_to_int64(__m64 a) Convert a of type __m64 to type
__int64. Translates to nop since both
types reside in the same register on
Itanium-based systems.

__m64 _m_from_int64(__int64 a) Convert a of type __int64 to type
__m64. Translates to nop since both types
reside in the same register on Itanium-
based systems.

__int64
__round_double_to_int64(double
d)

Convert its double precision argument to a
signed integer.

unsigned __int64
__getf_exp(double d)

Map the getf.exp instruction and return
the 16-bit exponent and the sign of its
operand.

Register Names for getReg() and setReg()

The prototypes for getReg() and setReg() intrinsics are in the ia64regs.h header file.

Name whichReg

_IA64_REG_IP 1016

_IA64_REG_PSR 1019

_IA64_REG_PSR_L 1019

General Integer Registers

Name whichReg

_IA64_REG_GP 1025

_IA64_REG_SP 1036

_IA64_REG_TP 1037

Intel® C++ Compiler for Linux* Systems User's Guide

350

Application Registers

Name whichReg

_IA64_REG_AR_KR0 3072

_IA64_REG_AR_KR1 3073

_IA64_REG_AR_KR2 3074

_IA64_REG_AR_KR3 3075

_IA64_REG_AR_KR4 3076

_IA64_REG_AR_KR5 3077

_IA64_REG_AR_KR6 3078

_IA64_REG_AR_KR7 3079

_IA64_REG_AR_RSC 3088

_IA64_REG_AR_BSP 3089

_IA64_REG_AR_BSPSTORE 3090

_IA64_REG_AR_RNAT 3091

_IA64_REG_AR_FCR 3093

_IA64_REG_AR_EFLAG 3096

_IA64_REG_AR_CSD 3097

_IA64_REG_AR_SSD 3098

_IA64_REG_AR_CFLAG 3099

_IA64_REG_AR_FSR 3100

_IA64_REG_AR_FIR 3101

_IA64_REG_AR_FDR 3102

_IA64_REG_AR_CCV 3104

_IA64_REG_AR_UNAT 3108

_IA64_REG_AR_FPSR 3112

_IA64_REG_AR_ITC 3116

_IA64_REG_AR_PFS 3136

_IA64_REG_AR_LC 3137

_IA64_REG_AR_EC 3138

Reference

351

Control Registers

Name whichReg

_IA64_REG_CR_DCR 4096

_IA64_REG_CR_ITM 4097

_IA64_REG_CR_IVA 4098

_IA64_REG_CR_PTA 4104

_IA64_REG_CR_IPSR 4112

_IA64_REG_CR_ISR 4113

_IA64_REG_CR_IIP 4115

_IA64_REG_CR_IFA 4116

_IA64_REG_CR_ITIR 4117

_IA64_REG_CR_IIPA 4118

_IA64_REG_CR_IFS 4119

_IA64_REG_CR_IIM 4120

_IA64_REG_CR_IHA 4121

_IA64_REG_CR_LID 4160

_IA64_REG_CR_IVR 4161 *

_IA64_REG_CR_TPR 4162

_IA64_REG_CR_EOI 4163

_IA64_REG_CR_IRR0 4164 *

_IA64_REG_CR_IRR1 4165 *

_IA64_REG_CR_IRR2 4166 *

_IA64_REG_CR_IRR3 4167 *

_IA64_REG_CR_ITV 4168

_IA64_REG_CR_PMV 4169

_IA64_REG_CR_CMCV 4170

_IA64_REG_CR_LRR0 4176

_IA64_REG_CR_LRR1 4177

* getReg only

Intel® C++ Compiler for Linux* Systems User's Guide

352

Indirect Registers for getIndReg() and setIndReg()

Name whichReg

_IA64_REG_INDR_CPUID 9000 *

_IA64_REG_INDR_DBR 9001

_IA64_REG_INDR_IBR 9002

_IA64_REG_INDR_PKR 9003

_IA64_REG_INDR_PMC 9004

_IA64_REG_INDR_PMD 9005

_IA64_REG_INDR_RR 9006

_IA64_REG_INDR_RESERVED 9007

* getIndReg only

Multimedia Additions

The prototypes for these intrinsics are in the ia64intrin.h header file.

Intrinsic Corresponding Instruction

__int64 _m64_czx1l(__m64 a) czx1.l (Compute Zero Index)

__int64 _m64_czx1r(__m64 a) czx1.r (Compute Zero Index)

__int64 _m64_czx2l(__m64 a) czx2.l (Compute Zero Index)

__int64 _m64_czx2r(__m64 a) czx2.r (Compute Zero Index)

__m64 _m64_mix1l(__m64 a, __m64 b) mix1.l (Mix)

__m64 _m64_mix1r(__m64 a, __m64 b) mix1.r (Mix)

__m64 _m64_mix2l(__m64 a, __m64 b) mix2.l (Mix)

__m64 _m64_mix2r(__m64 a, __m64 b) mix2.r (Mix)

__m64 _m64_mix4l(__m64 a, __m64 b) mix4.l (Mix)

__m64 _m64_mix4r(__m64 a, __m64 b) mix4.r (Mix)

__m64 _m64_mux1(__m64 a, const int n) mux1 (Mux)

__m64 _m64_mux2(__m64 a, const int n) mux2 (Mux)

__m64 _m64_padd1uus(__m64 a, __m64 b) padd1.uus (Parallel add)

__m64 _m64_padd2uus(__m64 a, __m64 b) padd2.uus (Parallel add)

__m64 _m64_pavg1_nraz(__m64 a, __m64 b) pavg1 (Parallel average)

Reference

353

Intrinsic Corresponding Instruction

__m64 _m64_pavg2_nraz(__m64 a, __m64 b) pavg2 (Parallel average)

__m64 _m64_pavgsub1(__m64 a, __m64 b) pavgsub1 (Parallel average
subtract)

__m64 _m64_pavgsub2(__m64 a, __m64 b) pavgsub2 (Parallel average
subtract)

__m64 _m64_pmpy2r(__m64 a, __m64 b) pmpy2.r (Parallel multiply)

__m64 _m64_pmpy2l(__m64 a, __m64 b) pmpy2.l (Parallel multiply)

__m64 _m64_pmpyshr2(__m64 a, __m64 b,
const int count)

pmpyshr2 (Parallel multiply
and shift right)

__m64 _m64_pmpyshr2u(__m64 a, __m64 b,
const int count)

pmpyshr2.u (Parallel multiply
and shift right)

__m64 _m64_pshladd2(__m64 a, const int
count, __m64 b)

pshladd2 (Parallel shift left
and add)

__m64 _m64_pshradd2(__m64 a, const int
count, __m64 b)

pshradd2 (Parallel shift right
and add)

__m64 _m64_psub1uus(__m64 a, __m64 b) psub1.uus (Parallel subtract)

__m64 _m64_psub2uus(__m64 a, __m64 b) psub2.uus (Parallel subtract)

__int64 _m64_czx1l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least significant
element, and the index of the first zero element is returned. The element width is 8 bits, so the range of the
result is from 0 - 7. If no zero element is found, the default result is 8.

__int64 _m64_czx1r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most significant
element, and the index of the first zero element is returned. The element width is 8 bits, so the range of the
result is from 0 - 7. If no zero element is found, the default result is 8.

__int64 _m64_czx2l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least significant
element, and the index of the first zero element is returned. The element width is 16 bits, so the range of the
result is from 0 - 3. If no zero element is found, the default result is 4.

__int64 _m64_czx2r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most significant
element, and the index of the first zero element is returned. The element width is 16 bits, so the range of the
result is from 0 - 3. If no zero element is found, the default result is 4.

Intel® C++ Compiler for Linux* Systems User's Guide

354

__m64 _m64_mix1l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as shown in Figure 1, and return
the result.

__m64 _m64_mix1r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as shown in Figure 2, and
return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as shown in Figure 3, and return
the result.

__m64 _m64_mix2r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as shown in Figure 4, and
return the result.

__m64 _m64_mix4l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as shown in Figure 5, and return
the result.

Reference

355

__m64 _m64_mix4r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as shown in Figure 6, and
return the result.

__m64 _m64_mux1(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and the result is returned.
Table 1 shows the possible values of n.

Intel® C++ Compiler for Linux* Systems User's Guide

356

Values of n for m64_mux1 Operation

 n

@brcst 0

@mix 8

@shuf 9

@alt 0xA

@rev 0xB

__m64 _m64_mux2(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and the result is returned.

__m64 _m64_pavgsub1(__m64 a, __m64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data elements (bytes) of a and
the results of the subtraction are then each independently shifted to the right by one position. The high-
order bits of each element are filled with the borrow bits of the subtraction.

__m64 _m64_pavgsub2(__m64 a, __m64 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned data elements (double
bytes) of a and the results of the subtraction are then each independently shifted to the right by one
position. The high-order bits of each element are filled with the borrow bits of the subtraction.

__m64 _m64_pmpy2l(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the most significant data element, are multiplied by the
corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned as shown in
Figure 9.

Reference

357

__m64 _m64_pmpy2r(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the least significant data element, are multiplied by the
corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned as shown in
Figure 10.

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed 16-bit data elements
of b, yielding four 32-bit products. Each product is then shifted to the right count bits and the least
significant 16 bits of each shifted product form 4 16-bit results, which are returned as one 64-bit word.

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding unsigned 16-bit data
elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits and the
least significant 16 bits of each shifted product form 4 16-bit results, which are returned as one 64-bit word.

__m64 _m64_pshladd2(__m64 a, const int count, __m64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the result are forced to 0,
and then bits [31:30] of b are copied to bits [62:61] of the result. The result is returned.

__m64 _m64_pshradd2(__m64 a, const int count, __m64 b)

The four signed 16-bit data elements of a are each independently shifted to the right by count bits (the
high order bits of each element are filled with the initial value of the sign bits of the data elements in a);
they are then added to the four signed 16-bit data elements of b. The result is returned.

Intel® C++ Compiler for Linux* Systems User's Guide

358

__m64 _m64_padd1uus(__m64 a, __m64 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated as unsigned, while the
elements of b are treated as signed. The results are treated as unsigned and are returned as one 64-bit word.

__m64 _m64_padd2uus(__m64 a, __m64 b)

a is added to b as four separate 16-bit wide elements. The elements of a are treated as unsigned, while the
elements of b are treated as signed. The results are treated as unsigned and are returned as one 64-bit word.

__m64 _m64_psub1uus(__m64 a, __m64 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are returned as one
64-bit word.

__m64 _m64_psub2uus(__m64 a, __m64 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are returned as one
64-bit word.

__m64 _m64_pavg1_nraz(__m64 a, __m64 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide data elements of b and the
results of each add are then independently shifted to the right by one position. The high-order bits of each
element are filled with the carry bits of the sums.

__m64 _m64_pavg2_nraz(__m64 a, __m64 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide data elements of b and
the results of each add are then independently shifted to the right by one position. The high-order bits of
each element are filled with the carry bits of the sums.

Synchronization Primitives

The synchronization primitive intrinsics provide a variety of operations. Besides performing these
operations, each intrinsic has two key properties:

• the function performed is guaranteed to be atomic
• associated with each intrinsic are certain memory barrier properties that restrict the movement of memory

references to visible data across the intrinsic operation by either the compiler or the processor

For the following intrinsics, <type> is either a 32-bit or 64-bit integer.

Atomic Fetch-and-op Operations

<type> __sync_fetch_and_add(<type> *ptr,<type> val)
<type> __sync_fetch_and_and(<type> *ptr,<type> val)
<type> __sync_fetch_and_nand(<type> *ptr,<type> val)
<type> __sync_fetch_and_or(<type> *ptr,<type> val)
<type> __sync_fetch_and_sub(<type> *ptr,<type> val)
<type> __sync_fetch_and_xor(<type> *ptr,<type> val)

Reference

359

Atomic Op-and-fetch Operations

<type> __sync_add_and_fetch(<type> *ptr,<type> val)
<type> __sync_sub_and_fetch(<type> *ptr,<type> val)
<type> __sync_or_and_fetch(<type> *ptr,<type> val)
<type> __sync_and_and_fetch(<type> *ptr,<type> val)
<type> __sync_nand_and_fetch(<type> *ptr,<type> val)
<type> __sync_xor_and_fetch(<type> *ptr,<type> val)

Atomic Compare-and-swap Operations

<type> __sync_val_compare_and_swap(<type> *ptr, <type> old_val, <type>
new_val)
int __sync_bool_compare_and_swap(<type> *ptr, <type> old_val, <type>
new_val)

Atomic Synchronize Operation

void __sync_synchronize (void);

Atomic Lock-test-and-set Operation

<type> __sync_lock_test_and_set(<type> *ptr,<type> val)

Atomic Lock-release Operation

void __sync_lock_release(<type> *ptr)

Miscellaneous Intrinsics

void* __get_return_address(unsigned int level);

This intrinsic yields the return address of the current function. The level argument must be a constant
value. A value of 0 yields the return address of the current function. Any other value yields a zero return
address. On Linux systems, this intrinsic is synonymous with __builtin_return_address. The
name and the argument are provided for compatibility with gcc*.

void __set_return_address(void* addr);

This intrinsic overwrites the default return address of the current function with the address indicated by its
argument. On return from the current invocation, program execution continues at the address provided.

void* __get_frame_address(unsigned int level);

This intrinsic returns the frame address of the current function. The level argument must be a constant
value. A value of 0 yields the frame address of the current function. Any other value yields a zero return
value. On Linux systems, this intrinsic is synonymous with __builtin_frame_address. The name
and the argument are provided for compatibility with gcc.

Intel® C++ Compiler for Linux* Systems User's Guide

360

Data Alignment, Memory Allocation Intrinsics, and Inline Assembly

This section describes features that support usage of the intrinsics. The following topics are described:

• Alignment Support
• Allocating and Freeing Aligned Memory Blocks

Alignment Support

To improve intrinsics performance, you need to align data. For example, when you are using the Streaming
SIMD Extensions, you should align data to 16 bytes in memory operations to improve performance.
Specifically, you must align __m128 objects as addresses passed to the _mm_load and _mm_store
intrinsics. If you want to declare arrays of floats and treat them as __m128 objects by casting, you need to
ensure that the float arrays are properly aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it otherwise does on
both IA-32 and Itanium®-based systems. For example, a data object of type int is allocated at a byte
address which is a multiple of 4 by default (the size of an int). However, by using
__declspec(align), you can direct the compiler to instead use an address which is a multiple of 8,
16, or 32 with the following restrictions on IA-32:

• 32-byte addresses must be statically allocated
• 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering
small objects that are commonly used together into a struct, and forcing the struct to be allocated at
the beginning of a cache line, you can effectively guarantee that each object is loaded into the cache as
soon as any one is accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:

align(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested alignment.

Caution

In this release, __declspec(align(8)) does not function correctly. Use
__declspec(align(16)) instead.

Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In other
words, data is aligned to the maximum of its own alignment or the alignment specified with
__declspec(align).

