

Intel® Fortran Compiler for Linux* Systems
User's Guide
Volume II: Optimizing Applications

Document Number: 253260-002

Disclaimer and Legal Information
Information in this document is provided in connection with Intel products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING L IABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

This User's Guide Volume II as well as the software described in it is furnished
under license and may only be used or copied in accordance with the terms of
the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any
software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The software described in this User's Guide Volume II may contain software
defects which may cause the product to deviate from published specifications.
Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel
XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon,
Pentium M, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2003-2004.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

iii

Table Of Contents

Optimizing Applications: Overview ...9

How to Use This Document ...11

Notation Conventions...11

Programming for High Performance...13

Programming for High Performance: Overview ...13

Programming Guidelines..13

Setting Data Type and Alignment..13

Using Arrays Efficiently...20

Improving I/O Performance...25

Improving Run-time Efficiency ..30

Using Intrinsics for Itanium®-based Systems ..33

Coding Guidelines for Intel® Architectures ..34

Analyzing and Timing Your Application...37

Using Intel Performance Analysis Tools ..37

Timing Your Application..38

Compiler Optimizations ...41

Compiler Optimizations Overview...41

Optimizing the Compilation Process ...41

Optimizing the Compilation Process Overview ..41

Efficient Compilation...41

Little-endian-to-Big-endian Conversion ...45

Table Of Contents

iv

Default Compiler Optimizations...48

Using Compilation Options ...51

Optimizing Different Application Types ...61

Optimizing Different Application Types Overview.......................................61

Setting Optimizations with -On Options ...62

Restricting Optimizations ..65

Floating-point Arithmetic Optimizations...66

Options Used for Both IA-32 and Itanium® Architectures...........................66

Floating-point Arithmetic Precision for IA-32 Systems................................69

Floating-point Arithmetic Precision for Itanium®-based Systems................70

Improving/Restricting FP Arithmetic Precision ...71

Optimizing for Specific Processors ...73

Optimizing for Specific Processors Overview...73

Targeting a Processor, -tpp{n} ..73

Processor-specific Optimization (IA-32 only) ...75

Automatic Processor-specific Optimization (IA-32 only)76

Processor-specific Run-time Checks, IA-32 Systems.................................77

Interprocedural Optimizations (IPO)..79

Overview of Interprocedural Optimizations ..79

IPO Compilation Model...80

Command Line for Creating an IPO Executable ..81

Generating Multiple IPO Object Files ..82

Capturing Intermediate Outputs of IPO ...83

Table Of Contents

v

Creating an IPO Executable Using xild..83

Code Layout and Multi-Object IPO..85

Compilation with Real Object Files..86

Creating a Library from IPO Objects..87

Using -ip with -Qoption Specifiers ...88

Inline Expansion of Functions ...90

Profile-guided Optimizations...93

Profile-guided Optimizations Overview..93

Profile-guided Optimizations Methodology and Usage Model.....................94

Basic PGO Options ..97

Advanced PGO Options ...98

PGO Environment Variables ...99

Example of Profile-Guided Optimization .. 100

Merging the .dyn Files .. 101

Using profmerge to Relocate the Source Files... 102

Code-coverage Tool ... 103

Test Prioritization Tool .. 111

PGO API: Profile Information Generation Support 118

High-level Language Optimizations (HLO).. 121

HLO Overview.. 121

Loop Transformations... 122

Scalar Replacement (IA-32 Only).. 123

Loop Unrolling with -unroll[n]... 123

Table Of Contents

vi

Memory Dependency with IVDEP Directive... 124

Prefetching... 125

Parallel Programming with Intel® Fortran... 127

Parallelism: an Overview.. 127

Parallel Program Development ... 128

Auto-vectorization (IA-32 Only)... 130

Vectorization Overview ... 130

Vectorizer Options.. 131

Loop Parallelization and Vectorization... 132

Vectorization Key Programming Guidelines... 133

Data Dependence .. 134

Loop Constructs... 135

Loop Exit Conditions... 136

Types of Loop Vectorized ... 137

Strip-mining and Cleanup ... 138

Statements in the Loop Body.. 139

Vectorization Examples .. 140

Loop Interchange and Subscripts: Matrix Multiply.................................... 142

Auto-parallelization .. 143

Auto-parallelization Overview.. 143

Programming with Auto-parallelization .. 144

Auto-parallelization: Enabling, Options, Directives, and Environment
Variables.. 145

Auto-parallelization Threshold Control and Diagnostics 147

Table Of Contents

vii

Parallelization with OpenMP* ... 149

Parallelization with OpenMP* Overview... 149

Programming with OpenMP.. 150

Parallel Processing Thread Model... 156

Compiling with OpenMP, Directive Format, and Diagnostics.................... 158

OpenMP Directives and Clauses Summary... 160

OpenMP Directive Descriptions .. 164

OpenMP Clause Descriptions... 174

OpenMP Support Libraries ... 182

OpenMP Environment Variables ... 183

OpenMP Run-time Library Routines.. 186

Intel Extension Routines ... 189

Examples of OpenMP Usage.. 191

Debugging Multithreaded Programs ... 193

Debugging Multithread Programs Overview .. 193

Debugging Parallel Regions ... 195

Debugging Multiple Threads ... 197

Debugging Shared Variables .. 201

Optimization Support Features .. 203

Optimization Support Features Overview.. 203

Compiler Directives.. 203

Compiler Directives Overview ... 203

Pipelining for Itanium®-based Applications.. 203

Table Of Contents

viii

Loop Count and Loop Distribution... 204

Loop Unrolling Support ... 205

Prefetching Support.. 206

Vectorization Support ... 206

Optimizations and Debugging .. 210

Support for Symbolic Debugging, -g.. 211

The Use of ebp Register... 211

Combining Optimization and Debugging ... 211

Debugging and Assembling.. 212

Optimizer Report Generation.. 213

Specifying Optimizations to Generate Reports .. 213

Glossary ... 217

Glossary.. 217

Index ..221

9

Optimizing Applications: Overview
This is the second volume in a two-volume Intel® Fortran Compiler User's Guide.

It covers the following topics:

Programming for high performance using the Intel Fortran Compiler:

• Setting Data Type and Alignment
• Using Arrays Efficiently
• Improving I/O Performance
• Improving Run-time Efficiency
• Using Intrinsics for Itanium-based Systems
• Coding Guidelines for Intel Architectures

Analyzing and timing your application:

• Using Intel Performance Analysis Tools
• Timing Your Application

Implementing Intel Fortran Compiler optimizations:

• Optimizing the Compilation Process
• Efficient Compilation
• Stack Options for Automatic Allocation and Checking
• Alignment Options
• Symbol Visibility Attribute Options
• Options to Optimize Different Application Types
• Floating Point Arithmetic Optimizations
• Optimizing for Specific Processors
• Interprocedural Optimizations
• Profile-guided Optimizations
• High-level Language Optimizations (HLO)

Parallel programming with Intel Fortran:

• Auto-vectorization (IA-32 Only)
• Auto-parallelization
• Parallelization with OpenMP*
• Debugging Multi-Threaded Programs

Optimization support features:

• Compiler Directives
• Optimizations and Debugging

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

10

• Optimizer Report Generation

For information on new features in this release, see the topic titled What's New in
This Release, in Volume I. Also refer to the product Release Notes.

11

How to Use This Document
This User's Guide explains how you can use the Intel® Fortran Compiler to
enhance your application.

The optimizations provided by the Intel Fortran Compiler enable you to enhance
the performance of your application. Each optimization is performed using a set
of options discussed in the sections of this volume.

In addition to optimizations invoked by the compiler command line options, the
compiler includes features that enhance your application performance such as
directives, intrinsics, run-time library routines and various utilities. These features
are discussed in the Optimization Support Features section.

Note
This document explains how information and instructions apply differently
to targeted architectures. If there is no reference to a specific architecture,
the description applies to all supported architectures.

This documentation assumes that you are familiar with the Fortran Standard
programming language and with the Intel® processor architecture. You should
also be familiar with the host computer's operating system.

Notation Conventions
This manual uses the following conventions:

Intel Fortran The name of the common compiler language
supported by the Intel® Fortran Compiler for
Windows* and Intel® Fortran Compiler for Linux*
products.

Fortran 95
Fortran 90
Fortran 77

These terms are references to versions of the
Fortran language. The default is "Fortran," which
corresponds to all versions.

THIS TYPE STYLE Statements, keywords, and directives are shown in
all uppercase, in a normal font. . For example, �add
the USE statement��.

This type style Bold, normal text indicates menu names, menu
items, button names, dialog window names, and
other user-interface items.

File > Open Menu names and menu items joined by a greater
than (>) sign indicate a sequence of actions. For
example, "Click File > Open" indicates that in the

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

12

File menu, click Open to perform this action.
ifort The use of the compiler command in examples

follows this general rule: when there is no usage
difference between architectures, only one
command is given. Whenever there is a difference
in usage, the commands for each architecture are
given.

This type
style

Regular, monospaced text indicates an element of
syntax, a reserved word, a keyword, a file name, a
variable, or a code example. The text appears in
lowercase unless uppercase is required.

This type
style Bold, monospaced text indicates user input. It

shows what you type as a command or input.
This type
style

Italic, monospaced text indicates placeholders for
information that you must supply. This style is also
used to introduce new terms.

[options] Items inside single square brackets are optional.
(In some examples, square brackets are used to
show arrays.)

{value |
value}

Braces and a vertical bar indicate a choice of
items. You must choose one of the items unless
all of the items are also enclosed in square
brackets.

... In syntax examples, a horizontal ellipsis (three
dots) following an item indicates that the item
preceding the ellipsis can be repeated. In code
examples, a horizontal ellipsis means that not all of
the statements are shown.

Linux* systems An asterisk at the end of a word or name indicates
it is a third-party product trademark.

13

Programming for High Performance
Programming for High Performance: Overview
This section provides information on the following:

• Programming Guidelines
This section discusses programming guidelines that can enhance
application performance and includes specific coding practices that use
the Intel® architecture features.

• Analyzing and Timing Your Application
This section discusses how to use the Intel performance analysis tools
and how to time program execution to collect information about problem
areas.

Programming Guidelines
Setting Data Type and Alignment

Data alignment considerations apply to the following kinds of variables:

• Those that are dynamically allocated
• Those that are members of a data structure
• Those that are global or local variables
• Those that are parameters passed on the stack

For best performance, align data as follows:

• Align 8-bit data at any address.
• Align 16-bit data to be contained within an aligned four byte word.
• Align 32-bit data so that its base address is a multiple of four.
• Align 64-bit data so that its base address is a multiple of eight.
• Align 80-bit data so that its base address is a multiple of sixteen.
• Align 128-bit data so that its base address is a multiple of sixteen.

Causes of Unaligned Data and Ensuring Natural Alignment

For optimal performance, make sure your data is aligned naturally. A natural
boundary is a memory address that is a multiple of the data item's size. For
example, a REAL (KIND=8) data item aligned on natural boundaries has an
address that is a multiple of 8. An array is aligned on natural boundaries if all of
its elements are so aligned.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

14

All data items whose starting address is on a natural boundary are naturally
aligned. Data not aligned on a natural boundary is called unaligned data.

Although the Intel® Fortran Compiler naturally aligns individual data items when
it can, certain Fortran statements can cause data items to become unaligned.

You can use the command-line option -align to ensure naturally aligned data,
but you should check and consider reordering data declarations of data items
within common blocks, derived-type structures, and record structures as follows:

• Carefully specify the order and sizes of data declarations to ensure
naturally aligned data.

• Start with the largest size numeric items first, followed by smaller size
numeric items, and then non-numeric (character) data.

The following statements can cause unaligned data:

• Common blocks (COMMON statement)

The order of variables in the COMMON statement determines their
storage order. Unless you are sure that the data items in the common
block will be naturally aligned, specify either the -align commons or -
align dcommons option, depending on the largest data size used. See
Alignment Options.

• Derived-type (user-defined) data

Derived-type data items are declared after a TYPE statement.

If your data includes derived-type data structures, you should use the -
align records option, unless you are sure that the data items in the
derived-type structures will be naturally aligned.

If you omit the SEQUENCE statement, the -align records option
(default) ensures all data items are naturally aligned.

If you specify the SEQUENCE statement, the -align records option is
prevented from adding necessary padding to avoid unaligned data (data
items are packed) unless you specify the -align sequence option.
When you use SEQUENCE , you should specify data declaration order so
that all data items are naturally aligned.

• Record structures (RECORD and STRUCTURE statements)

Intel Fortran record structures usually contain multiple data items. The
order of variables in the STRUCTURE statement determines their storage

Programming for High Performance

15

order. The RECORD statement names the record structure. Record
structures are an Intel Fortran language extension.

If your data includes record structures, you should use the -align
records option, unless you are sure that the data items in the record
structures will be naturally aligned.

• EQUIVALENCE statements

EQUIVALENCE statements can force unaligned data or cause data to
span natural boundaries. For more information, see the Intel® Fortran
Language Reference.

To avoid unaligned data in a common block, derived-type structure, or record
structure, use one or both of the following:

• For new programs or for programs where the source code declarations
can be modified easily, plan the order of data declarations with care. For
example, you should order variables in a COMMON statement such that
numeric data is arranged from largest to smallest, followed by any
character data (see the data declaration rules in Ordering Data
Declarations to Avoid Unaligned Data below.

• For existing programs where source code changes are not easily done or
for array elements containing derived-type or record structures, you can
use command line options to request that the compiler align numeric data
by adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments and
arrays that contain a derived-type structure or record structure:

• When actual arguments from outside the program unit are not naturally
aligned, unaligned data access occurs. Intel Fortran assumes all passed
arguments are naturally aligned and has no information at compile time
about data that will be introduced by actual arguments during program
execution.

• For arrays where each array element contains a derived-type structure or
record structure, the size of the array elements may cause some elements
(but not the first) to start on an unaligned boundary.

• Even if the data items are naturally aligned within a derived-type structure
without the SEQUENCE statement or a record structure, the size of an
array element might require use of the -align records option to supply
needed padding to avoid some array elements being unaligned.

• If you specify -align norecords or specify -vms without -align
records, no padding bytes are added between array elements. If array
elements each contain a derived-type structure with the SEQUENCE
statement, array elements are packed without padding bytes regardless of

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

16

the Fortran command options specified. In this case, some elements will
be unaligned.

• When the -align records option is in effect, the number of padding
bytes added by the compiler for each array element is dependent on the
size of the largest data item within the structure. The compiler determines
the size of the array elements as an exact multiple of the largest data item
in the derived-type structure without the SEQUENCE statement or a
record structure. The compiler then adds the appropriate number of
padding bytes. For instance, if a structure contains an 8-byte floating-point
number followed by a 3-byte character variable, each element contains
five bytes of padding (16 is an exact multiple of 8). However, if the
structure contains one 4-byte floating-point number, one 4-byte integer,
followed by a 3-byte character variable, each element would contain one
byte of padding (12 is an exact multiple of 4).

Checking for Inefficient Unaligned Data

During compilation, the Intel Fortran compiler naturally aligns as much data as
possible. Exceptions that can result in unaligned data are described above.

Because unaligned data can slow run-time performance, it is worthwhile to:

• Double-check data declarations within common blocks, derived-type
structures, or record structures to ensure all data items are naturally
aligned (see the data declaration rules in the subsection below). Using
modules to contain data declarations can ensure consistent alignment and
use of such data.

• Avoid the EQUIVALENCE statement or use it in a way that cannot cause
unaligned data or data spanning natural boundaries.

• Ensure that arguments passed from outside the program unit are naturally
aligned.

• Check that the size of array elements containing at least one derived-type
structure or record structure causes array elements to start on aligned
boundaries (see the previous subsection).

There are two ways unaligned data might be reported:

• During compilation, warning messages are issued for any data items that
are known to be unaligned, unless you specify the -warn noalignments
(or -W0) option that suppresses all warnings.

• During program execution, warning messages are issued for any data that
is detected as unaligned. The message includes the address of the
unaligned access.

Consider the following run-time message:

Programming for High Performance

17

Unaligned access pid=24821 <a.out> va=140000154,
pc=3ff80805d60, ra=1200017bc

This message shows that:

• The statement accessing the unaligned data (program counter) is located
at 3ff80805d60

• The unaligned data is located at address 140000154

Ordering Data Declarations to Avoid Unaligned Data

For new programs or when the source declarations of an existing program can
be easily modified, plan the order of your data declarations carefully to ensure
the data items in a common block, derived-type structure, record structure, or
data items made equivalent by an EQUIVALENCE statement will be naturally
aligned.

Use the following rules to prevent unaligned data:

• Always define the largest size numeric data items first.
• If your data includes a mixture of character and numeric data, place the

numeric data first.
• Add small data items of the correct size (or padding) before otherwise

unaligned data to ensure natural alignment for the data that follows.

When declaring data, consider using explicit length declarations, such as
specifying a KIND parameter. For example, specify INTEGER(KIND=4) (or
INTEGER(4)) rather than INTEGER. If you do use a default size (such as
INTEGER, LOGICAL, COMPLEX, and REAL), be aware that the compiler
options
-integer_size{16|32|64} or -real_size{32|64|128} can change the
size of an individual field's data declaration size and thus can alter the data
alignment of a carefully planned order of data declarations.

Using the suggested data declaration guidelines minimizes the need to use the -
align keyword options to add padding bytes to ensure naturally aligned data.
In cases where the -align keyword options are still needed, using the
suggested data declaration guidelines can minimize the number of padding bytes
added by the compiler.

Arranging Data Items in Common Blocks

The order of data items in a common statement determine the order in which the
data items are stored. Consider the following declaration of a common block
named x:

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

18

logical (kind=2) flag
integer iarry_i(3)
character(len=5) name_ch
common /x/ flag, iarry_i(3), name_ch

As shown in Figure 1-1, if you omit the appropriate Fortran command options, the
common block will contain unaligned data items beginning at the first array
element of iarry_i.

Figure 1-1 Common Block with Unaligned Data

As shown in Figure 1-2, if you compile the program units that use the common
block with the
-align commons option, data items will be naturally aligned.

Figure 1-2 Common Block with Naturally Aligned Data

Because the common block x contains data items whose size is 32 bits or
smaller, specify the
-align commons option. If the common block contains data items whose size
might be larger than 32 bits (such as REAL (KIND=8) data), use the -align
commons option.

If you can easily modify the source files that use the common block data, define
the numeric variables in the COMMON statement in descending order of size
and place the character variable last. This provides more portability, ensures
natural alignment without padding, and does not require the command-line
options -align commons or -align dcommons option:

logical (kind=2) flag
integer iarry_i(3)
character(len=5) name_ch
common /x/ iarry_i(3), flag, name_ch

Programming for High Performance

19

As shown in Figure 1-3, if you arrange the order of variables from largest to
smallest size and place character data last, the data items will be naturally
aligned.

Figure 1-3 Common Block with Naturally Aligned Reordered Data

When modifying or creating all source files that use common block data, consider
placing the common block data declarations in a module so the declarations are
consistent. If the common block is not needed for compatibility (such as file
storage or Fortran 77 use), you can place the data declarations in a module
without using a common block.

Arranging Data Items in Derived-Type Data

Like common blocks, derived-type structures can contain multiple data items
(members).

Data item components within derived-type structures are naturally aligned on up
to 64-bit boundaries, with certain exceptions related to the use of the
SEQUENCE statement and Fortran options. See Options Controlling Alignment
for information about these exceptions.

Intel Fortran stores a derived data type as a linear sequence of values, as
follows:

• If you specify the SEQUENCE statement, the first data item is in the first
storage location and the last data item is in the last storage location. The
data items appear in the order in which they are declared. The Fortran
options have no effect on unaligned data, so data declarations must be
carefully specified to naturally align data. The -align sequence option
specifically aligns data items in a SEQUENCE derived-type on natural
boundaries.

• If you omit the SEQUENCE statement, Intel Fortran adds the padding
bytes needed to naturally align data item components, unless you specify
the -align norecords option.

Consider the following declaration of array CATALOG_SPRING of derived-type
PART_DT:

module data_defs
type part_dt

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

20

integer identifier
real weight
character(len=15) description
end type part_dt
type(part_dt) catalog_spring(30)
.
.
.
end module data_defs

Using Arrays Efficiently

Many of the array access efficiency techniques described in this section are
applied automatically by the Intel Fortran loop transformations optimizations.
Several aspects of array use can improve run-time performance:

• The fastest array access occurs when contiguous access to the whole
array or most of an array occurs. Perform one or a few array operations
that access all of the array or major parts of an array instead of numerous
operations on scattered array elements. Rather than use explicit loops for
array access, use elemental array operations, such as the following line
that increments all elements of array variable a:

a = a + 1

When reading or writing an array, use the array name and not a DO loop
or an implied DO-loop that specifies each element number. Fortran 95/90
array syntax allows you to reference a whole array by using its name in an
expression. For example:

real :: a(100,100)
a = 0.0
a = a + 1 ! Increment all elements
 ! of a by 1
.
.
.
write (8) a ! Fast whole array use

Similarly, you can use derived-type array structure components, such as:

type x
integer a(5)
end type x
.
.
.
type (x) z
write (8)z%a ! Fast array structure
 ! component use

Programming for High Performance

21

• Make sure multidimensional arrays are referenced using proper array
syntax and are traversed in the natural ascending storage order, which is
column-major order for Fortran. With column-major order, the leftmost
subscript varies most rapidly with a stride of one. Whole array access
uses column-major order.
Avoid row-major order, as is done by C, where the rightmost subscript
varies most rapidly.
For example, consider the nested do loops that access a two-dimension
array with the j loop as the innermost loop:

integer x(3,5), y(3,5), i, j
y = 0
do i=1,3 ! I outer loop varies slowest
do j=1,5 ! J inner loop varies fastest
x (i,j) = y(i,j) + 1 ! Inefficient row-major storage
order
end do ! (rightmost subscript varies
fastest)
end do
.
.
.
end program

Since j varies the fastest and is the second array subscript in the
expression x (i,j), the array is accessed in row-major order.
To make the array accessed in natural column-major order, examine the
array algorithm and data being modified. Using arrays x and y, the array
can be accessed in natural column-major order by changing the nesting
order of the do loops so the innermost loop variable corresponds to the
leftmost array dimension:

integer x(3,5), y(3,5), i, j
y = 0
do j=1,5 ! J outer loop varies slowest
do i=1,3 ! I inner loop varies fastest
x (i,j) = y(i,j) + 1 ! Efficient column-major storage
order
end do ! (leftmost subscript varies
fastest)
end do
.
.
.
end program

The Intel Fortran whole array access (x = y + 1) uses efficient column
major order. However, if the application requires that J vary the fastest or
if you cannot modify the loop order without changing the results, consider

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

22

modifying the application program to use a rearranged order of array
dimensions. Program modifications include rearranging the order of:

• Dimensions in the declaration of the arrays x(5,3) and y(5,3)
• The assignment of x(j,i) and y(j,i) within the do loops
• All other references to arrays x and y

In this case, the original DO loop nesting is used where J is the innermost
loop:

integer x(3,5), y(3,5), i, j
y = 0
do i=1,3 ! I outer loop varies slowest
do j=1,5 ! J inner loop varies fastest
x (j,i) = y(j,i) + 1 ! Efficient column-major storage
order
end do ! (leftmost subscript varies
fastest)
end do
.
.
.
end program

Code written to access multidimensional arrays in row-major order (like C)
or random order can often make use of the CPU memory cache less
efficient. For more information on using natural storage order during
record, see Improving I/O Performance.

• Use the available Fortran 95/90 array intrinsic procedures rather than
create your own.

Whenever possible, use Fortran 95/90 array intrinsic procedures instead
of creating your own routines to accomplish the same task. Fortran 95/90
array intrinsic procedures are designed for efficient use with the various
Intel Fortran run-time components.

Using the standard-conforming array intrinsics can also make your
program more portable.

• With multidimensional arrays where access to array elements will be
noncontiguous, avoid leftmost array dimensions that are a power of two
(such as 256, 512).

Since the cache sizes are a power of 2, array dimensions that are also a
power of 2 may make less efficient use of cache when array access is
noncontiguous. If the cache size is an exact multiple of the leftmost
dimension, your program will probably make inefficient use of the cache.

Programming for High Performance

23

This does not apply to contiguous sequential access or whole array
access.

One work-around is to increase the dimension to allow some unused
elements, making the leftmost dimension larger than actually needed. For
example, increasing the leftmost dimension of A from 512 to 520 would
make better use of cache:

 real a(512, 100)
do i= 2,511
do j = 2,99
a(i,j)=(a(i+1,j-1) + a(i-1, j+1)) * 0.5
end do
end do

In this code, array a has a leftmost dimension of 512, a power of two. The
innermost loop accesses the rightmost dimension (row major), causing
inefficient access. Increasing the leftmost dimension of a to 520 (real a
(520,100)) allows the loop to provide better performance, but at the
expense of some unused elements.

Because loop index variables I and J are used in the calculation, changing
the nesting order of the do loops changes the results.

For more information on arrays and their data declaration statements, see the
Intel® Fortran Language Reference.

Passing Array Arguments Efficiently

In Fortran, there are two general types of array arguments:

• Explicit-shape arrays used with Fortran 77.

These arrays have a fixed rank and extent that is known at compile time.
Other dummy argument (receiving) arrays that are not deferred-shape
(such as assumed-size arrays) can be grouped with explicit-shape array
arguments.

• Deferred-shape arrays introduced with Fortran 95/90.

Types of deferred-shape arrays include array pointers and allocatable
arrays. Assumed-shape array arguments generally follow the rules about
passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the
array or the address of an array descriptor is passed:

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

24

• When using explicit-shape (or assumed-size) arrays to receive an array,
the starting address of the array is passed.

• When using deferred-shape or assumed-shape arrays to receive an array,
the address of the array descriptor is passed (the compiler creates the
array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array can
slow run-time performance. This is because the compiler needs to create an
array temporary for the entire array. The array temporary is created because the
passed array may not be contiguous and the receiving (explicit-shape) array
requires a contiguous array. When an array temporary is created, the size of the
passed array determines whether the impact on slowing run-time performance is
slight or severe.

The following table summarizes what happens with the various combinations of
array types. The amount of run-time performance inefficiency depends on the
size of the array.

Dummy Argument Array Types
(choose one:)

Actual
Argument
Array Types
(choose
one:)

Explicit-Shape Arrays Deferred-Shape and
Assumed-Shape Arrays

Explicit-
shape arrays

Result when using this
combination: Very efficient.
Does not use an array
temporary. Does not pass an
array descriptor. Interface
block optional.

Result when using this
combination: Efficient. Only
allowed for assumed-shape
arrays (not deferred-shape
arrays). Does not use an array
temporary. Passes an array
descriptor. Requires an
interface block.

Deferred-
shape and
assumed-
shape arrays

Result when using this
combination: When passing
an allocatable array, very
efficient. Does not use an
array temporary. Does not
pass an array descriptor.
Interface block optional.

When not passing an
allocatable array, not
efficient. Instead use
allocatable arrays whenever
possible.

Uses an array temporary.

Result when using this
combination: Efficient.
Requires an assumed-shape or
array pointer as dummy
argument. Does not use an
array temporary. Passes an
array descriptor. Requires an
interface block.

Programming for High Performance

25

Does not pass an array
descriptor. Interface block
optional.

Improving I/O Performance

Improving overall I/O performance can minimize both device I/O and actual CPU
time. The techniques listed in this topic can significantly improve performance in
many applications.

I/O flow problems limit the maximum speed of execution by being the slowest
process in an executing program. In some programs, I/O is the bottleneck that
prevents an improvement in run-time performance. The key to relieving I/O
problems is to reduce the actual amount of CPU and I/O device time involved in
I/O.

The problems can be caused by one or more of the following:

• A dramatic reduction in CPU time without a corresponding improvement in
I/O time

• Such coding practices as:
• Unnecessary formatting of data and other CPU-intensive

processing
• Unnecessary transfers of intermediate results
• Inefficient transfers of small amounts of data
• Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual
CPU time.

Intel offers software solutions to system-wide problems like minimizing device I/O
delays.

Use Unformatted Files Instead of Formatted Files

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

26

Use unformatted files whenever possible. Unformatted I/O of numeric data is
more efficient and more precise than formatted I/O. Native unformatted data
does not need to be modified when transferred and will take up less space on an
external file.

Conversely, when writing data to formatted files, formatted data must be
converted to character strings for output, less data can transfer in a single
operation, and formatted data may lose precision if read back into binary form.

To write the array A(25,25) in the following statements, S1 is more efficient
than S2:

S1 WRITE (7) A

S2 WRITE (7,100) A
100 FORMAT (25(' ',25F5.21))

Although formatted data files are more easily ported to other systems, Intel
Fortran can convert unformatted data in several formats; see Little-endian-to-Big-
endian Conversion.

Write Whole Arrays or Strings

To eliminate unnecessary overhead, write whole arrays or strings at one time
rather than individual elements at multiple times. Each item in an I/O list
generates its own calling sequence. This processing overhead becomes most
significant in implied-DO loops. When accessing whole arrays, use the array
name (Fortran array syntax) instead of using implied-DO loops.

Write Array Data in the Natural Storage Order

Use the natural ascending storage order whenever possible. This is column-
major order, with the leftmost subscript varying fastest and striding by 1. (See
Accessing Arrays Efficiently.) If a program must read or write data in any other
order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order
possible.

If you must use an unnatural storage order, in certain cases it might be more
efficient to transfer the data to memory and reorder the data before performing
the I/O operation.

Use Memory for Intermediate Results

Performance can improve by storing intermediate results in memory rather than
storing them in a file on a peripheral device. One situation that may not benefit

Programming for High Performance

27

from using intermediate storage is when there is a disproportionately large
amount of data in relation to physical memory on your system. Excessive page
faults can dramatically impede virtual memory performance.

If you are primarily concerned with the CPU performance of the system, consider
using a memory file system (mfs) virtual disk to hold any files your code reads or
writes.

Enable Implied-DO Loop Collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally, each
element in an I/O list generates a separate call to the Intel Fortran run-time
library (RTL). The processing overhead of these calls can be most significant in
implied-DO loops.

Intel Fortran reduces the number of calls in implied-DO loops by replacing up to
seven nested implied-DO loops with a single call to an optimized run-time library
I/O routine. The routine can transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted I/O, but only if certain
conditions are met:

• The control variable must be an integer. The control variable cannot be a
dummy argument or contained in an EQUIVALENCE or VOLATILE
statement. Intel Fortran must be able to determine that the control variable
does not change unexpectedly at run time.

• The format must not contain a variable format expression.

For information on the VOLATILE attribute and statement, see the Intel® Fortran
Language Reference.

For loop optimizations, see Loop Transformations, Loop Unrolling, and
Optimization Levels.

Use of Variable Format Expressions

Variable format expressions (an Intel Fortran extension) are almost as flexible as
run-time formatting, but they are more efficient because the compiler can
eliminate run-time parsing of the I/O format. Only a small amount of processing
and the actual data transfer are required during run time.