You can request alignments for individual variables, whether of static or automatic storage duration.
(Global and static variables have static storage duration; local variables have automatic storage duration by
default.) You cannot adjust the alignment of a parameter, nor a field of a struct or class. You can,
however, increase the alignment of a struct (or union or class), in which case every object of that
type is affected.

Reference

361

As an example, suppose that a function uses local variables i and j as subscripts into a 2-dimensional
array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache lines, which could be
detrimental to performance. You can instead declare them as follows:

__declspec(align(8)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the struct
variable name (written as sub in the previous example). In C, however, it is required, and you must write
references to i and j as sub.i and sub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a struct
type for them, as in the following example:

typedef struct __declspec(align(8)) { int i, j; } Sub;

By placing the __declspec(align) after the keyword struct, you are requesting the appropriate
alignment for all objects of that type. However, that allocation of parameters is unaffected by
__declspec(align). (If necessary, you can assign the value of a parameter to a local variable with the
appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks

Use the _mm_malloc and _mm_free intrinsics to allocate and free aligned blocks of memory. These
intrinsics are based on malloc and free, which are in the libirc.a library. You need to include
malloc.h. The syntax for these intrinsics is as follows:

void* _mm_malloc (int size, int align)

void _mm_free (void *p)

The _mm_malloc routine takes an extra parameter, which is the alignment constraint. This constraint
must be a power of two. The pointer that is returned from _mm_malloc is guaranteed to be aligned on the
specified boundary.

Note

Memory that is allocated using _mm_malloc must be freed using _mm_free . Calling free on
memory allocated with _mm_malloc or calling _mm_free on memory allocated with malloc will
cause unpredictable behavior.

Intel® C++ Compiler for Linux* Systems User's Guide

362

Inline Assembly

By default, the compiler inlines a number of standard C, C++, and math library functions. This usually
results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library functions
do not set the errno variable. So, in code that relies upon the setting of the errno variable, you should
use the -nolib_inline option, which turns off inline expansion of library functions. Also, if one of
your functions has the same name as one of the compiler's supplied library functions, the compiler assumes
that it is one of the latter and replaces the call with the inlined version. Consequently, if the program
defines a function with the same name as one of the known library routines, you must use the -
nolib_inline option to ensure that the program's function is the one used.

Note

Automatic inline expansion of library functions is not related to the inline expansion that the compiler does
during interprocedural optimizations. For example, the following command compiles the program sum.c
without expanding the library functions, but with inline expansion from interprocedural optimizations
(IPO):

prompt>icpc -ip -nolib_inline sum.cpp

For details on IPO, see Interprocedural Optimizations.

MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the -use_msasm option. See your
MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly (IA-32 only)

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]) ;

Caution

Under the -use_msasm compilation flag, Gnu asm aliases will only work if you use the __asm__
keyword, they will not work correctly if you use the alternate __asm or asm keywords.

Syntax Element Description

asm-keyword asm statements begin with the keyword asm. Alternatively, either
__asm or __asm__ may be used for compatibility. See Caution
statement.

volatile-keyword If the optional keyword volatile is given, the asm is volatile.
 Two volatile asm statements will never be moved past each
other, and a reference to a volatile variable will not be moved
relative to a volatile asm. Alternate keywords __volatile and
__volatile__ may be used for compatibility.

Reference

363

Syntax Element Description

asm-template The asm-template is a C language ASCII string which specifies
how to output the assembly code for an instruction. Most of the
template is a fixed string; everything but the substitution-directives,
if any, is passed through to the assembler. The syntax for a
substitution directive is a % followed by one or two characters. The
supported substitution directives are specified in a subsequent
section.

asm-interface The asm-interface consists of three parts:
1. an optional output-list
2. an optional input-list
3. an optional clobber-list
These are separated by colon (:) characters. If the output-list
is missing, but an input-list is given, the input list may be
preceded by two colons (::)to take the place of the missing
output-list. If the asm-interface is omitted altogether,
the asm statement is considered volatile regardless of whether a
volatile-keyword was specified.

output-list An output-list consists of one or more output-specs
separated by commas. For the purposes of substitution in the asm-
template, each output-spec is numbered. The first operand
in the output-list is numbered 0, the second is 1, and so on.
 Numbering is continuous through the output-list and into the
input-list. The total number of operands is limited to 10 (i.e.
0-9).

input-list Similar to an output-list, an input-list consists of one or
more input-specs separated by commas. For the purposes of
substitution in the asm-template, each input-spec is
numbered, with the numbers continuing from those in the output-
list.

clobber-list A clobber-list tells the compiler that the asm uses or changes
a specific machine register that is either coded directly into the asm
or is changed implicitly by the assembly instruction. The
clobber-list is a comma-separated list of clobber-specs.

input-spec The input-specs tell the compiler about expressions whose
values may be needed by the inserted assembly instruction. In order
to describe fully the input requirements of the asm, you can list
input-specs that are not actually referenced in the asm-
template.

clobber-spec Each clobber-spec specifies the name of a single machine
register that is clobbered. The register name may optionally be
preceded by a %. The following are the valid register names: eax,
ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di, bp, sp, al, bl, cl,
dl, ah, bh, ch, dh, st, st(1) - st(7), mm0 - mm7, xmm0 - xmm7, and
cc. It is also legal to specify "memory" in a clobber-spec. This
prevents the compiler from keeping data cached in registers across
the asm statement.

Intel® C++ Compiler for Linux* Systems User's Guide

364

Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across architectures. Before
implementing intrinsics across architectures, please note the following.

• Instrinsics may generate code that does not run on all IA processors. Therefore the programmer is
responsible for using CPUID to detect the processor and generating the appropriate code.

• Implement intrinsics by processor family, not by specific processor. The guiding principle for which
family -- IA-32 or Itanium® processors -- the intrinsic is implemented on is performance, not
compatibility. Where there is added performance on both families, the intrinsic will be identical.

Intrinsics For Implementation Across All IA

The following intrinsics provide significant performance gain over a non-intrinsic-based code equivalent.

int abs(int)

long labs(long)

unsigned long __lrotl(unsigned long value, int shift)

unsigned long __lrotr(unsigned long value, int shift)

unsigned int __rotl(unsigned int value, int shift)

unsigned int __rotr(unsigned int value, int shift)

__int64 __i64_rotl(__int64 value, int shift)

__int64 __i64_rotr(__int64 value, int shift)

double fabs(double)

double log(double)

float logf(float)

double log10(double)

float log10f(float)

double exp(double)

float expf(float)

double pow(double, double)

float powf(float, float)

double sin(double)

float sinf(float)

double cos(double)

float cosf(float)

double tan(double)

float tanf(float)

Reference

365

double acos(double)

float acosf(float)

double acosh(double)

float acoshf(float)

double asin(double)

float asinf(float)

double asinh(double)

float asinhf(float)

double atan(double)

float atanf(float)

double atanh(double)

float atanhf(float)

float cabs(double)*

double ceil(double)

float ceilf(float)

double cosh(double)

float coshf(float)

float fabsf(float)

double floor(double)

float floorf(float)

double fmod(double)

float fmodf(float)

double hypot(double, double)

float hypotf(float)

double rint(double)

float rintf(float)

double sinh(double)

float sinhf(float)

float sqrtf(float)

double tanh(double)

float tanhf(float)

char *_strset(char *, _int32)

void *memcmp(const void *cs, const void *ct, size_t n)

void *memcpy(void *s, const void *ct, size_t n)

Intel® C++ Compiler for Linux* Systems User's Guide

366

void *memset(void * s, int c, size_t n)

char *Strcat(char * s, const char * ct)

int *strcmp(const char *, const char *)

char *strcpy(char * s, const char * ct)

size_t strlen(const char * cs)

int strncmp(char *, char *, int)

int strncpy(char *, char *, int)

void *__alloca(int)

int _setjmp(jmp_buf)

_exception_code(void)

_exception_info(void)

_abnormal_termination(void)

void _enable()

void _disable()

int _bswap(int)

int _in_byte(int)

int _in_dword(int)

int _in_word(int)

int _inp(int)

int _inpd(int)

int _inpw(int)

int _out_byte(int, int)

int _out_dword(int, int)

int _out_word(int, int)

int _outp(int, int)

int _outpd(int, int)

int _outpw(int, int)

Reference

367

MMX(TM) Technology Intrinsics Implementation

Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based code equivalent.
• B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map directly

to native instructions, but they offer no significant performance gain.
• C = Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Intrinsic Name Alternate Name Across
All IA

MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_m_empty _mm_empty N/A A B

_m_from_int _mm_cvtsi32_si64 N/A A A

_m_to_int _mm_cvtsi64_si32 N/A A A

_m_packsswb _mm_packs_pi16 N/A A A

_m_packssdw _mm_packs_pi32 N/A A A

_m_packuswb _mm_packs_pu16 N/A A A

_m_punpckhbw _mm_unpackhi_pi8 N/A A A

_m_punpckhwd _mm_unpackhi_pi16 N/A A A

_m_punpckhdq _mm_unpackhi_pi32 N/A A A

_m_punpcklbw _mm_unpacklo_pi8 N/A A A

_m_punpcklwd _mm_unpacklo_pi16 N/A A A

_m_punpckldq _mm_unpacklo_pi32 N/A A A

_m_paddb _mm_add_pi8 N/A A A

_m_paddw _mm_add_pi16 N/A A A

_m_paddd _mm_add_pi32 N/A A A

_m_paddsb _mm_adds_pi8 N/A A A

_m_paddsw _mm_adds_pi16 N/A A A

_m_paddusb _mm_adds_pu8 N/A A A

Intel® C++ Compiler for Linux* Systems User's Guide

368

_m_paddusw _mm_adds_pu16 N/A A A

_m_psubb _mm_sub_pi8 N/A A A

_m_psubw _mm_sub_pi16 N/A A A

_m_psubd _mm_sub_pi32 N/A A A

_m_psubsb _mm_subs_pi8 N/A A A

_m_psubsw _mm_subs_pi16 N/A A A

_m_psubusb _mm_subs_pu8 N/A A A

_m_psubusw _mm_subs_pu16 N/A A A

_m_pmaddwd _mm_madd_pi16 N/A A C

_m_pmulhw _mm_mulhi_pi16 N/A A A

_m_pmullw _mm_mullo_pi16 N/A A A

_m_psllw _mm_sll_pi16 N/A A A

_m_psllwi _mm_slli_pi16 N/A A A

_m_pslld _mm_sll_pi32 N/A A A

_m_pslldi _mm_slli_pi32 N/A A A

_m_psllq _mm_sll_si64 N/A A A

_m_psllqi _mm_slli_si64 N/A A A

_m_psraw _mm_sra_pi16 N/A A A

_m_psrawi _mm_srai_pi16 N/A A A

_m_psrad _mm_sra_pi32 N/A A A

_m_psradi _mm_srai_pi32 N/A A A

_m_psrlw _mm_srl_pi16 N/A A A

_m_psrlwi _mm_srli_pi16 N/A A A

_m_psrld _mm_srl_pi32 N/A A A

_m_psrldi _mm_srli_pi32 N/A A A

_m_psrlq _mm_srl_si64 N/A A A

_m_psrlqi _mm_srli_si64 N/A A A

_m_pand _mm_and_si64 N/A A A

_m_pandn _mm_andnot_si64 N/A A A

_m_por _mm_or_si64 N/A A A

_m_pxor _mm_xor_si64 N/A A A

Reference

369

_m_pcmpeqb _mm_cmpeq_pi8 N/A A A

_m_pcmpeqw _mm_cmpeq_pi16 N/A A A

_m_pcmpeqd _mm_cmpeq_pi32 N/A A A

_m_pcmpgtb _mm_cmpgt_pi8 N/A A A

_m_pcmpgtw _mm_cmpgt_pi16 N/A A A

_m_pcmpgtd _mm_cmpgt_pi32 N/A A A

mm setzero si64 N/A A A

_mm_set_pi32 N/A A A

_mm_set_pi16 N/A A C

_mm_set_pi8 N/A A C

_mm_set1_pi32 N/A A A

_mm_set1_pi16 N/A A A

_mm_set1_pi8 N/A A A

_mm_setr_pi32 N/A A A

_mm_setr_pi16 N/A A C

_mm_setr_pi8 N/A A C

_mm_empty is implemented in Itanium instructions as a NOP for source compatibility only.

Intel® C++ Compiler for Linux* Systems User's Guide

370

Streaming SIMD Extensions Intrinsics Implementation

Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On Itanium®-
based systems basic operations like add or compare will require two SIMD instructions. Both can be
executed in the same cycle so the throughput is one basic Streaming SIMD Extensions operation per cycle
or 4 32-bit single precision operations per cycle.

Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based code equivalent.
• B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map directly

to native instructions but they offer no significant performance gain.
• C = Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_add_ss N/A N/A B B

_mm_add_ps N/A N/A A A

_mm_sub_ss N/A N/A B B

_mm_sub_ps N/A N/A A A

_mm_mul_ss N/A N/A B B

_mm_mul_ps N/A N/A A A

_mm_div_ss N/A N/A B B

_mm_div_ps N/A N/A A A

_mm_sqrt_ss N/A N/A B B

_mm_sqrt_ps N/A N/A A A

_mm_rcp_ss N/A N/A B B

_mm_rcp_ps N/A N/A A A

_mm_rsqrt_ss N/A N/A B B

_mm_rsqrt_ps N/A N/A A A

_mm_min_ss N/A N/A B B

_mm_min_ps N/A N/A A A

_mm_max_ss N/A N/A B B

Reference

371

_mm_max_ps N/A N/A A A

_mm_and_ps N/A N/A A A

_mm_andnot_ps N/A N/A A A

_mm_or_ps N/A N/A A A

_mm_xor_ps N/A N/A A A

_mm_cmpeq_ss N/A N/A B B

_mm_cmpeq_ps N/A N/A A A

_mm_cmplt_ss N/A N/A B B

_mm_cmplt_ps N/A N/A A A

_mm_cmple_ss N/A N/A B B

_mm_cmple_ps N/A N/A A A

_mm_cmpgt_ss N/A N/A B B

_mm_cmpgt_ps N/A N/A A A

_mm_cmpge_ss N/A N/A B B

_mm_cmpge_ps N/A N/A A A

_mm_cmpneq_ss N/A N/A B B

_mm_cmpneq_ps N/A N/A A A

_mm_cmpnlt_ss N/A N/A B B

_mm_cmpnlt_ps N/A N/A A A

_mm_cmpnle_ss N/A N/A B B

_mm_cmpnle_ps N/A N/A A A

_mm_cmpngt_ss N/A N/A B B

_mm_cmpngt_ps N/A N/A A A

_mm_cmpnge_ss N/A N/A B B

_mm_cmpnge_ps N/A N/A A A

_mm_cmpord_ss N/A N/A B B

_mm_cmpord_ps N/A N/A A A

_mm_cmpunord_ss N/A N/A B B

_mm_cmpunord_ps N/A N/A A A

_mm_comieq_ss N/A N/A B B

_mm_comilt_ss N/A N/A B B

Intel® C++ Compiler for Linux* Systems User's Guide

372

_mm_comile_ss N/A N/A B B

_mm_comigt_ss N/A N/A B B

_mm_comige_ss N/A N/A B B

_mm_comineq_ss N/A N/A B B

_mm_ucomieq_ss N/A N/A B B

_mm_ucomilt_ss N/A N/A B B

_mm_ucomile_ss N/A N/A B B

_mm_ucomigt_ss N/A N/A B B

_mm_ucomige_ss N/A N/A B B

_mm_ucomineq_ss N/A N/A B B

_mm_cvt_ss2si _mm_cvtss_si32 N/A N/A A B

_mm_cvt_ps2pi _mm_cvtps_pi32 N/A N/A A A

_mm_cvtt_ss2si _mm_cvttss_si32 N/A N/A A B

_mm_cvtt_ps2pi _mm_cvttps_pi32 N/A N/A A A

_mm_cvt_si2ss _mm_cvtsi32_ss N/A N/A A B

_mm_cvt_pi2ps _mm_cvtpi32_ps N/A N/A A C

_mm_cvtpi16_ps N/A N/A A C

_mm_cvtpu16_ps N/A N/A A C

_mm_cvtpi8_ps N/A N/A A C

_mm_cvtpu8_ps N/A N/A A C

_mm_cvtpi32x2_ps N/A N/A A C

_mm_cvtps_pi16 N/A N/A A C

_mm_cvtps_pi8 N/A N/A A C

_mm_move_ss N/A N/A A A

_mm_shuffle_ps N/A N/A A A

_mm_unpackhi_ps N/A N/A A A

_mm_unpacklo_ps N/A N/A A A

_mm_movehl_ps N/A N/A A A

_mm_movelh_ps N/A N/A A A

_mm_movemask_ps N/A N/A A C

_mm_getcsr N/A N/A A A

Reference

373

_mm_setcsr N/A N/A A A

_mm_loadh_pi N/A N/A A A

_mm_loadl_pi N/A N/A A A

_mm_load_ss N/A N/A A B

_mm_load_ps1 _mm_load1_ps N/A N/A A A

_mm_load_ps N/A N/A A A

_mm_loadu_ps N/A N/A A A

_mm_loadr_ps N/A N/A A A

_mm_storeh_pi N/A N/A A A

_mm_storel_pi N/A N/A A A

_mm_store_ss N/A N/A A A

_mm_store_ps N/A N/A A A

_mm_store_ps1 _mm_store1_ps N/A N/A A A

_mm_storeu_ps N/A N/A A A

_mm_storer_ps N/A N/A A A

_mm_set_ss N/A N/A A A

_mm_set_ps1 _mm_set1_ps N/A N/A A A

_mm_set_ps N/A N/A A A

_mm_setr_ps N/A N/A A A

_mm_setzero_ps N/A N/A A A

_mm_prefetch N/A N/A A A

_mm_stream_pi N/A N/A A A

_mm_stream_ps N/A N/A A A

_mm_sfence N/A N/A A A

_m_pextrw _mm_extract_pi16 N/A N/A A A

_m_pinsrw _mm_insert_pi16 N/A N/A A A

_m_pmaxsw _mm_max_pi16 N/A N/A A A

_m_pmaxub _mm_max_pu8 N/A N/A A A

_m_pminsw _mm_min_pi16 N/A N/A A A

_m_pminub _mm_min_pu8 N/A N/A A A

_m_pmovmskb _mm_movemask_pi8 N/A N/A A C

Intel® C++ Compiler for Linux* Systems User's Guide

374

_m_pmulhuw _mm_mulhi_pu16 N/A N/A A A

_m_pshufw _mm_shuffle_pi16 N/A N/A A A

_m_maskmovq _mm_maskmove_si64 N/A N/A A C

_m_pavgb _mm_avg_pu8 N/A N/A A A

_m_pavgw _mm_avg_pu16 N/A N/A A A

_m_psadbw _mm_sad_pu8 N/A N/A A A

Streaming SIMD Extensions 2 Intrinsics Implementation

Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-point
values. The Intel® Itanium® processor does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries

• A = Expected to give significant performance gain over non-intrinsic-based code equivalent.
• B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map directly

to native instructions, but they offer no significant performance gain.
• C = Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Intrinsic Across
All IA

MMX(TM)
Technology

Streaming
SIMD
Extenions

Streaming
SIMD
Extensions
2

Itanium®
Architecture

_mm_add_sd N/A N/A N/A A N/A

_mm_add_pd N/A N/A N/A A N/A

_mm_sub_sd N/A N/A N/A A N/A

_mm_sub_pd N/A N/A N/A A N/A

_mm_mul_sd N/A N/A N/A A N/A

_mm_mul_pd N/A N/A N/A A N/A

_mm_sqrt_sd N/A N/A N/A A N/A

_mm_sqrt_pd N/A N/A N/A A N/A

_mm_div_sd N/A N/A N/A A N/A

_mm_div_pd N/A N/A N/A A N/A

_mm_min_sd N/A N/A N/A A N/A

_mm_min_pd N/A N/A N/A A N/A

_mm_max_sd N/A N/A N/A A N/A

Reference

375

_mm_max_pd N/A N/A N/A A N/A

_mm_and_pd N/A N/A N/A A N/A

_mm_andnot_pd N/A N/A N/A A N/A

_mm_or_pd N/A N/A N/A A N/A

_mm_xor_pd N/A N/A N/A A N/A

_mm_cmpeq_sd N/A N/A N/A A N/A

_mm_cmpeq_pd N/A N/A N/A A N/A

_mm_cmplt_sd N/A N/A N/A A N/A

_mm_cmplt_pd N/A N/A N/A A N/A

_mm_cmple_sd N/A N/A N/A A N/A

_mm_cmple_pd N/A N/A N/A A N/A

_mm_cmpgt_sd N/A N/A N/A A N/A

_mm_cmpgt_pd N/A N/A N/A A N/A

_mm_cmpge_sd N/A N/A N/A A N/A

_mm_cmpge_pd N/A N/A N/A A N/A

_mm_cmpneq_sd N/A N/A N/A A N/A

_mm_cmpneq_pd N/A N/A N/A A N/A

_mm_cmpnlt_sd N/A N/A N/A A N/A

_mm_cmpnlt_pd N/A N/A N/A A N/A

_mm_cmpnle_sd N/A N/A N/A A N/A

_mm_cmpnle_pd N/A N/A N/A A N/A

_mm_cmpngt_sd N/A N/A N/A A N/A

_mm_cmpngt_pd N/A N/A N/A A N/A

_mm_cmpnge_sd N/A N/A N/A A N/A

_mm_cmpnge_pd N/A N/A N/A A N/A

_mm_cmpord_pd N/A N/A N/A A N/A

_mm_cmpord_sd N/A N/A N/A A N/A

_mm_cmpunord_pd N/A N/A N/A A N/A

_mm_cmpunord_sd N/A N/A N/A A N/A

_mm_comieq_sd N/A N/A N/A A N/A

_mm_comilt_sd N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

376

_mm_comile_sd N/A N/A N/A A N/A

_mm_comigt_sd N/A N/A N/A A N/A

_mm_comige_sd N/A N/A N/A A N/A

_mm_comineq_sd N/A N/A N/A A N/A

_mm_ucomieq_sd N/A N/A N/A A N/A

_mm_ucomilt_sd N/A N/A N/A A N/A

_mm_ucomile_sd N/A N/A N/A A N/A

_mm_ucomigt_sd N/A N/A N/A A N/A

_mm_ucomige_sd N/A N/A N/A A N/A

_mm_ucomineq_sd N/A N/A N/A A N/A

_mm_cvtepi32_pd N/A N/A N/A A N/A

_mm_cvtpd_epi32 N/A N/A N/A A N/A

_mm_cvttpd_epi32 N/A N/A N/A A N/A

_mm_cvtepi32_ps N/A N/A N/A A N/A

_mm_cvtps_epi32 N/A N/A N/A A N/A

_mm_cvttps_epi32 N/A N/A N/A A N/A

_mm_cvtpd_ps N/A N/A N/A A N/A

_mm_cvtps_pd N/A N/A N/A A N/A

_mm_cvtsd_ss N/A N/A N/A A N/A

_mm_cvtss_sd N/A N/A N/A A N/A

_mm_cvtsd_si32 N/A N/A N/A A N/A

_mm_cvttsd_si32 N/A N/A N/A A N/A

_mm_cvtsi32_sd N/A N/A N/A A N/A

_mm_cvtpd_pi32 N/A N/A N/A A N/A

_mm_cvttpd_pi32 N/A N/A N/A A N/A

_mm_cvtpi32_pd N/A N/A N/A A N/A

_mm_unpackhi_pd N/A N/A N/A A N/A

_mm_unpacklo_pd N/A N/A N/A A N/A

_mm_unpacklo_pd N/A N/A N/A A N/A

_mm_shuffle_pd N/A N/A N/A A N/A

_mm_load_pd N/A N/A N/A A N/A

Reference

377

_mm_load1_pd N/A N/A N/A A N/A

_mm_loadr_pd N/A N/A N/A A N/A

_mm_loadu_pd N/A N/A N/A A N/A

_mm_load_sd N/A N/A N/A A N/A

_mm_loadh_pd N/A N/A N/A A N/A

_mm_loadl_pd N/A N/A N/A A N/A

_mm_set_sd N/A N/A N/A A N/A

_mm_set1_pd N/A N/A N/A A N/A

_mm_set_pd N/A N/A N/A A N/A

_mm_setr_pd N/A N/A N/A A N/A

_mm_setzero_pd N/A N/A N/A A N/A

_mm_move_sd N/A N/A N/A A N/A

_mm_store_sd N/A N/A N/A A N/A

_mm_store1_pd N/A N/A N/A A N/A

_mm_store_pd N/A N/A N/A A N/A

_mm_storeu_pd N/A N/A N/A A N/A

_mm_storer_pd N/A N/A N/A A N/A

_mm_storeh_pd N/A N/A N/A A N/A

_mm_storel_pd N/A N/A N/A A N/A

_mm_add_epi8 N/A N/A N/A A N/A

_mm_add_epi16 N/A N/A N/A A N/A

_mm_add_epi32 N/A N/A N/A A N/A

_mm_add_si64 N/A N/A N/A A N/A

_mm_add_epi64 N/A N/A N/A A N/A

_mm_adds_epi8 N/A N/A N/A A N/A

_mm_adds_epi16 N/A N/A N/A A N/A

_mm_adds_epu8 N/A N/A N/A A N/A

_mm_adds_epu16 N/A N/A N/A A N/A

_mm_avg_epu8 N/A N/A N/A A N/A

_mm_avg_epu16 N/A N/A N/A A N/A

_mm_madd_epi16 N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

378

_mm_max_epi16 N/A N/A N/A A N/A

_mm_max_epu8 N/A N/A N/A A N/A

_mm_min_epi16 N/A N/A N/A A N/A

_mm_min_epu8 N/A N/A N/A A N/A

_mm_mulhi_epi16 N/A N/A N/A A N/A

_mm_mulhi_epu16 N/A N/A N/A A N/A

_mm_mullo_epi16 N/A N/A N/A A N/A

_mm_mul_su32 N/A N/A N/A A N/A

_mm_mul_epu32 N/A N/A N/A A N/A

_mm_sad_epu8 N/A N/A N/A A N/A

_mm_sub_epi8 N/A N/A N/A A N/A

_mm_sub_epi16 N/A N/A N/A A N/A

_mm_sub_epi32 N/A N/A N/A A N/A

_mm_sub_si64 N/A N/A N/A A N/A

_mm_sub_epi64 N/A N/A N/A A N/A

_mm_subs_epi8 N/A N/A N/A A N/A

_mm_subs_epi16 N/A N/A N/A A N/A

_mm_subs_epu8 N/A N/A N/A A N/A

_mm_subs_epu16 N/A N/A N/A A N/A

_mm_and_si128 N/A N/A N/A A N/A

_mm_andnot_si128 N/A N/A N/A A N/A

_mm_or_si128 N/A N/A N/A A N/A

_mm_xor_si128 N/A N/A N/A A N/A

_mm_slli_si128 N/A N/A N/A A N/A

_mm_slli_epi16 N/A N/A N/A A N/A

_mm_sll_epi16 N/A N/A N/A A N/A

_mm_slli_epi32 N/A N/A N/A A N/A

_mm_sll_epi32 N/A N/A N/A A N/A

_mm_slli_epi64 N/A N/A N/A A N/A

_mm_sll_epi64 N/A N/A N/A A N/A

_mm_srai_epi16 N/A N/A N/A A N/A

Reference

379

_mm_sra_epi16 N/A N/A N/A A N/A

_mm_srai_epi32 N/A N/A N/A A N/A

_mm_sra_epi32 N/A N/A N/A A N/A

_mm_srli_si128 N/A N/A N/A A N/A

_mm_srli_epi16 N/A N/A N/A A N/A

_mm_srl_epi16 N/A N/A N/A A N/A

_mm_srli_epi32 N/A N/A N/A A N/A

_mm_srl_epi32 N/A N/A N/A A N/A

_mm_srli_epi64 N/A N/A N/A A N/A

_mm_srl_epi64 N/A N/A N/A A N/A

_mm_cmpeq_epi8 N/A N/A N/A A N/A

_mm_cmpeq_epi16 N/A N/A N/A A N/A

_mm_cmpeq_epi32 N/A N/A N/A A N/A

_mm_cmpgt_epi8 N/A N/A N/A A N/A

_mm_cmpgt_epi16 N/A N/A N/A A N/A

_mm_cmpgt_epi32 N/A N/A N/A A N/A

_mm_cmplt_epi8 N/A N/A N/A A N/A

_mm_cmplt_epi16 N/A N/A N/A A N/A

_mm_cmplt_epi32 N/A N/A N/A A N/A

_mm_cvtsi32_si128 N/A N/A N/A A N/A

_mm_cvtsi128_si32 N/A N/A N/A A N/A

_mm_packs_epi16 N/A N/A N/A A N/A

_mm_packs_epi32 N/A N/A N/A A N/A

_mm_packus_epi16 N/A N/A N/A A N/A

_mm_extract_epi16 N/A N/A N/A A N/A

_mm_insert_epi16 N/A N/A N/A A N/A

_mm_movemask_epi8 N/A N/A N/A A N/A

_mm_shuffle_epi32 N/A N/A N/A A N/A

_mm_shufflehi_epi16 N/A N/A N/A A N/A

_mm_shufflelo_epi16 N/A N/A N/A A N/A

_mm_unpackhi_epi8 N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

380

_mm_unpackhi_epi16 N/A N/A N/A A N/A

_mm_unpackhi_epi32 N/A N/A N/A A N/A

_mm_unpackhi_epi64 N/A N/A N/A A N/A

_mm_unpacklo_epi8 N/A N/A N/A A N/A

_mm_unpacklo_epi16 N/A N/A N/A A N/A

_mm_unpacklo_epi32 N/A N/A N/A A N/A

_mm_unpacklo_epi64 N/A N/A N/A A N/A

_mm_move_epi64 N/A N/A N/A A N/A

_mm_movpi64_epi64 N/A N/A N/A A N/A

_mm_movepi64_pi64 N/A N/A N/A A N/A

_mm_load_si128 N/A N/A N/A A N/A

_mm_loadu_si128 N/A N/A N/A A N/A

_mm_loadl_epi64 N/A N/A N/A A N/A

_mm_set_epi64 N/A N/A N/A A N/A

_mm_set_epi32 N/A N/A N/A A N/A

_mm_set_epi16 N/A N/A N/A A N/A

_mm_set_epi8 N/A N/A N/A A N/A

_mm_set1_epi64 N/A N/A N/A A N/A

_mm_set1_epi32 N/A N/A N/A A N/A

_mm_set1_epi16 N/A N/A N/A A N/A

_mm_set1_epi8 N/A N/A N/A A N/A

_mm_setr_epi64 N/A N/A N/A A N/A

_mm_setr_epi32 N/A N/A N/A A N/A

_mm_setr_epi16 N/A N/A N/A A N/A

_mm_setr_epi8 N/A N/A N/A A N/A

_mm_setzero_si128 N/A N/A N/A A N/A

_mm_store_si128 N/A N/A N/A A N/A

_mm_storeu_si128 N/A N/A N/A A N/A

_mm_storel_epi64 N/A N/A N/A A N/A

_mm_maskmoveu_si128 N/A N/A N/A A N/A

_mm_stream_pd N/A N/A N/A A N/A

Reference

381

_mm_stream_si128 N/A N/A N/A A N/A

_mm_clflush N/A N/A N/A A N/A

_mm_lfence N/A N/A N/A A N/A

_mm_mfence N/A N/A N/A A N/A

_mm_stream_si32 N/A N/A N/A A N/A

_mm_pause N/A N/A N/A A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

382

Intel® C++ Class Libraries
The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle
of SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of
parallel processing is increased data throughput using fewer clock cycles. The objective is to improve
application performance of complex and computation-intensive audio, video, and graphical data bit
streams.