On the other hand, run-time formatting can impair performance significantly. For
example, in the following statements, S1 is more efficient than S2 because the
formatting is done once at compile time, not at run time:

S1 WRITE (6,400) (A(I), I=1,N)
400 FORMAT (1X, <N> F5.2)

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

28

 .
 .
 .
S2 WRITE (CHFMT,500) '(1X,',N,'F5.2)'
500 FORMAT (A,I3,A)
WRITE (6,FMT=CHFMT) (A(I), I=1,N)

Efficient Use of Record Buffers and Disk I/O

Records being read or written are transferred between the user's program buffers
and one or more disk block I/O buffers, which are established when the file is
opened by the Intel Fortran RTL. Unless very large records are being read or
written, multiple logical records can reside in the disk block I/O buffer when it is
written to disk or read from disk, minimizing physical disk I/O.

You can specify the size of the disk block physical I/O buffer by using the OPEN
statement BLOCKSIZE specifier; the default size can be obtained from
fstat(2). If you omit the BLOCKSIZE specifier in the OPEN statement, it is set
for optimal I/O use with the type of device the file resides on (with the exception
of network access).

The OPEN statement BUFFERCOUNT specifier specifies the number of I/O
buffers. The default for BUFFERCOUNT is 1. Any experiments to improve I/O
performance should increase the BUFFERCOUNT value and not the
BLOCKSIZE value, to increase the amount of data read by each disk I/O.

If the OPEN statement has BLOCKSIZE and BUFFERCOUNT specifiers, then
the internal buffer size in bytes is the product of these specifiers. If the open
statement does not have these specifiers, then the default internal buffer size is
8192 bytes. This internal buffer will grow to hold the largest single record, but will
never shrink.

The default for the Fortran run-time system is to use unbuffered disk writes. That
is, by default, records are written to disk immediately as each record is written
instead of accumulating in the buffer to be written to disk later.

To enable buffered writes (that is, to allow the disk device to fill the internal buffer
before the buffer is written to disk), use one of the following:

• The OPEN statement BUFFERED specifier
• The -assume buffered_io command-line option
• The FORT_BUFFERED run-time environment variable

The OPEN statement BUFFERED specifier takes precedence over the -assume
buffered_io option. If neither one is set (which is the default), the
FORT_BUFFERED environment variable is tested at run time.

Programming for High Performance

29

The OPEN statement BUFFERED specifier applies to a specific logical unit. In
contrast, the
-assume nobuffered_io option and the FORT_BUFFERED environment
variable apply to all Fortran units.

Using buffered writes usually makes disk I/O more efficient by writing larger
blocks of data to the disk less often. However, a system failure when using
buffered writes can cause records to be lost, since they might not yet have been
written to disk. (Such records would have been written to disk with the default
unbuffered writes.)

When performing I/O across a network, be aware that the size of the block of
network data sent across the network can impact application efficiency. When
reading network data, follow the same advice for efficient disk reads, by
increasing the BUFFERCOUNT. When writing data through the network, several
items should be considered:

• Unless the application requires that records be written using unbuffered
writes, enable buffered writes by a method described above.

• Especially with large files, increasing the BLOCKSIZE value increases the
size of the block sent on the network and how often network data blocks
get sent.

• Time the application when using different BLOCKSIZE values under
similar conditions to find the optimal network block size.

When writing records, be aware that I/O records are written to unified buffer
cache (UBC) system buffers. To request that I/O records be written from program
buffers to the UBC system buffers, use the FLUSH library routine (see the Intel®
Fortran Libraries Reference). Be aware that calling FLUSH also discards read-
ahead data in user buffer.

Specify RECL

The sum of the record length (RECL specifier in an OPEN statement) and its
overhead is a multiple or divisor of the blocksize, which is device-specific. For
example, if the BLOCKSIZE is 8192 then RECL might be 24576 (a multiple of 3)
or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over
capacity). Such values allow efficient moves, with each operation moving as
much data as possible; the least amount of space in the block is wasted. Avoid
using values larger than the block capacity, because they create very inefficient
moves for the excess data only slightly filling a block (allocating extra memory for
the buffer and writing partial blocks are inefficient).

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

30

The RECL value unit for formatted files is always 1-byte units. For unformatted
files, the RECL unit is 4-byte units, unless you specify the -assume byterecl
option to request 1-byte units (see
-assume byterecl).

Use the Optimal Record Type

Unless a certain record type is needed for portability reasons, choose the most
efficient type, as follows:

• For sequential files of a consistent record size, the fixed-length record type
gives the best performance.

• For sequential unformatted files when records are not fixed in size, the
variable-length record type gives the best performance, particularly for
BACKSPACE operations.

• For sequential formatted files when records are not fixed in size, the
Stream_LF record type gives the best performance.

Reading from a Redirected Standard Input File

Due to certain precautions that the Fortran run-time system takes to ensure the
integrity of standard input, reads can be very slow when standard input is
redirected from a file. For example, when you use a command such as
myprogram.exe < myinput.data>, the data is read using the READ(*) or
READ(5) statement, and performance is degraded. To avoid this problem, do
one of the following:

• Explicitly open the file using the OPEN statement. For example:

open(5, STATUS='OLD', FILE='myinput.dat')

• Use an environment variable to specify the input file.

To take advantage of these methods, be sure your program does not rely on
sharing the standard input file.

For more information on Intel Fortran data files and I/O, see "Files, Devices, and
I/O" in Volume I; on OPEN statement specifiers and defaults, see "Open
Statement" in the Intel® Fortran Language Reference.

Improving Run-time Efficiency

Follow these source coding guidelines to improve run-time performance. The
amount of improvement in run-time performance is related to the number of times
a statement is executed. For example, improving an arithmetic expression

Programming for High Performance

31

executed within a loop many times has the potential to improve performance,
more than improving a similar expression executed once outside a loop.

Avoid Small Integer and Small Logical Data Items

Avoid using integer or logical data less than 32 bits. Accessing a 16-bit (or 8-bit)
data type can make data access less efficient, especially on Itanium-based
systems.

To minimize data storage and memory cache misses with arrays, use 32-bit data
rather than 64-bit data, unless you require the greater numeric range of 8-byte
integers or the greater range and precision of double precision floating-point
numbers.

Avoid Mixed Data Type Arithmetic Expressions

Avoid mixing integer and floating-point (REAL) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment
statement) as floating-point values eliminates the need to convert data between
fixed and floating-point formats. Expressing all numbers in an integer arithmetic
expression as integer values also achieves this. This improves run-time
performance.

For example, assuming that I and J are both INTEGER variables, expressing a
constant number (2.) as an integer value (2) eliminates the need to convert the
data:

Inefficient Code:

INTEGER I, J
I = J / 2.

Efficient Code:

INTEGER I, J
I = J / 2

You can use different sizes of the same general data type in an expression with
minimal or no effect on run-time performance. For example, using REAL,
DOUBLE PRECISION, and COMPLEX floating-point numbers in the same
floating-point arithmetic expression has minimal or no effect on run-time
performance.

Use Efficient Data Types

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

32

In cases where more than one data type can be used for a variable, consider
selecting the data types based on the following hierarchy, listed from most to
least efficient:

• Integer (also see above example)
• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or

REAL*4
• Double-precision real, expressed explicitly as DOUBLE PRECISION,

REAL (KIND=8), or REAL*8
• Extended-precision real, expressed explicitly as REAL (KIND=16) or

REAL*16

However, keep in mind that in an arithmetic expression, you should avoid mixing
integer and floating-point (REAL) data (see example in the previous subsection).

Avoid Using Slow Arithmetic Operators

Before you modify source code to avoid slow arithmetic operators, be aware that
optimizations convert many slow arithmetic operators to faster arithmetic
operators. For example, the compiler optimizes the expression H=J**2 to be
H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster
arithmetic operator will change the accuracy of the results or impact the
maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved for
critical code areas. The following hierarchy lists the Intel Fortran arithmetic
operators, from fastest to slowest:

• Addition (+), subtraction (-), and floating-point multiplication (*)
• Integer multiplication (*)
• Division (/)
• Exponentiation (**)

Avoid Using EQUIVALENCE Statements

Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

• Force unaligned data or cause data to span natural boundaries.
• Prevent certain optimizations, including:

• Global data analysis under certain conditions (see -O2 in Setting
Optimization with -On options).

• Implied-DO loop collapsing when the control variable is contained in
an EQUIVALENCE statement

Programming for High Performance

33

Use Statement Functions and Internal Subprograms

Whenever the Intel Fortran compiler has access to the use and definition of a
subprogram during compilation, it may choose to inline the subprogram. Using
statement functions and internal subprograms maximizes the number of
subprogram references that will be inlined, especially when multiple source files
are compiled together at optimization level -O3.

For more information, see Efficient Compilation.

Code DO Loops for Efficiency

Minimize the arithmetic operations and other operations in a DO loop whenever
possible. Moving unnecessary operations outside the loop will improve
performance (for example, when the intermediate nonvarying values within the
loop are not needed).

For more information on loop optimizations, see Pipelining for Itanium®-based
Applications and Loop Unrolling; on the syntax of Intel Fortran statements, see
the Intel® Fortran Language Reference.

Using Intrinsics for Itanium®-based Systems

Intel® Fortran supports all standard Fortran intrinsic procedures and, in addition,
provides Intel-specific intrinsic procedures to extend the functionality of the
language. Intel Fortran intrinsic procedures are provided in the library
libintrins.a. For more information on intrinsic procedures, see the Intel®
Fortran Language Reference.

This topic provides examples of the Intel-extended intrinsics that are helpful in
developing efficient applications.

CACHESIZE Intrinsic (Itanium® Compiler)

Intrinsic CACHESIZE (n)is used only with the Intel® Itanium® Compiler.
CACHESIZE (n) returns the size in kilobytes of the cache at level n; 1 represents
the first level cache. Zero is returned for a nonexistent cache level.

This intrinsic can be used in many scenarios where application programmers
would like to tailor their algorithms for the target processor's cache hierarchy. For
example, an application may query the cache size and use it to select block sizes
in algorithms that operate on matrices.

subroutine foo (level)
integer level
if (cachesize(level) > threshold) then
call big_bar()

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

34

else
call small_bar()
end if
end subroutine

Coding Guidelines for Intel® Architectures

This topic provides general guidelines for coding practices and techniques for:

• IA-32 architecture supporting MMX(TM) technology and Streaming SIMD
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2)

• Itanium® architecture

This topic describes practices, tools, coding rules and recommendations
associated with the architecture features that can improve the performance on
IA-32 and Itanium processor families. For details about optimization for IA-32
processors, see the Intel® Architecture Optimization Reference Manual. For all
details about optimization for Itanium processor family, see the Intel Itanium 2
Processor Reference Manual for Software Development and Optimization.

Note
If a guideline refers to a particular architecture only, this architecture is
explicitly named. The default is for both IA-32 and Itanium architectures.

Performance of compiler-generated code may vary from one compiler to another.
The Intel® Fortran Compiler generates code that is highly optimized for Intel
architectures. You can significantly improve performance by using various
compiler optimization options. In addition, you can help the compiler to optimize
your Fortran program by following the guidelines described here.

To achieve optimum processor performance in your Fortran application, do the
following:

• avoid memory access stalls
• ensure good floating-point performance
• ensure good SIMD integer performance
• use vectorization.

The coding practices, rules, and recommendations described here will contribute
to optimizing the performance on Intel architecture-based processors.

Memory Access

Programming for High Performance

35

The Intel compiler lays out Fortran arrays in column-major order. For example, in
a two-dimensional array, elements A(22, 34) and A(23, 34) are contiguous
in memory. For best performance, code arrays so that inner loops access them in
a contiguous manner. Consider the following examples.

The code in example 1 will likely have higher performance than the code in
example 2.

Example 1

DO J = 1, N
DO I = 1, N
B(I,J) = A(I, J) + 1
END DO
END DO

The code above illustrates access to arrays A and B in the inner loop I in a
contiguous manner which results in good performance.

Example 2

DO I = 1, N
DO J = 1, N
B(I,J) = A(I, J) + 1
END DO
END DO

The code above illustrates access to arrays A and B in inner loop J in a non-
contiguous manner which results in poor performance.

The compiler itself can transform the code so that inner loops access memory in
a contiguous manner. To do that, you need to use advanced optimization
options, such as -O3 for both IA-32 and Itanium architectures, and -O3 and -
ax{K|W|N|B|P} for IA-32 only.

Memory Layout

Alignment is a very important factor in ensuring good performance. Aligned
memory accesses are faster than unaligned accesses. If you use the
interprocedural optimization on multiple files (the -ipo option), the compiler
analyzes the code and decides whether it is beneficial to pad arrays so that they
start from an aligned boundary. Multiple arrays specified in a single common
block can impose extra constraints on the compiler. For example, consider the
following COMMON statement:

COMMON /AREA1/ A(200), X, B(200)

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

36

If the compiler added padding to align A(1) at a 16-byte aligned address, the
element B(1) would not be at a 16-byte aligned address. So it is better to split
 AREA1 as follows.

COMMON /AREA1/ A(200)
COMMON /AREA2/ X
COMMON /AREA3/ B(200)

The above code provides the compiler maximum flexibility in determining the
padding required for both A and B.

Optimizing for Floating-point Applications

To improve floating-point performance, observe these general rules:

• Avoid exceeding representable ranges during computation since handling
these cases can have a performance impact. Use REAL variables in
single-precision format unless the extra precision obtained through
DOUBLE or REAL*8 variables is required. Using variables with a larger
precision formation will also increase memory size and bandwidth
requirements.

• For IA-32 only: Avoid repeatedly changing rounding modes between more
than two values, which can lead to poor performance when the
computation is done using non-SSE instructions. Hence avoid using
FLOOR and TRUNC instructions together when generating non-SSE code.
The same applies for using CEIL and TRUNC.

Another way to avoid the problem is to use the -x{K|W|N|B|P} options to
do the computation using SSE instructions.

• Reduce the impact of denormal exceptions for both architectures as
described below.

Denormal Exceptions

Floating point computations with underflow can result in denormal values that
have an adverse impact on performance.

For IA-32: Take advantage of the SIMD capabilities of Streaming SIMD
Extensions (SSE), and Streaming SIMD Extensions 2 (SSE2) instructions. The -
x{K|W|N|B|P} options enable the flush-to-zero (FTZ) mode in SSE and SSE2
instructions, whereby underflow results are automatically converted to zero,
which improves application performance. In addition, the -xP option also enables
the denormals-are-zero (DAZ) mode, whereby denormals are converted to zero
on input, further improving performance. An application developer willing to trade
pure IEEE-754 compliance for speed would benefit from these options. For more

Programming for High Performance

37

information on FTZ and DAZ, see Setting FTZ and DAZ Flags and "Floating-point
Exceptions" in the Intel® Architecture Optimization Reference Manual.

For Itanium architecture: enable flush-to-zero (FTZ) mode with the -ftz option set
by -O3 option.

Auto-vectorization

Many applications significantly increase their performance if they can implement
vectorization, which uses streaming SIMD SSE2 instructions for the main
computational loops. The Intel Compiler turns vectorization on (auto-
vectorization) or you can implement it with compiler directives.

See Auto-vectorization (IA-32 Only) section for complete details.

Creating Multithreaded Applications

The Intel Fortran Compiler and the Intel® Threading Toolset have the capabilities
that make developing multithreaded application easy. See Parallel Programming
with Intel Fortran. Multithreaded applications can show significant benefit on
multiprocessor Intel symmetric multiprocessing (SMP) systems or on Intel
processors with Hyper-Threading technology.

Analyzing and Timing Your Application
Using Intel Performance Analysis Tools

Intel offers a variety of application performance tools that are optimized to take
advantage of the Intel architecture-based processors. You can employ these
tools for developing the most efficient programs without having to write assembly
code.

The following performance tools help you analyze your application and find and
resolve problem areas:

• Intel® Debugger (IDB)

The IDB debugger provides extensive support for debugging programs
through a command-line or graphical user interface.

• Intel® VTune(TM) Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel architecture-
specific software performance data from the system-wide view down to a

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

38

specific module, function, and instruction in your code. For information, see
http://www.intel.com/software/products/vtune/.

• Intel® Threading Tools. The Intel Threading Tools consist of the following:
• Intel® Thread Checker
• Intel® Thread Profiler

For general information, see
http://www.intel.com/software/products/threadtool.htm.

Timing Your Application

One of the performance indicators is your application timing. Use the time
command to provide information about program performance. The following
considerations apply to timing your application:

• Run program timings when other users are not active. Your timing results
can be affected by one or more CPU-intensive processes also running
while doing your timings.

• Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a
previous version of the same program. Use the same CPU system (model,
amount of memory, version of the operating system, and so on) if
possible.

• If you do need to change systems, you should measure the time using the
same version of the program on both systems, so you know each system's
effect on your timings.

• For programs that run for less than a few seconds, run several timings to
ensure that the results are not misleading. Overhead functions like loading
shared libraries might influence short timings considerably.

Use the time command and specify the name of the executable program to
provide the following:

• The elapsed, real, or "wall clock" time, which will be greater than the total
charged actual CPU time.

• Charged actual CPU time, shown for both system and user execution. The
total actual CPU time is the sum of the actual user CPU time and actual
system CPU time.

Example

In the following example timings, the sample program being timed displays the
following line:

Average of all the numbers is: 4368488960.000000

Programming for High Performance

39

Using the Bourne* shell, the following program timing reports that the program
uses 1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for
user program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

$ time a.out

Average of all the numbers is:
 4368488960.000000

real 0m2.46s

user 0m0.61s

sys 0m0.58s

Using the C shell, the following program timing reports 1.19 seconds of total
actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use), about 4 seconds (0:04) of
elapsed time, the use of 28% of available CPU time, and other information:

% time a.out

Average of all the numbers is: 4368488960.000000

0.61u 0.58s 0:04 28% 78+424k 9+5io 0pf+0w

Using the bash shell, the following program timing reports that the program uses
1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for user
program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

[user@system user]$ time ./a.out

Average of all the numbers is: 4368488960.000000

elapsed 0m2.46s

user 0m0.61s

sys 0m0.58s

Timings that indicate a large amount of system time is being used may suggest
excessive I/O, a condition worth investigating.

If your program displays a lot of text, you can redirect the output from the
program on the time command line. Redirecting output from the program will
change the times reported because of reduced screen I/O.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

40

For more information, see time(1).

In addition to the time command, you might consider modifying the program to
call routines within the program to measure execution time. For example, use the
Intel Fortran intrinsic procedures, such as SECNDS, DCLOCK, CPU_TIME,
SYSTEM_CLOCK, TIME, and DATE_AND_TIME. See "Intrinsic Procedures" in
the Intel® Fortran Language Reference.

41

Compiler Optimizations
Compiler Optimizations Overview
Intel® Fortran Compiler optimizations enable you to enhance the performance of
your application. Optimization options are described in the following sections:

• Optimizing the compilation process (includes stack, alignment, and symbol
visibility attribute options)

• Optimizing different application types
• Floating-point arithmetic operations
• Optimizing applications for specific processors
• Interprocedural optimizations (IPO)
• Profile-guided optimizations
• High-level language optimizations

In addition to optimizations invoked by the compiler command-line options, other
performance-enhancing features such as directives, intrinsics, run-time library
routines and various utilities are provided. These features are discussed in the
Optimization Support Features section.

Optimizing the Compilation Process
Optimizing the Compilation Process Overview

This section describes the Intel® Fortran Compiler options that optimize the
compilation process. By default, the compiler converts source code directly to an
executable file. Appropriate options enable you not only to control the process
and obtain desired output file produced by the compiler, but also make the
compilation itself more efficient.

A group of options monitors the outcome of Intel compiler-generated code
without interfering with the way your program runs. These options control some
computation aspects, such as allocating the stack memory, setting or modifying
variable settings, and defining the use of some registers.

The options in this section provide you with the following capabilities of efficient
compilation:

• Automatic allocation of variables and stacks
• Aligning data
• Symbol visibility attribute options

Efficient Compilation

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

42

Understandably, efficient compilation contributes to performance improvement.
Before you analyze your program for performance improvement, and improve
program performance, you should think of efficient compilation itself. Based on
the analysis of your application, you can decide which Intel Fortran Compiler
optimizations and command-line options can improve the run-time performance
of your application.

Efficient Compilation Techniques

The efficient compilation techniques can be used during the earlier stages and
later stages of program development.

During the earlier stages of program development, you can use incremental
compilation with minimal optimization. For example:

ifort -c -g -O0 sub2.f90 (generates object file of sub2)

ifort -c -g -O0 sub3.f90 (generates object file of sub3)

ifort -o main -g -O0 main.f90 sub2.o sub3.o

The above commands turn off all compiler default optimizations (for example, -
O2) with -O0. You can use the -g option to generate symbolic debugging
information and line numbers in the object code for all routines in the program for
use by a source-level debugger. The main file created in the third command
above contains symbolic debugging information as well.

During the later stages of program development, you should specify multiple
source files together and use an optimization level of at least -O2 (default) to
allow more optimizations to occur. For instance, the following command compiles
all three source files together using the default level of optimization, -O2:

ifort -o main main.f90 sub2.f90 sub3.f90

Compiling multiple source files lets the compiler examine more code for possible
optimizations, which results in:

• Inlining more procedures
• More complete data flow analysis
• Reducing the number of external references to be resolved during linking

For very large programs, compiling all source files together may not be practical.
In such instances, consider compiling source files containing related routines
together using multiple ifort commands, rather than compiling source files
individually.

Options That Improve Run-Time Performance

Compiler Optimizations

43

The table below lists the options in alphabetical order that can directly improve
run-time performance. Most of these options do not affect the accuracy of the
results, while others improve run-time performance but can change some
numeric results. The Intel Fortran Compiler performs some optimizations by
default unless you turn them off by corresponding command-line options.
Additional optimizations can be enabled or disabled using command options.

Option Description
-align
keyword

Analyzes and reorders memory layout for variables and
arrays.
Controls whether padding bytes are added between data
items within common blocks, derived-type data, and
record structures to make the data items naturally
aligned.

-
ax{K|W|N|B|P}
IA-32 and Intel®
Extended Memory
64 Technology
(Intel® EM64T)
systems only

Optimizes your application's performance for specific
processors. Regardless of which -ax suboption you
choose, your application is optimized to use all the
benefits of that processor with the resulting binary file
capable of being run on any Intel IA-32 processor.

-fast Enables a collection of optimizations for run-time
performance.

-O1 Optimizes to favor code size and code locality. See
Setting Optimizations with -On Options.

-O2 Optimizes for code speed. Sets performance-related
options. Setting Optimizations with -On Options.

-O3 Activates loop transformation optimizations. Setting
Optimizations with -On Options.

-openmp Enables the parallelizer to generate multithreaded code
based on the OpenMP* directives.

-parallel Enables the auto-parallelizer to generate multithreaded
code for loops that can be safely executed in parallel.

-qp Requests profiling information, which you can use to
identify those parts of your program where improving
source code efficiency would most likely improve run-
time performance. After you modify the appropriate
source code, recompile the program and test the run-
time performance.

-tpp{n} Optimizes your application's performance for specific
Intel processors. See Targeting a Processor, -tpp{n}.

-unrolln Specifies the number of times a loop is unrolled (n)
when specified with optimization level -O3. If you omit n
in -unroll, the optimizer determines how many times
loops can be unrolled.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

44

Options That Slow Down the Run-time Performance

The table below lists options in alphabetical order that can slow down the run-
time performance. Some applications that require floating-point exception
handling or rounding might need to use the -fpen dynamic option. Other
applications might need to use the -assume dummy_aliases or -vms options
for compatibility reasons. Other options that can slow down the run-time
performance are primarily for troubleshooting or debugging purposes.

The following table lists the options that can slow down run-time performance.

Option Description
-assume
dummy_aliases

Forces the compiler to assume that dummy (formal)
arguments to procedures share memory locations
with other dummy arguments or with variables
shared through use association, host association, or
common block use. These program semantics slow
performance, so you should specify
-assume dummy_aliases only for the called
subprograms that depend on such aliases.

The use of dummy aliases violates the Fortran 77
and Fortran 95/90 standards but occurs in some
older programs.

-check bounds Generates extra code for array bounds checking at
run time.

-check
overflow

Generates extra code to check integer calculations
for arithmetic overflow at run time. Once the program
is debugged, omit this option to reduce executable
program size and slightly improve run-time
performance.

-fpe 3 Using this option enables certain types of floating-
point exception handling, which can be expensive.

-g Generate extra symbol table information in the object
file. Specifying this option also reduces the default
level of optimization to -O0 or -O0 (no optimization).

Note

The -g option only slows your program down when
no optimization level is specified, in which case -g
turns on -O0, which slows the compilation down. If -
g, -O2 are specified, the code runs very much the
same speed as if -g were not specified.

Compiler Optimizations

45

-O0 Turns off optimizations. Can be used during the early
stages of program development or when you use the
debugger.

-save Forces the local variables to retain their values from
the last invocation terminated. This may change the
output of your program for floating-point values as it
forces operations to be carried out in memory rather
than in registers, which in turn causes more frequent
rounding of your results.

-vms Controls certain VMS-related run-time defaults,
including alignment. If you specify the -vms option,
you may need to also specify the -align records
option to obtain optimal run-time performance.

Little-endian-to-Big-endian Conversion

The Intel Fortran Compiler can write unformatted sequential files in big-endian
format and also can read files produced in big-endian format by using the little-
endian-to-big-endian conversion feature.

Both on IA-32-based processors and on Itanium®-based processors, Intel
Fortran handles internal data in little-endian format. The little-endian-to-big-
endian conversion feature is intended for Fortran unformatted input/output
operations in unformatted sequential files. The feature enables:

• processing of the files developed on processors that accept big-endian data
format

• producing big-endian files for such processors on little-endian systems.

The little-endian-to-big-endian conversion is accomplished by the following
operations:

• The WRITE operation converts little-endian format to big-endian format.
• The READ operation converts big-endian format to little-endian format.

The feature enables the conversion of variables and arrays (or array subscripts)
of basic data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable

In order to use the little-endian-to-big-endian conversion feature, specify the
numbers of the units to be used for conversion purposes by setting the
F_UFMTENDIAN environment variable. Then, the READ/WRITE statements that
use these unit numbers, will perform relevant conversions. Other READ/WRITE
statements will work in the usual way.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

46

In the general case, the variable consists of two parts divided by a semicolon. No
spaces are allowed inside the F_UFMTENDIAN value. The variable has the
following syntax:

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION

where:

MODE = big | little
EXCEPTION = big:ULIST | little:ULIST | ULIST
ULIST = U | ULIST,U
U = decimal | decimal -decimal

• MODE defines current format of data, represented in the files; it can be
omitted.
The keyword little means that the data have little endian format and will
not be converted. This keyword is a default.
The keyword big means that the data have big endian format and will be
converted. This keyword may be omitted together with the colon.

• EXCEPTION is intended to define the list of exclusions for MODE; it can be
omitted. EXCEPTION keyword (little or big) defines data format in the
files that are connected to the units from the EXCEPTION list. This value
overrides MODE value for the units listed.

• Each list member U is a simple unit number or a number of units. The
number of list members is limited to 64.
decimal is a non-negative decimal number less than 232.

Converted data should have basic data types, or arrays of basic data types.
Derived data types are disabled.

Command lines for variable setting with different shells:

Sh: export F_UFMTENDIAN=MODE;EXCEPTION

Csh: setenv F_UFMTENDIAN MODE;EXCEPTION

Note
Environment variable values should be enclosed in quotes if a semicolon is
present.

Another Possible Environment Variable Setting

The environment variable can also have the following syntax:

F_UFMTENDIAN=u[,u] . . .

Command lines for the variable setting with different shells:

Compiler Optimizations

47

• Sh: export F_UFMTENDIAN=u[,u] . . .
• Csh: setenv F_UFMTENDIAN u[,u] . . .

See error messages that may be issued during the little endian � big endian
conversion. They are all fatal. You should contact Intel if such errors occur.

Usage Examples

1. F_UFMTENDIAN=big

All input/output operations perform conversion from big-endian to little-
endian on READ and from little-endian to big-endian on WRITE.

2. F_UFMTENDIAN="little;big:10,20"
or F_UFMTENDIAN=big:10,20
or F_UFMTENDIAN=10,20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

3. F_UFMTENDIAN="big;little:8"

In this case, on unit number 8 no conversion operation occurs. On all
other units, the input/output operations perform big-little endian
conversion.

4. F_UFMTENDIAN=10-20

Define 10, 11, 12, ..., 19, 20 units for conversion purposes; on these units,
the input/output operations perform big-little endian conversion.

5. Assume you set F_UFMTENDIAN=10,100 and run the following program.

integer*4 cc4
integer*8 cc8
integer*4 c4
integer*8 c8
c4 = 456
c8 = 789

C prepare a little endian representation of data

open(11,file='lit.tmp',form='unformatted')
write(11) c8
write(11) c4
close(11)

C prepare a big endian representation of data

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

48

open(10,file='big.tmp',form='unformatted')
write(10) c8
write(10) c4
close(10)

C read big endian data and operate with them on
C little endian machine.

open(100,file='big.tmp',form='unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been read

C . . .
close(100)
stop
end

Now compare lit.tmp and big.tmp files with the help of od utility.

> od -t x4 lit.tmp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034

> od -t x4 big.tmp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.

Default Compiler Optimizations

If you invoke the Intel® Fortran Compiler without specifying any compiler options,
the default state of each option takes effect. The following tables summarize the
options whose default status is ON as they are required for Intel Fortran Compiler
default operation. The tables group the options by their functionality.

For the default states and values of all options, see the Alphabetical Quick
Reference Guide in the Intel® Fortran Compiler Options Quick Reference. The
table provides links to the sections describing the functionality of the options. If
an option has a default value, such value is indicated.

Depending on your application requirements, you can disable one or more
options. For general methods of disabling optimizations, see Volume I.

Compiler Optimizations

49

The following tables list all options that compiler uses for its default optimizations.

Data Setting and Fortran Language Conformance

Default Option Description
-align records Analyzes and reorders memory layout for

variables and arrays.
-align rec8byte Specifies 8-byte boundary for alignment

constraint.
-altparam Specifies that the alternate form of

parameter constant declarations is
recognized.

-ansi_alias Enables assumption of the program's
ANSI conformance.

-assume cc_omp Enables OpenMP conditional compilation
directives.

-ccdefault
default

Specifies default carriage control for units
6 and *.

-double_size 64 Defines DOUBLE PRECISION
declarations, constants, functions, and
intrinsics as REAL*8.

-dps Enables DEC* parameter statement
recognition.

-error_limit 30 Specifies the maximum number of error-
level or fatal-level compiler errors
permissible.

-fpe3 Specifies floating-point exception handling
at run time for the main program.

-integer_size 32 Makes default integer and logical
variables 4 bytes long. INTEGER and
LOGICAL declarations are treated as
(KIND=4).

-pad Enables changing variable and array
memory layout.

-pc80
IA-32 only

-pc{32|64|80} enables floating-point
significand precision control as follows: -
pc32 to 24-bit significand, -pc64 to 53-
bit significand, and -pc80 to 64-bit
significand.

-real_size 64 Specifies the size of REAL and COMPLEX
declarations, constants, functions, and
intrinsics.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

50

-save Saves all variables in static allocation.
Disables
-auto, that is, disables setting all
variables AUTOMATIC.

-Zp8 -Zpn specifies alignment constraint for
structures on 1-, 2-, 4-, 8-, or 16-byte
boundary. To disable, use
-noalign or -Zp1.

Optimizations

Default Option Description
-assume cc_omp Enables OpenMP conditional

compilation directives.
-fp
IA-32 only

Disables the use of the ebp register
in optimizations. Directs to use the
ebp-based stack frame for all
functions.

-fpe3 Specifies floating-point exception
handling at run time for the main
program. -fpe0 disables the option.

-IPF_fltacc-
Itanium® compiler

Enables the compiler to apply
optimizations that affect floating-point
accuracy.

-IPF_fma
Itanium compiler

Enables the contraction of floating-
point multiply and add/subtract
operations into a single operation.

-IPF_fp_speculation
fast
Itanium compiler

Sets the compiler to speculate on
floating-point operations. -
IPF_fp_speculationoff
disables this optimization.

-O, -O2 Optimizes for maximum speed.

-openmp_report1 Indicates loops, regions, and
sections parallelized.

-
opt_report_levelmin

Specifies the minimal level of the
optimizations report.

-par_report1 Indicates loops successfully auto-
parallelized.

-tpp2
Itanium compiler

Optimizes code for the Intel®
Itanium® 2 processor for Itanium-
based applications. Generated code
is compatible with the Itanium
processor.

Compiler Optimizations

51

-tpp7
IA-32 only

Optimizes code for the Intel®
Pentium® 4 and Intel® Xeon(TM)
processor for IA-32 applications.

-unroll -unroll[n]: omit n to let the
compiler decide whether to perform
unrolling or not (default).
Specify n to set maximum number of
times to unroll a loop.
The Itanium compiler currently uses
only
n = 0, -unroll0 (disabled option)
for compatibility.

-vec_report1 Indicates loops successfully
vectorized.

Disabling Default Options

To disable an option, you can generally use one of the following:

• To disable one or a group of optimization options, use -O0 option. For
example:

ifort -O2 -O0 input_file(s)

Note
The -O0 option is part of a mutually-exclusive group of options that
includes -O0, -O, -O1, -O2, and -O3. The last of any of these options
specified on the command line will override the previous options from this
group.

• To disable options that include optional "-" shown as [-], use that version
of the option in the command line, for example: -ftz-.

• To disable options that have an {n} parameter, use n=0 version, for
example: -unroll0.

Note
If there are enabling and disabling versions of options on the line, the last
one takes precedence.

Using Compilation Options

Stacks: Automatic Allocation and Checking

The options in this group enable you to control the computation of stacks and
variables in the compiler generated code.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

52

Automatic Allocation of Variables

-auto

The -auto option specifies that locally declared variables are allocated to the
run-time stack rather than static storage. If variables defined in a procedure do
not have the SAVE or ALLOCATABLE attribute, they are allocated to the stack. It
does not affect variables that appear in an EQUIVALENCE or SAVE statement,
or those that are in COMMON.

-auto is the same as -automatic and -nosave.

-auto may provide a performance gain for your program, but if your program
depends on variables having the same value as the last time the routine was
invoked, your program may not function properly. Variables that need to retain
their values across routine calls should appear in a SAVE statement.

If you specify -recursive or -openmp, the default is -auto.

-auto_scalar

The -auto_scalar option causes allocation of local scalar variables of intrinsic
type INTEGER, REAL, COMPLEX, or LOGICAL to the stack. This option does
not affect variables that appear in an EQUIVALENCE or SAVE statement, or
those that are in COMMON.

-auto_scalar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine
was invoked, your program may not function properly. Variables that need to
retain their values across subroutine calls should appear in a SAVE statement.
This option is similar to -auto, which causes all local variables to be allocated
on the stack. The difference is that -auto_scalar allocates only scalar
variables of the stated above intrinsic types to the stack.

 -auto_scalar enables the compiler to make better choices about which
variables should be kept in registers during program execution.

-save, -zero

The -save option is opposite of -auto: the -save option saves all variables in
static allocation except local variables within a recursive routine. If a routine is
invoked more than once, this option forces the local variables to retain their
values between the invocations. The -save option ensures that the final results
on the exit of the routine is saved on memory and can be reused at the next
occurrence of that routine. This may cause some performance degradation as it
causes more frequent rounding of the results.

Compiler Optimizations

53

When the compiler optimizes the code, the results are stored in registers. -save
is the same as -noauto.

The -zero[-] option initializes to zero all local scalar variables of intrinsic type
INTEGER, REAL, COMPLEX, or LOGICAL, which are saved and not initialized
yet. Used in conjunction with -save. The default is -zero-.

Summary

There are three choices for allocating variables: -save, -auto, and -
auto_scalar. Only one of these three can be specified. The correlation among
them is as follows:

• -save disables -auto, sets -noautomatic, and allocates all variables
not marked AUTOMATIC to static memory.

• -auto disables -save, sets -automatic, and allocates all variables�
scalars and arrays of all types�not marked SAVE to the stack.

• -auto_scalar:
o It makes local scalars of intrinsic types INTEGER, REAL,

COMPLEX, and LOGICAL automatic.
o This is the default; there is no -noauto_scalar; however, -

recursive or -openmp disables -auto_scalar and makes -
auto the default.

Checking the Floating-point Stack State (IA-32 only), -fpstkchk

The -fpstkchk option (IA-32 only) checks whether a program makes a correct
call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program.

When an application calls a function that returns a floating-point value, the
returned floating-point value is supposed to be on the top of the floating-point
stack. If return value is not used, the compiler must pop the value off of the
floating-point stack in order to keep the floating-point stack in correct state.

If the application calls a function, either without defining or incorrectly defining the
function's prototype, the compiler does not know whether the function must return
a floating-point value, and the return value is not popped off of the floating-point
stack if it is not used. This can cause the floating-point stack overflow.

The overflow of the stack results in two undesirable situations:

• A NaN value gets involved in the floating-point calculations
• The program results become unpredictable; the point where the program

starts making errors can be arbitrarily far away from the point of the actual
error.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

54

The -fpstkchk option marks the incorrect call and makes it easy to find the
error.

Note

This option causes significant code generation after every
function/subroutine call to insure a proper state of a floating-point stack and
slows down compilation. It is meant only as a debugging aid for finding
floating point stack underflow/overflow problems, which can be otherwise
hard to find.

Aliases

-common_args

The -common_args option assumes that the "by-reference" subprogram
arguments may have aliases of one another.

Preventing CRAY* Pointer Aliasing

Option -safe_cray_ptr specifies that the CRAY* pointers do not alias with
other variables. The default is OFF.

Consider the following example:
pointer (pb, b)
pb = getstorage()
do i = 1, n
b(i) = a(i) + 1
enddo

When -safe_cray_ptr is not specified (default), the compiler assumes that b
and a are aliased. To prevent such an assumption, specify this option, and the
compiler will treat b(i) and a(i) as independent of each other.

However, if the variables are intended to be aliased with CRAY pointers, using
the -safe_cray_ptr option produces incorrect result. For the code example
below, -safe_cray_ptr should not be used.
pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

-ansi_alias

The -ansi_alias[-] enables (default) or disables the compiler to assume that
the program adheres to the ANSI Fortran type aliasablility rules. For example, an
object of type real cannot be accessed as an integer. You should see the ANSI
standard for the complete set of rules.

Compiler Optimizations

55

The option directs the compiler to assume the following:

• Arrays are not accessed out of arrays' bounds.
• Pointers are not cast to non-pointer types and vice-versa.
• References to objects of two different scalar types cannot alias. For

example, an object of type INTEGER cannot alias with an object of type
real or an object of type real cannot alias with an object of type double
precision.

If your program satisfies the above conditions, setting the -ansi_alias option
will help the compiler better optimize the program. However, if your program may
not satisfy one of the above conditions, the option must be disabled, as it can
lead the compiler to generate incorrect code.

The synonym of -ansi_alias is -assume [no]dummy_aliases.

Alignment Options

-align recnbyte or -Zp[n]

Use the -align recnbyte (or -Zp[n]) option to specify the alignment
constraint for structures on n-byte boundaries (where n = 1, 2, 4, 8, or 16 with -
Zp[n]).

When you specify this option, each structure member after the first is stored on
either the size of the member type or n-byte boundaries (where n = 1, 2, 4, 8, or
16), whichever is smaller.

For example, to specify 2 bytes as the packing boundary (or alignment
constraint) for all structures and unions in the file prog1.f, use the following
command:

ifort -Zp2 prog1.f

The default for IA-32 and Itanium-based systems is -align rec8byte or -
Zp8. The -Zp16 option enables you to align Fortran structures such as common
blocks. For information on Fortran record structures, see STRUCTURE
statement in the Intel® Fortran Language Reference.

If you specify -Zp (omit n), structures are packed at 8-byte boundary.

-align and -pad

The -align option is a front-end option that changes alignment of variables in a
common block.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

56

Example:

common /block1/ch,doub,ch1,int
integer int
character(len=1) ch, ch1
double precision doub
end

The -align option enables padding inserted to ensure alignment of doub and
int on natural alignment boundaries. The -noalign option disables padding.

The -align option applies mainly to structures. It analyzes and reorders
memory layout for variables and arrays and basically functions as -Zp{n}. You
can disable either option with -noalign.

For -align keyword options, see your User's Guide, Volume I.

The -pad option is effectively not different from -align when applied to
structures and derived types. However, the scope of -pad is greater because it
applies also to common blocks, derived types, sequence types, and VAX*
structures.

Recommendations on Controlling Alignment with Options

The following options control whether the Intel Fortran compiler adds padding
(when needed) to naturally align multiple data items in common blocks, derived-
type structures, and Intel Fortran record structures:

• By default (with -O2), the -align commons option requests that data in
common blocks be aligned on up to 4-byte boundaries, by adding padding
bytes as needed.

The -align nocommons arbitrarily aligns the bytes of common block data.
In this case, unaligned data can occur unless the order of data items specified
in the COMMON statement places the largest numeric data item first,
followed by the next largest numeric data (and so on), followed by any
character data.

• By default (with -O2), the -align dcommons option requests that data in
common blocks be aligned on up to 8-byte boundaries, by adding padding
bytes as needed.
The -align nodcommons arbitrarily aligns the bytes of data items in a
common data.

Specify the -align dcommons option for applications that use common
blocks, unless your application has no unaligned data or, if the application
might have unaligned data, all data items are four bytes or smaller. For

Compiler Optimizations

57

applications that use common blocks where all data items are four bytes or
smaller, you can specify -align commons instead of -align dcommons.

• The -align norecords option requests that multiple data items in derived-
type data and record structures (an Intel Fortran extension) be aligned
arbitrarily on byte boundaries instead of being naturally aligned. The default
is -align records.

• The -align records option requests that multiple data items in record
structures (extension) and derived-type data without the SEQUENCE
statement be naturally aligned, by adding padding bytes as needed.

• The -align recnbyte option requests that fields of records and
components of derived types be aligned on either the size byte boundary
specified or the boundary that will naturally align them, whichever is smaller.
This option does not affect whether common blocks are naturally aligned or
packed.

• The -align sequence option controls alignment of derived-type
components declared with the SEQUENCE statement (sequenced
components).

The -align nosequence option means that sequenced components are
packed regardless of any other alignment rules. Note that -align none
 implies -align nosequence.

The -align sequence option means that sequenced components obey
whatever alignment rules are currently in use. Consequently, since -align
record is a default value, then -align sequence alone on the command
line will cause the components of these derived types to be naturally aligned.

The default behavior is that multiple data items in derived-type structures and
record structures will be naturally aligned; data items in common blocks will not
(-align records with -align nocommons). In derived-type structures,
using the SEQUENCE statement prevents -align records from adding
needed padding bytes to naturally align data items.

Symbol Visibility Attribute Options

Applications that do not require symbol preemption or position-independent code
can obtain a performance benefit by taking advantage of the generic ABI visibility
attributes.

Note
The visibility options are supported by both IA-32 and Itanium compilers,
but currently the optimization benefits are for Itanium-based systems only.

Global Symbols and Visibility Attributes

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

58

A global symbol is a symbol that is visible outside the compilation unit in which it
is declared (compilation unit is a single-source file with its include files). Each
global symbol definition or reference in a compilation unit has a visibility attribute
that controls how it may be referenced from outside the component in which it is
defined. The values for visibility are defined in the table that follows.

EXTERN The compiler must treat the symbol as though it is
defined in another component. This means that the
compiler must assume that the symbol will be
overridden (preempted) by a definition of the same
name in another component. (See Symbol Preemption.)
If a function symbol has external visibility, the compiler
knows that it must be called indirectly and can inline the
indirect call stub.

DEFAULT Other components can reference the symbol.
Furthermore, the symbol definition may be overridden
(preempted) by a definition of the same name in another
component.

PROTECTED Other components can reference the symbol, but it
cannot be preempted by a definition of the same name
in another component.

HIDDEN Other components cannot directly reference the symbol.
However, its address might be passed to other
components indirectly; for example, as an argument to a
call to a function in another component, or by having its
address stored in a data item referenced by a function
in another component.

INTERNAL The symbol cannot be referenced outside the
component where it is defined, either directly or
indirectly.

Note
Visibility applies to both references and definitions. A symbol reference's
visibility attribute is an assertion that the corresponding definition will have
that visibility.

Symbol Preemption and Optimization

Sometimes programmers need to use some of the functions or data items from a
shareable object, but at the same time, they need to replace other items with
definitions of their own. For example, an application may need to use the
standard run-time library shareable object, libc.so, but to use its own
definitions of the heap management routines malloc and free. In this case it is
important that calls to malloc and free within libc.so use the user's
definition of the routines and not the definitions in libc.so. The user's definition
should then override, or preempt, the definition within the shareable object.

Compiler Optimizations

59

This functionality of redefining the items in shareable objects is called symbol
preemption. When the run-time loader loads a component, all symbols within the
component that have default visibility are subject to preemption by symbols of the
same name in components that are already loaded. Note that since the main
program image is always loaded first, none of the symbols it defines will be
preempted (redefined).

The possibility of symbol preemption inhibits many valuable compiler
optimizations because symbols with default visibility are not bound to a memory
address until run-time. For example, calls to a routine with default visibility cannot
be inlined because the routine might be preempted if the compilation unit is
linked into a shareable object. A preemptable data symbol cannot be accessed
using GP-relative addressing because the name may be bound to a symbol in a
different component; and the GP-relative address is not known at compile time.

Symbol preemption is a rarely used feature and has negative consequences for
compiler optimization. For this reason, by default the compiler treats all global
symbol definitions as non-preemptable (protected visibility). Global references to
symbols defined in another compilation unit are assumed by default to be
preemptable (default visibility). In those rare cases where all global definitions as
well as references need to be preemptable, specify the -fpic option to override
this default.

Specifying Symbol Visibility Explicitly

The Intel Fortran Compiler has the visibility attribute options that provide
command-line control of the visibility attributes as well as a source syntax to set
the complete range of these attributes. The options ensure immediate access to
the feature without depending on header file modifications. The visibility options
cause all global symbols to get the visibility specified by the option. There are two
variety of options to specify symbol visibility explicitly:

-fvisibility=keyword
-fvisibility-keyword=file

The first form specifies the default visibility for global symbols. The second form
specifies the visibility for symbols that are in a file (this form overrides the first
form).

The file is the pathname of a file containing the list of symbols whose visibility
you want to set; the symbols are separated by whitespace (spaces, tabs, or
newlines).

In both options, the keyword is: extern, default, protected, hidden, and
internal, see definitions above.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

60

Note
These two ways to explicitly set visibility are mutually exclusive: you may
use the visibility attribute on the declaration, or specify the symbol name in
a file, but not both.

The option -fvisibility-keyword=file specifies the same visibility
attribute for a number of symbols using one of the five command line options
corresponding to the keyword:

-fvisibility-extern=file
-fvisibility-default=file
-fvisibility-protected=file
-fvisibility-hidden=file
-fvisibility-internal=file

where file is the pathname of a file containing a list of the symbol names
whose visibility you wish to set; the symbol names in the file are separated by
either blanks, tabs, or newlines. For example, the command line option:

-fvisibility-protected=prot.txt

where file prot.txt contains symbols a, b, c, d, and e sets protected visibility
for symbols a, b, c, d, and e. This has the same effect as declared attribute
visibility=protected on the declaration for each of the symbols.

Specifying Visibility without Symbol File, -fvisibility=keyword

This option sets the visiblity for symbols not specified in a visibility list file and
that do not have visibilty attribute in their declaration. If no symbol file
option is specified, all symbols will get the specified attribute. Command line
example:

ifort -fvisibility=protected a.f

You can set the default visibility for symbols using one of the following command
line options:

-fvisibility=extern
-fvisibility=default
-fvisibility=protected
-fvisibility=hidden
-fvisibility=internal

The above options are listed in the order of precedence: explicitly setting the
visibility to extern, by using either the attribute syntax or the command line
option, overrides any setting to default, protected, hidden, or internal.
Explicitly setting the visibility to default overrides any setting to protected,
hidden, or internal and so on.

Compiler Optimizations

61

The visibility attribute default enables compiler to change the default symbol
visibility and then set the default attribute on functions and variables that require
the default setting. Since internal is a processor-specific attribute, it may not
be desirable to have a general option for it.

In the combined command-line options

-fvisibility=protected -fvisibility-default=prot.txt

file prot.txt (see above) causes all global symbols except a, b, c, d, and e to
have protected visibility. Those five symbols, however, will have default visibility
and thus be preemptable.

Visibility-related Options

-fminshared

Directs to treat the compilation unit as a component of a main program and not
to link it as a part of a shareable object.

Since symbols defined in the main program cannot be preempted, this enables
the compiler to treat symbols declared with default visibility as though they have
protected visibility. It means that
-fminshared implies -fvisibility=protected. The compiler need not
generate position-independent code for the main program. It can use absolute
addressing, which may reduce the size of the global offset table (GOT) and may
reduce memory traffic.

-fpic

Specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (that is, preemptable) visibility unless explicitly
specified otherwise. Generates position-independent code. Required for building
shared objects on Itanium-based systems.

Optimizing Different Application Types
Optimizing Different Application Types Overview

This section discusses the command-line options -O0, -O1, -O2 (or -O), and -
O3. The -O0 option disables optimizations. Each of the other three turns on
several compiler capabilities. To specify one of these optimizations, take into
consideration the nature and structure of your application as indicated in the
more detailed description of the options.

In general terms, -O1, -O2 (or -O), and -O3 optimize as follows:

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

62

-O1 : code size and locality

-O2 (or -O): code speed; this is the default option

-O3: enables -O2 with more aggressive optimizations.

-fast: enables -O3 and -ipo to enhance speed across the entire program.

These options behave similarly on IA-32 and Itanium® architectures, with some
specifics that are detailed in the sections that follow.

Setting Optimizations with -On Options

The following table details the effects of the -O0, -O1, -O2, -O3, and -fast
options. The table first describes the characteristics shared by both IA-32 and
Itanium architectures and then explicitly describes the specifics (if any) of the -
On and -fast options� behavior on each architecture.

Option Effect

-O0 Disables -On optimizations. On IA-32 systems, this
option sets the -fp option.

-O1 Optimizes to favor code size and code locality.
Disables loop unrolling.
May improve performance for applications with very
large code size, many branches, and execution time
not dominated by code within loops.
In most cases, -O2 is recommended over -O1.
On IA-32 systems:
Disables intrinsics inlining to reduce code size.
Enables optimizations for speed. Also disables
intrinsic recognition and the -fp option.
On Itanium-based systems:
Disables software pipelining and global code
scheduling. Enables optimizations for server
applications (straight-line and branch-like code with
ßat proÞle). Enables optimizations for speed, while
being aware of code size. For example, this option
disables software pipelining and loop unrolling.

Compiler Optimizations

63

-O2, -O This option is the default for optimizations. However,
if -g is specified, the default is -O0.
Optimizes for code speed.
This is the generally recommended optimization
level. However, if -g is specified, -O2 is turned off
and -O0 is the default unless -O2 (or -O1 or -O3) is
explicitly specified in the command line together with
-g.

On IA-32 systems, this option is the same as the -
O1 option.

On Itanium-based systems:
Enables optimizations for speed, including global
code scheduling, software pipelining, predication,
and speculation.

On these systems, the -O2 option enables inlining of
intrinsics. It also enables the following capabilities for
performance gain: constant propagation, copy
propagation, dead-code elimination, global register
allocation, global instruction scheduling and control
speculation, loop unrolling, optimized code selection,
partial redundancy elimination, strength
reduction/induction variable simplification, variable
renaming, exception handling optimizations, tail
recursions, peephole optimizations, structure
assignment lowering and optimizations, and dead
store elimination.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

64

-O3 Enables -O2 optimizations and in addition, enables
more aggressive optimizations such as prefetching,
scalar replacement, and loop and memory access
transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance
unless loop and memory access transformation take
place. The -O3 optimizations may slow down code in
some cases compared to -O2 optimizations.
Recommended for applications that have loops that
heavily use floating-point calculations and process
large data sets.
On IA-32 systems:
In conjunction with -ax{K|W|N|B|P} or -
x{K|W|N|B|P} options, this option causes the
compiler to perform more aggressive data
dependency analysis than for -O2. This may result in
longer compilation times.

On Itanium-based systems, enables optimizations
for technical computing applications (loop-intensive
code): loop optimizations and data prefetch.

-fast This option is a single, simple method to enable a
collection of optimizations for run-time performance.
Sets the following options that can improve run-time
performance:

-O3: maximum speed and high-level optimizations,
see above

-ipo: enables interprocedural optimizations across
files

-static: prevents linking with shared libraries

On IA-32 and Intel® EM64T systems, -fast sets
these three options and also sets -xP.

Provides a shortcut that requests several important
compiler optimizations. To override one of the
options set by -fast, specify that option after the -
fast option on the command line.

The options set by the -fast option may change
from release to release.

On IA-32 systems:

Compiler Optimizations

65

In conjunction with -ax{K|W|N|B|P} or -
x{K|W|N|B|P} options, this option provides the
best run-time performance.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your
program:

-O0 Disables optimizations. Enables -
fp option.

-g Turns off the default -O2 option
and makes -O0 the default unless
-O2 (or -O1 or -O3) is explicitly
specified in the command line
together with -g. See
Optimizations and Debugging.

-mp Restricts optimizations that cause
some minor loss or gain of
precision in floating-point arithmetic
to maintain a declared level of
precision and to ensure that
floating-point arithmetic more
nearly conforms to the ANSI and
IEEE* standards. See -mp option
for more details.

-nolib_inline Disables inline expansion of

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

66

intrinsic functions.

For more information on ways to restrict optimization, see Using -ip with -
Qoption Specifiers.

Floating-point Arithmetic Optimizations
Options Used for Both IA-32 and Itanium® Architectures

The options described in this section all provide optimizations with varying
degrees of precision in floating-point (FP) arithmetic for IA-32 and Itanium®
architectures.

The -mp1 (IA-32 only) and -mp options improve floating-point precision, but also
affect the application performance. See more details about these options in
Improving/Restricting FP Arithmetic Precision.

The FP options provide optimizations with varying degrees of precision in
floating-point arithmetic. The option that disables these optimizations is -O0.

-mp Option

Use -mp to limit floating-point optimizations and maintain declared precision. For
example, the Intel® Fortran Compiler can change floating-point division
computations into multiplication by the reciprocal of the denominator. This
change can alter the results of floating point division computations slightly. The -
mp switch may slightly reduce execution speed. For more information, see
Improving/Restricting FP Arithmetic Precision.

-mp1 Option

Use the -mp1 option to restrict floating-point precision to be closer to declared
precision with less impact to performance than with the -mp option. The option
will ensure the out-of-range check of operands of transcendental functions and
improve accuracy of floating-point compares.

Flushing to Zero Denormal Values, -ftz[-]

Option -ftz[-] flushes denormal results to zero when the application is in the
gradual underflow mode. Flushing the denormal values to zero with -ftz may
improve performance of your application.

The default status of is OFF (-ftz-). By default, the compiler lets results
gradually underflow. With the default -O2 option, -ftz[-] is OFF.

Compiler Optimizations

67

-ftz[-] on Itanium-based systems

On Itanium-based systems only, the -O3 option turns on -ftz.

If the -ftz option produces undesirable results of the numerical behavior of your
program, you can turn the flush-to-zero (FTZ) mode off by using -ftz- in the
command line while still benefiting from the -O3 optimizations:

ifort -O3 -ftz- myprog.f

Usage:

• Use this option if the denormal values are not critical to application
behavior.

• -ftz[-] only needs to be used on the source that contains the main
program to turn the FTZ mode on. The initial thread, and any threads
subsequently created by that process, will operate in FTZ mode.

The -ftz[-] option affects the results of floating underflow as follows:

• -ftz- results in gradual underflow to 0: the result of a floating underflow
is a denormalized number or a zero.

• -ftz results in abrupt underflow to 0: the result of a floating underflow is
set to zero and execution continues. -ftz also makes a denormal value
used in a computation be treated as a zero so no floating invalid exception
occurs. On Itanium-based systems, the -O3 option sets the abrupt
underflow to zero (-ftz is on). At lower optimization levels, gradual
underflow to 0 is the default on the Itanium-based systems.

On IA-32, setting abrupt underflow by -ftz may improve performance of
SSE/SSE2 instructions, while it does not affect either performance or numerical
behavior of x87 instructions. Thus, -ftz will have no effect unless you select the
-x or -ax options, which activate instructions of the more recent IA-32 Intel
processors.

On Itanium-based processors, gradual underflow to 0 can degrade performance.
Using higher optimization levels to get the default abrupt underflow or explicitly
setting -ftz improves performance.
-ftz may improve performance on Itanium® 2 processor, even in the absence
of actual underflow, most frequently for single-precision code.

Using the Floating-point Exception Handling, -fpen

Use the -fpen option to control the handling of exceptions. The -fpen option
controls floating-point exceptions according to the value of n.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

68

The following are the kinds of floating-point exceptions:

• Floating overflow: the result of a computation is too large for the floating-
point data type. The result is replaced with the exceptional value Infinity
with the proper "+" or "-" sign. For example, 1E30 * 1E30 overflows single-
precision floating-point value and results in a +Infinity; -1E30 * 1E30
results in a -Infinity.

• Floating divide-by-zero: if the computation is 0.0 / 0.0, the result is the
exceptional value NaN (Not a Number), a value that means the
computation was not successful. If the numerator is not 0.0, the result is a
signed Infinity.

• Floating underflow: the result of a computation is too small for the floating-
poinit type. Each floating-point type (32-, 64-, and 128-bit) has a
denormalized range where very small numbers can be represented with
some loss of precision. For example, the lower bound for normalized
single-precision floating-point value is approximately 1E-38; the lower
bound for denormalized single-precision floating-point value is 1E-45. 1E-
30 / 1E10 underflows the normalized range but not the denormalized
range so the result is the denormal exceptional value 1E-40. 1E-30 / 1E30
underflows the entire range and the result is zero. This is known as
gradual underflow to 0.

• Floating invalid: when the exceptional value (signed Infinities, NaN,
denormal) is used as input to a computation, the result is also a NaN.

The -fpen option allows some control over the results of floating-point exception
handling at run time for the main program.

• -fpe0 restricts floating-point exceptions as follows:
• Floating overflow, floating divide-by-zero, and floating invalid cause

the program to print an error message and abort.
• If a floating underflow occurs, the result is set to zero and execution

continues. This is called abrupt underflow to 0.
• -fpe1 restricts only floating underflow:

• Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

• If a floating underflow occurs, the result is set to zero and execution
continues.

• The default is -fpe3 on both IA-32 and Itanium-based processors. This
allows full floating-point exception behavior:

• Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

• Floating underflow is gradual: denormalized values are produced
until the result becomes 0.

Compiler Optimizations

69

The -fpen only affects the Fortran main program. The floating-point exception
behavior set by the Fortran main program is in effect throughout the execution of
the entire program. If the main program is not Fortran, you can use the Fortran
intrinsic FOR_SET_FPE to set the floating-point exception behavior.

When compiling different routines in a program separately, you should use the
same value of n in -fpen.

For more information, refer to the Intel Fortran Compiler User's Guide for Linux*
Systems, Volume I, section "Controlling Floating-point Exceptions."

Floating-point Arithmetic Precision for IA-32 Systems

-prec_div Option

The Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. Use -prec_div to disable
floating point division-to-multiplication optimization resulting in more accurate
division results. May have speed impact.

-pc{32|64|80} Option

Use the -pc{32|64|80} option to enable floating-point significand precision
control. Some floating-point algorithms, created for specific IA-32 and Itanium®-
based systems, are sensitive to the accuracy of the significand or fractional part
of the floating-point value. Use appropriate version of the option to round the
significand to the number of bits as follows:

-pc32: 24 bits (single precision)

-pc64: 53 bits (double precision)

-pc80: 64 bits (extended precision)

The default version is -pc80 for full floating-point precision.

This option enables full optimization. Using this option does not have the
negative performance impact of using the -mp option because only the fractional
part of the floating-point value is affected. The range of the exponent is not
affected.

Note

This option only has an effect when the module being compiled contains
the main program.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

70

Caution

A change of the default precision control or rounding mode (for example, by
using the -pc32 option or by user intervention) may affect the results
returned by some of the mathematical functions.

Rounding Control, -rcd, -fp_port

The Intel Fortran Compiler uses the -rcd option to disable changing of rounding
mode for floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. This means
that values are rounded during floating-point calculations. However, the Fortran
language requires floating-point values to be truncated when a conversion to an
integer is involved. To do this, the compiler must change the rounding mode to
truncation before each floating-point conversion and change it back afterwards.

The -rcd option disables the change to truncation of the rounding mode for all
floating-point calculations, including floating-point-to-integer conversions. Turning
on this option can improve performance, but floating-point conversions to integer
will not conform to Fortran semantics.

You can also use the -fp_port option to round floating-point results at
assignments and casts. May cause some speed impact, but also makes sure that
rounding to the user-declared precision at assignments is always done. The -
mp1 option implies -fp_port.

Floating-point Arithmetic Precision for Itanium®-based Systems

The following Intel® Fortran Compiler options enable you to control the compiler
optimizations for floating-point computations on Itanium®-based systems.

Contraction of FP Multiply and Add/Subtract Operations

-IPF_fma[-] enables or disables the contraction of floating-point multiply and
add/subtract operations into a single operations. Unless -mp is specified, the
compiler tries to contract these operations whenever possible. The -mp option
disables the contractions.

-IPF_fma and -IPF_fma- can be used to override the default compiler
behavior. For example, a combination of -mp and -IPF_fma enables the
compiler to contract operations:

ifort -mp -IPF_fma myprog.f

FP Speculation

Compiler Optimizations

71

-IPF_fp_speculationmode sets the compiler to speculate on floating-point
operations in one of the following modes:

fast: sets the compiler to speculate on floating-point operations; this is the
default.

safe: enables the compiler to speculate on floating-point operations only when it
is safe.

strict: enables the compiler's speculation on floating-point operations
preserving floating-point status in all situations. In the current version, this mode
disables the speculation of floating-point operations (same as off).

off: disables the speculation on floating-point operations.

FP Math Function Optimization

-IPF_fp_relaxed[-] enables or disables use of faster, but slightly less accurate
code sequences for math functions such as divide and sqrt. Compared to strict
IEEE* precision, this option slightly reduces the accuracy of floating-point
calculations performed by these functions (usually limited to the least significant
digit). The default is -QIPF_fp_relaxed-.