Hardware and Software Requirements

You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the class
libraries. The Intel® C++ Class Libraries are functions abstracted from the instruction extensions available
on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Header
File

Extension Set Available on These Processors

ivec.h MMX(TM)
technology

Pentium® with MMX technology, Pentium II, Pentium III,
Pentium 4, Intel® Xeon(TM), and Itanium® processors

fvec.h Streaming SIMD
Extensions

Pentium III, Pentium 4, Intel Xeon, and Itanium processors

dvec.h Streaming SIMD
Extensions 2

Pentium 4 and Intel Xeon processors

About the Classes

The Intel® C++ Class Libraries for SIMD Operations include:

• Integer vector (Ivec) classes
• Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: ivec.h, fvec.h, and dvec.h.
The classes themselves are not partitioned like this. The classes are named according to the underlying type
of operation. The header files are partitioned according to architecture:

• ivec.h is specific to architectures with MMX(TM) technology
• fvec.h is specific to architectures with Streaming SIMD Extensions
• dvec.h is specific to architectures with Streaming SIMD Extensions 2

Streaming SIMD Extensions 2 intrinsics cannot be used on Itanium®-based systems. The mmclass.h
header file includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel architecture, particularly code
that would benefit from the use of SIMD instructions. You should be familiar with C++ and the use of C++
classes.

Reference

383

Details About the Libraries

The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class Libraries.
These processor-instruction extensions enable parallel processing using the single instruction-multiple data
(SIMD) technique as illustrated in the following figure.

SIMD Data Flow

Performing four operations with a single instruction improves efficiency by a factor of four for that
particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++ SIMD
classes. Compare the coding required to add four 32-bit floating-point values, using each of the available
interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class
Libraries

... __m128 a,b,c;
__asm{ movaps xmm0,b
movaps xmm1,c addps
xmm0,xmm1 movaps a,
xmm0 } ...

#include <mmintrin.h>
... __m128 a,b,c; a =
_mm_add_ps(b,c); ...

#include
<fvec.h> ...
F32vec4 a,b,c;
a = b +c; ...

This table shows an addition of two single-precision floating-point values using assembly inlining,
intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class
Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the standard notation
in C++, making it much easier to implement over other methods.

C++ Classes and SIMD Operations

The use of C++ classes for SIMD operations is based on the concept of operating on arrays, or vectors of
data, in parallel. Consider the addition of two vectors, A and B, where each vector contains four elements.
Using the integer vector (Ivec) class, the elements A[i] and B[i] from each array are summed as
shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] *

Intel® C++ Compiler for Linux* Systems User's Guide

384

The following example shows the same results using one operation with Ivec Classes.

SIMD Method of Adding Elements Using Ivec Classes

sIs16vec4 ivecA, ivecB, ivec C; /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecC0, ivecC1, ivecC2, ivecC3 */

Available Classes

The Intel C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes and
libraries.

SIMD Vector Classes

Instruction Set Class Signedness Data
Type

Size Elements Header
File

MMX(TM)
technology
(available for
IA-32- and
Itanium®-based
systems)

I64vec1 unspecified __m64 64 1 ivec.h

 I32vec2 unspecified int 32 2 ivec.h

 Is32vec2 signed int 32 2 ivec.h

 Iu32vec2 unsigned int 32 2 ivec.h

 I16vec4 unspecified short 16 4 ivec.h

 Is16vec4 signed short 16 4 ivec.h

 Iu16vec4 unsigned short 16 4 ivec.h

 I8vec8 unspecified char 8 8 ivec.h

 Is8vec8 signed char 8 8 ivec.h

 Iu8vec8 unsigned char 8 8 ivec.h

Streaming SIMD
Extensions
(available for
IA-32 and
Itanium-based
systems)

F32vec4 signed float 32 4 fvec.h

 F32vec1 signed float 32 1 fvec.h

Streaming SIMD
Extensions 2
(available for
IA-32-based
systems only)

F64vec2 signed double 64 2 dvec.h

Reference

385

Instruction Set Class Signedness Data
Type

Size Elements Header
File

 I128vec1 unspecified __m128i 128 1 dvec.h

 I64vec2 unspecified long
int

64 4 dvec.h

 Is64vec2 signed long
int

64 4 dvec.h

 Iu64vec2 unsigned long
int

32 4 dvec.h

 I32vec4 unspecified int 32 4 dvec.h

 Is32vec4 signed int 32 4 dvec.h

 Iu32vec4 unsigned int 32 4 dvec.h

 I16vec8 unspecified int 16 8 dvec.h

 Is16vec8 signed int 16 8 dvec.h

 Iu16vec8 unsigned int 16 8 dvec.h

 I8vec16 unspecified char 8 16 dvec.h

 Is8vec16 signed char 8 16 dvec.h

 Iu8vec16 unsigned char 8 16 dvec.h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor
performance, and are therefore excluded from individual classes.

Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.
(For example, _mm_shuffle_ps, _mm_shuffle_pi16, _mm_extract_pi16,
_mm_insert_pi16).

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler. To
enable the classes, use the #include directive in your program file as shown in the table that follows.

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX Technology #include <ivec.h>

Streaming SIMD Extensions #include <fvec.h>

Streaming SIMD Extensions 2 #include <dvec.h>

Intel® C++ Compiler for Linux* Systems User's Guide

386

Each succeeding file from the top down includes the preceding class. You only need to include fvec.h if
you want to use both the Ivec and Fvec classes. Similarly, to use all the classes including those for the
Streaming SIMD Extensions 2, you need only to include the dvec.h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage rules for
each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix MMX instructions,
called by Ivec classes, with Intel x87 architecture floating-point instructions, called by Fvec classes.
Floating-point instructions exist in the following Fvec functions:

• fvec constructors
• debug functions (cout and element access)
• rsqrt_nr

Note

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with the
EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following example.

ivecA = ivecA & ivecB; Ivec logical operation that uses MMX instructions

empty (); clear state

cout << f32vec4a; F32vec4 operation that uses x87 floating-point instructions

Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an incorrect
register state.

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer to this
topic before coding with the Ivec classes.

Capabilities

The fundamental capabilities of each C++ SIMD class include:

• computation
• horizontal data motion
• branch compression/elimination
• caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Reference

387

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *, /, reciprocal (rcp and rcp_nr), square root (sqrt),
reciprocal square root (rsqrt and rsqrt_nr).

Operations rcp and rsqrt are new approximating instructions with very short latencies that produce
results with at least 12 bits of accuracy. Operations rcp_nr and rsqrt_nr use software refining
techniques to enhance the accuracy of the approximations, with a minimal impact on performance. (The
"nr" stands for Newton-Raphson, a mathematical technique for improving performance using an
approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term "horizontal"
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_horizontal, unpack_low and pack_sat functions are examples of horizontal data
support. This support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the
C++ classes due to their immediate arguments. However, the C++ class implementation enables you to mix
shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvecb;
fvecd = _mm_shuffle_ps(fveca,fvecb,0);

Typically every instruction with horizontal data flow contains some inefficiency in the implementation. If
possible, implement your algorithms without using the horizontal capabilities.

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate branches, using
logical operations, max and min functions, conditional selects, and compares. Consider the following
example:

short a[4], b[4], c[4];
for (i=0; i<4; i++)
c[i] = a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i. For each i, the result could be either A or B depending on
the actual values. A simple way of removing the branch altogether is to use the select_gt function, as
follows:

Is16vec4 a, b, c
c = select_gt(a, b, a, b)

Intel® C++ Compiler for Linux* Systems User's Guide

388

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize the
effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.
This results in higher performance for data that should be cached.

Integer Vector Classes

The Ivec classes provide an interface to SIMD processing using integer vectors of various sizes. The class
hierarchy is represented in the following figure.

Ivec Class Hierarchy

The M64 and M128 classes define the __m64 and __m128i data types from which the rest of the Ivec
classes are derived. The first generation of child classes are derived based solely on bit sizes of 128, 64, 32,
16, and 8 respectively for the I128vec1, I64vec1, 164vec2, I32vec2, I32vec4, I16vec4,
I16vec8, I8vec16, and I8vec8 classes. The latter seven of the these classes require specification of
signedness and saturation.

Caution

Do not intermix the M64 and M128 data types. You will get unexpected behavior if you do.

The signedness is indicated by the s and u in the class names:

Is64vec2
Iu64vec2
Is32vec4
Iu32vec4
Is16vec8
Iu16vec8
Is8vec16
Iu8vec16
Is32vec2
Iu32vec2
Is16vec4
Iu16vec4
Is8vec8
Iu8vec8

Reference

389

Terms, Conventions, and Syntax

The following are special terms and syntax used in this chapter to describe functionality of the classes with
respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the following
generic format:

<type><signedness><bits>vec<elements>

{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

where

type indicates floating point (F) or integer (I)

signedness indicates signed (s) or unsigned (u). For the Ivec class, leaving this field
blank indicates an intermediate class. There are no unsigned Fvec classes,
therefore for the Fvec classes, this field is blank.

bits specifies the number of bits per element

elements specifies the number of elements

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and operations
defined in this manual.

• Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the same
size. For example, the nearest common ancestor of Iu8vec8 and Is8vec8 is I8vec8. Also, the
nearest common ancestor between Iu8vec8 and I16vec4 is M64.

• Casting -- Changes the data type from one class to another. When an operation uses different data
types as operands, the return value of the operation must be assigned to a single data type. Therefore,
one or more of the data types must be converted to a required data type. This conversion is known as
a typecast. Sometimes, typecasting is automatic, other times you must use special syntax to explicitly
typecast it yourself.

• Operator Overloading -- This is the ability to use various operators on the same user-defined data
type of a given class. Once you declare a variable, you can add, subtract, multiply, and perform a
range of operations. Each family of classes accepts a specified range of operators, and must comply
by rules and restrictions regarding typecasting and operator overloading as defined in the header files.
The following table shows the notation used in this documention to address typecasting, operator
overloading, and other rules.

Intel® C++ Compiler for Linux* Systems User's Guide

390

Class Syntax Notation Conventions

Class Name Description

I[s|u][N]vec[N] Any value except I128vec1 nor I64vec1

I64vec1 __m64 data type

I[s|u]64vec2 two 64-bit values of any signedness

I[s|u]32vec4 four 32-bit values of any signedness

I[s|u]8vec16 eight 16-bit values of any signedness

I[s|u]16vec8 sixteen 8-bit values of any signedness

I[s|u]32vec2 two 32-bit values of any signedness

I[s|u]16vec4 four 16-bit values of any signedness

I[s|u]8vec8 eight 8-bit values of any signedness

Rules for Operators

To use operators with the Ivec classes you must use one of the following three syntax conventions:

[Ivec_Class] R = [Ivec_Class] A [operator][Ivec_Class] B

Example 1: I64vec1 R = I64vec1 A & I64vec1 B;

[Ivec_Class] R =[operator] ([Ivec_Class] A,[Ivec_Class] B)

Example 2: I64vec1 R = andnot(I64vec1 A, I64vec1 B);

[Ivec_Class] R [operator]= [Ivec_Class] A

Example 3: I64vec1 R &= I64vec1 A;

[operator]an operator (for example, &, |, or ^)

[Ivec_Class] an Ivec class

R, A, B variables declared using the pertinent Ivec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is
illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types
freely and the compiler will do the typecasting for you.

Reference

391

Summary of Rules Major Operators

Operators Sign
Typecasting

Size
Typecasting

Other Typecasting Requirements

Assignment N/A N/A N/A

Logical Automatic Automatic
(to left)

Explicit typecasting is required for
different types used in non-logical
expressions on the right side of the
assignment.

Addition and
Subtraction

Automatic Explicit N/A

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to ensure arithmetic
shift.

Compare Automatic Explicit Explicit casting is required for signed
classes for the less-than or greater-than
operations.

Conditional
Select

Automatic Explicit Explicit casting is required for signed
classes for less-than or greater-than
operations.

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization for all
class sizes. All values are initialized with the most significant element on the left and the least significant to
the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration M128 I128vec1 A; Iu8vec16 A;

Declaration M64 I64vec1 A; Iu8vec16 A;

__m128
Initialization

M128 I128vec1 A(__m128 m); Iu16vec8(__m128
m);

__m64
Initialization

M64 I64vec1 A(__m64 m);Iu8vec8 A(__m64 m);

__int64
Initialization

M64 I64vec1 A = __int64 m; Iu8vec8 A
=__int64 m;

int i
Initialization

M64 I64vec1 A = int i; Iu8vec8 A = int i;

Intel® C++ Compiler for Linux* Systems User's Guide

392

Operation Class Syntax

int initialization I32vec2 I32vec2 A(int A1, int A0);
Is32vec2 A(signed int A1, signed int
A0);
Iu32vec2 A(unsigned int A1, unsigned int
A0);

int Initialization I32vec4 I32vec4 A(short A3, short A2, short A1,
short A0);
Is32vec4 A(signed short A3, ..., signed
short A0);
Iu32vec4 A(unsigned short A3, ...,
unsigned short A0);

short int
Initialization

I16vec4 I16vec4 A(short A3, short A2, short A1,
short A0);
Is16vec4 A(signed short A3, ..., signed
short A0);
Iu16vec4 A(unsigned short A3, ...,
unsigned short A0);

short int
Initialization

I16vec8 I16vec8 A(short A7, short A6, ..., short
A1, short A0);
Is16vec8 A(signed A7, ..., signed short
A0);
Iu16vec8 A(unsigned short A7, ...,
unsigned short A0);

char
Initialization

I8vec8 I8vec8 A(char A7, char A6, ..., char A1,
char A0);
Is8vec8 A(signed char A7, ..., signed
char A0);
Iu8vec8 A(unsigned char A7, ...,
unsigned char A0);

char
Initialization

I8vec16 I8vec16 A(char A15, ..., char A0);
Is8vec16 A(signed char A15, ..., signed
char A0);
Iu8vec16 A(unsigned char A15, ...,
unsigned char A0);

Reference

393

Assignment Operator

Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one Ivec
object to another is automatic.