FP Operations Evaluation

-IPF_flt_eval_method{0|2} directs the compiler to evaluate the
expressions involving floating-point operands in the following way:

-IPF_flt_eval_method0 directs the compiler to evaluate the expressions
involving floating-point operands in the precision indicated by the variable types
declared in the program.

-IPF_flt_eval_method2 is not supported in the current version.

Controlling Accuracy of the FP Results

-IPF_fltacc disables the optimizations that affect floating-point accuracy. The
 default is
-IPF_fltacc- to enable such optimizations.

The Itanium® compiler may reassociate floating-point expressions to improve
application performance. Use -IPF_fltacc or -mp to disable or restrict these
floating-point optimizations.

Improving/Restricting FP Arithmetic Precision

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

72

The -mp and -mp1 options maintain and restrict, respectively, floating-point
precision, but also affect the application performance. The -mp1 option causes
less impact on performance than the -mp option. -mp1 ensures the out-of-range
check of operands of transcendental functions and improve accuracy of floating-
point compares. For IA-32 systems, the -mp option implies -mp1; -mp1 implies -
fp_port. -mp slows down performance the most of these three, -fp_port the
least of these three.

The -mp option restricts some optimizations to maintain declared precision and
to ensure that floating-point arithmetic conforms more closely to the ANSI and
IEEE* standards. This option causes more frequent stores to memory, or
disallow some data from being register candidates altogether. The Intel
architecture normally maintains floating point results in registers. These registers
are 80 bits long, and maintain greater precision than a double-precision number.
When the results have to be stored to memory, rounding occurs. This can affect
accuracy toward getting more of the "expected" result, but at a cost in speed.
The -pc{32|64|80} option (IA-32 only) can be used to control floating point
accuracy and rounding, along with setting various processor IEEE flags.

For most programs, specifying the -mp option adversely affects performance. If
you are not sure whether your application needs this option, try compiling and
running your program both with and without it to evaluate the effects on
performance versus precision.

Specifying this option has the following effects on program compilation:

• On IA-32 systems, floating-point user variables declared as floating-point
types are not assigned to registers.

• On Itanium®-based systems, floating-point user variables may be
assigned to registers. The expressions are evaluated using precision of
source operands. The compiler will not use Floating-point Multiply and
Add (FMA) function to contract multiply and add/subtract operations in a
single operation. The contractions can be enabled by using -IPF_fma
option. The compiler will not speculate on floating-point operations that
may affect the floating-point state of the machine. See Floating-point
Arithmetic Precision for Itanium-based Systems.

• Floating-point arithmetic comparisons conform to IEEE 754.
• The exact operations specified in the code are performed. For example,

division is never changed to multiplication by the reciprocal.
• The compiler performs floating-point operations in the order specified

without reassociation.
• The compiler does not perform the constant folding on floating-point

values. Constant folding also eliminates any multiplication by 1, division by
1, and addition or subtraction of 0. For example, code that adds 0.0 to a
number is executed exactly as written. Compile-time floating-point

Compiler Optimizations

73

arithmetic is not performed to ensure that floating-point exceptions are
also maintained.

On IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits
(extended precision), not 64 bits (DOUBLE PRECISION). Floating-point
operations conform to IEEE 754. When assignments to type REAL and
DOUBLE PRECISION are made, the precision is rounded from 80 bits
(extended) down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION).
When you do not specify -O0, the extra bits of precision are not always
rounded away before the variable is reused.

• Even if vectorization is enabled by the -x{K|W|N|B|P} options, the
compiler does not vectorize reduction loops (loops computing the dot
product) and loops with mixed precision types. Similarly, the compiler
does not enable certain loop transformations. For example, the compiler
does not transform reduction loops to perform partial summation or loop
interchange.

Optimizing for Specific Processors
Optimizing for Specific Processors Overview

This section describes targeting a processor and processor dispatch and
extensions support options.

The options -tpp{5|6|7} optimize for the IA-32 processors, and the options -
tpp{1|2} optimize for the Itanium® processor family. The options -
x{K|W|N|B|P} and -ax{K|W|N|B|P} generate code that is specific to
processor-instruction extensions.

Note that you can run your application on the latest processor-based systems,
like Intel® Pentium® M processor or Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support and still gear your code
to any of the previous processors specified by N, W, or K versions of the -x
and -ax options.

Targeting a Processor, -tpp{n}

The -tpp{n} optimizes your application's performance for specific Intel
processors. This option generates code that is tuned for the processor
associated with its version. For example, -tpp7 generates code optimized for
running on Intel® Pentium® 4, Intel® Xeon(TM), Intel® Pentium® M processors
and Intel® Pentium® 4 processors with Streaming SIMD Extensions 3 (SSE3)
instruction support, and -tpp2 generates code optimized for running on
Itanium® 2 processor.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

74

 The -tpp{n} option always generates code that is backwards compatible with
Intel® processors of the same family. This means that code generated with -
tpp7 will run correctly on Pentium Pro or Pentium III processors, possibly just
not quite as fast as if the code had been compiled with -tpp6. Similarly, code
generated with -tpp2 will run correctly on Itanium processor, but possibly not
quite as fast as if it had been generated with -tpp1.

Processors for IA-32 Systems

The -tpp5, -tpp6, and -tpp7 options optimize your application's performance
for a specific Intel IA-32 processor as listed in the table below. The resulting
binaries will also run correctly on any of the processors mentioned in the table.

Option Optimizes your application for...

-tpp5 Intel® Pentium® and Pentium® with MMX(TM) technology processor

-tpp6 Intel® Pentium® Pro, Pentium® II and Pentium® III processors

-tpp7
(default)

Intel Pentium 4 processors, Intel® Xeon(TM) processors, Intel®
Pentium® M processors, and Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support

Example

The invocations listed below each result in a compiled binary of the source
program prog.f optimized for Pentium 4 and Intel Xeon processors by default.
The same binary will also run on Pentium, Pentium Pro, Pentium II, and Pentium
III processors.

ifort prog.f

ifort -tpp7 prog.f

However if you intend to target your application specifically to the Intel Pentium
and Pentium with MMX technology processors, use the -tpp5 option:

ifort -tpp5 prog.f

Processors for Itanium®-based Systems

The -tpp1 and -tpp2 options optimize your application's performance for a
specific Intel Itanium® processor as listed in the table below. The resulting
binaries will also run correctly on both processors mentioned in the table.

Option Optimizes your application for...

Compiler Optimizations

75

-tpp1 Intel® Itanium® processor
-tpp2
(default) Intel® Itanium® 2 processor

Example

The following invocation results in a compiled binary of the source program
prog.f optimized for the Itanium 2 processor by default. The same binary will
also run on Itanium processors.

ifort prog.f

ifort -tpp2 prog.f

However if you intend to target your application specifically to the Intel Itanium
processor, use the -tpp1 option:

ifort -tpp1 prog.f

Processor-specific Optimization (IA-32 only)

The -x{K|W|N|B|P} options target your program to run on a specific Intel
processor. The resulting code might contain unconditional use of features that
are not supported on other processors.

Option Optimizes for...

-xK Intel Pentium® III and compatible Intel processors.

-xW Intel Pentium 4 and compatible Intel processors.

-xN Intel Pentium 4 and compatible Intel processors. When the main
program is compiled with this option, it will detect non-compatible
processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor
specific-optimizations.

-xB Intel® Pentium® M and compatible Intel processors. When the main
program is compiled with this option, it will detect non-compatible
processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor-
specific optimizations.

-xP

Intel® Pentium® 4 processors with Streaming SIMD Extensions 3
(SSE3) instruction support. When the main program is compiled with
this option, it will detect non-compatible processors and generate an
error message during execution. This option also enables new

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

76

optimizations in addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do
not specify the
-x{K|W|N|B|P} option.

Example

The invocation below compiles myprog.f for Intel Pentium 4 and compatible
processors. The resulting binary might not execute correctly on Pentium,
Pentium Pro, Pentium II, Pentium III, or Pentium with MMX technology
processors, or on x86 processors not provided by Intel corporation.

ifort -xN myprog.f

Caution
If a program compiled with -x{K|W|N|B|P} is executed on a non-
compatible processor, it might fail with an illegal instruction exception, or
display other unexpected behavior. Executing programs compiled with -xN
, -xB, or -xP on unsupported processors (see table above) will display the
following run-time error:

Fatal error: This program was not built to run on the
processor in your system.

Automatic Processor-specific Optimization (IA-32 only)

The -ax{K|W|N|B|P} options direct the compiler to find opportunities to
generate separate versions of functions that take advantage of features that are
specific to the specified Intel processor. If the compiler finds such an opportunity,
it first checks whether generating a processor-specific version of a function is
likely to result in a performance gain. If this is the case, the compiler generates
both a processor-specific version of a function and a generic version of the
function. The generic version will run on any IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel
processor in use. In this way, the program can benefit from performance gains on
more advanced Intel processors, while still working properly on older IA-32
processors.

The disadvantages of using -ax{K|W|N|B|P} are:

• The size of the compiled binary increases because it contains processor-
specific versions of some of the code, as well as a generic version of the
code.

Compiler Optimizations

77

• Performance is affected slightly by the run-time checks to determine which
code to use.

Note
Applications that you compile to optimize themselves for specific
processors in this way will execute on any Intel IA-32 processor. If you
specify both the -x and -ax options, the -x option forces the generic code
to execute only on processors compatible with the processor type specified
by the -x option.

Option Optimizes Your Code for...

-axK Intel Pentium® III and compatible Intel processors.

-axW Intel Pentium 4 and compatible Intel processors.

-axN
Intel Pentium 4 and compatible Intel processors. This option also
enables new optimizations in addition to Intel processor-specific
optimizations.

-axB
Intel Pentium M and compatible Intel processors. This option also
enables new optimizations in addition to Intel processor-specific
optimizations.

-axP
Intel® Pentium® 4 processors with Streaming SIMD Extensions 3
(SSE3) instruction support. This option also enables new optimizations
in addition to Intel processor-specific optimizations.

Example

The compilation below generates a single executable that includes:

• A generic version for use on any IA-32 processor
• A version optimized for Intel Pentium 4 processors, as long as there is a

performance benefit.
• A version optimized for Intel Pentium M processors, as long as there is a

performance benefit.

ifort -axNB prog.f90

Processor-specific Run-time Checks, IA-32 Systems

The Intel Fortran Compiler optimizations take effect at run-time. For IA-32
systems, the compiler enhances processor-specific optimizations by inserting in
the main routine a code segment that performs run-time checks described below.

Check for Supported Processor with -xB , -xB, or -xP

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

78

To prevent from execution errors, the compiler inserts code in the main routine of
the program to check for proper processor usage. Programs compiled with
options -xN, -xB, or -xP check at run-time whether they are being executed on
the Intel Pentium® 4, Intel® Pentium® M processor or the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3) instruction support,
respectively, or a compatible Intel processor. If the program is not executed on
one of these processors, the program terminates with an error.

Example

To optimize a program foo.f90 for an Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support, issue the following
command:

ifort -xP foo.f90 -o foo.exe

foo.exe aborts if it is executed on a processor that is not validated to support
the Intel® Pentium® 4 processor with Streaming SIMD Extensions 3 (SSE3)
instruction support to account for the fact that this processor may have some
additional feature enabling.

If you intend to run your programs on multiple IA-32 processors, do not use the -
x options that optimize for processor-specific features; consider using -ax to
attain processor-specific performance and portability among different processors.

Setting FTZ and DAZ Flags

Previously, the default status of the flags flush-to-zero (FTZ) and denormals-are-
zero (DAZ) for IA-32 processors were off by default. However, even at the cost of
losing IEEE compliance, turning these flags on significantly increases the
performance of programs with denormal floating-point values in the gradual
underflow mode run on the most recent IA-32 processors. Hence, for the Intel
Pentium III, Pentium 4, Pentium M, Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3) instruction support, and compatible IA-32 processors,
the compiler's default behavior is to turn these flags on. The compiler inserts
code in the program to perform a run-time check for the processor on which the
program runs to verify it is one of the afore-listed Intel processors.

• Executing a program on a Pentium III processor enables the FTZ flag, but
not DAZ.

• Executing a program on an Intel Pentium M processor or Intel® Pentium®
4 processor with Streaming SIMD Extensions 3 (SSE3) instruction support
enables both the FTZ and DAZ flags.

These flags are only turned on by Intel processors that have been validated to
support them.

Compiler Optimizations

79

For non-Intel processors, the flags can be set manually by calling the following
Intel Fortran intrinsic:

RESULT = FOR_SET_FPE (FOR_M_ABRUPT_UND)

Interprocedural Optimizations (IPO)
Overview of Interprocedural Optimizations

Use -ip and -ipo to enable interprocedural optimizations (IPO), which enable
the compiler to analyze your code to determine where you can benefit from the
optimizations listed in tables that follow.

IA-32 and Itanium®-based applications

Optimization Affected Aspect of Program
Inline function expansion Calls, jumps, branches, and

loops
Interprocedural constant
propagation

Arguments, global variables,
and return values

Monitoring module-level
static variables

Further optimizations and loop
invariant code

Dead code elimination Code size
Propagation of function
characteristics

Call deletion and call
movement

Multifile optimization The same aspects as -ip, but
across multiple files

IA-32 applications only

Optimization Affected Aspect of Program
Passing arguments in
registers

Calls and register usage

Loop-invariant code
motion

Further optimizations and loop
invariant code

Inline function expansion is one of the main optimizations performed by the
interprocedural optimizer. For function calls that the compiler believes are
frequently executed, the compiler might decide to replace the instructions of the
call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures
defined within the current source file. However, when you use -ipo to specify

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

80

multifile IPO, the compiler performs inline function expansion for calls to
procedures defined in separate files.

To disable the IPO optimizations, use the -O0 option.

Caution

The -ip and -ipo options can in some cases significantly increase
compile time and code size.

Option -auto_ilp32 for Itanium®-based Systems

On Itanium-based systems, the -auto_ilp32 option requires interprocedural
analysis over the whole program. This optimization allows the compiler to use 32-
bit pointers whenever possible as long as the application does not exceed a 32-
bit address space. Using the -auto_ilp32 option on programs that exceed 32-
bit address space might cause unpredictable results during program execution.

Because this optimization requires interprocedural analysis over the whole
program, you must use the
-auto_ilp32 option with the -ipo option.

On Intel® EM64T systems, -auto_ilp32 has no effect unless -xP or -axP is
also specified.

IPO Compilation Model

For the topics in this section, the term IPO generally refers to multi-file IPO.

When you use the -ipo option, the compiler collects information from individual
program modules of a program. Using this information, the compiler performs
optimizations across modules. In order to do this, the -ipo option is applied to
both the compilation phase and the link phase.

One of the main benefits of IPO is that it enables more inlining. For information
on inlining and the minimum inlining criteria, see Criteria for Inline Function
Expansion and Controlling Inline Expansion of User Functions. Inlining and other
optimizations are improved by profile information. For a description of how to use
IPO with profile information for further optimization, see Example of Profile-
Guided Optimization.

Compilation Phase

When using IPO, as each source file is compiled, the compiler stores an
intermediate representation (IR) of the source code in the object file, which
includes summary information used for optimization.

Compiler Optimizations

81

By default, the compiler produces "mock" object files during the compilation
phase of IPO. Generating mock files instead of real object files reduces the time
spent in the IPO compilation phase. Each mock object file contains the IR for its
corresponding source file, but no real code or data. These mock objects must be
linked using the -ipo option in ifort or using the xild tool. (See Creating a
Multifile IPO Executable with xild.)

Note
Failure to link "mock" objects with ifort and -ipo or xild will result in
linkage errors. There are situations where mock object files cannot be
used. See Compilation with Real Object Files for more information.

Linkage Phase

When you invoke the linker, adding -ipo to the command line causes the
compiler to be invoked a final time before the linker. The compiler performs IPO
across all object files that have an IR. The compiler first analyzes all of the
summary information, and then finishes compiling the pieces of the application
for which it has IR. Having global information about the application while it is
compiling individual pieces can improve the quality of optimization.

 Note
The compiler does not support multifile IPO for static libraries (.a files). See
Compilation with Real Object Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program
automatically. If a whole program is detected, the interprocedural constant
propagation, stack frame alignment, data layout and padding of common blocks
perform more efficiently, while more dead functions get deleted. This option is
safe.

Command Line for Creating an IPO Executable

The command line options to enable IPO for compilations targeted for both the
IA-32 and Itanium® architectures are identical.

To produce mock object files containing IR, compile your source files with -ipo
as follows:

ifort -ipo -c a.f b.f c.f

This produces a.o, b.o, and c.o object files. These files contain Intel®
compiler intermediate representation (IR) corresponding to the compiled source
files a.f, b.f, and c.f. Using -c to stop compilation after generating .o files is
required.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

82

You can now optimize interprocedurally by adding -ipo to your link command
line. The following example produces an executable named app:

ifort -oapp -ipo a.o b.o c.o

This command invokes the compiler on the objects containing IR and creates a
new list of object(s) to be linked. The command then calls GCC ld to link the
specified object files and produce app, as specified by the -o option. IPO is
applied only to the object files that contain IR; otherwise the object file passes to
link stage.

Note
For the above step, you can use the xild tool instead of ifort.

The two steps described above can be combined, as shown in the following:

ifort -ipo -oapp a.f b.f c.f

Generating Multiple IPO Object Files

For the most part, IPO generates a single object file for the link-time compilation.
This can be clumsy for very large applications, perhaps even making it
impossible to use -ipo on the application. The compiler provides two ways to
avoid this problem. The first way is a size-based heuristic, which automatically
causes the compiler to generate multiple object files for large link-time
compilations. The second way is using one of two explicit command line controls
for that tell the compiler to do multi-object IPO:

o -ipoN, where N indicates the number of object files to generate
o -ipo_separate, which tells the compiler to generate a separate IPO

object file for each source file.

These options are alternatives to the -ipo option, that is, they indicate an IPO
compilation. Explicitly requesting a multi-object IPO compilation turns the size-
based heuristic off.

The number of files generated by the link-time compilation is invisible to the user
unless either the -ipo_c or -ipo_S option is used. In this case the compiler
appends a number to the file name. For example, consider this command line:

ifort a.o b.o c.o -ipo_separate -ipo_c

In this command line, a.o, b.o, and c.o all contain IR, so the compiler will
generate ipo_out.o, ipo_out1.o, ipo_out2.o, and ipo_out3.o.

Compiler Optimizations

83

The first object file contains global symbols. The other object files correspond to
the source files.

This naming convention is also applied to user-specified names. For example:

ifort a.o b.o c.o -ipo_separate -ipo_c -o appl.o

This will generate appl.o, appl1.o, appl2.o, and appl3.o.

Capturing Intermediate Outputs of IPO

The -ipo_c and -ipo_S options are useful either for analyzing the effects of
IPO, or when using IPO on modules that do not make up a complete program.

Use the -ipo_c option to optimize across files and produce an object file. This
option performs optimizations as described for -ipo, but stops prior to the final
link stage, leaving an optimized object file. The default name for this file is
ipo_out.o. You can use the -o option to specify a different name. For
example:

ifort -tpp6 -ipo_c -ofilename a.f b.f c.f

Use the -ipo_S option to optimize across files and produce an assembly file.
This option performs optimizations as described for -ipo, but stops prior to the
final link stage, leaving an optimized assembly file. The default name for this file
is ipo_out.s. You can use the -o option to specify a different name. For
example:

ifort -tpp6 -ipo_S -ofilename a.f b.f c.f

The -ipo_c and -ipo_S options generate multiple outputs if multi-object IPO is
being used. The name of the first file is taken from the value of the -o option.
 The name of subsequent files is derived from this file by appending a numeric
value to the file name. For example, if the first object file is named foo.o, the
 second object file will be named foo1.o.

The compiler generates a message indicating the name of each object or
assembly file it is generating. These files can be added to the real link step to
build the final application.

Creating an IPO Executable Using xild

Use the Intel® linker, xild instead of step 2 in Command Line for Creating an
IPO Executable. The linker xild performs the following steps:

1. Invokes the compiler to perform IPO if objects containing IR are found.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

84

2. Invokes GCC ld to link the application.

The command-line syntax for xild is the same as that of the GCC linker:

xild [<options>] <LINK_commandline>

where:

• [<options>] (optional) may include any GCC linker options or options
supported only by xild.

• <LINK_commandline> is your linker command line containing a set of
valid arguments to the ld.

To create app using IPO, use the option -ofilename as shown in the following
example:

xild -oapp a.o b.o c.o

xild calls the compiler to perform IPO for objects containing IR and creates a
new list of object(s) to be linked. Then xild calls ld to link the object files that
are specified in the new list and produce app.

Note

The -ipo option can reorder object files and linker arguments on the
command line. Therefore, if your program relies on a precise order of
arguments on the command line, -ipo can affect the behavior of your
program.

The xild command recognizes all three spellings the IPO switch (-ipo, -
ipoN, and -ipo_separate).

Usage Rules

You must use the Intel linker xild to link your application if:

• Your source files were compiled with IPO enabled. IPO is enabled by
specifying the -ipo command-line option

• You normally would invoke the GCC linker (ld) to link your application.

The xild Options

The additional options supported by xild may be used to examine the results of
IPO. These options are described in the following table.

-qipo_fa[file.s] Produces an assembly listing for the

Compiler Optimizations

85

IPO compilation. You can specify an
optional name for the listing file, or a
directory (with the backslash) in which
to place the file. The default listing
name is ipo_out.s.

-qipo_fo[file.o] Produces an object file for the IPO
compilation. You can specify an
optional name for the object file, or a
directory (with the backslash) in which
to place the file. The default object file
name is ipo_out.o.

-ipo_fcode-asm Adds code bytes to the assembly
listing.

-ipo_fsource-asm Adds high-level source code to the
assembly listing.

-ipo_fverbose-asm,
-ipo_fnoverbose-asm

Enables and disables, respectively,
inserting comments containing version
and options used in the assembly
listing for xild.

If the xild invocation leads to an IPO multi-object compilation (either because
the application is big, or because the user explicity asked for multiple objects),
the first .s file takes its name from the -qipo_fa option. The compiler derives
the names of subsequent .s files by appending a number to the name, for
example, foo.s and foo1.s for -qipo_fafoo.s. The same is true for the -
qipo_fo option.

Code Layout and Multi-Object IPO

One of the optimizations performed during an IPO compilation is code layout.
IPO analysis determines a layout order for all of the routines for which it has IR. If
a single object is being generated, the compiler generates the layout simply by
compiling the routines in the desired order.

For a multi-object IPO compilation, the compiler must tell the linker about the
desired order. The compiler first puts each routine in a named text section (the
first routine in .text00001, the second in .text00002, and so forth). It then
generates a linker script that tells the linker to first link contributions from
.text00001, then .text00002. This happens transparently when the same
ifort (or xild) invocation is used for both the link-time compilation and the
final link.

However, the linker script must be taken into account by the user if -ipo_c or -
ipo_S is used. With these switches, the IPO compilation and actual link are
done by different invocations of ifort. When this occurs, ifort will issue an

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

86

informational message indicating that it is generating an explicit linker script,
ipo_layout.script.

When ipo_layout.script is generated, the typical response is to modify your
link command to use this script:

--script=ipo_layout.script

If your application already requires a custom linker script, you can place the
necessary contents of ipo_layout.script in your script. The layout-specific
content of ipo_layout.script is at the beginning of the description of the
.text section. For example, to describe the layout order for 12 routines:

.text :
{
*(.text00001) *(.text00002) *(.text00003) *(.text00004)
*(.text00005)
*(.text00006) *(.text00007) *(.text00008) *(.text00009)
*(.text00010)
*(.text00011) *(.text00012)
...

For applications that already require a linker script, you can add this section of
the .text section description to the customized linker script. If you add these
lines to your linker script, it is desirable to add additional entries to account for
future development. This is harmless, since the �*(�)� syntax makes these
contributions optional.

If you choose to not use the linker script your application will still build, but the
layout order will be random. This may have an adverse affect on application
performance, particularly for large applications.

Compilation with Real Object Files

In certain situations you might need to generate real object files with -ipo. To
force the compiler to produce real object files instead of "mock" ones with IPO,
you must specify -ipo_obj in addition to
-ipo.

Use of -ipo_obj is necessary under the following conditions:

• The objects produced by the compilation phase of -ipo will be placed in a
static library without the use of xiar. The compiler does not support
multifile IPO for static libraries, so all static libraries are passed to the
linker. Linking with a static library that contains "mock" object files will
result in linkage errors because the objects do not contain real code or
data. Specifying

Compiler Optimizations

87

-ipo_obj causes the compiler to generate object files that can be used
in static libraries.

• Alternatively, if you create the static library using xiar, then the resulting
static library will work as a normal library.

• The objects produced by the compilation phase of -ipo might be linked
without the -ipo option and without the use of xiar.

• You want to generate an assembly listing for each source file (using -S)
while compiling with -ipo. If you use -ipo with -S, but without -
ipo_obj, the compiler issues a warning and an empty assembly file is
produced for each compiled source file.

Implementing the .il Files with Version Numbers

An IPO compilation consists of two parts: the compile phase and the link phase.
In the compile phase, the compiler produces an intermediate language (IL)
version of the users� code. In the link phase, the compiler reads the IL and
completes the compilation, producing a real object file or executable.

Generally, different compiler versions produce IL based on different definitions,
and therefore the ILs from different compilations can be incompatible. Intel
Fortran Compiler assigns a unique version number with each compiler�s IL
definition. If a compiler attempts to read IL in a file with a version number other
than its own, the compilation proceeds, but the IL is discarded and not used in
the compilation. The compiler then issues a warning message about an
incompatible IL detected and discarded.

The IL produced by the Intel compiler is stored in file with a suffix .il. Then the
.il file is placed in the library. If this library is used in an IPO compilation
invoked with the same compiler as produced the IL for the library, the compiler
can extract the .il file from the library and use it to optimize the program. For
example, it is possible to inline functions defined in the libraries into the users�
source code.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar. Given a list of
objects, the library manager will insert the objects into a named library to be used
in subsequent link steps.

xiar cru user.a a.o b.o

The above command creates a library named user.a that contains the a.o and
b.o objects.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

88

If, however, the objects have been created using -ipo -c, then the objects will
not contain a valid object but only the intermediate representation (IR) for that
object file. For example:

ifort -ipo -c a.f b.f

will produce a.o and b.o that only contains IR to be used in a link time
compilation. The library manager will not allow these to be inserted in a library.

In this case, you must use the Intel library driver xild -ar. This program will
invoke the compiler on the IR saved in the object file and generate a valid object
that can be inserted in a library.

xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xild.

Using -ip with -Qoption Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular
application by experimenting with memory and interprocedural optimizations.

Enter the -Qoption option with the applicable keywords to select particular
inline expansions and loop optimizations. The option must be entered with an -
ip or -ipo specification, as follows:

-ip[-Qoption,tool,opts]

where tool is Fortran (f) and opts are -Qoption specifiers (see below). Also
refer to Criteria for Inline Function Expansion to see how these specifiers may
affect the inlining heuristics of the compiler.

For more information about passing options to other tools, see
(/Qoption,tool,opts).

-Qoption Specifiers

If you specify -ip or -ipo without any -Qoption qualification, the compiler
does the following:

• Expands functions in line
• Propagates constant arguments
• Passes arguments in registers
• Monitors module-level static variables.

Compiler Optimizations

89

You can refine interprocedural optimizations by using the following -Qoption
specifiers. To have an effect, the -Qoption option must be entered with either -
ip or -ipo also specified, as in this example:

-ip -Qoption,f,ip_specifier

where ip_specifier is one of the -Qoption specifiers described in the
following table:

-Qoption Specifiers
-ip_args_in_regs=0 Disables the passing of

arguments in registers. By
default, external functions can
pass arguments in registers
when called locally. Normally,
only static functions can pass
arguments in registers, provided
the address of the function is not
taken and the function does not
use a variable number of
arguments.

-ip_ninl_max_stats=n Sets the valid number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The
number of intermediate
language statements usually
exceeds the actual number of
source language statements.
The default value for n is 230.

-ip_ninl_min_stats=n Sets the valid min number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The default
value for ip_ninl_min_stats
is:
IA-32 compiler:
ip_ninl_min_stats = 7
Itanium® compiler:
ip_ninl_min_stats = 15

-
ip_ninl_max_total_stats=n

Sets the maximum increase in
size of a function, measured in
intermediate language
statements, due to inlining. The

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

90

number n is a positive integer.
The default value for n is 2000.

The following command activates procedural and interprocedural optimizations
on source.f and sets the maximum increase in the number of intermediate
language statements to five for each function:

ifort -ip -Qoption,f,-ip_ninl_max_stats=5 source.f

Inline Expansion of Functions

Criteria for Inline Function Expansion

For a call to be considered for inlining, it has to meet certain minimum criteria.
There are three main components of a call:

Call-site is the site of the call to the function that might be inlined.

Caller is the function that contains the call-site.

Callee is the function being called that might be inlined.

Minimum call-site criteria:

• The number of actual arguments must match the number of formal
arguments of the callee.

• The number of return values must match the number of return values of
the callee.

• The data types of the actual and formal arguments must be compatible.
• No multilingual inlining is permitted. Caller and callee must be written in

the same source language.

Minimum criteria for the caller:

• At most 2000 intermediate statements will be inlined into the caller from all
the call-sites being inlined into the caller. You can change this value by
specifying the option

-Qoption,f,-ip_ninl_max_total_stats=new value

• The function must be called if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

• Does not have variable argument list.

Compiler Optimizations

91

• Is not considered infrequent due to the name. Routines which contain the
following substrings in their names are not inlined: abort, alloca,
denied, err, exit, fail, fatal, fault, halt, init, interrupt,
invalid, quit, rare, stop, timeout, trace, trap, and warn.

• Is not considered unsafe for other reasons.

Selecting Routines for Inlining with or without PGO

Once the above criteria are met, the compiler picks the routines whose inline
expansions will provide the greatest benefit to program performance. This is
done using the default heuristics. The inlining heuristics used by the compiler
differ based on whether you use profile-guided optimizations (-prof_use) or
not.

When you use profile-guided optimizations with -ip or -ipo, the compiler uses
the following heuristics:

• The default heuristic focuses on the most frequently executed call sites,
based on the profile information gathered for the program.

• By default, the compiler does not inline functions with more than 230
intermediate statements. You can change this value by specifying the
option -Qoption,f,-ip_ninl_max_stats=new value.

• The default inline heuristic will stop inlining when direct recursion is
detected.

• The default heuristic always inlines very small functions that meet the
minimum inline criteria.

o Default for Itanium®-based applications: ip_ninl_min_stats =
15.

o Default for IA-32 applications: ip_ninl_min_stats = 7.
• These limits can be modified with the option -Qoption,f,-

ip_ninl_min_stats=new value.

See -Qoption Specifiers and Profile-Guided Optimization (PGO).

When you do not use profile-guided optimizations with -ip or -ipo, the compiler
uses less aggressive inlining heuristics: it inlines a function if the inline expansion
does not increase the size of the final program.

Inlining and Preemption

Preemption of a function means that the code, which implements that function at
run-time, is replaced by different code. When a function is preempted, the new
version of this function is executed rather than the old version. Preemption can
be used to replace an erroneous or inferior version of a function with a correct or
improved version.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

92

The compiler assumes that when -ip is on, any externally visible function might
be preempted and therefore cannot be inlined. Currently, this means that all
Fortran subprograms, except for internal procedures, are not inlinable when -ip
is on.