Assignment Operator Examples

Is16vec4 A;

Is8vec8 B;

I64vec1 C;

A = B; /* assign Is8vec8 to Is16vec4 */

B = C; /* assign I64vec1 to Is8vec8 */

B = A & C; /* assign M64 result of '&' to Is8vec8 */

Logical Operators

The logical operators use the symbols and intrinsics listed in the following table.

Operator Symbols Syntax Usage Bitwise
Operation

Standard w/assign Standard w/assign

Corresponding
Intrinsic

AND & &= R = A & B R &= A _mm_and_si64
_mm_and_si128

OR | |= R = A | B R |= A _mm_and_si64
_mm_and_si128

XOR ^ ^= R = A^B R ^= A _mm_and_si64
_mm_and_si128

ANDNOT andnot N/A R = A andnot
B

N/A _mm_and_si64
_mm_and_si128

Logical Operators and Miscellaneous Exceptions.

A and B converted to M64. Result assigned to Iu8vec8.

I64vec1 A;

Is8vec8 B;

Iu8vec8 C;

C = A & B;

Intel® C++ Compiler for Linux* Systems User's Guide

394

Same size and signedness operators return the nearest common ancestor.

I32vec2 R = Is32vec2 A ^ Iu32vec2 B;

A&B returns M64, which is cast to Iu8vec8.

C = Iu8vec8(A&B)+ C;

When A and B are of the same class, they return the same type. When A and B are of different classes, the
return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply when A
and B are of different classes.

Ivec Logical Operator Overloading

Return ® AND OR XOR NAND A Operand B Operand

I64vec1 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I64vec2 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I32vec2 R & | ^ andnot I[s|u]32vec2 A I[s|u]32vec2 B

I32vec4 R & | ^ andnot I[s|u]32vec4 A I[s|u]32vec4 B

I16vec4 R & | ^ andnot I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R & | ^ andnot I[s|u]16vec8 A I[s|u]16vec8 B

I8vec8 R & | ^ andnot I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R & | ^ andnot I[s|u]8vec16 A I[s|u]8vec16 B

For logical operators with assignment, the return value of R is always the same data type as the pre-
declared value of R as listed in the table that follows.

Reference

395

Ivec Logical Operator Overloading with Assignment

Return Type Left Side ® AND OR XOR Right Side (Any Ivec Type)

I128vec1 I128vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec1 I64vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec2 I64vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec4 I[x]32vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec2 I[x]32vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec8 I[x]16vec8 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec4 I[x]16vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec16 I[x]8vec16 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec8 I[x]8vec8 R &= |= ^= I[s|u][N]vec[N] A;

 Addition and Subtraction Operators

The addition and subtraction operators return the class of the nearest common ancestor when the right-side
operands are of different signs. The following code provides examples of usage and miscellaneous
exceptions.

Syntax Usage for Addition and Subtraction Operators

Return nearest common ancestor type, I16vec4.

Is16vec4 A;

Iu16vec4 B;

I16vec4 C;

C = A + B;

Returns type left-hand operand type.

Is16vec4 A;

Iu16vec4 B;

A += B;

B -= A;

Explicitly convert B to Is16vec4.

Is16vec4 A,C;

Intel® C++ Compiler for Linux* Systems User's Guide

396

Iu32vec24 B;

C = A + C;

C = A + (Is16vec4)B;

Addition and Subtraction Operators with Corresponding Intrinsics

Operation Symbols Syntax Corresponding Intrinsics

Addition +
+=

R = A + B
R += A

_mm_add_epi64
_mm_add_epi32
_mm_add_epi16
_mm_add_epi8
_mm_add_pi32
_mm_add_pi16
_mm_add_pi8

Subtraction -
-=

R = A - B
R -= A

_mm_sub_epi64
_mm_sub_epi32
_mm_sub_epi16
_mm_sub_epi8
_mm_sub_pi32
_mm_sub_pi16
_mm_sub_pi8

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

Addition and Subtraction Operator Overloading

Return Value Available Operators Right Side Operands

R Add Sub A B

I64vec2 R + - I[s|u]64vec2 A I[s|u]64vec2 B

I32vec4 R + - I[s|u]32vec4 A I[s|u]32vec4 B

I32vec2 R + - I[s|u]32vec2 A I[s|u]32vec2 B

I16vec8 R + - I[s|u]16vec8 A I[s|u]16vec8 B

I16vec4 R + - I[s|u]16vec4 A I[s|u]16vec4 B

I8vec8 R + - I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R + - I[s|u]8vec2 A I[s|u]8vec16 B

The following table shows the return data type values for operands of the addition and subtraction operators
with assignment. The left side operand determines the size and signedness of the return value. The right
side operand must be the same size as the left operand; otherwise, you must use an explicit typecast.

Reference

397

Addition and Subtraction with Assignment

Return Value ® Left Side ® Add Sub Right Side (A)

I[x]32vec4 I[x]32vec2 R += -= I[s|u]32vec4 A;

I[x]32vec2 R I[x]32vec2 R += -= I[s|u]32vec2 A;

I[x]16vec8 I[x]16vec8 += -= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 += -= I[s|u]16vec4 A;

I[x]8vec16 I[x]8vec16 += -= I[s|u]8vec16 A;

I[x]8vec8 I[x]8vec8 += -= I[s|u]8vec8 A;

Multiplication Operators

The multiplication operators can only accept and return data types from the I[s|u]16vec4 or
I[s|u]16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators

Explicitly convert B to Is16vec4.

Is16vec4 A,C;

Iu32vec2 B;

C = A * C;

C = A * (Is16vec4)B;

Return nearest common ancestor type, I16vec4

Is16vec4 A;

Iu16vec4 B;

I16vec4 C;

C = A + B;

The mul_high and mul_add functions take Is16vec4 data only.

Is16vec4 A,B,C,D;

C = mul_high(A,B);

D = mul_add(A,B);

Intel® C++ Compiler for Linux* Systems User's Guide

398

Multiplication Operators with Corresponding Intrinsics

Symbols Syntax Usage Intrinsic

* *= R = A * B
R *= A

_mm_mullo_pi16
_mm_mullo_epi16

mul_high N/A R = mul_high(A, B) _mm_mulhi_pi16
_mm_mulhi_epi16

mul_add N/A R = mul_high(A, B) _mm_madd_pi16
_mm_madd_epi16

The multiplication return operators always return the nearest common ancestor as listed in the table that
follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Multiplication Operator Overloading

R Mul A B

I16vec4 R * I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R * I[s|u]16vec8 A I[s|u]16vec8 B

Is16vec4 R mul_add Is16vec4 A Is16vec4 B

Is16vec8 mul_add Is16vec8 A Is16vec8 B

Is32vec2 R mul_high Is16vec4 A Is16vec4 B

Is32vec4 R mul_high s16vec8 A Is16vec8 B

The following table shows the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size, you
must use an explicit typecast.

Multiplication with Assignment

Return Value ® Left Side ® Mul Right Side (A)

I[x]16vec8 I[x]16vec8 *= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 *= I[s|u]16vec4 A;

Reference

399

Shift Operators

The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type.
The first or left operand of a << can be of any type except I[s|u]8vec[8|16] .

Example Syntax Usage for Shift Operators

Automatic size and sign conversion.

Is16vec4 A,C;

Iu32vec2 B;

C = A;

A&B returns I16vec4, which must be cast to Iu16vec4 to ensure logical shift, not arithmetic shift.

Is16vec4 A, C;

Iu16vec4 B, R;

R = (Iu16vec4)(A & B) C;

A&B returns I16vec4, which must be cast to Is16vec4 to ensure arithmetic shift, not logical shift.

R = (Is16vec4)(A & B) C;

Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

Shift Left <<
&=

R = A << B
R &= A

_mm_sll_si64
_mm_slli_si64
_mm_sll_pi32
_mm_slli_pi32
_mm_sll_pi16
_mm_slli_pi16

Shift Right >> R = A >> B
R >>= A

_mm_srl_si64
_mm_srli_si64
_mm_srl_pi32
_mm_srli_pi32
_mm_srl_pi16
_mm_srli_pi16
_mm_sra_pi32
_mm_srai_pi32
_mm_sra_pi16
_mm_srai_pi16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The following table shows how the return type is determined by the first
argument type.

Intel® C++ Compiler for Linux* Systems User's Guide

400

Shift Operator Overloading

Operation R Right Shift Left Shift A B

Logical I64vec1 >> >>= << <<= I64vec1 A; I64vec1 B;

Logical I32vec2 >> >>= << <<= I32vec2 A I32vec2 B;

Arithmetic Is32vec2 >> >>= << <<= Is32vec2 A I[s|u][N]vec[N] B;

Logical Iu32vec2 >> >>= << <<= Iu32vec2 A I[s|u][N]vec[N] B;

Logical I16vec4 >> >>= << <<= I16vec4 A I16vec4 B

Arithmetic Is16vec4 >> >>= << <<= Is16vec4 A I[s|u][N]vec[N] B;

Logical Iu16vec4 >> >>= << <<= Iu16vec4 A I[s|u][N]vec[N] B;

Comparison Operators

The equality and inequality comparison operands can have mixed signedness, but they must be of the same
size. The comparison operators for less-than and greater-than must be of the same sign and size.

Example of Syntax Usage for Comparison Operator

The nearest common ancestor is returned for compare for equal/not-equal operations.

Iu8vec8 A;

Is8vec8 B;

I8vec8 C;

C = cmpneq(A,B);

Type cast needed for different-sized elements for equal/not-equal comparisons.

Iu8vec8 A, C;

Is16vec4 B;

C = cmpeq(A,(Iu8vec8)B);

Type cast needed for sign or size differences for less-than and greater-than comparisons.

Iu16vec4 A;

Is16vec4 B, C;

C = cmpge((Is16vec4)A,B);

C = cmpgt(B,C);

Reference

401

Inequality Comparison Symbols and Corresponding Intrinsics

Compare For: Operators Syntax Intrinsic

Equality cmpeq R = cmpeq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Inequality cmpneq R = cmpneq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_andnot_si64

Greater Than cmpgt R = cmpgt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

cmpge R = cmpge(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

_mm_andnot_si64

Less Than cmplt R = cmplt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Less Than
or Equal To

cmple R = cmple(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

_mm_andnot_si64

Comparison operators have the restriction that the operands must be the size and sign as listed in the
Compare Operator Overloading table.

Compare Operator Overloading

R Comparison A B

I32vec2 R cmpeq
cmpne

I[s|u]32vec2 B I[s|u]32vec2 B

I16vec4 R I[s|u]16vec4 B I[s|u]16vec4 B

I8vec8 R I[s|u]8vec8 B I[s|u]8vec8 B

I32vec2 R cmpgt
cmpge
cmplt
cmple

Is32vec2 B Is32vec2 B

I16vec4 R Is16vec4 B Is16vec4 B

I8vec8 R Is8vec8 B Is8vec8 B

Intel® C++ Compiler for Linux* Systems User's Guide

402

Conditional Select Operators

For conditional select operands, the third and fourth operands determine the type returned. Third and fourth
operands with same size, but different signedness, return the nearest common ancestor data type.

Conditional Select Syntax Usage

Return the nearest common ancestor data type if third and fourth operands are of the same size, but
different signs.

I16vec4 R = select_neq(Is16vec4, Is16vec4, Is16vec4, Iu16vec4);

Conditional Select for Equality

R0 := (A0 == B0) ? C0 : D0;

R1 := (A1 == B1) ? C1 : D1;

R2 := (A2 == B2) ? C2 : D2;

R3 := (A3 == B3) ? C3 : D3;

Conditional Select for Inequality

R0 := (A0 != B0) ? C0 : D0;

R1 := (A1 != B1) ? C1 : D1;

R2 := (A2 != B2) ? C2 : D2;

R3 := (A3 != B3) ? C3 : D3;

Conditional Select Symbols and Corresponding Intrinsics

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Equality select_eq R =
select_eq(A,
B, C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_and_si64
_mm_or_si64
_mm_andnot_si64

Inequality select_neq R =
select_neq(A,
B, C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Greater Than select_gt R =
select_gt(A,
B, C, D)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Reference

403

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Greater Than
or Equal To

select_ge R =
select_gt(A,
B, C, D)

_mm_cmpge_pi32
_mm_cmpge_pi16
_mm_cmpge_pi8

Less Than select_lt R =
select_lt(A,
B, C, D)

_mm_cmplt_pi32
_mm_cmplt_pi16
_mm_cmplt_pi8

Less Than
or Equal To

select_le R =
select_le(A,
B, C, D)

_mm_cmple_pi32
_mm_cmple_pi16
_mm_cmple_pi8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than operations,
the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison A and B C D

I32vec2 R I[s|u]32vec2 I[s|u]32vec2 I[s|u]32vec2

I16vec4 R I[s|u]16vec4 I[s|u]16vec4 I[s|u]16vec4

I8vec8 R

select_eq
select_ne

I[s|u]8vec8 I[s|u]8vec8 I[s|u]8vec8

I32vec2 R Is32vec2 Is32vec2 Is32vec2

I16vec4 R Is16vec4 Is16vec4 Is16vec4

I8vec8 R

select_gt
select_ge
select_lt
select_le

Is8vec8 Is8vec8 Is8vec8

The following table shows the mapping of return values from R0 to R7 for any number of elements. The
same return value mappings also apply when there are fewer than four return values.

Intel® C++ Compiler for Linux* Systems User's Guide

404

Conditional Select Operator Return Value Mapping

A and B Operands Return Value

A0 Available Operators B0

C and D operands

R0:= A0 == != > >= < <= B0 ? C0 : D0;

R1:= A0 == != > >= < <= B0 ? C1 : D1;

R2:= A0 == != > >= < <= B0 ? C2 : D2;

R3:= A0 == != > >= < <= B0 ? C3 : D3;

R4:= A0 == != > >= < <= B0 ? C4 : D4;

R5:= A0 == != > >= < <= B0 ? C5 : D5;

R6:= A0 == != > >= < <= B0 ? C6 : D6;

R7:= A0 == != > >= < <= B0 ? C7 : D7;

Debug

The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are provided
for debugging programs only. Use of these operations may result in loss of performance, so you should not
use them outside of debugging.