However, if you use -ipo and -ipo_obj on a file-by-file basis, the functions
can be inlined. See Compilation with Real Object Files.

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with
the options shown in the following summary.

Option Effect
-ip_no_inlining This option is only useful if -ip or -ipo is

also specified. In this case, -
ip_no_inlining disables inlining that would
result from the -ip interprocedural
optimizations, but has no effect on other
interprocedural optimizations.

-inline_debug_info Preserve the source position of inlined code
instead of assigning the call-site source
position to inlined code.

-ip_no_pinlining Disables partial inlining; can be used if -ip or
-ipo is also specified.

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard
and math library functions at the point of the call to that function, which usually
results in faster computation.

However, the inlined library functions do not set the errno variable when being
expanded inline. In code that relies upon the setting of the errno variable, you
should use the -nolib_inline option. Also, if one of your functions has the
same name as one of the compiler-supplied library functions, then when this
function is called, the compiler assumes that the call is to the library function and
replaces the call with an inlined version of the library function.

So, if the program defines a function with the same name as one of the known
library routines, you must use the -nolib_inline option to ensure that the
user-supplied function is used.
-nolib_inline disables inlining of all intrinsics.

Compiler Optimizations

93

 Note
Automatic inline expansion of library functions is not related to the inline
expansion that the compiler does during interprocedural optimizations. For
example, the following command compiles the program sum.f without
expanding the math library functions:

ifort -ip -nolib_inline sum.f

Profile-guided Optimizations
Profile-guided Optimizations Overview

Profile-guided optimizations (PGO) tell the compiler which areas of an application
are most frequently executed. By knowing these areas, the compiler is able to be
more selective and specific in optimizing the application. For example, the use of
PGO often enables the compiler to make better decisions about function inlining,
thereby increasing the effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source
code and special code from the compiler. Each time this instrumented code is
executed, the instrumented program generates a dynamic information file. When
you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to
optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of
IPO and PGO vary. This is due to each program having a different profile and
different opportunities for optimizations. The guidelines provided help you
determine if you can benefit by using IPO and PGO. You need to understanding
the principles of the optimizations and the unique aspects of your source code.

Added Performance with PGO

In this version of the Intel® Fortran Compiler, PGO is improved in the following
ways:

• Register allocation uses the profile information to optimize the location of
spill code.

• For indirect function calls, branch prediction is improved by identifying the
most likely targets. With the Intel® Pentium® 4 and Intel® Xeon(TM)
processors' longer pipeline, improving branch prediction translates into
high performance gains.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

94

• The compiler detects and does not vectorize loops that execute only a
small number of iterations, reducing the run time overhead that
vectorization might otherwise add.

Profile-guided Optimizations Methodology and Usage Model

PGO works best for code with many frequently executed branches that are
difficult to predict at compile time. An example is the code with intensive error-
checking in which the error conditions are false most of the time. The "cold"
error-handling code can be placed such that the branch is hardly ever
mispredicted. Minimizing "cold" code interleaved into the "hot" code improves
instruction cache behavior.

PGO Phases

The PGO methodology requires three phases and options:

1. Instrumentation compilation and linking with -prof_gen
2. Instrumented execution by running the executable; as a result, the

dynamic-information files (.dyn) are produced.
3. Feedback compilation with -prof_use

The flowcharts below illustrate this process for IA-32 compilation and Itanium®-
based compilation . A key factor in deciding whether you want to use PGO lies in
knowing which sections of your code are the most heavily used. If the data set
provided to your program is very consistent and it elicits a similar behavior on
every execution, then PGO can probably help optimize your program execution.
However, different data sets can elicit different algorithms to be called. This can
cause the behavior of your program to vary from one execution to the next.

Phases of Basic Profile-Guided Optimization

Compiler Optimizations

95

PGO Usage Model

The chart that follows presents PGO usage model.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

96

Here are the steps for a simple example (myApp.f90) for IA-32 systems.

1. Set the following:

PROF_DIR=c:/myApp/prof_dir

2. Issue the following command:

ifort -prof_genx myApp.f90

This command compiles the program and generates instrumented binary
myApp.exe as well as the corresponding static profile information
pgopti.spi.

3. Execute myApp.

Each invocation of myApp runs the instrumented application and
generates one or more new dynamic profile information files that have an
extension .dyn in the directory specified by PROF_DIR.

4. Issue the following command:

ifort -prof_use myApp.f90

Compiler Optimizations

97

At this step, the compiler merges all the .dyn files into one .dpi file
representing the total profile information of the application and generates
the optimized binary. The default name of the .dpi file is pgopti.dpi.

Basic PGO Options

The options used for basic PGO optimizations are:

• -prof_gen to generate instrumented code
• -prof_use to generate a profile-optimized executable
• -prof_format_32 to produce 32-bit counters for .dyn and .dpi files

In cases where your code behavior differs greatly between executions, you have
to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles. In the basic profile-guided optimization, the following
options are used in the phases of the PGO:

Generating Instrumented Code, -prof_gen

The -prof_gen option instruments the program for profiling to get the execution
count of each basic block. It is used in phase 1 of the PGO to instruct the
compiler to produce instrumented code in your object files in preparation for
instrumented execution. Parallel make is automatically supported for -prof_gen
compilations.

Generating a Profile-optimized Executable, -prof_use

The -prof_use option is used in phase 3 of the PGO to instruct the compiler to
produce a profile-optimized executable and merges available dynamic-
information (.dyn) files into a pgopti.dpi file.

Note

The dynamic-information files are produced in phase 2 when you run the
instrumented executable.

If you perform multiple executions of the instrumented program, -prof_use
merges the dynamic-information files again and overwrites the previous
pgopti.dpi file.

Using 32-bit Counters, -prof_format_32

The Intel Fortran compiler by default produces profile data with 64-bit counters to
handle large numbers of events in the .dyn and .dpi files. The -
prof_format_32 option produces 32-bit counters for compatibility with the
earlier compiler versions. If the format of the .dyn and .dpi files is incompatible

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

98

with the format used in the current compilation, the compiler issues the following
message:

Error: xxx.dyn has old or incompatible file format - delete
file and redo instrumentation compilation/execution.

The 64-bit format for counters and pointers in .dyn and .dpi files eliminate the
incompatibilities on various platforms due to different pointer sizes.

Disabling Function Splitting, -fnsplit-

-fnsplit- disables function splitting on Itanium®-based systems. Function
splitting is enabled by -prof_use in phase 3 to improve code locality by splitting
routines into different sections: one section to contain the cold or very
infrequently executed code and one section to contain the rest of the code (hot
code).

You can use -fnsplit- to disable function splitting for the following reasons:

• Most importantly, to get improved debugging capability. In the debug
symbol table, it is difficult to represent a split routine, that is, a routine with
some of its code in the hot code section and some of its code in the cold
code section. The -fnsplit- option disables the splitting within a routine
but enables function grouping, an optimization in which entire routines are
placed either in the cold code section or the hot code section. Function
grouping does not degrade debugging capability.

• Another reason can arise when the profile data does not represent the
actual program behavior, that is, when the routine is actually used
frequently rather than infrequently.

Note

For Itanium®-based applications, if you intend to use the -prof_use
option with optimizations at the -O3 level, the -O3 option must be on. If you
intend to use the -prof_use option with optimizations at the -O2 level or
lower, you can generate the profile data with the default options.

See an example of using PGO.

Advanced PGO Options

The options controlling advanced PGO optimizations are:

• -prof_dirdirname
• -prof_filefilename.

Compiler Optimizations

99

Use the -prof_dirdirname option to specify the directory in which you intend
to place the dynamic information (.dyn) files to be created. The default is the
directory where the program is compiled. The specified directory must already
exist.

You should specify -prof_dirdirname option with the same directory name
for both the instrumentation and feedback compilations. If you move the .dyn
files, you need to specify the new path.

The -prof_filefilename option specifies file name for profiling summary
file.

Guidelines for Using Advanced PGO

When you use PGO, consider the following guidelines:

• Minimize the changes to your program after instrumented execution and
before feedback compilation. During feedback compilation, the compiler
ignores dynamic information for functions modified after that information
was generated.

Note
The compiler issues a warning that the dynamic information does not
correspond to a modified function.

• Repeat the instrumentation compilation if you make many changes to your
source files after execution and before feedback compilation.

• Specify the name of the profile summary file using the -
prof_filefilename option

See PGO Environment Variables.

PGO Environment Variables

The environment variables determine the directory in which to store dynamic
information files or whether to overwrite pgopti.dpi. The PGO environment
variables are described in the table below.

Variable Description
PROF_DIR Specifies the directory in which dynamic

information files are created. This variable
applies to all three phases of the profiling
process.

PROF_DUMP_INTERVAL Initiates interval profile dumping in an
instrumented user application.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

100

PROF_NO_CLOBBER Alters the feedback compilation phase slightly.
By default, during the feedback compilation
phase, the compiler merges the data from all
dynamic information files and creates a new
pgopti.dpi file, even if one already exists.
When this variable is set, the compiler does not
overwrite the existing pgopti.dpi file. Instead,
the compiler issues a warning and you must
remove the pgopti.dpi file if you want to use
additional dynamic information files.

See the documentation for your operating system for instructions on how to
specify environment variables and their values.

Example of Profile-Guided Optimization

The following is an example of the basic PGO phases:

1. Instrumentation Compilation and Linking�Use -prof_gen to produce
an executable with instrumented information. Use also the -prof_dir
option as recommended for most programs, especially if the application
includes the source files located in multiple directories. -prof_dir
ensures that the profile information is generated in one consistent place.
For example:

ifort -prof_gen -prof_dir/usr/profdata -c a1.f a2.f
a3.f
ifort -oa1 a1.o a2.o a3.o

In place of the second command, you could use the linker (ld) directly to
produce the instrumented program. If you do this, make sure you link with
the libirc.a library.

2. Instrumented Execution�Run your instrumented program with a
representative set of data to create a dynamic information file.

prompt> a1

The resulting dynamic information file has a unique name and .dyn suffix
every time you run a1. The instrumented file helps predict how the
program runs with a particular set of data. You can run the program more
than once with different input data.

3. Feedback Compilation�Compile and link the source files with -
prof_use to use the dynamic information to optimize your program
according to its profile:

Compiler Optimizations

101

ifort -prof_use -prof_dir/usr/profdata -ipo a1.f a2.f
a3.f

Besides the optimization, the compiler produces a pgopti.dpi file. You
typically specify the default optimizations (-O2) for phase 1, and specify
more advanced optimizations (-ip or -ipo) for phase 3. This example
used -O2 in phase 1 and the -ipo in phase 3.

Note
The compiler ignores the -ip or the -ipo options with -prof_gen.

See Basic PGO Options.

Merging the .dyn Files

To merge the .dyn files, use the profmerge utility. The compiler executes
profmerge automatically during the feedback compilation phase when you
specify -prof_use.

The command-line usage for profmerge is as follows:

profmerge [-nologo] [-prof_dirdirname]

where -prof_dirdirname is a profmerge utility option.

This merges all .dyn files in the current directory or the directory specified by -
prof_dir, and produces the summary file pgopti.dpi.

The -prof_filefilename option enables you to specify the name of the .dpi
file.

The command-line usage for profmerge with -prof_filefilename is as
follows:

profmerge [-nologo] [-prof_filefilename]

where /prof_filefilename is a profmerge utility option.

Note
The profmerge tool merges all the .dyn files that exist in the given
directory. It is very important to make sure that unrelated .dyn files,
oftentimes from previous runs, are not present in that directory. Otherwise,
profile information will be based on invalid profile data. This can negatively
impact the performance of optimized code as well as generate misleading
coverage information.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

102

Note
The .dyn files can be merged to a .dpi file by the profmerge tool
without recompiling the application.

Dumping Profile Data

This subsection provides an example of how to call the C PGO API routines from
Fortran. For complete description of the PGO API support routines, see PGO
API: Profile Information Generation Support.

As part of the instrumented execution phase of profile-guided optimization, the
instrumented program writes profile data to the dynamic information file (.dyn
file). The file is written after the instrumented program returns normally from
main() or calls the standard exit function. Programs that do not terminate
normally, can use the _PGOPTI_Prof_Dump function. During the
instrumentation compilation
(-prof_gen) you can add a call to this function to your program. Here is an
example:

INTERFACE
SUBROUTINE PGOPTI_PROF_DUMP()
!DEC$ ATTRIBUTES C,
ALIAS:'PGOPTI_Prof_Dump'::PGOPTI_PROF_DUMP
END SUBROUTINE
END INTERFACE
CALL PGOPTI_PROF_DUMP()

Note
You must remove the call or comment it out prior to the feedback
compilation with -prof_use.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file for each routine to look up the
profile summary information associated with that routine. By default, this prevents
you from:

• Using the profile summary file (.dpi) if you move your application
sources.

• Sharing the profile summary file with another user who is building identical
application sources that are located in a different directory.

To enable the movement of application sources, as well as the sharing of profile
summary files, use the profmerge with -src_old and -src_new options. For
example:

Compiler Optimizations

103

prompt>profmerge -prof_dir c:/work -src_old c:/work/sources
-src_new d:/project/src

The above command will read the c:/work/pgopti.dpi file. For each routine
represented in the pgopti.dpi file, whose source path begins with the
c:/work/sources prefix, profmerge replaces that prefix with
d:/project/src. The c:/work/pgopti.dpi file is updated with the new
source path information.

The following rules apply:

• You can execute profmerge more than once on a given pgopti.dpi file. You
may need to do this if the source files are located in multiple directories.
 For example:

profmerge -src_old "c:/program files" -src_new
"e:/program files"

profmerge -src_old c:/proj/application -src_new d:/app

• In the values specified for -src_old and -src_new, uppercase and
lowercase characters are treated as identical. Likewise, forward slash (/)
and backward slash (\) characters are treated as identical.

• Because the source relocation feature of profmerge modifies the
pgopti.dpi file, you may wish to make a backup copy of the file prior to
performing the source relocation.

Code-coverage Tool

The Intel® Compilers Code-coverage tool can be used for both IA-32 and
Itanium® architectures, in a number of ways to improve development efficiency,
reduce defects, and increase application performance. The major features of the
Intel Compilers code-coverage tool are:

• Visual presentation of the application's code coverage information with the
code-coverage coloring scheme

• Display of the dynamic execution counts of each basic block of the
application

• Differential coverage, or comparison of the profiles of the application's two
runs

The syntax for this tool is as follows:

codecov [-codecov_option]

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

104

where -codecov_option is a tool option you choose to run the code coverage
with. If you do not use any option, the tool will provide the top level code
coverage for your whole program.

The tool uses options that are listed in the table that follows.

Option Description Default
-help Prints all the options of the code-coverage tool.
-spi file Sets the path name of the static profile information

file .spi.
pgopti.spi

-dpi file Sets the path name of the dynamic profile
information file .dpi.

pgopti.dpi

-prj Sets the project name.
-counts Generates dynamic execution counts.
-
nopartial

Treats partially covered code as fully covered
code.

-comp Sets the filename that contains the list of files of
interest.

-ref Finds the differential coverage with respect to
ref_dpi_file.

-demang Demangles both function names and their
arguments.

-mname Sets the name of the web-page owner.
-maddr Sets the email address of the web-page owner.
-bcolor Sets the html color name or code of the

uncovered blocks.
#ffff99

-fcolor Sets the html color name or code of the
uncovered functions.

#ffcccc

-pcolor Sets the html color name or code of the partially
covered code.

#fafad2

-ccolor Sets the html color name or code of the covered
code.

#ffffff

-ucolor Sets the html color name or code of the
unknown code.

#ffffff

Visual Presentation of the Application's Code Coverage

Based on the profile information collected from running the instrumented binaries
when testing an application, Intel® Compiler creates HTML files using a code-
coverage tool. These HTML files indicate portions of the source code that were
or were not exercised by the tests. When applied to the profile of the
performance workloads, the code-coverage information shows how well the
training workload covers the application's critical code. High coverage of
performance-critical modules is essential to taking full advantage of the profile-
guided optimizations.

Compiler Optimizations

105

The code-coverage tool can create two levels of coverage:

• Top level: for a group of selected modules
• Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that
were selected. The following options are provided:

• You can select the modules of interest
• For the selected modules, the tool generates a list with their coverage

information. The information includes the total number of functions and
blocks in a module and the portions that were covered.

• By clicking on the title of columns in the reported tables, the lists may be
sorted in ascending or descending order based on:

• basic block coverage
• function coverage
• function name.

The screenshot that follows shows a sample top-level coverage summary for a
project. By clicking on a module name (for example, SAMPLE.C), the browser will
display the coverage source view of that particular module.

Browsing the Frames

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

106

The coverage tool creates frames that facilitate browsing through the code to
identify uncovered code. The top frame displays the list of uncovered functions
while the bottom frame displays the list of covered functions. For uncovered
functions, the total number of basic blocks of each function is also displayed. For
covered functions, both the total number of blocks and the number of covered
blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the
corresponding function were covered. The block coverage rate of that function is
thus 66.67%. These lists can be sorted based on the coverage rate, number of
blocks, or function names. Function names are linked to the position in source
view where the function body starts. So, just by one click, the user can see the
least-covered function in the list and by another click the browser displays the
body of the function. The user can then scroll down in the source view and
browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered
functions as well as the list of covered functions. The lists are reported in two
distinct frames that provide easy navigation of the source code. The lists can be
sorted based on:

• the number of blocks within uncovered functions
• the block coverage in the case of covered functions
• the function names.

The following screen shows the coverage source view of SAMPLE.C.

Compiler Optimizations

107

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage
categories:

• covered code
• uncovered basic blocks
• uncovered functions
• partially covered code
• unknown.

 The default colors that the tool uses for presenting the coverage information are
shown in the tables that follows.

This color Means
Covered code The portion of code colored in this color was exercised by the

tests. The default color can be overridden with the -ccolor
option.

Uncovered basic
block

Basic blocks that are colored in this color were not exercised
by any of the tests.

They were, however, within functions that were executed
during the tests.

The default color can be overridden with the -bcolor option.
Uncovered Functions that are colored in this color were never called

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

108

function during the tests. The default color can be overridden with the -
fcolor option.

Partially covered
code

More than one basic block was generated for the code at this
position.

Some of the blocks were covered while some were not. The
default color can be overridden with the -pcolor option.

Unknown No code was generated for this source line. Most probably, the
source at this position is a comment, a header-file inclusion, or
a variable declaration. The default color can be overridden with
the -ucolor option.

The default colors can be customized to be any valid HTML by using the options
mentioned for each coverage category in the table above.

For code-coverage colored presentation, the coverage tool uses the following
heuristic. Source characters are scanned until reaching a position in the source
that is indicated by the profile information as the beginning of a basic block. If the
profile information for that basic block indicates that a coverage category
changes, then the tool changes the color corresponding to the coverage
condition of that portion of the code, and the coverage tool inserts the
appropriate color change in the HTML files.

Note
You need to interpret the colors in the context of the code. For instance,
comment lines that follow a basic block that was never executed would be
colored in the same color as the uncovered blocks. Another example is the
closing brackets in C/C++ applications.

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel Compilers code-coverage tool is efficient
coverage analysis of an application' s subset of modules. This analysis is
accomplished based on the selected option -comp of the tool's execution.

You can generate the profile information for the whole application, or a subset of
it, and then break the covered modules into different components and use the
coverage tool to obtain the coverage information of each individual component. If
only a subset of the application modules is compiler with the -prof_genx
option, then the coverage information is generated only for those modules that
are involved with this compiler option, thus avoiding the overhead incurred for
profile generation of other modules.

To specify the modules of interest, use the tool's -comp option. This option takes
the name of a file as its argument. That file must be a text file that includes the
name of modules or directories you would like to analyze. Here is an example:

Compiler Optimizations

109

codecov -prj Project_Name -comp component1

Note
Each line of component file should include one, and only one, module
name.

Any module of the application whose full path name has an occurrence of any of
the names in the component file will be selected for coverage analysis. For
example, if a line of file component1 in the above example contains mod1.f90,
then all modules in the application that have such a name will be selected. The
user can specify a particular module by giving more specific path information. For
instance, if the line contains /cmp1/mod1.f90, then only those modules with
the name mod1.c will be selected that are in a directory named cmp1. If no
component file is specified, then all files that have been compiled with -
prof_genx are selected for coverage analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the
application, and as such it is useful for both coverage and performance tuning.

The coverage tool can be configured to generate the information about the
dynamic execution counts. This configuration requires using the -counts option.
The counts information is displayed under the code after a ^ sign precisely under
the source position where the corresponding basic block begins. If more than one
basic block is generated for the code at a source position (for example, for
macros), then the total number of such blocks and the number of the blocks that
were executed are also displayed in front of the execution count.

For example, line 11 in the code is an IF statement:

11 IF ((N .EQ. 1).OR. (N .EQ. 0))
^ 10 (1/2)
12 PRINT N
^ 7

The coverage lines under code lines 11 and 12 contain the following information:

• The IF statement in line 11 was executed 10 times.
• Two basic blocks were generated for the IF statement in line 11.
• Only one of the two blocks was executed, hence the partial coverage

color.
• Only seven out of the ten times variable n had a value of 0 or 1.

In certain situations, it may be desirable to consider all the blocks generated for a
single source position as one entity. In such cases, it is necessary to assume
that all blocks generated for one source position are covered when at least one

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

110

of the blocks is covered. This assumption can be configured with the
-nopartial option. When this option is specified, decision coverage is
disabled, and the related statistics are adjusted accordingly. The code lines 11
and 12 indicate that the PRINT statement in line 12 was covered. However, only
one of the conditions in line 11 was ever true. With the -nopartial option, the
tool treats the partially covered code (like the code on line 11) as covered.

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's
two runs: a reference run and a new run identifying the code that is covered by
the new run but not covered by the reference run. This feature can be used to
find the portion of the application�s code that is not covered by the application�s
tests but is executed when the application is run by a customer. It can also be
used to find the incremental coverage impact of newly added tests to an
application�s test space.

The dynamic profile information of the reference run for differential coverage is
specified by the -ref option. such as in the following command:

codecov -prj Project_Name -dpi customer.dpi -ref
appTests.dpi

The coverage statistics of a differential-coverage run shows the percentage of
the code that was exercised on a new run but was missed in the reference run. In
such cases, the coverage tool shows only the modules that included the code
that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly.
The code that has the same coverage property (covered or not covered) on both
runs is considered as covered code. Otherwise, if the new run indicates that the
code was executed while in the reference run the code was not executed, then
the code is treated as uncovered. On the other hand, if the code is covered in the
reference run but not covered in the new run, the differential-coverage source
view shows the code as covered.

Running for Differential Coverage

To run the Intel Compilers code-coverage tool for differential coverage, the
following files are required:

• The application sources
• The .spi file generated by Intel Compilers when compiling the application

for the instrumented binaries with the -prof_genx option.
• The .dpi file generated by Intel Compilers profmerge utility as the result

of merging the dynamic profile information .dyn files or the .dpi file

Compiler Optimizations

111

generated implicitly by Intel Compilers when compiling the application with
the -prof_use option.

See Usage Model of the Profile-guided Optimizations.

Once the required files are available, the coverage tool may be launched from
this command line:

codecov -prj Project_Name -spi pgopti.spi -dpi pgopti.dpi

The -spi and -dpi options specify the paths to the corresponding files.

The coverage tool also has the following additional options for generating a link
at the bottom of each HTML page to send an electronic message to a named
contact by using -mname and -maddr options.

codecov -prj Project_Name -mname John_Smith -maddr
js@company.com

Test Prioritization Tool

The Intel® Compilers Test-prioritization tool enables the profile-guided
optimizations to select and prioritize application's tests based on prior execution
profiles of the application. The tool offers a potential of significant time saving in
testing and developing large-scale applications where testing is the major
bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool enables the users to select and prioritize the tests that are most relevant
for any subset of the application's code. When certain modules of an application
are changed, the test-prioritization tool suggests the tests that are most probably
affected by the change. The tool analyzes the profile data from previous runs of
the application, discovers the dependency between the application's components
and its tests, and uses this information to guide the process of testing.

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code
coverage. The advantages of the tool usage can be summarized as follows:

• Minimizing the number of tests that are required to achieve a given overall
coverage for any subset of the application: the tool defines the smallest
subset of the application tests that achieve exactly the same code
coverage as the entire set of tests.

• Reducing the turn-around time of testing: instead of spending a long time
on finding a possibly large number of failures, the tool enables the users to
quickly find a small number of tests that expose the defects associated
with the regressions caused by a change set.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

112

• Selecting and prioritizing the tests to achieve certain level of code
coverage in a minimal time based on the data of the tests' execution time.

Command-line Syntax

The syntax for this tool is as follows:

tselect -dpi_list file

where -dpi_list is a required tool option that sets the path to the DPI list file
that contains the list of the .dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description
-help Prints all the options of the test-prioritization

tool.
-spi file Sets the path name of the static profile

information file .spi. The default is
pgopti.spi.

-dpi_list
file

Sets the path name of the file that contains the
name of the dynamic profile information (.dpi)
files. Each line of the file should contain one
.dpi name optionally followed by its execution
time. The name must uniquely identify the test.

-prof_dpi
file

Sets the path name of the output report file.

-comp Sets the filename that contains the list of
files of interest.

-cutoff
value

Terminates when the cumulative block
coverage reaches value% of pre-computed
total coverage. value must be greater than
0.0 (for example, 99.00). It may be set to
100.

-nototal Does not pre-compute the total coverage.
-mintime Minimizes testing execution time. The

execution time of each test must be
provided on the same line of dpi_list file
after the test name in dd:hh:mm:ss format.

-verbose Generates more logging information about
the program progress.

Usage Requirements

Compiler Optimizations

113

To run the test-prioritization tool on an application�s tests, the following files are
required:

• The .spi file generated by Intel Compilers when compiling the application
for the instrumented binaries with the -prof_genx option.

• The .dpi files generated by Intel Compilers profmerge tool as a result
of merging the dynamic profile information .dyn files of each of the
application tests. The user needs to apply the profmerge tool to all .dyn
files that are generated for each individual test and name the resulting
.dpi in a fashion that uniquely identifies the test. The profmerge tool
merges all the .dyn files that exist in the given directory.

Note
It is very important that the user makes sure that unrelated .dyn files,
oftentimes from previous runs or from other tests, are not present in that
directory. Otherwise, profile information will be based on invalid profile data.
This can negatively impact the performance of optimized code as well as
generate misleading coverage information.

• User-generated file containing the list of tests to be prioritized.

For successful tool execution, you should:

• Name each test .dpi file so that the file names uniquely identify
each test.

• Create a DPI list file: a text file that contains the names of all .dpi
test files. The name of this file serves as an input for the test-
prioritization tool execution command. Each line of the DPI list file
should include one, and only one, .dpi file name. The name can
optionally be followed by the duration of the execution time for a
corresponding test in the dd:hh:mm:ss format.

For example: Test1.dpi 00:00:60:35 informs that Test1 lasted 0
days, 0 hours, 60 minutes and 35 seconds.

The execution time is optional. However, if it is not provided, then the tool
will not prioritize the test for minimizing execution time. It will prioritize to
minimize the number of tests only.

Usage Model

The chart that follows presents the test-prioritization tool usage model.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

114

Here are the steps for a simple example (myApp.f90) for IA-32 systems.

1. Set the following:

PROF_DIR=c:/myApp/prof_dir

2. Issue the following command:

ifort -prof_genx myApp.f90

This command compiles the program and generates instrumented binary
myApp as well as the corresponding static profile information
pgopti.spi.

3. Issue the following command:

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

Compiler Optimizations

115

4. Issue the following command:

myApp < data1

Invocation of this command runs the instrumented application and
generates one or more new dynamic profile information files that have an
extension .dyn in the directory specified by PROF_DIR.

5. Issue the following command:

profmerge -prof_dpi Test1.dpi

At this step, the profmerge tool merges all the .dyn files into one file
(Test1.dpi) that represents the total profile information of the application
on Test1.

6. Issue the following command:

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

7. Issue the following command:

myApp < data2

This command runs the instrumented application and generates one or
more new dynamic profile information files that have an extension .dyn in
the directory specified by PROF_DIR.

8. Issue the following command:

profmerge -prof_dpi Test2.dpi

At this step, the profmerge tool merges all the .dyn files into one file
(Test2.dpi) that represents the total profile information of the application
on Test2.

9. Issue the following command:

rm PROF_DIR /*.dyn

Make sure that there are no unrelated .dyn files present.

10. Issue the following command:

myApp < data3

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

116

This command runs the instrumented application and generates one or
more new dynamic profile information files that have an extension .dyn in
the directory specified by PROF_DIR.

11. Issue the following command:

profmerge -prof_dpi Test3.dpi

At this step, the profmerge tool merges all the .dyn files into one file
(Test3.dpi) that represents the total profile information of the application
on Test3.

12. Create a file named tests_list with three lines. The first line contains
Test1.dpi, the second line contains Test2.dpi, and the third line
contains Test3.dpi.

When these items are available, the test-prioritization tool may be
launched from the command line in PROF_DIR directory as described in
the following examples.

Note that in all examples, the discussion references the same set of data.

Example 1 Minimizing the Number of Tests

tselect -dpi_list tests_list -spi pgopti.spi

where the /spi option specifies the path to the .spi file.

Here is a sample output from this run of the test-prioritization tool.

Total number of tests = 3

Total block coverage ~ 52.17

Total function coverage ~ 50.00

Num %RatCvrg %BlkCvrg %FncCvrg Test Name @
Options

1 87.50 45.65 37.50 Test3.dpi
2 100.00 52.17 50.00 Test2.dpi

In this example, the test-prioritization tool has provided the following information:

• By running all three tests, we achieve 52.17% block coverage and 50.00%
function coverage.

Compiler Optimizations

117

• Test3 by itself covers 45.65% of the basic blocks of the application, which
is 87.50% of the total block coverage that can be achieved from all three
tests.

• By adding Test2, we achieve a cumulative block coverage of 52.17% or
100% of the total block coverage of Test1, Test2, and Test3.

• Elimination of Test1 has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in the tests_list
file.

Test1.dpi 00:00:60:35

Test2.dpi 00:00:10:15

Test3.dpi 00:00:30:45

The following command executes the test-prioritization tool to minimize the
execution time with the
-mintime option:

tselect -dpi_list tests_list -spi pgopti.spi -mintime

Here is a sample output.

Total number of tests = 3

Total block coverage ~ 52.17

Total function coverage ~ 50.00

Total execution time = 1:41:35

num

elapsedTime %RatCvrg %BlkCvrg %FncCvrg Test Name
@ Options

1 10:15 75.00 39.13 25.00 Test2.dpi
2 41:00 100.00 52.17 50.00 Test3.dpi

In this case, the results indicate that the running all tests sequentially would
require one hour, 45 minutes, and 35 seconds, while the selected tests would
achieve the same total block coverage in only 41 minutes.

Note
The order of tests when prioritization is based on minimizing time (first
Test2, then Test3) could be different than when prioritization is done based
on minimizing the number of tests. See example above: first Test3, then

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

118

Test2. In Example 2, Test2 is the test that gives the highest coverage per
execution time. So, it is picked as the first test to run.

Using Other Options

The -cutoff option enables the test-prioritization tool to exit when it reaches a
given level of basic block coverage.

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the above example, only Test3
will be selected, as it achieves 45.65% block coverage, which corresponds to
87.50% of the total block coverage that is reached from all three tests.

The test-prioritization tool does an initial merging of all the profile information to
figure out the total coverage that is obtained by running all the tests. The -
nototal option. enables you to skip this step. In such a case, only the absolute
coverage information will be reported, as the overall coverage remains unknown.

PGO API: Profile Information Generation Support

PGO API Support Overview

The Profile Information Generation Support (Profile IGS) enables you to control
the generation of profile information during the instrumented execution phase of
profile-guided optimizations.

Normally, profile information is generated by an instrumented application when it
terminates by calling the standard exit() function.

To ensure that profile information is generated, the functions described in this
section may be necessary or useful in the following situations:

• The instrumented application exits using a non-standard exit routine.
• The instrumented application is a non-terminating application: exit() is

never called.
• The application requires control of when the profile information is

generated.

A set of functions and an environment variable comprise the Profile IGS.

The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header
file at the top of any source file where the functions may be used.

#include "pgouser.h"

Compiler Optimizations

119

Note
The Profile IGS functions are written in C language. Fortran applications
need to call C functions.

The rest of the topics in this section describe the Profile IGS functions.

Note
Without instrumentation, the Profile IGS functions cannot provide PGO API
support.

The Profile IGS Environment Variable

The environment variable for Profile IGS is PROF_DUMP_INTERVAL. This
environment variable may be used to initiate Interval Profile Dumping in an
instrumented user application. For more information, see the recommended
usage of _PGOPTI_Set_Interval_Prof_Dump().

Dumping Profile Information

The _PGOPTI_Prof_Dump() function dumps the profile information collected by
the instrumented application and has the following prototype:

void _PGOPTI_Prof_Dump(void);

The profile information is generated in a .dyn file (generated in phase 2 of the
PGO).

Recommended usage

Insert a single call to this function in the body of the function which terminates the
user application. Normally, _PGOPTI_Prof_Dump() should be called just once.

It is also possible to use this function in conjunction with the
_PGOPTI_Prof_Reset() function to generate multiple .dyn files (presumably
from multiple sets of input data).

Example:

! selectively collect profile information
! for the portion of the application
! involved in processing input data

input_data = get_input_data()
do while (input_data)
call _PGOPTI_Prof_Reset()
call process_data(input_data)
call _PGOPTI_Prof_Dump();

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

120

input_data = get_input_data();
end do

Resetting the Dynamic Profile Counters

The _PGOPTI_Prof_Reset() function resets the dynamic profile counters and
has the following prototype:

void _PGOPTI_Prof_Reset(void);

Recommended usage

Use this function to clear the profile counters prior to collecting profile information
on a section of the instrumented application. See the example under
_PGOPTI_Prof_Dump().

Dumping and Resetting Profile Information

The _PGOPTI_Prof_Dump_And_Reset() function dumps the profile
information to a new .dyn file and then resets the dynamic profile counters.
Then the execution of the instrumented application continues. The prototype of
this function is:

void _PGOPTI_Prof_Dump_And_Reset(void);

This function is used in non-terminating applications and may be called more
than once.

Recommended usage

Periodic calls to this function enables a non-terminating application to generate
one or more profile information files (.dyn files). These files are merged during
the feedback phase (phase 3) of profile-guided optimizations. The direct use of
this function enables your application to control precisely when the profile
information is generated.

Interval Profile Dumping

The _PGOPTI_Set_Interval_Prof_Dump() function activates Interval Profile
Dumping and sets the approximate frequency at which dumps occur. The
prototype of the function call is:

void _PGOPTI_Set_Interval_Prof_Dump(int interval);

This function is used in non-terminating applications.

Compiler Optimizations

121

The interval parameter specifies the time interval at which profile dumping
occurs and is measured in milliseconds. For example, if interval is set to 5000,
then a profile dump and reset will occur approximately every 5 seconds. The
interval is approximate because the time-check controlling the dump and reset is
only performed upon entry to any instrumented function in your application.

Note

1. Setting interval to zero or a negative number will disable interval
profile dumping.

2. Setting a very small value for interval may cause the instrumented
application to spend nearly all of its time dumping profile information.
Be sure to set interval to a large enough value so that the application
can perform actual work and substantial profile information is
collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to
initiate Interval Profile Dumping. Note that an alternative method of initiating
Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_INTERVAL, to the desired interval value prior to starting the
application.

The intention of Interval Profile Dumping is to allow a non-terminating application
to be profiled with minimal changes to the application source code.

High-level Language Optimizations (HLO)
HLO Overview

High-level optimizations exploit the properties of source code constructs (for
example, loops and arrays) in the applications developed in high-level
programming languages, such as Fortran and C++. The high-level optimizations
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-
jam, blocking, data prefetch, scalar replacement, data layout optimizations and
loop unrolling techniques.

The option that turns on the high-level optimizations is -O3. The scope of
optimizations turned on by -O3 is different for IA-32 and Itanium®-based
applications. See Setting Optimization Levels.

IA-32 and Itanium®-based Applications

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

122

The -O3 option enables the -O2 option and adds more aggressive optimizations;
for example, loop transformation and prefetching. -O3 optimizes for maximum
speed, but may not improve performance for some programs.

IA-32 Applications

In conjunction with the vectorization options, -ax{K|W|N|B|P} and -
x{K|W|N|B|P}, the -O3 option causes the compiler to perform more aggressive
data dependency analysis than for default -O2. This may result in longer
compilation times.

Itanium-based Applications

The -ivdep_parallel option asserts there is no loop-carried dependency in
the loop where IVDEP directive is specified. This is useful for sparse matrix
applications.

Key Techniques to Tune Your Itanium-based Applications

Follow these steps to tune applications on Itanium-based systems:

1. Compile your program with -O3 and -ipo. Use profile guided
optimization whenever possible.

2. Identify hot spots in your code.
3. Turn on Optimization reporting.
4. Check why loops are not software pipelined.

o Use CDEC$ ivdep to tell the compiler there is no dependency.
 You may also need the option -ivdep_parallel to indicate
 there is no loop carried dependency.

o Use CDEC$ swp to enable software pipelining (useful for lop-sided
control and unknown loop count).

o Use CDEC$ loop count(n) when needed.
o If cray pointers are used, use -safe_cray_ptr to indicate there is

no aliasing.
o Use CDEC$ distribute point to split large loops (normally,

this is automatically done).

5. Check that the prefetch distance is correct. Use CDEC$ prefetch to
override the distance when it is needed.

Loop Transformations

The loop transformation techniques include:

• loop normalization

Compiler Optimizations

123

• loop reversal
• loop interchange and permutation
• loop distribution
• loop fusion
• scalar replacement
• absence of loop-carried memory dependency with the IVDEP directive
• runtime data dependencies checking (Itanium®-based systems only)

The loop transformations listed above are supported by data dependence. The
loop transformation techniques also include:

• induction variable elimination
• constant propagation
• copy propagation
• forward substitution
• and dead code elimination.

In addition to the loop transformations listed for both IA-32 and Itanium®
architectures above, the Itanium architecture enables implementation of the
collapsing techniques.

Scalar Replacement (IA-32 Only)

The goal of scalar replacement is to reduce memory references. This is done
mainly by replacing array references with register references.

While the compiler replaces some array references with register references when
-O1 or -O2 is specified, more aggressive replacement is performed when -O3 (-
scalar_rep) is specified. For example, with -O3 the compiler attempts
replacement when there are loop-carried dependences or when data-
dependence analysis is required for memory disambiguation.

-scalar_rep[-] Enables (default) or disables scalar
replacement performed during loop
transformations (requires -O3).

Loop Unrolling with -unroll[n]

The -unroll[n] option is used in the following way:

• -unrolln specifies the maximum number of times you want to unroll a
loop. The following example unrolls a loop at most four times:

ifort -unroll4 a.f

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

124

To disable loop unrolling, specify n as 0. On IA-32 systems, specifying 0
also disables the vectorizer's unroller, except for the unrolling required to
resolve cache line splits penalties. The following example disables loop
unrolling:

ifort -unroll0 a.f

• -unroll (n omitted) lets the compiler decide whether to perform unrolling
or not. This is the default; the compiler uses default heuristics or defines n.

• -unroll0 (n = 0) disables the unroller.

The Itanium® compiler currently uses only n = 0; any other value is NOP.

Benefits and Limitations of Loop Unrolling

The benefits are:

• Unrolling eliminates branches and some of the code.
• Unrolling enables you to aggressively schedule (or pipeline) the loop to

hide latencies if you have enough free registers to keep variables live.
• The Intel® Pentium® 4 or Intel® Xeon(TM) processors can correctly

predict the exit branch for an inner loop that has 16 or fewer iterations, if
that number of iterations is predictable and there are no conditional
branches in the loop. Therefore, if the loop body size is not excessive, and
the probable number of iterations is known, unroll inner loops for:
- Pentium 4 or Intel Xeon processor, until they have a maximum of 16
iterations
- Pentium III or Pentium II processors, until they have a maximum of 4
iterations

The potential cost: excessive unrolling, or unrolling of very large loops can lead
to increased code size.

For more information on how to optimize with -unroll[n], refer to the Intel®
Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference Manual.

Memory Dependency with IVDEP Directive

For Itanium®-based applications, the -ivdep_parallel option indicates there
is absolutely no loop-carried memory dependency in the loop where IVDEP
directive is specified. This technique is useful for some sparse matrix
applications.

For example, the following loop requires -ivdep_parallel in addition to the
directive IVDEP to ensure there is no loop-carried dependency for the store into
a().

Compiler Optimizations

125

!DIR$ IVDEP
do j=1,n
a(b(j)) = a(b(j))+1
enddo

See also Vectorization Support.

Prefetching

The goal of -prefetch insertion is to reduce cache misses by providing hints to
the processor about when data should be loaded into the cache. The prefetching
optimizations implement the following options:

-prefetch[-] Enables or disables (-prefetch-)
prefetch insertion. This option
requires that -O3 be specified. The
default with -O3 is -prefetch.

To facilitate compiler optimization:

• Minimize use of global variables and pointers.
• Minimize use of complex control flow.
• Choose data types carefully and avoid type casting.

 For more information on how to optimize with -prefetch[-], refer to the
Intel® Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference
Manual.

In addition to the -prefetch option, an intrinsic subroutine, MM_PREFETCH
and compiler directive PREFETCH are also available. The subroutine
MM_PREFETCH prefetches data from the specified address on one memory
cache line. The compiler directive PREFETCH enables a data prefetch from
memory.

The following example is for Itanium®-based systems only:

do j=1,lastrow-firstrow+1
 i = rowstr(j)
 iresidue = mod(rowstr(j+1)-i, 8)
 sum = 0.d0
CDEC$ NOPREFETCH a,p,colidx
do k=i,i+iresidue-1
 sum = sum + a(k)*p(colidx(k))
enddo
CDEC$ NOPREFETCH colidx
CDEC$ PREFETCH a:1:40
CDEC$ PREFETCH p:1:20
 do k=i+iresidue, rowstr(j+1)-8, 8

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

126

 sum = sum + a(k)*p(colidx(k))
& + a(k+1)*p(colidx(k+1)) + a(k+2)*p(colidx(k+2))
& + a(k+3)*p(colidx(k+3)) + a(k+4)*p(colidx(k+4))
& + a(k+5)*p(colidx(k+5)) + a(k+6)*p(colidx(k+6))
& + a(k+7)*p(colidx(k+7))
 enddo
 q(j) = sum
enddo

For details, refer to the Intel® Fortran Language Reference.

127

Parallel Programming with Intel®
Fortran
Parallelism: an Overview
This section discusses the three major features of parallel programming
supported by the Intel® Fortran compiler: OpenMP*, Auto-parallelization, and
Auto-vectorization. Each of these features contributes to the application
performance depending on the number of processors, target architecture (IA-32
or Itanium® architecture), and the nature of the application. The three features
OpenMP, Auto-parallelization and Auto-vectorization, can be combined arbitrarily
to contribute to the application performance.

Parallel programming can be explicit, that is, defined by a programmer using
OpenMP directives. Parallel programming can be implicit, that is, detected
automatically by the compiler. Implicit parallelism is exploited by either Auto-
parallelization of outer-most loops or Auto-vectorization of innermost loops (or
both).

Parallelism defined with OpenMP and Auto-parallelization directives is based on
thread-level parallelism (TLP). Parallelism defined with Auto-vectorization
techniques is based on instruction-level parallelism (ILP).

The Intel Fortran compiler supports OpenMP and Auto-parallelization on both IA-
32 and Itanium architectures for multiprocessor systems as well as on single IA-
32 processors with Hyper-Threading Technology (for Hyper-Threading
Technology, refer to the IA-32 Intel® Architecture Optimization Reference
Manual). Auto-vectorization is supported on the families of the Pentium®,
Pentium with MMX(TM) technology, Pentium II, Pentium III, and Pentium 4
processors. To enhance the compilation of the code with Auto-vectorization, the
users can also add vectorizer directives to their program. A closely related
technique that is available on the Itanium-based systems is software pipelining
(SWP).

The table below summarizes the different ways in which parallelism can be
exploited with the Intel Fortran compiler.

Parallelism
Explicit Implicit
Parallelism programmed
by the user

Parallelism generated by the compiler and by user-
supplied hints

OpenMP*(TLP) Auto-parallelization
(TLP)

Auto-vectorization
(ILP)

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

128

IA-32 and Itanium
architectures

of outer-most loops

IA-32 and Itanium
architectures

of inner-most loops

IA-32 only

Software pipelining for
Itanium architecture

Supported on: Supported on:
IA-32 or Itanium-based Multiprocessor systems;

IA-32 Hyper-Threading Technology-enabled systems.

Pentium®, Pentium
with MMX�
Technology, Pentium II,
Pentium III, and
Pentium 4 processors

Parallel Program Development

The Intel Fortran Compiler supports the OpenMP Fortran version 2.0 API
specification available from the www.openmp.org web site. The OpenMP
directives relieve the user from having to deal with the low-level details of
iteration space partitioning, data sharing, and thread scheduling and
synchronization.

The Auto-parallelization feature of the Intel Fortran Compiler automatically
translates serial portions of the input program into semantically equivalent
multithreaded code. Automatic parallelization determines the loops that are good
worksharing candidates, performs the dataflow analysis to verify correct parallel
execution, and partitions the data for threaded code generation as is needed in
programming with OpenMP directives. The OpenMP and Auto-parallelization
applications provide the performance gains from shared memory on
multiprocessor systems and IA-32 processors with the Hyper-Threading
Technology.

Auto-vectorization detects low-level operations in the program that can be done
in parallel, and then converts the sequential program to process 2, 4, 8 or up to
16 elements in one operation, depending on the data type. In some cases auto-
parallelization and vectorization can be combined for better performance results.
For example, in the code below, TLP can be exploited in the outermost loop,
while ILP can be exploited in the innermost loop.

DO I = 1, 100 ! execute groups of iterations in
different
! threads (TLP)
DO J = 1, 32 ! execute in SIMD style with
multimedia
! extension (ILP)
A(J,I) = A(J,I) + 1
ENDDO
ENDDO

Parallel Programming with Intel® Fortran

129

Auto-vectorization can help improve performance of an application that runs on
the systems based on Pentium®, Pentium with MMX(TM) technology, Pentium
II, Pentium III, and Pentium 4 processors.

The following table lists the options that enable Auto-vectorization, Auto-
parallelization, and OpenMP support.

Auto-vectorization, IA-32 only
-x{K|W|N|B|P} Generates specialized code to run

exclusively on processors with the
extensions specified by {K|W|N|B|P}.

-ax{K|W|N|B|P} Generates, in a single binary, code
specialized to the extensions specified by
{K|W|N|B|P} and also generic IA-32
code. The generic code is usually slower.

-vec_report{0|1|2|3|4|5} Controls the diagnostic messages from the
vectorizer, see subsection that follows the
table.

Auto-parallelization, IA-32 and Itanium architectures
-parallel Enables the auto-parallelizer to generate

multithreaded code for loops that can be
safely executed in parallel. Default: OFF.

-par_threshold{n} Sets a threshold for the auto-parallelization
of loops based on the probability of
profitable execution of the loop in parallel,
n=0 to 100. n=0 implies "always." Default:
n=100.

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic
levels.
Default: -par_report1.

OpenMP, IA-32 and Itanium architectures
-openmp Enables the parallelizer to generate

multithreaded code based on the OpenMP
directives. Default: OFF.

-openmp_report{0|1|2} Controls the OpenMP parallelizer's
diagnostic levels. Default:
/Qopenmp_report1.

-openmp_stubs Enables compilation of OpenMP programs
in sequential mode. The OpenMP directives
are ignored and a stub OpenMP library is
linked. Default: OFF.

Note
When both -openmp and -parallel are specified on the command line,
 the -parallel option is only honored in routines that do not contain

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

130

OpenMP Directives. For routines that contain OpenMP directives, only the
-openmp option is honored.

With the right choice of options, the programmers can:

• Increase the performance of your application with minimum effort
• Use compiler features to develop multithreaded programs faster

With a relatively small effort of adding the OpenMP directives to their code, the
programmers can transform a sequential program into a parallel program. The
following are examples of the OpenMP directives within the code:

!OMP$ PARALLEL PRIVATE(NUM), SHARED (X,A,B,C)
!Defines a parallel region
!OMP$ PARALLEL DO ! Specifies a parallel region that
! implicitly contains a single DO directive
DO I = 1, 1000
NUM = FOO(B(i), C(I))
X(I) = BAR(A(I), NUM)
! Assume FOO and BAR have no side effects
ENDDO

See examples of the Auto-parallelization and Auto-vectorization directives in the
respective sections.

Auto-vectorization (IA-32 Only)
Vectorization Overview

The vectorizer is a component of the Intel® Fortran Compiler that automatically
uses SIMD instructions in the MMX(TM), SSE, SSE2 and SSE3 instruction sets.
The vectorizer detects operations in the program that can be done in parallel,
and then converts the sequential operations like one SIMD instruction that
processes 2, 4, 8 or up to 16 elements in parallel, depending on the data type.

This section provides options description, guidelines, and examples for Intel
Fortran Compiler vectorization implemented by IA-32 compiler only. For
additional information, see Publications on Compiler Optimizations.

The following list summarizes this section contents.

• Descriptions of compiler options to control vectorization
• Vectorization Key programming guidelines
• Discussion and general guidelines on vectorization levels:

o Automatic vectorization
o Vectorization with user intervention

• Examples demonstrating typical vectorization issues and resolutions

Parallel Programming with Intel® Fortran

131

The Intel Fortran compiler supports a variety of directives that can help the
compiler to generate effective vector instructions. See compiler directives
supporting vectorization.

Vectorizer Options

Vectorization is an IA-32-specific feature and can be summarized by the
command line options described in the following tables. Vectorization depends
upon the compiler's ability to disambiguate memory references. Certain options
may enable the compiler to do better vectorization. These options can enable
other optimizations in addition to vectorization. When an -x{K|W|N|B|P} or -
ax{K|W|N|B|P} is used and -O2 (which is ON by default) is also in effect, the
vectorizer is enabled. The -x{K|W|N|B|P} or -ax{K|W|N|B|P} options
enable vectorizer with -O1 and -O3 options also.

-x{K|W|N|B|P} Generates specialized code to run
exclusively on the processors
supporting the extensions indicated by
{K|W|N|B|P}. See Processor-specific
Optimization (IA-32 only) for details.

-ax{K|W|N|B|P} Generates, in a single binary, code
specialized to the extensions specified
by {K|W|N|B|P} and also generic IA-
32 code. The generic code is usually
slower. See Automatic Processor-
specific Optimization (IA-32 only) for
details.

-vec_report
{0|1|2|3|4|5}
Default:
-vec_report1

Controls the diagnostic messages from
the vectorizer, see the subsection that
follows the table.

Vectorization Reports

The -vec_report{0|1|2|3|4|5} options directs the compiler to generate the
vectorization reports with different level of information as follows:

-vec_report0: no diagnostic information is displayed

-vec_report1: display diagnostics indicating loops successfully vectorized
(default)

-vec_report2: same as -vec_report1, plus diagnostics indicating loops not
successfully vectorized

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

132

-vec_report3: same as -vec_report2, plus additional information about any
proven or assumed dependences
-vec_report4: indicate non-vectorized loops
-vec_report5: indicate non-vectorized loops and the reason why they were not
vectorized.

If you specify -vec_report without a number, the default of -vec_report1 is
used.

Usage with Other Options

The vectorization reports are generated in the final compilation phase when
executable is generated. Therefore if you use the -c option and a -
vec_report{n} option in the command line, no report will be generated.

If you use -c, -ipo and -x{K|W|N|B|P} or -ax{K|W|N|B|P} and -
vec_report{n}, the compiler issues a warning and no report is generated.

To produce a report when using the above mentioned options, you need to add
the -ipo_obj option. The combination of -c and -ipo_obj produces a single
file compilation, and hence does generate object code, and eventually a report is
generated.

The following commands generate vectorization report:

ifort -x{K|W|N|B|P} -vec_report3 file.f

ifort -x{K|W|N|B|P} -ipo -ipo_obj -vec_report3 file.f

ifort -c -x{K|W|N|B|P} -ipo -ipo_obj -vec_report3 file.f

Loop Parallelization and Vectorization

Combining the -parallel and -x{K|W|N|B|P} options instructs the compiler
to attempt both automatic loop parallelization and automatic loop vectorization in
the same compilation. In most cases, the compiler will consider outermost loops
for parallelization and innermost loops for vectorization. If deemed profitable,
however, the compiler may even apply loop parallelization and vectorization to
the same loop. See Guidelines for Effective Auto-parallelization Usage and
Vectorization Key Programming Guidelines.

Note that in some rare cases successful loop parallelization (either automatically
or by means of OpenMP* directives) may affect the messages reported by the
compiler for a non-vectorizable loop in a non-intuitive way.

Parallel Programming with Intel® Fortran

133

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data
(SIMD) processing automatically. Users can help however by supplying the
compiler with additional information; for example, directives. Review these
guidelines and restrictions, see code examples in further topics, and check them
against your code to eliminate ambiguities that prevent the compiler from
achieving optimal vectorization.

You will often need to make some changes to your loops. Guidelines for loop
bodies follow.

Use:

• Straight-line code (a single basic block)
• Vector data only; that is, arrays and invariant expressions on the right

hand side of assignments. Array references can appear on the left hand
side of assignments.

• Only assignment statements

Avoid:

• Function calls
• Unvectorizable operations (other than mathematical)
• Mixing vectorizable types in the same loop
• Data-dependent loop exit conditions
• Loop unrolling (compiler does it)
• Decomposing one loop with several statements in the body into several

single-statement loops.

There are a number of restrictions that you should be aware of. Vectorization
depends on the two major factors:

• Hardware: The compiler is limited by restrictions imposed by the
underlying hardware. In the case of Streaming SIMD Extensions, the
vector memory operations are limited to stride-1 accesses with a
preference to 16-byte-aligned memory references. This means that if the
compiler abstractly recognizes a loop as vectorizable, it still might not
vectorize it for a distinct target architecture.

• Style: The style in which you write source code can inhibit optimization.
For example, a common problem with global pointers is that they often
prevent the compiler from being able to prove that two memory references
refer to distinct locations. Consequently, this prevents certain reordering
transformations.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

134

Many stylistic issues that prevent automatic vectorization by compilers are found
in loop structures. The ambiguity arises from the complexity of the keywords,
operators, data references, and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret
diagnostic messages, you can modify your program to overcome the known
limitations and enable effective vectorization. The following sections summarize
the capabilities and restrictions of the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the
operations in serial loops. Because vectorization rearranges the order in which
operations are executed, any auto-vectorizer must have at its disposal some
form of data dependence analysis.

An example where data dependencies prohibit vectorization is shown below. In
this example, the value of each element of an array is dependent on the value of
its neighbor that was computed in the previous iteration.

Example of Data-dependent Loop:

REAL DATA(0:N)
INTEGER I
DO I=1, N-1
DATA(I) =DATA(I-1)*0.25+DATA(I)*0.5+DATA(I+1)*0.25
END DO

The loop in the above example is not vectorizable because the WRITE to the
current element DATA(I) is dependent on the use of the preceding element
DATA(I-1), which has already been written to and changed in the previous
iteration. To see this, look at the access patterns of the array for the first two
iterations as shown below.

Example of Data Dependence Vectorization Patterns:

I=1: READ DATA (0)
READ DATA (1)
READ DATA (2)
WRITE DATA (1)
I=2: READ DATA(1)
READ DATA (2)
READ DATA (3)
WRITE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from
during the second iteration was written to in the first iteration. For vectorization, it

Parallel Programming with Intel® Fortran

135

must be possible to do the iterations in parallel, without changing the semantics
of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two
memory accesses may overlap. Given two references in a program, the
conditions are defined by:

• Whether the referenced variables may be aliases for the same (or
overlapping) regions in memory, and, for array references

• The relationship between the subscripts

For IA-32, data dependence analyzer for array references is organized as a
series of tests, which progressively increase in power as well as in time and
space costs. First, a number of simple tests are performed in a dimension-by-
dimension manner, since independence in any dimension will exclude any
dependence relationship. Multidimensional arrays references that may cross their
declared dimension boundaries can be converted to their linearized form before
the tests are applied.

Some of the simple tests that can be used are the fast greatest common divisor
(GCD) test and the extended bounds test. The GCD test proves independence if
the GCD of the coefficients of loop indices cannot evenly divide the constant
term. The extended bounds test checks for potential overlap of the extreme
values in subscript expressions. If all simple tests fail to prove independence, we
eventually resort to a powerful hierarchical dependence solver that uses Fourier-
Motzkin elimination to solve the data dependence problem in all dimensions.

Loop Constructs

Loops can be formed with the usual DO - END DO and DO WHILE, or by using
IF/GOTO statements and a label. However, the loops must have a single entry
and a single exit to be vectorized. Following are the examples of correct and
incorrect usages of loop constructs.

Example of Correct Usage:

SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100), C(100)
INTEGER I
I = 1
DO WHILE (I .LE. 100)
A(I) = B(I) * C(I)
IF (A(I) .LT. 0.0) A(I) = 0.0
I = I + 1
ENDDO

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

136

RETURN
END

Example of Incorrect Usage:

SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100), C(100)
INTEGER I
I = 1
DO WHILE (I .LE. 100)
A(I) = B(I) * C(I)
C The next statement allows early
C exit from the loop and prevents
C vectorization of the loop.
IF (A(I) .LT. 0.0) GOTO 10
I = I + 1
ENDDO
10 CONTINUE
RETURN
END

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For
example, fixed indexes for loops determine the iterations. The loop iterations
must be countable; that is, the number of iterations must be expressed as one of
the following:

• A constant
• A loop invariant term
• A linear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below
show countable and non-countable loop constructs.

Correct Usage for Countable Loop, Example 1:

SUBROUTINE FOO (A, B, C, N, LB)
DIMENSION A(N),B(N),C(N)
INTEGER N, LB, I, COUNT
! Number of iterations is "N - LB + 1"
COUNT = N
DO WHILE (COUNT .GE. LB)
A(I) = B(I) * C(I)
COUNT = COUNT - 1
I = I + 1
ENDDO ! LB is not defined within loop
RETURN
END

Parallel Programming with Intel® Fortran

137

Correct Usage for Countable Loop, Example 2:

! Number of iterations is (N-M+2) /2
SUBROUTINE FOO (A, B, C, M, N, LB)
DIMENSION A(N),B(N),C(N)
INTEGER I, L, M, N
I = 1;
DO L = M,N,2
A(I) = B(I) * C(I)
I = I + 1
ENDDO
RETURN
END

Example of Incorrect Usage for Non-Countable Loop:

! Number of iterations is dependent on A(I)
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100),C(100)
INTEGER I
I = 1
DO WHILE (A(I) .GT. 0.0)
A(I) = B(I) * C(I)
I = I + 1
ENDDO
RETURN
END

Types of Loop Vectorized

For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD
Extensions 2 (SSE2) provide SIMD instructions for most arithmetic and logical
operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved.
A 32-bit shift-right operator, for instance, is not vectorized in 16-bit mode if the
final stored value is a 16-bit integer. Because the MMX(TM) and SSE2 instruction
sets are not fully orthogonal (shifts on byte operands, for instance, are not
supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision
floating-point numbers, SSE/SSE2 provides SIMD instructions for the arithmetic
operators '+', '-', '*', and '/'. In addition, SSE/SSE2 provides SIMD instructions for
the binary MIN and MAX and unary SQRT operators. SIMD versions of several
other mathematical operators (like the trigonometric functions SIN, COS, TAN)
are supported in software in a vector mathematical run-time library that is
provided with the Intel® Fortran Compiler, of which the compiler takes
advantage.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

138

Strip-mining and Cleanup

Strip-mining, also known as loop sectioning, is a loop transformation technique
for enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. By fragmenting a large loop into smaller segments or
strips, this technique transforms the loop structure in two ways:

• It increases the temporal and spatial locality in the data cache if the data
are reusable in different passes of an algorithm.

• It reduces the number of iterations of the loop by a factor of the length of
each "vector," or number of operations being performed per SIMD
operation. In the case of Streaming SIMD Extensions, this vector or strip-
length is reduced by 4 times: four floating-point data items per single
Streaming SIMD Extensions single-precision floating-point SIMD operation
are processed.

First introduced for vectorizers, this technique consists of the generation of code
when each vector operation is done for a size less than or equal to the maximum
vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Example of Strip Mining and Cleaning Up Loops:

! Before Vectorization

i = 1
do while (i<=n)
a(i) = b(i) + c(i) ! Original loop code
i = i + 1
end do

! After Vectorization

!The vectorizer generates the following two loops
i = 1
do while (i < (n - mod(n,4)))
! Vector strip-mined loop.
a(i:i+3) = b(i:i+3) + c(i:i+3)
i = i + 4
end do
do while (i <= n)
a(i) = b(i) + c(i) !Scalar clean-up loop
i = i + 1
end do

Loop Blocking

Parallel Programming with Intel® Fortran

139

It is possible to treat loop blocking as strip-mining in two or more dimensions.
Loop blocking is a useful technique for memory performance optimization. The
main purpose of loop blocking is to eliminate as many cache misses as possible.
This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be
small enough to fit all the data for a given computation into the cache, thereby
maximizing data reuse.

Consider the following example. The two-dimensional array A is referenced in the
j (column) direction and then in the i (row) direction (column-major order); array
B is referenced in the opposite manner (row-major order). Assume the memory
layout is in column-major order; therefore, the access strides of array A and B for
the code would be 1 and MAX, respectively.

In the B. example: BS = block_size; MAX must be evenly divisible by BS.