Output

The four 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is32vec4 A;

cout << Iu32vec4 A;

cout << hex << Iu32vec4 A; /* print in hex format */

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is32vec2 A;

cout << Iu32vec2 A;

cout << hex << Iu32vec2 A; /* print in hex format */

"[1]:A1 [0]:A0"

Reference

405

Corresponding Intrinsics: none

The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is16vec8 A;

cout << Iu16vec8 A;

cout << hex << Iu16vec8 A; /* print in hex format */

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

cout << Is16vec4 A;

cout << Iu16vec4 A;

cout << hex << Iu16vec4 A; /* print in hex format */

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << Is8vec16 A; cout << Iu8vec16 A; cout << hex << Iu8vec8 A;

/* print in hex format instead of decimal*/

"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8
[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << Is8vec8 A; cout << Iu8vec8 A;cout << hex << Iu8vec8 A;

/* print in hex format instead of decimal*/

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

Intel® C++ Compiler for Linux* Systems User's Guide

406

Element Access Operators

int R = Is64vec2 A[i];

unsigned int R = Iu64vec2 A[i];

int R = Is32vec4 A[i];

unsigned int R = Iu32vec4 A[i];

int R = Is32vec2 A[i];

unsigned int R = Iu32vec2 A[i];

short R = Is16vec8 A[i];

unsigned short R = Iu16vec8 A[i];

short R = Is16vec4 A[i];

unsigned short R = Iu16vec4 A[i];

signed char R = Is8vec16 A[i];

unsigned char R = Iu8vec16 A[i];

signed char R = Is8vec8 A[i];

unsigned char R = Iu8vec8 A[i];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element outside of A,
a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators

Is64vec2 A[i] = int R;

Is32vec4 A[i] = int R;

Iu32vec4 A[i] = unsigned int R;

Is32vec2 A[i] = int R;

Iu32vec2 A[i] = unsigned int R;

Is16vec8 A[i] = short R;

Iu16vec8 A[i] = unsigned short R;

Is16vec4 A[i] = short R;

Reference

407

Iu16vec4 A[i] = unsigned short R;

Is8vec16 A[i] = signed char R;

Iu8vec16 A[i] = unsigned char R;

Is8vec8 A[i] = signed char R;

Iu8vec8 A[i] = unsigned char R;

Assign R to element i of A. If DEBUG is enabled and the user tries to assign a value to an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators

Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.

I364vec2 unpack_high(I64vec2 A, I64vec2 B);

Is64vec2 unpack_high(Is64vec2 A, Is64vec2 B);

Iu64vec2 unpack_high(Iu64vec2 A, Iu64vec2 B);

R0 = A1;
R1 = B1;

Corresponding intrinsic: _mm_unpackhi_epi64

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B .

I32vec4 unpack_high(I32vec4 A, I32vec4 B);

Is32vec4 unpack_high(Is32vec4 A, Is32vec4 B);

Iu32vec4 unpack_high(Iu32vec4 A, Iu32vec4 B);

R0 = A1;
R1 = B1;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _mm_unpackhi_epi32

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.

I32vec2 unpack_high(I32vec2 A, I32vec2 B);

Is32vec2 unpack_high(Is32vec2 A, Is32vec2 B);

Iu32vec2 unpack_high(Iu32vec2 A, Iu32vec2 B);

Intel® C++ Compiler for Linux* Systems User's Guide

408

R0 = A1;
R1 = B1;

Corresponding intrinsic: _mm_unpackhi_pi32

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B.

I16vec8 unpack_high(I16vec8 A, I16vec8 B);

Is16vec8 unpack_high(Is16vec8 A, Is16vec8 B);

Iu16vec8 unpack_high(Iu16vec8 A, Iu16vec8 B);

R0 = A2;
R1 = B2;
R2 = A3;
R3 = B3;

Corresponding intrinsic: _mm_unpackhi_epi16

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B.

I16vec4 unpack_high(I16vec4 A, I16vec4 B);

Is16vec4 unpack_high(Is16vec4 A, Is16vec4 B);

Iu16vec4 unpack_high(Iu16vec4 A, Iu16vec4 B);

R0 = A2;R1 = B2;
R2 = A3;R3 = B3;

Corresponding intrinsic: _mm_unpackhi_pi16

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.

I8vec8 unpack_high(I8vec8 A, I8vec8 B);

Is8vec8 unpack_high(Is8vec8 A, I8vec8 B);

Iu8vec8 unpack_high(Iu8vec8 A, I8vec8 B);

R0 = A4;
R1 = B4;
R2 = A5;
R3 = B5;
R4 = A6;
R5 = B6;
R6 = A7;
R7 = B7;

Corresponding intrinsic: _mm_unpackhi_pi8

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of B.

I8vec16 unpack_high(I8vec16 A, I8vec16 B);

Reference

409

Is8vec16 unpack_high(Is8vec16 A, I8vec16 B);

Iu8vec16 unpack_high(Iu8vec16 A, I8vec16 B);

R0 = A8;
R1 = B8;
R2 = A9;
R3 = B9;
R4 = A10;
R5 = B10;
R6 = A11;
R7 = B11;
R8 = A12;
R8 = B12;
R2 = A13;
R3 = B13;
R4 = A14;
R5 = B14;
R6 = A15;
R7 = B15;

Corresponding intrinsic: _mm_unpackhi_epi16

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B

R0 = A0;
R1 = B0;

Corresponding intrinsic: _mm_unpacklo_epi32

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B

I64vec2 unpack_low(I64vec2 A, I64vec2 B);

Is64vec2 unpack_low(Is64vec2 A, Is64vec2 B);

Iu64vec2 unpack_low(Iu64vec2 A, Iu64vec2 B);

R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B

I32vec4 unpack_low(I32vec4 A, I32vec4 B);

Is32vec4 unpack_low(Is32vec4 A, Is32vec4 B);

Iu32vec4 unpack_low(Iu32vec4 A, Iu32vec4 B);

R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Intel® C++ Compiler for Linux* Systems User's Guide

410

Corresponding intrinsic: _mm_unpacklo_epi32

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

I32vec2 unpack_low(I32vec2 A, I32vec2 B);

Is32vec2 unpack_low(Is32vec2 A, Is32vec2 B);

Iu32vec2 unpack_low(Iu32vec2 A, Iu32vec2 B);

R0 = A0;
R1 = B0;

Corresponding intrinsic: _mm_unpacklo_pi32

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

I16vec8 unpack_low(I16vec8 A, I16vec8 B);

Is16vec8 unpack_low(Is16vec8 A, Is16vec8 B);

Iu16vec8 unpack_low(Iu16vec8 A, Iu16vec8 B);

R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _mm_unpacklo_epi16

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

I16vec4 unpack_low(I16vec4 A, I16vec4 B);

Is16vec4 unpack_low(Is16vec4 A, Is16vec4 B);

Iu16vec4 unpack_low(Iu16vec4 A, Iu16vec4 B);

R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_pi16

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

I8vec16 unpack_low(I8vec16 A, I8vec16 B);

Is8vec16 unpack_low(Is8vec16 A, Is8vec16 B);

Reference

411

Iu8vec16 unpack_low(Iu8vec16 A, Iu8vec16 B);

R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;
R8 = A4;
R9 = B4;
R10 = A5;
R11 = B5;
R12 = A6;
R13 = B6;
R14 = A7;
R15 = B7;

Corresponding intrinsic: _mm_unpacklo_epi8

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

I8vec8 unpack_low(I8vec8 A, I8vec8 B);

Is8vec8 unpack_low(Is8vec8 A, Is8vec8 B);

Iu8vec8 unpack_low(Iu8vec8 A, Iu8vec8 B);

R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _mm_unpacklo_pi8

Pack Operators

Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

Is16vec8 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_epi32

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

Is16vec4 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_pi32

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

Is8vec16 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_epi16

Intel® C++ Compiler for Linux* Systems User's Guide

412

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

Is8vec8 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pi16

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

Iu8vec16 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packus_epi16

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

Iu8vec8 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pu16

Clear MMX(TM) Instructions State Operator

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the EMMS
instruction intrinsic.

void empty(void);
Corresponding intrinsic: _mm_empty

Integer Intrinsics for Streaming SIMD Extensions

Note

You must include fvec.h header file for the following functionality.

Compute the element-wise maximum of the respective signed integer words in A and B.

Is16vec4 simd_max(Is16vec4 A, Is16vec4 B);
Corresponding intrinsic: _mm_max_pi16

Compute the element-wise minimum of the respective signed integer words in A and B.

Is16vec4 simd_min(Is16vec4 A, Is16vec4 B);
Corresponding intrinsic: _mm_min_pi16

Compute the element-wise maximum of the respective unsigned bytes in A and B.

Iu8vec8 simd_max(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_max_pu8

Compute the element-wise minimum of the respective unsigned bytes in A and B.

Iu8vec8 simd_min(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_min_pu8

Create an 8-bit mask from the most significant bits of the bytes in A.

Reference

413

int move_mask(I8vec8 A);
Corresponding intrinsic: _mm_movemask_pi8

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored.

void mask_move(I8vec8 A, I8vec8 B, signed char *p);
Corresponding intrinsic: _mm_maskmove_si64

Store the data in A to the address p without polluting the caches. A can be any Ivec type.

void store_nta(__m64 *p, M64 A);
Corresponding intrinsic: _mm_stream_pi

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

Iu8vec8 simd_avg(Iu8vec8 A, Iu8vec8 B);
Corresponding intrinsic: _mm_avg_pu8

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

Iu16vec4 simd_avg(Iu16vec4 A, Iu16vec4 B);
Corresponding intrinsic: _mm_avg_pu16

Conversions Between Fvec and Ivec

Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

int F64vec2ToInt(F64vec42 A);
r := (int)A0;

Convert the four floating-point values of A to two the two least significant double-precision floating-point
values.

F64vec2 F32vec4ToF64vec2(F32vec4 A);
r0 := (double)A0;
r1 := (double)A1;

Convert the two double-precision floating-point values of A to two single-precision floating-point values.

F32vec4 F64vec2ToF32vec4(F64vec2 A);
r0 := (float)A0;
r1 := (float)A1;

Convert the signed int in B to a double-precision floating-point value and pass the upper double-precision
value from A through to the result.

F64vec2 InttoF64vec2(F64vec2 A, int B);
r0 := (double)B;
r1 := A1;

Convert the lower floating-point value of A to a 32-bit integer with truncation.

Intel® C++ Compiler for Linux* Systems User's Guide

414

int F32vec4ToInt(F32vec4 A);
r := (int)A0;

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the
integers in packed form.

Is32vec2 F32vec4ToIs32vec2 (F32vec4 A);
r0 := (int)A0;
r1 := (int)A1;

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are passed
through from A.

F32vec4 IntToF32vec4(F32vec4 A, int B);
r0 := (float)B;
r1 := A1;
r2 := A2;
r3 := A3;

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

F32vec4 Is32vec2ToF32vec4(F32vec4 A, Is32vec2 B);
r0 := (float)B0;
r1 := (float)B1;
r2 := A2;
r3 := A3;

Floating-point Vector Classes

Floating-point Vector Classes

The floating-point vector classes, F64vec2, F32vec4, and F32vec1, provide an interface to SIMD
operations. The class specifications are as follows:

F64vec2 A(double x, double y);

F32vec4 A(float z, float y, float x, float w);

F32vec1 B(float w);

The packed floating-point input values are represented with the right-most value lowest as shown in the
following table.

Reference

415

Single-Precision Floating-point Elements

Fvec Notation Conventions

This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation

Fvec classes use the syntax conventions shown the following examples:

[Fvec_Class] R = [Fvec_Class] A [operator][Ivec_Class] B;

Example 1: F64vec2 R = F64vec2 A & F64vec2 B;

[Fvec_Class] R = [operator]([Fvec_Class] A,[Fvec_Class] B);

Example 2: F64vec2 R = andnot(F64vec2 A, F64vec2 B);

[Fvec_Class] R [operator]= [Fvec_Class] A;

Example 3: F64vec2 R &= F64vec2 A;

where

[operator] is an operator (for example, &, |, or ^)

[Fvec_Class] is any Fvec class (F64vec2, F32vec4, or F32vec1)

R, A, B are declared Fvec variables of the type indicated

Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the conventions
presented in the Return Value Convention Notation Mappings table. F32vec4 returns four single-

Intel® C++ Compiler for Linux* Systems User's Guide

416

precision, floating-point values (R0, R1, R2, and R3); F64vec2 returns two double-precision, floating-
point values, and F32vec1 returns the lowest single-precision floating-point value (R0).

Return Value Convention Notation Mappings

Example 1: Example 2: Example
3:

F32vec4 F64vec2 F32vec1

R0 := A0 &
B0;

R0 := A0 andnot
B0;

R0 &=
A0;

x x x

R1 := A1 &
B1;

R1 := A1 andnot
B1;

R1 &=
A1;

x x N/A

R2 := A2 &
B2;

R2 := A2 andnot
B2;

R2 &=
A2;

x N/A N/A

R3 := A3 &
B3

R3 := A3 andhot
B3;

R3 &=
A3;

x N/A N/A

Data Alignment

Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-aligned data
whenever possible.

F32vec4 and F64vec2 object variables are properly aligned by default. Note that floating point arrays
are not automatically aligned. To get 16-byte alignment, you can use the alignment __declspec:

__declspec(align(16)) float A[4];

Conversions

All Fvec object variables can be implicitly converted to __m128 data types. For example, the results of
computations performed on F32vec4 or F32vec1 object variables can be assigned to __m128 data
types.

__m128d mm = A & B; /* where A,B are F64vec2 object variables */

__m128 mm = A & B; /* where A,B are F32vec4 object variables */

__m128 mm = A & B; /* where A,B are F32vec1 object variables */

Reference

417

Constructors and Initialization

The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A;
F32vec4 B;
F32vec1 C;

N/A N/A

__m128 Object Initialization

F64vec2 A(__m128d mm);
F32vec4 B(__m128 mm);
F32vec1 C(__m128 mm);

N/A N/A

Double Initialization

/* Initializes two doubles. */
F64vec2 A(double d0, double d1);
F64vec2 A = F64vec2(double d0, double d1);

_mm_set_pd A0 := d0;
A1 := d1;

F64vec2 A(double d0);
/* Initializes both return values
with the same double precision value */.

_mm_set1_pd A0 := d0;
A1 := d0;

Float Initialization

F32vec4 A(float f3, float f2,
float f1, float f0);
F32vec4 A = F32vec4(float f3, float f2,
float f1, float f0);

_mm_set_ps A0 := f0;
A1 := f1;
A2 := f2;
A3 := f3;

F32vec4 A(float f0);
/* Initializes all return values
with the same floating point value. */

_mm_set1_ps A0 := f0;
A1 := f0;
A2 := f0;
A3 := f0;

F32vec4 A(double d0);
/* Initialize all return values with
the same double-precision value. */

_mm_set1_ps(d) A0 := d0;
A1 := d0;
A2 := d0;
A3 := d0;

F32vec1 A(double d0);
/* Initializes the lowest value of A
with d0 and the other values with 0.*/

_mm_set_ss(d) A0 := d0;
A1 := 0;
A2 := 0;
A3 := 0;

F32vec1 B(float f0);
/* Initializes the lowest value of B
with f0 and the other values with 0.*/

_mm_set_ss B0 := f0;
B1 := 0;
B2 := 0;
B3 := 0;

Intel® C++ Compiler for Linux* Systems User's Guide

418

Example Intrinsic Returns

F32vec1 B(int I);
/* Initializes the lowest value of B
with f0, other values are undefined.*/

_mm_cvtsi32_ss B0 := f0;
B1 := {}
B2 := {}
B3 := {}

Arithmetic Operators

The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators
have been divided into standard and advanced operations, which are described in more detail later in this
section.