Example of Loop Blocking of Arrays:

A. Original loop
REAL A(MAX,MAX), B(MAX,MAX)
DO I =1, MAX
 DO J = 1, MAX
 A(I,J) = A(I,J) + B(J,I)
 ENDDO
ENDDO

B.Transformed Loop after blocking

REAL A(MAX,MAX), B(MAX,MAX)
DO I =1, MAX, BS
 DO J = 1, MAX, BS
 DO II = I, I+MAX, BS-1
 DO J = J, J+MAX, BS-1
 A(II,JJ) = A(II,JJ) + B(JJ,II)
 ENDDO
 ENDDO
 ENDDO
ENDDO

Statements in the Loop Body

The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on
arrays). Arithmetic operations supported are addition, subtraction, multiplication,

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

140

division, negation, square root, MAX, MIN, and mathematical functions such as
SIN and COS. Note that conversion to/from some types of floats is not valid.
Operation on DOUBLE PRECISION types is not valid, unless optimizing for an
Intel® Pentium® 4 and Intel® Xeon(TM) processors' system, and Intel®
Pentium® M processor, using the -xW or -axW compiler option.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations
(again, typically for arrays). Arithmetic operations are limited to such operations
as addition, subtraction, ABS, MIN, and MAX. Logical operations include bitwise
AND, OR and XOR operators. You can mix data types only if the conversion can be
done without a loss of precision. Some example operators where you can mix
data types are multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are
permitted. The loop body cannot contain any function calls other than the ones
described above.

Vectorization Examples

This section contains simple examples of some common issues in vector
programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because
the compiler cannot prove that DEST(A(I)) and DEST(B(I)) are distinct.

Example of Unvectorizable Copy Due to Unproven Distinction:

SUBROUTINE VEC_COPY(DEST,A,B,LEN)
DIMENSION DEST(*)
INTEGER A(*), B(*)
INTEGER LEN, I
DO I=1,LEN
DEST(A(I)) = DEST(B(I))
END DO
RETURN
END

Data Alignment

Parallel Programming with Intel® Fortran

141

A 16-byte or greater data structure or array should be aligned so that the
beginning of each structure or array element is aligned in a way that its base
address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a
data cache unit (DCU) split due to misaligned data. The code loads the
misaligned data across a 16-byte boundary, which results in an additional
memory access causing a six- to twelve-cycle stall. You can avoid the stalls if
you know that the data is aligned and you specify to assume alignment

Misaligned Data Crossing 16-Byte
Boundary

After vectorization, the loop is executed as shown in figure below.

Vector and Scalar Clean-up Iterations

Both the vector iterations A(1:4) = B(1:4); and A(5:8) = B(5:8); can be
implemented with aligned moves if both the elements A(1) and B(1) are 16-
byte aligned.

Caution
If you specify the vectorizer with incorrect alignment options, the compiler
will generate code with unexpected behavior. Specifically, using aligned
moves on unaligned data, will result in an illegal instruction exception!

Alignment Strategy

The compiler has at its disposal several alignment strategies in case the
alignment of data structures is not known at compile-time. A simple example is
shown below (several other strategies are supported as well). If in the loop
shown below the alignment of A is unknown, the compiler will generate a prelude
loop that iterates until the array reference, that occurs the most, hits an aligned
address. This makes the alignment properties of A known, and the vector loop is
optimized accordingly. In this case, the vectorizer applies dynamic loop peeling,
a specific Intel® Fortran feature.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

142

Example of Data Alignment:

Original loop:

SUBROUTINE DOIT(A)
REAL A(100) ! alignment of argument A is unknown
DO I = 1, 100
A(I) = A(I) + 1.0
ENDDO
END SUBROUTINE

Aligning Data:

! The vectorizer will apply dynamic loop peeling as follows:
SUBROUTINE DOIT(A)
REAL A(100)
! let P be (A%16)where A is address of A(1)
IF (P .NE. 0) THEN
P = (16 - P) /4 ! determine run-time peeling
 ! factor
DO I = 1, P
A(I) = A(I) + 1.0
ENDDO
ENDIF
! Now this loop starts at a 16-byte boundary,
! and will be vectorized accordingly
DO I = P + 1, 100
A(I) = A(I) + 1.0
ENDDO
END SUBROUTINE

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example.

DO I=1, N
 DO J=1, N
 DO K=1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)
 END DO
 END DO
END DO

The use of B(K,J), is not a stride-1 reference and therefore will not normally
be vectorizable. If the loops are interchanged, however, all the references will
become stride-1 as in the Matrix Multiplication with Stride-1 example that
follows.

Parallel Programming with Intel® Fortran

143

Note
Interchanging is not always possible because of dependencies, which can
lead to different results.

Example of Matrix Multiplication with Stride-1:

DO J=1,N
 DO K=1,N
 DO I=1,N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)
 ENDDO
 ENDDO
ENDDO

For additional information, see publications on Compiler Optimizations.

Auto-parallelization
Auto-parallelization Overview

The auto-parallelization feature of the Intel® Fortran Compiler automatically
translates serial portions of the input program into equivalent multithreaded code.
The auto-parallelizer analyzes the dataflow of the program�s loops and generates
multithreaded code for those loops which can be safely and efficiently executed
in parallel. This enables the potential exploitation of the parallel architecture
found in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

• Having to deal with the details of finding loops that are good worksharing
candidates

• Performing the dataflow analysis to verify correct parallel execution
• Partitioning the data for threaded code generation as is needed in

programming with OpenMP* directives.

The parallel run-time support provides the same run-time features as found in
OpenMP, such as handling the details of loop iteration modification, thread
scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel
applications quickly, the programmer must explicitly identify specific portions of
the application code that contain parallelism and add the appropriate compiler
directives. Auto-parallelization triggered by the -parallel option automatically
identifies those loop structures, which contain parallelism. During compilation, the
compiler automatically attempts to decompose the code sequences into separate
threads for parallel processing. No other effort by the programmer is needed.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

144

The following example illustrates how a loop�s iteration space can be divided so
that it can be executed concurrently on two threads:

Original Serial Code
do i=1,100
a(i) = a(i) + b(i) * c(i)
enddo

Transformed Parallel Code
Thread 1
do i=1,50
a(i) = a(i) + b(i) * c(i)
enddo
Thread 2
do i=51,100
a(i) = a(i) + b(i) * c(i)
enddo

Programming with Auto-parallelization

Auto-parallelization feature implements some concepts of OpenMP, such as
worksharing construct (with the PARALLEL DO directive). See Programming with
OpenMP for worksharing construct. This section provides specifics of auto-
parallelization.

Guidelines for Effective Auto-parallelization Usage

A loop is parallelizable if:

• The loop is countable at compile time: this means that an expression
representing how many times the loop will execute (also called "the loop
trip count") can be generated just before entering the loop.

• There are no FLOW (READ after WRITE), OUTPUT (WRITE after WRITE)
or ANTI (WRITE after READ) loop-carried data dependences. A loop-
carried data dependence occurs when the same memory location is
referenced in different iterations of the loop. At the compiler's discretion, a
loop may be parallelized if any assumed inhibiting loop-carried
dependencies can be resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in
parallel for loop with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these
coding guidelines:

Parallel Programming with Intel® Fortran

145

• Expose the trip count of loops whenever possible; specifically use constants
where the trip count is known and save loop parameters in local variables.

• Avoid placing structures inside loop bodies that the compiler may assume to
carry dependent data, for example, procedure calls, ambiguous indirect
references or global references.

• Insert the !DEC$ PARALLEL directive to disambiguate assumed data
dependencies.

• Insert the !DEC$ NOPARALLEL directive before loops known to have
insufficient work to justify the overhead of sharing among threads.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis ---> Loop classification ---> Dependence analysis --->
High-level parallelization --> Data partitioning ---> Multi-threaded code
generation.

These steps include:

• Data flow analysis: compute the flow of data through the program
• Loop classification: determine loop candidates for parallelization based on

correctness and efficiency as shown by threshold analysis
• Dependence analysis: compute the dependence analysis for references in

each loop nest
• High-level parallelization:

- analyze dependence graph to determine loops which can execute in
parallel.

- compute run-time dependency

• Data partitioning: examine data reference and partition based on the
following types of access: SHARED, PRIVATE, and FIRSTPRIVATE

• Multi-threaded code generation:

- modify loop parameters

- generate entry/exit per threaded task

- generate calls to parallel run-time routines for thread creation and
synchronization

Auto-parallelization: Enabling, Options, Directives, and
Environment Variables

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

146

To enable the auto-parallelizer, use the -parallel option. The -parallel
option detects parallel loops capable of being executed safely in parallel and
automatically generates multithreaded code for these loops. An example of the
command using auto-parallelization is as follows:

ifort -c -parallel myprog.f

Auto-parallelization Options

The -parallel option enables the auto-parallelizer if the -O2 (or -O3)
optimization option is also on (the default is -O2). The -parallel option detects
parallel loops capable of being executed safely in parallel and automatically
generates multithreaded code for these loops.

-parallel Enables the auto-parallelizer
-par_threshold{0-
100}

Controls the work threshold
needed for auto-parallelization.

-
par_report{1|2|3}

Controls the diagnostic
messages from the auto-
parallelizer, see later
subsection.

Auto-parallelization Directives

Auto-parallelization uses two specific directives, !DEC$ PARALLEL and !DEC$
NOPARALLEL.

The format of an Intel Fortran auto-parallelization compiler directive is:

<prefix> <directive>

where the brackets above mean:

• <xxx>: the prefix and directive are required

For fixed form source input, the prefix is !DEC$ or CDEC$

For free form source input, the prefix is !DEC$ only.

The prefix is followed by the directive name; for example:

!DEC$ PARALLEL

Since auto-parallelization directives begin with an exclamation point, the
directives take the form of comments if you omit the -parallel option.

Parallel Programming with Intel® Fortran

147

Examples

The !DEC$ PARALLEL directive instructs the compiler to ignore dependencies
which it assumes may exist and which would prevent correct parallelization in the
immediately following loop. However, if dependencies are proven, they are not
ignored.

The !DEC$ NOPARALLEL directive disables auto-parallelization for the
immediately following loop.

program main
parameter (n=100)
integer x(n),a(n)

!DEC$ NOPARALLEL
do i=1,n
x(i) = i
enddo

!DEC$ PARALLEL
do i=1,n
a(x(i)) = i
enddo
end

Auto-parallelization Environment Variables

Option Description Default
OMP_NUM_THREADS Controls the number of

threads used.
Number of processors
currently installed in the
system while
generating the
executable

OMP_SCHEDULE Specifies the type of run-
time scheduling.

static

Auto-parallelization Threshold Control and Diagnostics

Threshold Control

The -par_threshold{n} option sets a threshold for auto-parallelization of
loops based on the probability of profitable execution of the loop in parallel. The
value of n can be from 0 to 100. The default value is 100. The -
par_threshold{n} option should be used when the computation work in loops
cannot be determined at compile-time.

The meaning for various values of n is as follows:

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

148

• n = 100. Parallelization will only proceed when performance gains are
predicted based on the compiler analysis data. This is the default. This
value is used when -par_threshold{n} is not specified on the command
line or is used without specifying a value of n.

• n = 0, -par_threshold0 is specified. The loops get auto-parallelized
regardless of computation work volume, that is, parallelize always.

• The intermediate 1 to 99 values represent the percentage probability for
profitable speed-up. For example, n=50 would mean: parallelize only if there
is a 50% probability of the code speeding up if executed in parallel.

The compiler applies a heuristic that tries to balance the overhead of creating
multiple threads versus the amount of work available to be shared amongst the
threads.

Diagnostics

The -par_report{0|1|2|3} option controls the auto-parallelizer's diagnostic
levels 0, 1, 2, or 3 as follows:

-par_report0 = no diagnostic information is displayed.

-par_report1 = indicates loops successfully auto-parallelized (default). Issues
a "LOOP AUTO-PARALLELIZED" message for parallel loops.

-par_report2 = indicates successfully auto-parallelized loops as well as
unsuccessful loops.

-par_report3 = same as 2 plus additional information about any proven or
assumed dependences inhibiting auto-parallelization (reasons for not
parallelizing).

The following example shows an output generated by -par_report3 as a result
from the command:

ifort -c -parallel -par_report3 myprog.f90

where the program myprog.f90 is as follows:

 program myprog
 integer a(10000), q
C Assumed side effects
 do i=1,10000
 a(i) = foo(i)
 enddo
C Actual dependence
 do i=1,10000
 a(i) = a(i-1) + i
 enddo

Parallel Programming with Intel® Fortran

149

 end

Example of -par_report Output:

program myprog
procedure: myprog
serial loop: line 5: not a parallel candidate
due to statement at line 6
serial loop: line 9
 flow data dependence from line 10 to line
10, due to "a"
12 Lines Compiled

Troubleshooting Tips

• Use -par_threshold0 to see if the compiler assumed there was not
enough computational work

• Use -par_report3 to view diagnostics
• Use the !DIR$ PARALLEL directive to eliminate assumed data

dependencies
• Use -ipo to eliminate assumed side-effects done to function calls.

Parallelization with OpenMP*
Parallelization with OpenMP* Overview

The Intel® Fortran Compiler supports the OpenMP* Fortran version 2.0 API
specification, except for the WORKSHARE directive. OpenMP provides
symmetric multiprocessing (SMP) with the following major features:

• Relieves the user from having to deal with the low-level details of iteration
space partitioning, data sharing, and thread scheduling and
synchronization.

• Provides the benefit of the performance available from shared memory,
multiprocessor systems; and, for IA-32 systems, from Hyper-Threading
Technology-enabled systems (for Hyper-Threading Technology, refer to
the IA-32 Intel® Architecture Optimization Reference Manual).

The Intel Fortran Compiler performs transformations to generate multithreaded
code based on the user's placement of OpenMP directives in the source program
making it easy to add threading to existing software. The Intel compiler supports
all of the current industry-standard OpenMP directives, except WORKSHARE ,
and compiles parallel programs annotated with OpenMP directives.

In addition, the Intel Fortran Compiler provides Intel-specific extensions to the
OpenMP Fortran version 2.0 specification including run-time library routines and
environment variables.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

150

See parallelization options summary for all options of the OpenMP feature in the
Intel Fortran Compiler. For complete information on the OpenMP standard, visit
the www.openmp.org web site. For complete Fortran language specifications,
see the OpenMP Fortran version 2.0 specifications.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the
code with OpenMP directives in the form of the Fortran program comments. The
Intel Fortran Compiler first processes the application and produces a
multithreaded version of the code which is then compiled. The output is a Fortran
executable with the parallelism implemented by threads that execute parallel
regions or constructs. See Programming with OpenMP.

Performance Analysis

For performance analysis of your program, you can use the VTune(TM) analyzer
and/or the Intel® Threading Tools to show performance information. You can
obtain detailed information about which portions of the code that require the
largest amount of time to execute and where parallel performance problems are
located.

Programming with OpenMP

The Intel® Fortran Compiler accepts a Fortran program containing OpenMP
directives as input and produces a multithreaded version of the code. When the
parallel program begins execution, a single thread exists. This thread is called
the master thread. The master thread will continue to process serially until it
encounters a parallel region.

Parallel Region

A parallel region is a block of code that must be executed by a team of threads in
parallel. In the OpenMP Fortran API, a parallel construct is defined by placing
OpenMP directives PARALLEL at the beginning and END PARALLEL at the end
of the code segment. Code segments thus bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements
with a single point of entry at the top and a single point of exit at the bottom.

The Intel Fortran Compiler supports worksharing and synchronization constructs.
Each of these constructs consists of one or two specific OpenMP directives and
sometimes the enclosed or following structured block of code. For complete
definitions of constructs, see the OpenMP Fortran version 2.0 specifications.

Parallel Programming with Intel® Fortran

151

At the end of the parallel region, threads wait until all team members have
arrived. The team is logically disbanded (but may be reused in the next parallel
region), and the master thread continues serial execution until it encounters the
next parallel region.

Worksharing Construct

A worksharing construct divides the execution of the enclosed code region
among the members of the team created on entering the enclosing parallel
region. When the master thread enters a parallel region, a team of threads is
formed. Starting from the beginning of the parallel region, code is replicated
(executed by all team members) until a worksharing construct is encountered. A
worksharing construct divides the execution of the enclosed code among the
members of the team that encounter it.

The OpenMP SECTIONS or DO constructs are defined as worksharing
constructs because they distribute the enclosed work among the threads of the
current team. A worksharing construct is only distributed if it is encountered
during dynamic execution of a parallel region. If the worksharing construct occurs
lexically inside of the parallel region, then it is always executed by distributing the
work among the team members. If the worksharing construct is not lexically
(explicitly) enclosed by a parallel region (that is, it is orphaned), then the
worksharing construct will be distributed among the team members of the closest
dynamically-enclosing parallel region, if one exists. Otherwise, it will be executed
serially.

When a thread reaches the end of a worksharing construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is finished, the team exits the
worksharing construct and continues executing the code that follows.

A combined parallel/worksharing construct denotes a parallel region that contains
only one worksharing construct.

Parallel Processing Directive Groups

The parallel processing directives include the following groups:

Parallel Region

• PARALLEL and END PARALLEL

Worksharing Construct

• The DO and END DO directives specify parallel execution of loop iterations.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

152

• The SECTIONS and END SECTIONS directives specify parallel execution
for arbitrary blocks of sequential code. Each SECTION is executed once by
a thread in the team.

• The SINGLE and END SINGLE directives define a section of code where
exactly one thread is allowed to execute the code; threads not chosen to
execute this section ignore the code.

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

• PARALLEL DO and END PARALLEL DO
• PARALLEL SECTIONS and END PARALLEL SECTIONS

Synchronization and MASTER

Synchronization is the interthread communication that ensures the consistency of
shared data and coordinates parallel execution among threads. Shared data is
consistent within a team of threads when all threads obtain the identical value
when the data is accessed. A synchronization construct is used to insure this
consistency of the shared data.

• The OpenMP synchronization directives are CRITICAL, ORDERED,
ATOMIC, FLUSH, and BARRIER.

• Within a parallel region or a worksharing construct only one thread
at a time is allowed to execute the code within a CRITICAL
construct.

• The ORDERED directive is used in conjunction with a DO or
SECTIONS construct to impose a serial order on the execution of a
section of code.

• The ATOMIC directive is used to update a memory location in an
uninterruptable fashion.

• The FLUSH directive is used to insure that all threads in a team
have a consistent view of memory.

• A BARRIER directive forces all team members to gather at a
particular point in code. Each team member that executes a
BARRIER waits at the BARRIER until all of the team members
have arrived. A BARRIER cannot be used within worksharing or
other synchronization constructs due to the potential for deadlock.

• The MASTER directive is used to force execution by the master thread.

See the list of OpenMP Directives and Clauses.

Parallel Programming with Intel® Fortran

153

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct
by using the SHARED and PRIVATE clauses. All variables in the SHARED
clause are shared among the members of a team. It is the application�s
responsibility to:

• Synchronize access to these variables. All variables in the PRIVATE
clause are private to each team member. For the entire parallel region,
assuming t team members, there are t+1 copies of all the variables in the
PRIVATE clause: one global copy that is active outside parallel regions
and a PRIVATE copy for each team member.

• Initialize PRIVATE variables at the start of a parallel region, unless the
FIRSTPRIVATE clause is specified. In this case, the PRIVATE copy is
initialized from the global copy at the start of the construct at which the
FIRSTPRIVATE clause is specified.

• Update the global copy of a PRIVATE variable at the end of a parallel
region. However, the LASTPRIVATE clause of a DO directive enables
updating the global copy from the team member that executed serially the
last iteration of the loop.

In addition to shared and PRIVATE variables, individual variables and entire
COMMON blocks can be privatized using the THREADPRIVATE directive.

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. Orphaning is a situation when directives
related to a parallel region are not required to occur lexically within a single
program unit. Directives such as CRITICAL, BARRIER, SECTIONS, SINGLE,
MASTER and DO, can occur by themselves in a program unit, dynamically
�binding� to the enclosing parallel region at run time.

Orphaned directives enable parallelism to be inserted into existing code with a
minimum of code restructuring. Orphaning can also improve performance by
enabling a single parallel region to bind with multiple do directives located within
called subroutines. Consider the following code segment:

...
!$omp parallel
call phase1
call phase2
!$omp end parallel
...

subroutine phase1
!$omp do private(i) shared(n)
do i = 1, n

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

154

call some_work(i)
end do
!$omp end do
end

subroutine phase2
!$omp do private(j) shared(n)
do j = 1, n
call more_work(j)
end do
!$omp end do
end

The following orphaned directives usage rules apply

• An orphaned worksharing construct (SECTIONS, SINGLE, DO) is
executed by a team consisting of one thread, that is, serially.

• Any collective operation (worksharing construct or BARRIER) executed
inside of a worksharing construct is illegal.

• It is illegal to execute a collective operation (worksharing construct or
BARRIER) from within a synchronization region (CRITICAL/ORDERED).

• The opening and closing directives of a directive pair (for example, DO
and END DO) must occur in a single block of the program.

• Private scoping of a variable can be specified at a worksharing construct.
Shared scoping must be specified at the parallel region. For complete
details, see the OpenMP Fortran version 2.0 specifications.

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using
OpenMP. Typically, the first two stages can be done on uniprocessor or
multiprocessor systems; later stages are typically done only on multiprocessor
systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for
parallel execution by doing the following:

• Place local variables on the stack. This is the default behavior of the Intel
Fortran Compiler when -openmp is used.

• Use -automatic (or -auto_scalar) to make the locals automatic. This
is the default behavior of the Intel Fortran Compiler when -openmp is
used. Avoid using the -save option, which inhibits stack allocation of local
variables. By default, automatic local scalar variables become shared
across threads, so you may need to add synchronization code to ensure
proper access by threads.

Parallel Programming with Intel® Fortran

155

Analyze

Analysis includes the following major actions:

• Profile the program to find out where it spends most of its time. This is the
part of the program that benefits most from parallelization efforts. This
stage can be accomplished using VTune(TM) analyzer or basic PGO
options.

• Wherever the program contains nested loops, choose the outer-most loop,
which has very few cross-iteration dependencies.

Restructure

To restructure your program for successful OpenMP implementation, you can
perform some or all of the following actions:

1. If a chosen loop is able to execute iterations in parallel, introduce a
PARALLEL DO construct around this loop.

2. Try to remove any cross-iteration dependencies by rewriting the
algorithm.

3. Synchronize the remaining cross-iteration dependencies by placing
CRITICAL constructs around the uses and assignments to variables
involved in the dependencies.

4. List the variables that are present in the loop within appropriate
SHARED, PRIVATE, LASTPRIVATE, FIRSTPRIVATE, or
REDUCTION clauses.

5. List the DO index of the parallel loop as PRIVATE. This step is
optional.

6. COMMON block elements must not be placed on the PRIVATE list if
their global scope is to be preserved. The THREADPRIVATE directive
can be used to privatize to each thread the common block containing
those variables with global scope. THREADPRIVATE creates a copy
of the COMMON block for each of the threads in the team.

7. Any I/O in the parallel region should be synchronized.
8. Identify more parallel loops and restructure them.
9. If possible, merge adjacent PARALLEL DO constructs into a single

parallel region containing multiple DO directives to reduce execution
overhead.

Tune

The tuning process should include minimizing the sequential code in critical
sections and load balancing by using the SCHEDULE clause or the
omp_schedule environment variable.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

156

Note
This step is typically performed on a multiprocessor system.

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more
definitions of the terms used in the parallel programming.

The Execution Flow

A program containing OpenMP Fortran API compiler directives begins execution
as a single process, called the master thread of execution. The master thread
executes sequentially until the first parallel construct is encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives define
the parallel construct. When the master thread encounters a parallel construct, it
creates a team of threads, with the master thread becoming the master of the
team. The program statements enclosed by the parallel construct are executed in
parallel by each thread in the team. These statements include routines called
from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of
the construct. The dynamic extent includes the static extent as well as the
routines called from within the construct. When the END PARALLEL directive is
encountered, the threads in the team synchronize at that point, the team is
dissolved, and only the master thread continues execution. The other threads in
the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a
result, thread teams can be created and dissolved many times during program
execution.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives.
Directives that are not in the lexical extent of the parallel construct, but are in the
dynamic extent, are called orphaned directives. Orphaned directives allow you to
execute major portions of your program in parallel with only minimal changes to
the sequential version of the program. Using this functionality, you can code
parallel constructs at the top levels of your program call tree and use directives to
control execution in any of the called routines. For example:

subroutine F
...

Parallel Programming with Intel® Fortran

157

!$OMP parallel...
...
call G
...
subroutine G
...
!$OMP DO...
...

The !$OMP DO is an orphaned directive because the parallel region it will
execute in is not lexically present in G.

Data Environment Directive

A data environment directive controls the data environment during the execution
of parallel constructs.

You can control the data environment within parallel and worksharing constructs.
Using directives and data environment clauses on directives, you can:

• Privatize named common blocks by using THREADPRIVATE directive
• Control data scope attributes by using the THREADPRIVATE directive's

clauses.

The data scope attribute clauses are:

o COPYIN
o DEFAULT
o PRIVATE
o FIRSTPRIVATE
o LASTPRIVATE
o REDUCTION
o SHARED

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

For detailed descriptions of the clauses, see the OpenMP Fortran version 2.0
specifications.

Pseudo Code of the Parallel Processing Model

A sample program using some of the more common OpenMP directives is shown
in the code example that follows. This example also indicates the difference
between serial regions and parallel regions.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

158

PROGRAM MAIN ! Begin serial execution
... ! Only the master thread executes
!$OMP PARALLEL ! Begin a Parallel construct, form a
team
... ! This is Replicated Code where each
team
 ! member executes the same code
!$OMP SECTIONS ! Begin a Worksharing construct
!$OMP SECTION ! One unit of work
... !
!$OMP SECTION ! Another unit of work
... !
!$OMP END SECTIONS ! Wait until both units of work
complete
... ! More Replicated Code
 !$OMP DO ! Begin a Worksharing construct,
 DO ! each iteration is a unit of work
 ... ! Work is distributed among the team
 END DO !
!$OMP END DO NOWAIT ! End of Worksharing construct,
NOWAIT
 ! is specified (threads need not
wait
 ! until all work is completed before
 ! proceeding)
... ! More Replicated Code
!$OMP END PARALLEL ! End of PARALLEL construct, disband
team
 ! and continue with serial execution
... ! Possibly more PARALLEL Constructs
END PROGRAM MAIN ! End serial execution

Compiling with OpenMP, Directive Format, and Diagnostics

To run the Intel® Fortran Compiler in OpenMP* mode, you need to invoke the
Intel compiler with the
-openmp option:

ifort -openmp input_file(s)

Before you run the multithreaded code, you can set the number of desired
threads to the OpenMP environment variable, OMP_NUM_THREADS. See the
OpenMP Environment Variables section for further information. The Intel
Extensjon Routines topic describes the OpenMP extensions to the specification
that have been added by Intel in the Intel® Fortran Compiler.

-openmp Option

Parallel Programming with Intel® Fortran

159

The -openmp option enables the parallelizer to generate multithreaded code
based on the OpenMP directives. The code can be executed in parallel on both
uniprocessor and multiprocessor systems.

The -openmp option works with both -O0 (no optimization) and any optimization
level of -O1,
-O2 (default) and -O3. Specifying -O0 with -openmp helps to debug OpenMP
applications.

When you use the -openmp option, the compiler sets the -auto option (causes
all variables to be allocated on the stack, rather than in local static storage.) for
the compiler unless you specified it on the command line.

OpenMP Directive Format and Syntax

The OpenMP directives use the following format:

<prefix> <directive> [<clause> [[,] <clause> . . .]]

where the brackets above mean:

• <xxx>: the prefix and directive are required
• [<xxx>]: if a directive uses one clause or more, the clause(s) is

required
• [,]: commas between the <clause>s are optional.

For fixed form source input, the prefix is !$omp or c$omp

For free form source input, the prefix is !$omp only.

The prefix is followed by the directive name; for example:

!$omp parallel

Since OpenMP directives begin with an exclamation point, the directives take the
form of comments if you omit the -openmp option.

Syntax for Parallel Regions in the Source Code

The OpenMP constructs defining a parallel region have one of the following
syntax forms:

!$omp <directive>
<structured block of code>
!$omp end <directive>

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

160

or
!$omp <directive>
<structured block of code>

or
!$omp <directive>
where <directive> is the name of a particular OpenMP directive.

OpenMP Diagnostic Reports

The -openmp_report{0|1|2} option controls the OpenMP parallelizer's
diagnostic levels 0, 1, or 2 as follows:

-openmp_report0 = no diagnostic information is displayed.

-openmp_report1 = display diagnostics indicating loops, regions, and
sections successfully parallelized.

-openmp_report2 = same as -openmp_report1 plus diagnostics indicating
MASTER constructs, SINGLE constructs, CRITICAL constructs, ORDERED
constructs, ATOMIC directives, etc. successfully handled.

The default is -openmp_report1.

OpenMP Directives and Clauses Summary

This topic provides a summary of the OpenMP directives and clauses. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

OpenMP Directives

Directive Description
PARALLEL
END PARALLEL

Defines a parallel region.

DO
END DO

Identifies an iterative worksharing construct in
which the iterations of the associated loop
should be executed in parallel.

SECTIONS
END SECTIONS

Identifies a non-iterative worksharing construct
that specifies a set of structured blocks that are
to be divided among threads in a team.

SECTION Indicates that the associated structured block
should be executed in parallel as part of the
enclosing sections construct.

Parallel Programming with Intel® Fortran

161

SINGLE
END SINGLE

Identifies a construct that specifies that the
associated structured block is executed by only
one thread in the team.

PARALLEL DO
END PARALLEL DO

A shortcut for a parallel region that contains a
single DO directive.

Note
The PARALLEL DO or DO OpenMP directive
must be immediately followed by a DO
statement (do-stmt as defined by R818 of
the ANSI Fortran standard). If you place
another statement or an OpenMP directive
between the PARALLEL DO or DO directive
and the DO statement, the Intel Fortran
Compiler issues a syntax error.

PARALLEL
SECTIONS
END PARALLEL
SECTIONS

Provides a shortcut form for specifying a parallel
region containing a single SECTIONS construct.

MASTER
END MASTER

Identifies a construct that specifies a structured
block that is executed by only the MASTER
thread of the team.

CRITICAL[lock]
END
CRITICAL[lock]

Identifies a construct that restricts execution of
the associated structured block to a single
thread at a time. Each thread waits at the
beginning of the critical construct until no other
thread is executing a critical construct with the
same lock argument.

BARRIER Synchronizes all the threads in a team. Each
thread waits until all of the other threads in that
team have reached this point.

ATOMIC Ensures that a specific memory location is
updated atomically, rather than exposing it to
the possibility of multiple, simultaneously writing
threads.

FLUSH [(list)] Specifies a "cross-thread" sequence point at
which the implementation is required to ensure
that all the threads in a team have a consistent
view of certain objects in memory. The optional
list argument consists of a comma-separated
list of variables to be flushed.

ORDERED
END ORDERED

The structured block following an ORDERED
directive is executed in the order in which
iterations would be executed in a sequential
loop.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

162

THREADPRIVATE
(list)

Makes the named COMMON blocks or variables
private to a thread. The list argument consists
of a comma-separated list of COMMON blocks
or variables.

OpenMP Clauses

Clause Description
PRIVATE (list) Declares variables in list to be

PRIVATE to each thread in a
team.

FIRSTPRIVATE (list) Same as PRIVATE, but the copy
of each variable in the list is
initialized using the value of the
original variable existing before
the construct.

LASTPRIVATE (list) Same as PRIVATE, but the
original variables in list are
updated using the values
assigned to the corresponding
PRIVATE variables in the last
iteration in the DO construct loop
or the last SECTION construct.