Fvec Arithmetic Operators

Category Operation Operators Generic Syntax

Standard Addition +
+=

R = A + B;
R += A;

 Subtraction -
-=

R = A - B;
R -= A;

 Multiplication *
*=

R = A * B;
R *= A;

 Division /
/=

R = A / B;
R /= A;

Advanced Square Root sqrt R = sqrt(A);

 Reciprocal
(Newton-Raphson)

rcp
rcp_nr

R = rcp(A);
R = rcp_nr(A);

 Reciprocal Square Root
(Newton-Raphson)

rsqrt
rsqrt_nr

R = rsqrt(A);
R = rsqrt_nr(A);

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A Operators B F32vec4 F64vec2 F32vec1

R0:= A0 + - * / B0

R1:= A1 + - * / B1 N/A

R2:= A2 + - * / B2 N/A N/A

R3:= A3 + - * / B3 N/A N/A

Reference

419

Arithmetic with Assignment Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= += -= *= /= A0

R1:= += -= *= /= A1 N/A

R2:= += -= *= /= A2 N/A N/A

R3:= += -= *= /= A3 N/A N/A

This table lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns Example Syntax Usage Intrinsic

Addition 4 floats F32vec4 R = F32vec4 A + F32vec4
B;
F32vec4 R += F32vec4 A;

_mm_add_ps

 2
doubles

F64vec2 R = F64vec2 A + F32vec2
B;
F64vec2 R += F64vec2 A;

_mm_add_pd

 1 float F32vec1 R = F32vec1 A + F32vec1
B;
F32vec1 R += F32vec1 A;

_mm_add_ss

Subtraction 4 floats F32vec4 R = F32vec4 A - F32vec4
B;
F32vec4 R -= F32vec4 A;

_mm_sub_ps

 2
doubles

F64vec2 R - F64vec2 A + F32vec2
B;
F64vec2 R -= F64vec2 A;

_mm_sub_pd

 1 float F32vec1 R = F32vec1 A - F32vec1
B;
F32vec1 R -= F32vec1 A;

_mm_sub_ss

Multiplication 4 floats F32vec4 R = F32vec4 A * F32vec4
B;
F32vec4 R *= F32vec4 A;

_mm_mul_ps

 2
doubles

F64vec2 R = F64vec2 A * F364vec2
B;
F64vec2 R *= F64vec2 A;

_mm_mul_pd

 1 float F32vec1 R = F32vec1 A * F32vec1
B;
F32vec1 R *= F32vec1 A;

_mm_mul_ss

Division 4 floats F32vec4 R = F32vec4 A / F32vec4
B;
F32vec4 R /= F32vec4 A;

_mm_div_ps

 2
doubles

F64vec2 R = F64vec2 A / F64vec2
B;
F64vec2 R /= F64vec2 A;

_mm_div_pd

Intel® C++ Compiler for Linux* Systems User's Guide

420

Operation Returns Example Syntax Usage Intrinsic

 1 float F32vec1 R = F32vec1 A / F32vec1
B;
F32vec1 R /= F32vec1 A;

_mm_div_ss

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which use the
syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= sqrt rcp rsqrt rcp_nr rsqrt_nr A0

R1:= sqrt rcp rsqrt rcp_nr rsqrt_nr A1 N/A

R2:= sqrt rcp rsqrt rcp_nr rsqrt_nr A2 N/A N/A

R3:= sqrt rcp rsqrt rcp_nr rsqrt_nr A3 N/A N/A

f := add_horizontal (A0 +
A1 + A2
+ A3)

 N/A N/A

d := add_horizontal (A0 +
A1)

 N/A N/A

This table shows examples for advanced arithmetic operators.

Advanced Arithmetic Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vec4 A); _mm_sqrt_ps

2 doubles F64vec2 R = sqrt(F64vec2 A); _mm_sqrt_pd

1 float F32vec1 R = sqrt(F32vec1 A); _mm_sqrt_ss

Reciprocal

4 floats F32vec4 R = rcp(F32vec4 A); _mm_rcp_ps

2 doubles F64vec2 R = rcp(F64vec2 A); _mm_rcp_pd

1 float F32vec1 R = rcp(F32vec1 A); _mm_rcp_ss

Reciprocal Square Root

4 floats F32vec4 R = rsqrt(F32vec4 A); _mm_rsqrt_ps

Reference

421

Returns Example Syntax Usage Intrinsic

2 doubles F64vec2 R = rsqrt(F64vec2 A); _mm_rsqrt_pd

1 float F32vec1 R = rsqrt(F32vec1 A); _mm_rsqrt_ss

Reciprocal Newton Raphson

4 floats F32vec4 R = rcp_nr(F32vec4 A); _mm_sub_ps
_mm_add_ps
_mm_mul_ps
_mm_rcp_ps

2 doubles F64vec2 R = rcp_nr(F64vec2 A); _mm_sub_pd
_mm_add_pd
_mm_mul_pd
_mm_rcp_pd

1 float F32vec1 R = rcp_nr(F32vec1 A); _mm_sub_ss
_mm_add_ss
_mm_mul_ss
_mm_rcp_ss

Reciprocal Square Root Newton Raphson

4 float F32vec4 R = rsqrt_nr(F32vec4 A); _mm_sub_pd
_mm_mul_pd
_mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt_nr(F64vec2 A); _mm_sub_pd
_mm_mul_pd
_mm_rsqrt_pd

1 float F32vec1 R = rsqrt_nr(F32vec1 A); _mm_sub_ss
_mm_mul_ss
_mm_rsqrt_ss

Horizontal Add

1 float float f = add_horizontal(F32vec4 A); _mm_add_ss
_mm_shuffle_ss

1 double double d = add_horizontal(F64vec2 A); _mm_add_sd
_mm_shuffle_sd

Minimum and Maximum Operators

Compute the minimums of the two double precision floating-point values of A and B.

F64vec2 R = simd_min(F64vec2 A, F64vec2 B)
R0 := min(A0,B0);
R1 := min(A1,B1);
Corresponding intrinsic: _mm_min_pd

Compute the minimums of the four single precision floating-point values of A and B.

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)
R0 := min(A0,B0);
R1 := min(A1,B1);

Intel® C++ Compiler for Linux* Systems User's Guide

422

R2 := min(A2,B2);
R3 := min(A3,B3);
Corresponding intrinsic: _mm_min_ps

Compute the minimum of the lowest single precision floating-point values of A and B.

F32vec1 R = simd_min(F32vec1 A, F32vec1 B)
R0 := min(A0,B0);
Corresponding intrinsic: _mm_min_ss

Compute the maximums of the two double precision floating-point values of A and B.

F64vec2 simd_max(F64vec2 A, F64vec2 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
Corresponding intrinsic: _mm_max_pd

Compute the maximums of the four single precision floating-point values of A and B.

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
R2 := max(A2,B2);
R3 := max(A3,B3);
Corresponding intrinsic: _mm_max_ps

Compute the maximum of the lowest single precision floating-point values of A and B.

F32vec1 simd_max(F32vec1 A, F32vec1 B)
R0 := max(A0,B0);
Corresponding intrinsic: _mm_max_ss

Logical Operators

The following table lists the logical operators of the Fvec classes and generic syntax. The logical operators
for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation Operators Generic Syntax

AND &
&=

R = A & B;
R &= A;

OR |
|=

R = A | B;
R |= A;

XOR ^
^=

R = A ^ B;
R ^= A;

andnot andnot R = andnot(A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is
no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the packed
vector intrinsics.

Reference

423

Logical Operations for Fvec Classes

Operation Returns Example Syntax Usage Intrinsic

AND 4 floats F32vec4 & = F32vec4 A & F32vec4
B;
F32vec4 & &= F32vec4 A;

_mm_and_ps

 2
doubles

F64vec2 R = F64vec2 A & F32vec2
B;
F64vec2 R &= F64vec2 A;

_mm_and_pd

 1 float F32vec1 R = F32vec1 A & F32vec1
B;
F32vec1 R &= F32vec1 A;

_mm_and_ps

OR 4 floats F32vec4 R = F32vec4 A | F32vec4
B;
F32vec4 R |= F32vec4 A;

_mm_or_ps

 2
doubles

F64vec2 R = F64vec2 A | F32vec2
B;
F64vec2 R |= F64vec2 A;

_mm_or_pd

 1 float F32vec1 R = F32vec1 A | F32vec1
B;
F32vec1 R |= F32vec1 A;

_mm_or_ps

XOR 4 floats F32vec4 R = F32vec4 A ^ F32vec4
B;
F32vec4 R ^= F32vec4 A;

_mm_xor_ps

 2
doubles

F64vec2 R = F64vec2 A ^
F364vec2 B;
F64vec2 R ^= F64vec2 A;

_mm_xor_pd

 1 float F32vec1 R = F32vec1 A ^ F32vec1
B;
F32vec1 R ^= F32vec1 A;

_mm_xor_ps

ANDNOT 2
doubles

F64vec2 R = andnot(F64vec2 A,
F64vec2 B);

_mm_andnot_pd

Intel® C++ Compiler for Linux* Systems User's Guide

424

Compare Operators

The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators Syntax

Equality cmpeq R = cmpeq(A, B)

Inequality cmpneq R = cmpneq(A, B)

Greater Than cmpgt R = cmpgt(A, B)

Greater Than or Equal To cmpge R = cmpge(A, B)

Not Greater Than cmpngt R = cmpngt(A, B)

Not Greater Than or Equal To cmpnge R = cmpnge(A, B)

Less Than cmplt R = cmplt(A, B)

Less Than or Equal To cmple R = cmple(A, B)

Not Less Than cmpnlt R = cmpnlt(A, B)

Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators

The mask is set to 0xffffffff for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The following table shows the return values for each class of
the compare operators, which use the syntax described earlier in the Return Value Notation section.

Reference

425

Compare Operator Return Value Mapping

R A0 For Any
Operators

B If True If False F32vec4 F64vec2 F32vec1

R0:= (A1
!(A1

cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B1)
B1)

0xffffffff 0x0000000 X X X

R1:= (A1
!(A1

cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B2)
B2)

0xffffffff 0x0000000

X X N/A

R2:= (A1
!(A1

cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B3)
B3)

0xffffffff 0x0000000

X N/A N/A

R3:= A3 cmp[eq
| lt |
le | gt
| ge]
cmp[ne
| nlt |
nle |
ngt |
nge]

B3)
B3)

0xffffffff 0x0000000

X N/A N/A

The following table shows examples for arithmetic operators and intrinsics.

Intel® C++ Compiler for Linux* Systems User's Guide

426

Compare Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = cmpeq(F32vec4 A); _mm_cmpeq_ps

2 doubles F64vec2 R = cmpeq(F64vec2 A); _mm_cmpeq_pd

1 float F32vec1 R = cmpeq(F32vec1 A); _mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R = cmpneq(F32vec4 A); _mm_cmpneq_ps

2 doubles F64vec2 R = cmpneq(F64vec2 A); _mm_cmpneq_pd

1 float F32vec1 R = cmpneq(F32vec1 A); _mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R = cmplt(F32vec4 A); _mm_cmplt_ps

2 doubles F64vec2 R = cmplt(F64vec2 A); _mm_cmplt_pd

1 float F32vec1 R = cmplt(F32vec1 A); _mm_cmplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = cmple(F32vec4 A); _mm_cmple_ps

2 doubles F64vec2 R = cmple(F64vec2 A); _mm_cmple_pd

1 float F32vec1 R = cmple(F32vec1 A); _mm_cmple_pd

Compare for Greater Than

4 floats F32vec4 R = cmpgt(F32vec4 A); _mm_cmpgt_ps

2 doubles F64vec2 R = cmpgt(F32vec42 A); _mm_cmpgt_pd

1 float F32vec1 R = cmpgt(F32vec1 A); _mm_cmpgt_ss

Compare for Greater Than or Equal To

4 floats F32vec4 R = cmpge(F32vec4 A); _mm_cmpge_ps

2 doubles F64vec2 R = cmpge(F64vec2 A); _mm_cmpge_pd

1 float F32vec1 R = cmpge(F32vec1 A); _mm_cmpge_ss

Compare for Not Less Than

4 floats F32vec4 R = cmpnlt(F32vec4 A); _mm_cmpnlt_ps

2 doubles F64vec2 R = cmpnlt(F64vec2 A); _mm_cmpnlt_pd

1 float F32vec1 R = cmpnlt(F32vec1 A); _mm_cmpnlt_ss

Compare for Not Less Than or Equal

Reference

427

4 floats F32vec4 R = cmpnle(F32vec4 A); _mm_cmpnle_ps

2 doubles F64vec2 R = cmpnle(F64vec2 A); _mm_cmpnle_pd

1 float F32vec1 R = cmpnle(F32vec1 A); _mm_cmpnle_ss

Compare for Not Greater Than

4 floats F32vec4 R = cmpngt(F32vec4 A); _mm_cmpngt_ps

2 doubles F64vec2 R = cmpngt(F64vec2 A); _mm_cmpngt_pd

1 float F32vec1 R = cmpngt(F32vec1 A); _mm_cmpngt_ss

Compare for Not Greater Than or Equal

4 floats F32vec4 R = cmpnge(F32vec4 A); _mm_cmpnge_ps

2 doubles F64vec2 R = cmpnge(F64vec2 A); _mm_cmpnge_pd

1 float F32vec1 R = cmpnge(F32vec1 A); _mm_cmpnge_ss

Conditional Select Operators for Fvec Classes

Each conditional function compares single-precision floating-point values of A and B. The C and D
parameters are used for return value. Comparison between objects of any Fvec class returns the same class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq R = select_eq(A, B)

Inequality select_neq R = select_neq(A, B)

Greater Than select_gt R = select_gt(A, B)

Greater Than or Equal To select_ge R = select_ge(A, B)

Not Greater Than select_gt R = select_gt(A, B)

Not Greater Than or Equal To select_ge R = select_ge(A, B)

Less Than select_lt R = select_lt(A, B)

Less Than or Equal To select_le R = select_le(A, B)

Not Less Than select_nlt R = select_nlt(A, B)

Not Less Than or Equal To select_nle R = select_nle(A, B)

Intel® C++ Compiler for Linux* Systems User's Guide

428

Conditional Select Operator Usage

For conditional select operators, the return value is stored in C if the comparison is true or in D if false. The
following table shows the return values for each class of the conditional select operators, using the Return
Value Notation described earlier.

Compare Operator Return Value Mapping

R A0 Operators B C D F32vec4 F64vec2 F32vec1

R0:= (A1
!(A1

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B0)
B0)

C0
C0

D0
D0

X X X

R1:= (A2
!(A2

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B1)
B1)

C1
C1

D1
D1

X X N/A

R2:= (A2
!(A2

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B2)
B2)

C2
C2

D2
D2

X N/A N/A

R3:= (A3
!(A3

select_[eq | lt |
le | gt | ge]
select_[ne | nlt |
nle | ngt | nge]

B3)
B3)

C3
C3

D3
D3

X N/A N/A

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R = select_eq(F32vec4 A); _mm_cmpeq_ps

2 doubles F64vec2 R = select_eq(F64vec2 A); _mm_cmpeq_pd

1 float F32vec1 R = select_eq(F32vec1 A); _mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R = select_neq(F32vec4 A); _mm_cmpneq_ps

2 doubles F64vec2 R = select_neq(F64vec2 A); _mm_cmpneq_pd

1 float F32vec1 R = select_neq(F32vec1 A); _mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R = select_lt(F32vec4 A); _mm_cmplt_ps

2 doubles F64vec2 R = select_lt(F64vec2 A); _mm_cmplt_pd

Reference

429

1 float F32vec1 R = select_lt(F32vec1 A); _mm_cmplt_ss

Compare for Less Than or Equal

4 floats F32vec4 R = select_le(F32vec4 A); _mm_cmple_ps

2 doubles F64vec2 R = select_le(F64vec2 A); _mm_cmple_pd

1 float F32vec1 R = select_le(F32vec1 A); _mm_cmple_ps

Compare for Greater Than

4 floats F32vec4 R = select_gt(F32vec4 A); _mm_cmpgt_ps

2 doubles F64vec2 R = select_gt(F64vec2 A); _mm_cmpgt_pd

1 float F32vec1 R = select_gt(F32vec1 A); _mm_cmpgt_ss

Compare for Greater Than or Equal To

4 floats F32vec1 R = select_ge(F32vec4 A); _mm_cmpge_ps

2 doubles F64vec2 R = select_ge(F64vec2 A); _mm_cmpge_pd

1 float F32vec1 R = select_ge(F32vec1 A); _mm_cmpge_ss

Compare for Not Less Than

4 floats F32vec1 R = select_nlt(F32vec4 A); _mm_cmpnlt_ps

2 doubles F64vec2 R = select_nlt(F64vec2 A); _mm_cmpnlt_pd

1 float F32vec1 R = select_nlt(F32vec1 A); _mm_cmpnlt_ss

Compare for Not Less Than or Equal

4 floats F32vec1 R = select_nle(F32vec4 A); _mm_cmpnle_ps

2 doubles F64vec2 R = select_nle(F64vec2 A); _mm_cmpnle_pd

1 float F32vec1 R = select_nle(F32vec1 A); _mm_cmpnle_ss

Compare for Not Greater Than

4 floats F32vec1 R = select_ngt(F32vec4 A); _mm_cmpngt_ps

2 doubles F64vec2 R = select_ngt(F64vec2 A); _mm_cmpngt_pd

1 float F32vec1 R = select_ngt(F32vec1 A); _mm_cmpngt_ss

Compare for Not Greater Than or Equal

4 floats F32vec1 R = select_nge(F32vec4 A); _mm_cmpnge_ps

2 doubles F64vec2 R = select_nge(F64vec2 A); _mm_cmpnge_pd

1 float F32vec1 R = select_nge(F32vec1 A); _mm_cmpnge_ss

Intel® C++ Compiler for Linux* Systems User's Guide

430

Cacheability Support Operations

Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _mm_stream_pd

Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(float *p, F32vec4 A);
Corresponding intrinsic: _mm_stream_ps

Debugging

The debug operations do not map to any compiler intrinsics for MMX(TM) technology or Streaming SIMD
Extensions. They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations

The two single, double-precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

cout << F64vec2 A;
"[1]:A1 [0]:A0"
Corresponding intrinsics: none

The four, single-precision floating-point values of A are placed in the output buffer and printed in decimal
format as follows:

cout << F32vec4 A;
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"
Corresponding intrinsics: none

The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vec1 A;
Corresponding intrinsics: none

Element Access Operations

double d = F64vec2 A[int i]

Read one of the two, double-precision floating-point values of A without modifying the corresponding
floating-point value. Permitted values of i are 0 and 1. For example:

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed and
the program aborts.

double d = F64vec2 A[1];
Corresponding intrinsics: none

Reference

431

Read one of the four, single-precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 A[int i]

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and the
program aborts.

float f = F32vec4 A[2];
Corresponding intrinsics: none

Element Assignment Operations

F64vec4 A[int i] = double d;

Modify one of the two, double-precision floating-point values of A. Permitted values of int i are 0 and 1.
For example:

F32vec4 A[1] = double d;
F32vec4 A[int i] = float f;

Modify one of the four, single-precision floating-point values of A. Permitted values of int i are 0, 1, 2,
and 3. For example:

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.

F32vec4 A[3] = float f;
Corresponding intrinsics: none.

Load and Store Operators

Loads two, double-precision floating-point values, copying them into the two, floating-point values of A.
No assumption is made for alignment.

void loadu(F64vec2 A, double *p)
Corresponding intrinsic: _mm_loadu_pd

Stores the two, double-precision floating-point values of A. No
assumption is made for alignment.

void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _mm_storeu_pd

Loads four, single-precision floating-point values, copying them into
the four floating-point values of A. No assumption is made for
alignment.

void loadu(F32vec4 A, double *p)
Corresponding intrinsic: _mm_loadu_ps

Stores the four, single-precision floating-point values of A. No
assumption is made for alignment.

Intel® C++ Compiler for Linux* Systems User's Guide

432

void storeu(float *p, F32vec4 A);
Corresponding intrinsic: _mm_storeu_ps

Unpack Operators for Fvec Operators

Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_low(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpacklo_pd(a, b)

Selects and interleaves the higher, double-precision floating-point values from A and B.

F64vec2 R = unpack_high(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpackhi_pd(a, b)

Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_low(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm_unpacklo_ps(a, b)

Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_high(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm_unpackhi_ps(a, b)

Move Mask Operator

Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point values of A,
as follows:

int i = move_mask(F64vec2 A)
i := sign(a1)<<1 | sign(a0)<<0
Corresponding intrinsic: _mm_movemask_pd

Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point values of A,
as follows:

int i = move_mask(F32vec4 A)
i := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)<<0
Corresponding intrinsic: _mm_movemask_ps

Reference

433

Classes Quick Reference

This appendix contains tables listing the class, functionality, and corresponding intrinsics for each class in
the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel C++ Compiler
intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

I128vec1,
I64vec2,
I32vec4,
I16vec8,
I8vec16

I64vec,
I32vec,
I16vec,
I8vec8

F64vec2 F32vec4 F32vec1

&, &= _mm_and_[x] si128 si64 pd ps ps

|, |= _mm_or_[x] si128 si64 pd ps ps

^, ^= _mm_xor_[x] si128 si64 pd ps ps

Andnot _mm_andnot_[x] si128 si64 pd N/A N/A

Arithmetic: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I64vec2 I32vec4 I16vec8 I8vec16

+, += _mm_add_[x] epi64 epi32 epi16 epi8

-, -= _mm_sub_[x] epi64 epi32 epi16 epi8

*, *= _mm_mullo_[x] N/A N/A epi16 N/A

/, /= _mm_div_[x] N/A N/A N/A N/A

mul_high _mm_mulhi_[x] N/A N/A epi16 N/A

mul_add _mm_madd_[x] N/A N/A epi16 N/A

sqrt _mm_sqrt_[x] N/A N/A N/A N/A

rcp _mm_rcp_[x] N/A N/A N/A N/A

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

rsqrt _mm_rsqrt_[x] N/A N/A N/A N/A

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

Intel® C++ Compiler for Linux* Systems User's Guide

434

Arithmetic: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

I32vec2 I16vec4 I8vec8 F64vec2 F32vec4 F32vec1

+, += _mm_add_[x] pi32 pi16 pi8 pd ps ss

-, -= _mm_sub_[x] pi32 pi16 pi8 pd ps ss

*, *= _mm_mullo_[x] N/A pi16 N/A pd ps ss

/, /= _mm_div_[x] N/A N/A N/A pd ps ss

mul_high _mm_mulhi_[x] N/A pi16 N/A N/A N/A N/A

mul_add _mm_madd_[x] N/A pi16 N/A N/A N/A N/A

sqrt _mm_sqrt_[x] N/A N/A N/A pd ps ss

rcp _mm_rcp_[x] N/A N/A N/A pd ps ss

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

rsqrt _mm_rsqrt_[x] N/A N/A N/A pd ps ss

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

Shift Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I128vec1 I64vec2 I32vec4 I16vec8 I8vec16

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

N/A
N/A
N/A
N/A

epi64
epi64
N/A
N/A

epi32
epi32
epi32
epi32

epi16
epi16
epi16
epi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

N/A
N/A

epi64
epi64

epi32
epi32

epi16
epi16

N/A
N/A

Reference

435

Shift Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

I64vec1 I32vec2 I16vec4 I8vec8

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

si64
si64
N/A
N/A

pi32
pi32
pi32
pi32

pi16
pi16
pi16
pi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

si64
si64

pi32
pi32

pi16
pi16

N/A
N/A

Comparison Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I32vec4 I16vec8 I8vec16 I32vec2 I16vec4 I8vec8

cmpeq _mm_cmpeq_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpgt _mm_cmpgt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmplt _mm_cmplt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmple _mm_cmple_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpngt _mm_cmpngt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpnge _mm_cmpnge_[x] N/A N/A N/A N/A N/A N/A

cmnpnlt _mm_cmpnlt_[x] N/A N/A N/A N/A N/A N/A

cmpnle _mm_cmpnle_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Intel® C++ Compiler for Linux* Systems User's Guide

436

Comparison Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

F64vec2 F32vec4 F32vec1

cmpeq _mm_cmpeq_[x] pd ps ss

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

pd ps ss

cmpgt _mm_cmpgt_[x] pd ps ss

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

pd ps ss

cmplt _mm_cmplt_[x] pd ps ss

cmple _mm_cmple_[x]
_mm_andnot_[y]*

pd ps ss

cmpngt _mm_cmpngt_[x] pd ps ss

cmpnge _mm_cmpnge_[x] pd ps ss

cmnpnlt _mm_cmpnlt_[x] pd ps ss

cmpnle _mm_cmpnle_[x] pd ps ss

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I32vec4 I16vec8 I8vec16 I32vec2 I16vec4 I8vec8

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

Reference

437

Operators Corresponding
Intrinsic

I32vec4 I16vec8 I8vec16 I32vec2 I16vec4 I8vec8

select_ngt _mm_cmpgt_[x] N/A N/A N/A N/A N/A N/A

select_nge _mm_cmpge_[x] N/A N/A N/A N/A N/A N/A

select_nlt _mm_cmplt_[x] N/A N/A N/A N/A N/A N/A

select_nle _mm_cmple_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

F64vec2 F32vec4 F32vec1

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ngt _mm_cmpgt_[x] pd ps ss

select_nge _mm_cmpge_[x] pd ps ss

select_nlt _mm_cmplt_[x] pd ps ss

select_nle _mm_cmple_[x] pd ps ss

Intel® C++ Compiler for Linux* Systems User's Guide

438

Packing and Unpacking Operators: Corresponding Intrinsics and Classes, Part 1

Operators Corresponding
Intrinsic

I64vec2 I32vec4 I16vec8 I8vec16 I32vec2

unpack_high _mm_unpackhi_[x] epi64 epi32 epi16 epi8 pi32

unpack_low _mm_unpacklo_[x] epi64 epi32 epi16 epi8 pi32

pack_sat _mm_packs_[x] N/A epi32 epi16 N/A pi32

packu_sat _mm_packus_[x] N/A N/A epi16 N/A N/A

sat_add _mm_adds_[x] N/A N/A epi16 epi8 N/A

sat_sub _mm_subs_[x] N/A N/A epi16 epi8 N/A

Packing and Unpacking Operators: Corresponding Intrinsics and Classes, Part 2

Operators Corresponding
Intrinsic

I16vec4 I8vec8 F64vec2 F32vec4 F32vec1

unpack_high _mm_unpackhi_[x] pi16 pi8 pd ps N/A

unpack_low _mm_unpacklo_[x] pi16 pi8 pd ps N/A

pack_sat _mm_packs_[x] pi16 N/A N/A N/A N/A

packu_sat _mm_packus_[x] pu16 N/A N/A N/A N/A

sat_add _mm_adds_[x] pi16 pi8 pd ps ss

sat_sub _mm_subs_[x] pi16 pi8 pi16 pi8 pd

Conversions Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

F64vec2ToInt _mm_cvttsd_si32

F32vec4ToF64vec2 _mm_cvtps_pd

F64vec2ToF32vec4 _mm_cvtpd_ps

IntToF64vec2 _mm_cvtsi32_sd

F32vec4ToInt _mm_cvtt_ss2si

F32vec4ToIs32vec2 _mm_cvttps_pi32

IntToF32vec4 _mm_cvtsi32_ss

Is32vec2ToF32vec4 _mm_cvtpi32_ps

Reference

439

Programming Example

This sample program uses the F32vec4 class to average the elements of a 20 element floating point array.

// Include Streaming SIMD Extension Class Definitions
#include <fvec.h>

// Shuffle any 2 single precision floating point from a
// into low 2 SP FP and shuffle any 2 SP FP from b
// into high 2 SP FP of destination
#define SHUFFLE(a,b,i) (F32vec4)_mm_shuffle_ps(a,b,i)
#include <stdio.h>
#define SIZE 20

// Global variables
float result;
_MM_ALIGN 16 float array[SIZE];

//***
// Function: Add20ArrayElements
// Add all the elements of a 20 element array
//***

void Add20ArrayElements (F32vec4 *array, float *result)
{
 F32vec4 vec0, vec1;
 vec0 = _mm_load_ps ((float *) array); // Load array's first
4 floats

 //***
 // Add all elements of the array, 4 elements at a time
 //**

 vec0 += array[1]; // Add elements 5-8
 vec0 += array[2]; // Add elements 9-12
 vec0 += array[3]; // Add elements 13-16
 vec0 += array[4]; // Add elements 17-20

 //***
 // There are now 4 partial sums.
 // Add the 2 lowers to the 2 raises,
 // then add those 2 results together
 //***

 vec1 = SHUFFLE(vec1, vec0, 0x40);
 vec0 += vec1;
 vec1 = SHUFFLE(vec1, vec0, 0x30);
 vec0 += vec1;
 vec0 = SHUFFLE(vec0, vec0, 2);
 _mm_store_ss (result, vec0); // Store the final sum
}

void main(int argc, char *argv[])
{
 int i;
 // Initialize the array
 for (i=0; i < SIZE; i++)
 {
 array[i] = (float) i;
 }

Intel® C++ Compiler for Linux* Systems User's Guide

440

 // Call function to add all array elements
 Add20ArrayElements (array, &result);

 // Print average array element value
 printf ("Average of all array values = %f\n", result/20.);
 printf ("The correct answer is %f\n\n\n", 9.5);
}