COPYPRIVATE (list) Uses private variables in list to
broadcast values, or pointers to
shared objects, from one member
of a team to the other members at
the end of a single construct.

NOWAIT Specifies that threads need not
wait at the end of worksharing
constructs until they have
completed execution. The threads
may proceed past the end of the
worksharing constructs as soon
as there is no more work available
for them to execute.

SHARED (list) Shares variables in list among
all the threads in a team.

DEFAULT (mode) Determines the default data-
scope attributes of variables not
explicitly specified by another
clause. Possible values for mode
are PRIVATE, SHARED, or
NONE.

REDUCTION Performs a reduction on variables

Parallel Programming with Intel® Fortran

163

({operator|intrinsic}:list) that appear in list with the
operator operator or the
intrinsic procedure name
intrinsic; operator is one of
the following: +, *, .and., .or.,
.eqv., .neqv.; intrinsic
refers to one of the following:
MAX, MIN, IAND, IOR, or IEOR.

ORDERED
END ORDERED

Used in conjunction with a DO or
SECTIONS construct to impose a
serial order on the execution of a
section of code. If ORDERED
constructs are contained in the
dynamic extent of the DO
construct, the ordered clause
must be present on the DO
directive.

IF
(scalar_logical_expression)

The enclosed parallel region is
executed in parallel only if the
scalar_logical_expression
evaluates to .TRUE.; otherwise
the parallel region is serialized.

NUM_THREADS
(scalar_integer_expression)

Requests the number of threads
specified by
scalar_integer_expression
for the parallel region.

SCHEDULE (type[,chunk]) Specifies how iterations of the DO
construct are divided among the
threads of the team. Possible
values for the type argument are
STATIC, DYNAMIC, GUIDED,
and RUNTIME. The optional
chunk argument must be a
positive scalar integer expression.

COPYIN (list) Specifies that the master thread's
data values be copied to the
THREADPRIVATE's copies of the
common blocks or variables
specified in list at the beginning
of the parallel region.

Directives and Clauses Cross-reference

Directive Uses These Clauses
PARALLEL COPYIN, DEFAULT, PRIVATE,

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

164

END PARALLEL FIRSTPRIVATE, REDUCTION, SHARED
DO
END DO

PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION, SCHEDULE

SECTIONS
END SECTIONS

PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION

SECTION PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION

SINGLE
END SINGLE

PRIVATE, FIRSTPRIVATE

PARALLEL DO
END PARALLEL DO

COPYIN, DEFAULT, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE,
REDUCTION, SHARED, SCHEDULE

PARALLEL SECTIONS
END PARALLEL
SECTIONS

COPYIN, DEFAULT, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE,
REDUCTION, SHARED

MASTER
END MASTER

None

CRITICAL[lock]
END CRITICAL[lock]

None

BARRIER None
ATOMIC None
FLUSH[(list)] None
ORDERED
END ORDERED

None

THREADPRIVATE (list) None

OpenMP Directive Descriptions

Parallel Region Directives

The PARALLEL and END PARALLEL directives define a parallel region as
follows:

!$OMP PARALLEL
! parallel region
!$OMP END PARALLEL

When a thread encounters a parallel region, it creates a team of threads and
becomes the master of the team. You can control the number of threads in a
team by the use of an environment variable or a run-time library call, or both.

Parallel Programming with Intel® Fortran

165

The PARALLEL directive takes an optional comma-separated list of clauses.
Clauses include:

• IF: whether the statements in the parallel region are executed in parallel
by a team of threads or serially by a single thread.

• PRIVATE, FIRSTPRIVATE, SHARED, or REDUCTION: variable types
• DEFAULT: variable data scope attribute
• COPYIN: master thread common block values are copied to

THREADPRIVATE copies of the common block

Changing the Number of Threads

Once created, the number of threads in the team remains constant for the
duration of that parallel region. To explicitly change the number of threads used
in the next parallel region, call the OMP_SET_NUM_THREADS run-time library
routine from a serial portion of the program. This routine overrides any value you
may have set using the OMP_NUM_THREADS environment variable.

Assuming you have used the OMP_NUM_THREADS environment variable to set
the number of threads to 6, you can change the number of threads between
parallel regions as follows:

 CALL OMP_SET_NUM_THREADS(3)
!$OMP PARALLEL
.
.
.
!$OMP END PARALLEL
CALL OMP_SET_NUM_THREADS(4)
!$OMP PARALLEL DO
.
.
.
!$OMP END PARALLEL DO

Setting Units of Work

Use the worksharing directives such as DO, SECTIONS, and SINGLE to divide
the statements in the parallel region into units of work and to distribute those
units so that each unit is executed by one thread.

In the following example, the !$OMP DO and !$OMP END DO directives and all
the statements enclosed by them comprise the static extent of the parallel region:

!$OMP PARALLEL
!$OMP DO
DO I=1,N
B(I) = (A(I) + A(I-1))/ 2.0
END DO

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

166

!$OMP END DO
!$OMP END PARALLEL

In the following example, the !$OMP DO and !$OMP END DO directives and all
the statements enclosed by them, including all statements contained in the
WORK subroutine, comprise the dynamic extent of the parallel region:

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
DO I=1,N
CALL WORK(I,N)
END DO
!$OMP END DO
!$OMP END PARALLEL

Setting Conditional Parallel Region Execution

When an IF clause is present on the PARALLEL directive, the enclosed code
region is executed in parallel only if the scalar logical expression evaluates to
.TRUE.. Otherwise, the parallel region is serialized. When there is no IF clause,
the region is executed in parallel by default.

In the following example, the statements enclosed within the !$OMP DO and
!$OMP END DO directives are executed in parallel only if there are more than
three processors available. Otherwise the statements are executed serially:

!$OMP PARALLEL IF (OMP_GET_NUM_PROCS() .GT. 3)
!$OMP DO
DO I=1,N
Y(I) = SQRT(Z(I))
END DO
!$OMP END DO
!$OMP END PARALLEL

If a thread executing a parallel region encounters another parallel region, it
creates a new team and becomes the master of that new team. By default,
nested parallel regions are always executed by a team of one thread.

Note
To achieve better performance than sequential execution, a parallel region
must contain one or more worksharing constructs so that the team of
threads can execute work in parallel. It is the contained worksharing
constructs that lead to the performance enhancements offered by parallel
processing.

Worksharing Construct Directives

Parallel Programming with Intel® Fortran

167

A worksharing construct must be enclosed dynamically within a parallel region if
the worksharing directive is to execute in parallel. No new threads are launched
and there is no implied barrier on entry to a worksharing construct.

The worksharing constructs are:

• DO and END DO directives
• SECTIONS, SECTION, and END SECTIONS directives
• SINGLE and END SINGLE directives

DO and END DO

The DO directive specifies that the iterations of the immediately following DO
loop must be dispatched across the team of threads so that each iteration is
executed by a single thread. The loop that follows a DO directive cannot be a DO
WHILE or a DO loop that does not have loop control. The iterations of the DO
loop are dispatched among the existing team of threads.

The DO directive optionally lets you:

• Control data scope attributes (see Controlling Data Scope Attributes)
• Use the SCHEDULE clause to specify schedule type and chunk size (see

Specifying Schedule Type and Chunk Size)

Clauses Used

The clauses for DO directive specify:

• Whether variables PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION

• How loop iterations are SCHEDULEd onto threads
• In addition, the ORDERED clause must be specified if the ORDERED

directive appears in the dynamic extent of the DO directive.
• If you do not specify the optional NOWAIT clause on the END DO directive,

threads synchronize at the END DO directive. If you specify NOWAIT,
threads do not synchronize, and threads that finish early proceed directly to
the instructions following the END DO directive.

Usage Rules

• You cannot use a GOTO statement, or any other statement, to transfer
control onto or out of the DO construct.

• If you specify the optional END DO directive, it must appear immediately
after the end of the DO loop. If you do not specify the END DO directive, an
END DO directive is assumed at the end of the DO loop, and threads
synchronize at that point.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

168

• The loop iteration variable is private by default, so it is not necessary to
declare it explicitly.

SECTIONS, SECTION and END SECTIONS

Use the noniterative worksharing SECTIONS directive to divide the enclosed
sections of code among the team. Each section is executed just one time by one
thread.

Each section should be preceded with a SECTION directive, except for the first
section, in which the SECTION directive is optional. The SECTION directive must
appear within the lexical extent of the SECTIONS and END SECTIONS
directives.

The last section ends at the END SECTIONS directive. When a thread completes
its section and there are no undispatched sections, it waits at the END
SECTIONS directive unless you specify NOWAIT.

The SECTIONS directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION.

The following example shows how to use the SECTIONS and SECTION
directives to execute subroutines X_AXIS, Y_AXIS, and Z_AXIS in parallel. The
first SECTION directive is optional:

!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION
CALL X_AXIS
!$OMP SECTION
CALL Y_AXIS
!$OMP SECTION
CALL Z_AXIS
!$OMP END SECTIONS
!$OMP END PARALLEL

SINGLE and END SINGLE

Use the SINGLE directive when you want just one thread of the team to execute
the enclosed block of code.

Threads that are not executing the SINGLE directive wait at the END SINGLE
directive unless you specify NOWAIT.

The SINGLE directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE or FIRSTPRIVATE.

Parallel Programming with Intel® Fortran

169

When the END SINGLE directive is encountered, an implicit barrier is erected
and threads wait until all threads have finished. This can be overridden by using
the NOWAIT option.

In the following example, the first thread that encounters the SINGLE directive
executes subroutines OUTPUT and INPUT:

!$OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)
!$OMP BARRIER
!$OMP SINGLE
CALL OUTPUT(X)
CALL INPUT(Y)
!$OMP END SINGLE
CALL WORK(Y)
!$OMP END PARALLEL

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

• PARALLEL DO
• PARALLEL SECTIONS

PARALLEL DO and END PARALLEL DO

Use the PARALLEL DO directive to specify a parallel region that implicitly
contains a single DO directive.

You can specify one or more of the clauses for the PARALLEL and the DO
directives.

The following example shows how to parallelize a simple loop. The loop iteration
variable is private by default, so it is not necessary to declare it explicitly. The
END PARALLEL DO directive is optional:

!$OMP PARALLEL DO
 DO I=1,N
 B(I) = (A(I) + A(I-1)) / 2.0
 END DO
!$OMP END PARALLEL DO

PARALLEL SECTIONS and END PARALLEL SECTIONS

Use the PARALLEL SECTIONS directive to specify a parallel region that
implicitly contains a single SECTIONS directive.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

170

You can specify one or more of the clauses for the PARALLEL and the
SECTIONS directives.

The last section ends at the END PARALLEL SECTIONS directive.

In the following example, subroutines X_AXIS, Y_AXIS, and Z_AXIS can be
executed concurrently. The first SECTION directive is optional. Note that all
SECTION directives must appear in the lexical extent of the PARALLEL
SECTIONS/END PARALLEL SECTIONS construct:

!$OMP PARALLEL SECTIONS
!$OMP SECTION
 CALL X_AXIS
!$OMP SECTION
 CALL Y_AXIS
!$OMP SECTION
 CALL Z_AXIS
!$OMP END PARALLEL SECTIONS

Synchronization Constructs

Synchronization constructs are used to ensure the consistency of shared data
and to coordinate parallel execution among threads.

The synchronization constructs are:

• ATOMIC directive
• BARRIER directive
• CRITICAL directive
• FLUSH directive
• MASTER directive
• ORDERED directive

ATOMIC Directive

Use the ATOMIC directive to ensure that a specific memory location is updated
atomically instead of exposing the location to the possibility of multiple,
simultaneously writing threads.

This directive applies only to the immediately following statement, which must
have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

Parallel Programming with Intel® Fortran

171

x = intrinsic (expr, x)

In the preceding statements:

• x is a scalar variable of intrinsic type
• expr is a scalar expression that does not reference x
• intrinsic is either MAX, MIN, IAND, IOR, or IEOR
• operator is either +, *, -, /, .AND., .OR., .EQV., or .NEQV.

This directive permits optimization beyond that of a critical section around the
assignment. An implementation can replace all ATOMIC directives by enclosing
the statement in a critical section. All of these critical sections must use the same
unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected by
using the ATOMIC directive, except those that are known to be free of race
conditions. The function intrinsic, the operator operator, and the
assignment must be the intrinsic function, operator, and assignment.

This restriction applies to the ATOMIC directive: All references to storage
location x must have the same type parameters.

In the following example, the collection of Y locations is updated atomically:

!$OMP ATOMIC
Y = Y + B(I)

BARRIER Directive

To synchronize all threads within a parallel region, use the BARRIER directive.
You can use this directive only within a parallel region defined by using the
PARALLEL directive. You cannot use the BARRIER directive within the DO,
PARALLEL DO, SECTIONS, PARALLEL SECTIONS, and SINGLE directives.

When encountered, each thread waits at the BARRIER directive until all threads
have reached the directive.

In the following example, the BARRIER directive ensures that all threads have
executed the first loop and that it is safe to execute the second loop:

c$OMP PARALLEL
c$OMP DO PRIVATE(i)
DO i = 1, 100
b(i) = i
END DO
c$OMP BARRIER
c$OMP DO PRIVATE(i)

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

172

DO i = 1, 100
a(i) = b(101-i)
END DO
c$OMP END PARALLEL

CRITICAL and END CRITICAL

Use the CRITICAL and END CRITICAL directives to restrict access to a block of
code, referred to as a critical section, to one thread at a time.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section having the same name.

When a thread enters the critical section, a latch variable is set to closed and all
other threads are locked out. When the thread exits the critical section at the
END CRITICAL directive, the latch variable is set to open, allowing another
thread access to the critical section.

If you specify a critical section name in the CRITICAL directive, you must specify
the same name in the END CRITICAL directive. If you do not specify a name for
the CRITICAL directive, you cannot specify a name for the END CRITICAL
directive.

All unnamed CRITICAL directives map to the same name. Critical section names
are global to the program.

The following example includes several CRITICAL directives, and illustrates a
queuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation must be in a
critical section. Because there are two independent queues in this example, each
queue is protected by CRITICAL directives having different names, X_AXIS and
Y_AXIS, respectively:

!$OMP PARALLEL DEFAULT(PRIVATE,SHARED(X,Y)
!$OMP CRITICAL(X_AXIS)
CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(X_AXIS)
CALL WORK(IX_NEXT, X)
!$OMP CRITICAL(Y_AXIS)
CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(Y_AXIS)
CALL WORK(IY_NEXT, Y)
!$OMP END PARALLEL

Unnamed critical sections use the global lock from the Pthread package. This
allows you to synchronize with other code by using the same lock. Named locks
are created and maintained by the compiler and can be significantly more
efficient.

Parallel Programming with Intel® Fortran

173

FLUSH Directive

Use the FLUSH directive to identify a synchronization point at which a consistent
view of memory is provided. Thread-visible variables are written back to memory
at this point.

To avoid flushing all thread-visible variables at this point, include a list of comma-
separated named variables to be flushed.

The following example uses the FLUSH directive for point-to-point
synchronization between thread 0 and thread 1 for the variable ISYNC:

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0
!$OMP BARRIER
CALL WORK()
! I Am Done With My Work, Synchronize With My Neighbor
ISYNC(IAM) = 1
!$OMP FLUSH(ISYNC)
! Wait Till Neighbor Is Done
DO WHILE (ISYNC(NEIGH) .EQ. 0)
!$OMP FLUSH(ISYNC)
END DO
!$OMP END PARALLEL

MASTER and END MASTER

Use the MASTER and END MASTER directives to identify a block of code that is
executed only by the master thread.

The other threads of the team skip the code and continue execution. There is no
implied barrier at the END MASTER directive.

In the following example, only the master thread executes the routines OUTPUT
and INPUT:

!$OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)
!$OMP MASTER
CALL OUTPUT(X)
CALL INPUT(Y)
!$OMP END MASTER
CALL WORK(Y)
!$OMP END PARALLEL

ORDERED and END ORDERED

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

174

Use the ORDERED and END ORDERED directives within a DO construct to
allow work within an ordered section to execute sequentially while allowing work
outside the section to execute in parallel.

When you use the ORDERED directive, you must also specify the ORDERED
clause on the DO directive.

Only one thread at a time is allowed to enter the ordered section, and then only
in the order of loop iterations.

In the following example, the code prints out the indexes in sequential order:

!$OMP DO ORDERED,SCHEDULE(DYNAMIC)
DO I=LB,UB,ST
CALL WORK(I)
END DO
SUBROUTINE WORK(K)
!$OMP ORDERED
WRITE(*,*) K
!$OMP END ORDERED

THREADPRIVATE Directive

You can make named common blocks private to a thread, but global within the
thread, by using the THREADPRIVATE directive.

Each thread gets its own copy of the common block with the result that data
written to the common block by one thread is not directly visible to other threads.
During serial portions and MASTER sections of the program, accesses are to the
master thread copy of the common block.

You cannot use a thread private common block or its constituent variables in any
clause other than the COPYIN clause.

In the following example, common blocks BLK1 and FIELDS are specified as
thread private:

COMMON /BLK1/ SCRATCH
 COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD
!$OMP THREADPRIVATE(/BLK1/,/FIELDS/)

OpenMP Clause Descriptions

Controlling Data Scope

Data Scope Attribute Clauses Overview

Parallel Programming with Intel® Fortran

175

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

Each of the data scope attribute clauses accepts a list, which is a comma-
separated list of named variables or named common blocks that are accessible
in the scoping unit. When you specify named common blocks, they must appear
between slashes (/name/).

Not all of the clauses are allowed on all directives, but the directives to which
each clause applies are listed in the clause descriptions.

The data scope attribute clauses are:

• COPYIN
• DEFAULT
• PRIVATE
• FIRSTPRIVATE
• LASTPRIVATE
• REDUCTION
• SHARED

COPYIN Clause

Use the COPYIN clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to copy the data in the master thread common block to the
thread private copies of the common block. The copy occurs at the beginning of
the parallel region. The COPYIN clause applies only to common blocks that have
been declared THREADPRIVATE.

You do not have to specify a whole common block to be copied in; you can
specify named variables that appear in the THREADPRIVATE common block. In
the following example, the common blocks BLK1 and FIELDS are specified as
thread private, but only one of the variables in common block FIELDS is
specified to be copied in:

 COMMON /BLK1/ SCRATCH
 COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD
!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)
!$OMP PARALLEL DEFAULT(PRIVATE),COPYIN(/BLK1/,ZFIELD)

DEFAULT Clause

Use the DEFAULT clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to specify a default data scope attribute for all variables
within the lexical extent of a parallel region. Variables in THREADPRIVATE

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

176

common blocks are not affected by this clause. You can specify only one
DEFAULT clause on a directive. The default data scope attribute can be one of
the following:

• PRIVATE

Makes all named objects in the lexical extent of the parallel region private to a
thread. The objects include common block variables, but exclude
THREADPRIVATE variables.

• SHARED

Makes all named objects in the lexical extent of the parallel region shared
among all the threads in the team.

• NONE

Declares that there is no implicit default as to whether variables are
PRIVATE or SHARED. You must explicitly specify the scope attribute for
each variable in the lexical extent of the parallel region.

If you do not specify the DEFAULT clause, the default is DEFAULT(SHARED).
However, loop control variables are always PRIVATE by default.

You can exempt variables from the default data scope attribute by using other
scope attribute clauses on the parallel region as shown in the following example:

!$OMP PARALLEL DO DEFAULT(PRIVATE),
FIRSTPRIVATE(I),SHARED(X),
!$OMP& SHARED(R) LASTPRIVATE(I)

PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses

PRIVATE

Use the PRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to declare variables to be
private to each thread in the team.

The behavior of variables declared PRIVATE is as follows:

• A new object of the same type and size is declared once for each thread
in the team, and the new object is no longer storage associated with the
original object.

• All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

Parallel Programming with Intel® Fortran

177

• Variables defined as PRIVATE are undefined for each thread on entering
the construct, and the corresponding shared variable is undefined on exit
from a parallel construct.

• Contents, allocation state, and association status of variables defined as
PRIVATE are undefined when they are referenced outside the lexical
extent, but inside the dynamic extent, of the construct unless they are
passed as actual arguments to called routines.

In the following example, the values of I and J are undefined on exit from the
parallel region:

INTEGER I,J
 I =1
 J =2
!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
 I =3
 J =J+ 2
!$OMP END PARALLEL
 PRINT *, I, J

FIRSTPRIVATE

Use the FIRSTPRIVATE clause on the PARALLEL , DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to provide a superset of
the PRIVATE clause functionality.

In addition to the PRIVATE clause functionality, private copies of the variables
are initialized from the original object existing before the parallel construct.

LASTPRIVATE

Use the LASTPRIVATE clause on the DO, SECTIONS, PARALLEL DO, and
PARALLEL SECTIONS directives to provide a superset of the PRIVATE clause
functionality.

When the LASTPRIVATE clause appears on a DO or PARALLEL DO directive,
the thread that executes the sequentially last iteration updates the version of the
object it had before the construct.

When the LASTPRIVATE clause appears on a SECTIONS or PARALLEL
SECTIONS directive, the thread that executes the lexically last section updates
the version of the object it had before the construct.

Subobjects that are not assigned a value by the last iteration of the DO loop or
the lexically last SECTION directive are undefined after the construct.

Correct execution sometimes depends on the value that the last iteration of a
loop assigns to a variable. You must list all such variables as arguments to a

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

178

LASTPRIVATE clause so that the values of the variables are the same as when
the loop is executed sequentially. As shown in the following example, the value
of I at the end of the parallel region is equal to N+1, as it would be with sequential
execution.

!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)
DO I=1,N
 A(I) = B(I) + C(I)
END DO
!$OMP END PARALLEL
CALL REVERSE(I)

REDUCTION Clause

Use the REDUCTION clause on the PARALLEL, DO, SECTIONS, PARALLEL
DO, and PARALLEL SECTIONS directives to perform a reduction on the
specified variables by using an operator or intrinsic as shown:

REDUCTION (

operator

 or

intrinsic

:list)

Operator can be one of the following: +, *, -, .AND., .OR., .EQV., or
.NEQV..

Intrinsic can be one of the following: MAX, MIN, IAND, IOR, or IEOR.

The specified variables must be named scalar variables of intrinsic type and must
be SHARED in the enclosing context. A private copy of each specified variable is
created for each thread as if you had used the PRIVATE clause. The private
copy is initialized to a value that depends on the operator or intrinsic as shown in
the following table. The actual initialization value is consistent with the data type
of the reduction variable.

Operators/Intrinsics and Initialization Values for Reduction Variables

Operator/Intrinsic Initialization
Value

+ 0
* 1

Parallel Programming with Intel® Fortran

179

- 0
.AND. .TRUE.
.OR. .FALSE.
.EQV. .TRUE.
.NEQV. .FALSE.
MAX Largest

representable
number

MIN Smallest
representable
number

IAND All bits on
IOR 0
IEOR 0

At the end of the construct to which the reduction applies, the shared variable is
updated to reflect the result of combining the original value of the SHARED
reduction variable with the final value of each of the private copies using the
specified operator.

Except for subtraction, all of the reduction operators are associative and the
compiler can freely reassociate the computation of the final value. The partial
results of a subtraction reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread
reaches the clause containing the reduction, and it remains undefined until the
reduction computation is complete. Normally, the computation is complete at the
end of the REDUCTION construct. However, if you use the REDUCTION clause
on a construct to which NOWAIT is also applied, the shared variable remains
undefined until a barrier synchronization has been performed. This ensures that
all of the threads have completed the REDUCTION clause.

The REDUCTION clause is intended to be used on a region or worksharing
construct in which the reduction variable is used only in reduction statements
having one of the following forms:

x = x operator expr
x = expr operator x (except for subtraction)
x = intrinsic (x,expr)
x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX
reduction might be expressed as follows:

IF (x .LT. expr) x = expr

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

180

Alternatively, the reduction might be hidden inside a subroutine call. Be careful
that the operator specified in the REDUCTION clause matches the reduction
operation.

Any number of reduction clauses can be specified on the directive, but a variable
can appear only once in a REDUCTION clause for that directive as shown in the
following example:

!$OMP DO REDUCTION(+: A, Y),REDUCTION(.OR.: AM)

The following example shows how to use the REDUCTION clause:

!$OMP PARALLEL DO DEFAULT(PRIVATE),SHARED(A,B,REDUCTION(+:
A,B)
DO I=1,N
CALL WORK(ALOCAL,BLOCAL)
A = A + ALOCAL
B = B + BLOCAL
END DO
!$OMP END PARALLEL DO

SHARED Clause

Use the SHARED clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to make variables shared among all the threads in a team.

In the following example, the variables X and NPOINTS are shared among all the
threads in the team:

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()
NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP
CALL SUBDOMAIN(X,IAM,IPOINTS)
!$OMP END PARALLEL

Specifying Schedule Type and Chunk Size

The SCHEDULE clause of the DO or PARALLEL DO directive specifies a
scheduling algorithm that determines how iterations of the DO loop are divided
among and dispatched to the threads of the team. The SCHEDULE clause
applies only to the current DO or PARALLEL DO directive.

Within the SCHEDULE clause, you must specify a schedule type and, optionally,
a chunk size. A chunk is a contiguous group of iterations dispatched to a thread.
Chunk size must be a scalar integer expression.

Parallel Programming with Intel® Fortran

181

The following list describes the schedule types and how the chunk size affects
scheduling:

• STATIC

The iterations are divided into pieces having a size specified by chunk. The
pieces are statically dispatched to threads in the team in a round-robin
manner in the order of thread number.

When chunk is not specified, the iterations are first divided into contiguous
pieces by dividing the number of iterations by the number of threads in the
team. Each piece is then dispatched to a thread before loop execution
begins.

• DYNAMIC

The iterations are divided into pieces having a size specified by chunk. As
each thread finishes its currently dispatched piece of the iteration space,
the next piece is dynamically dispatched to the thread.

When no chunk is specified, the default is 1.

• GUIDED

The chunk size is decreased exponentially with each succeeding dispatch.
Chunk specifies the minimum number of iterations to dispatch each time. If
there are less than chunk number of iterations remaining, the rest are
dispatched.

When no chunk is specified, the default is 1.

• RUNTIME

The decision regarding scheduling is deferred until run time. The schedule
type and chunk size can be chosen at run time by using the
OMP_SCHEDULE environment variable.

When you specify RUNTIME, you cannot specify a chunk size.

The following list shows which schedule type is used, in priority order:

1. The schedule type specified in the SCHEDULE clause of the current DO
or PARALLEL DO directive

2. If the schedule type for the current DO or PARALLEL DO directive is
RUNTIME, the default value specified in the OMP_SCHEDULE environment
variable

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

182

3. The compiler default schedule type of STATIC

The following list shows which chunk size is used, in priority order:

1. The chunk size specified in the SCHEDULE clause of the current DO or
PARALLEL DO directive

2. For RUNTIME schedule type, the value specified in the OMP_SCHEDULE
environment variable

3. For DYNAMIC and GUIDED schedule types, the default value 1
4. If the schedule type for the current DO or PARALLEL DO directive is

STATIC, the loop iteration space divided by the number of threads in the
team.

OpenMP Support Libraries

The Intel Fortran Compiler with OpenMP* support provides a production support
library, libguide.a. This library enables you to run an application under
different execution modes. It is used for normal or performance-critical runs on
applications that have already been tuned.

Execution modes

The compiler with OpenMP enables you to run an application under different
execution modes that can be specified at run time. The libraries support the
serial, turnaround, and throughput modes. These modes are selected by using
the kmp_library environment variable at run time.

Turnaround

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads will yield to other threads while
waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment
(that is, the system load) and to adjust its resource usage to produce efficient
execution in a dynamic environment. This mode is the default.

After completing the execution of a parallel region, threads wait for new parallel
work to become available. After a certain period of time has elapsed, they stop
waiting and sleep. Sleeping allows the threads to be used, until more parallel
work becomes available, by non-OpenMP threaded code that may execute
between parallel regions, or by other applications. The amount of time to wait
before sleeping is set either by the KMP_BLOCKTIME environment variable or by
the kmp_set_blocktime() function. A small KMP_BLOCKTIME value may offer

Parallel Programming with Intel® Fortran

183

better overall performance if your application contains non-OpenMP threaded
code that executes between parallel regions. A larger KMP_BLOCKTIME value
may be more appropriate if threads are to be reserved solely for use for OpenMP
execution, but may penalize other concurrently-running OpenMP or threaded
applications.

Throughput

In a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important to
effectively utilize all of the processors all of the time. The turnaround mode is
designed to keep active all of the processors involved in the parallel computation
in order to minimize the execution time of a single job. In this mode, the worker
threads actively wait for more parallel work, without yielding to other threads.

Note
Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run
time. If system resources are over-allocated, this mode will cause poor
performance. The throughput mode should be used instead if this occurs.

OpenMP Environment Variables

This topic describes the standard OpenMP* environment variables (with the
OMP_ prefix) and Intel-specific environment variables (with the KMP_ prefix) that
are Intel extensions to the standard Fortran Compiler .

Standard Environment Variables

Variable Description Default
OMP_SCHEDULE Sets the run-time schedule

type and chunk size.
STATIC,
no chunk
size
specified

OMP_NUM_THREADS Sets the number of threads
to use during execution.

Number of
processors

OMP_DYNAMIC Enables (true) or disables
(false) the dynamic
adjustment of the number of
threads.

false

OMP_NESTED Enables (true) or disables
(false)nested parallelism.

false

Intel Extension Environment Variables

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

184

Environment Variable Description Default

KMP_ALL_THREADS Sets the
maximum
number of
threads that can
be used by any
parallel region.

max(32, 4 *
OMP_NUM_THREADS,
4 * number of
processors)

KMP_BLOCKTIME Sets the time, in
milliseconds,
that a thread
should wait,
after completing
the execution of
a parallel region,
before sleeping.

See also the
throughput
execution mode
and the
KMP_LIBRARY
environment
variable. Use the
optional
character suffix
s, m, h, or d, to
specify seconds,
minutes, hours,
or days.

200 milliseconds

KMP_LIBRARY Selects the
OpenMP run-
time library
throughput. The
options for the
variable value
are: serial,
turnaround, or
throughput
indicating the
execution mode.
The default
value of
throughput is
used if this
variable is not

throughput
(execution mode)

Parallel Programming with Intel® Fortran

185

specified.

KMP_MONITOR_STACKSIZE Sets the number
of bytes to
allocate for the
monitor thread,
which is used for
book-keeping
during program
execution. Use
the optional
suffix b, k, m, g,
or t, to specify
bytes, kilobytes,
megabytes,
gigabytes, or
terabytes.

max(32k, system
minimum thread
stack size)

KMP_STACKSIZE Sets the number
of bytes to
allocate for each
parallel thread to
use as its private
stack. Use the
optional suffix b,
k, m, g, or t, to
specify bytes,
kilobytes,
megabytes,
gigabytes, or
terabytes.

IA-32: 2m
Itanium compiler: 4m

KMP_VERSION Enables (set) or
disables (unset)
the printing of
OpenMP run-
time library
version
information
during program
execution.

Disabled

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

186

OpenMP Run-time Library Routines

OpenMP provides several run-time library routines to assist you in managing
your program in parallel mode. Many of these run-time library routines have
corresponding environment variables that can be set as defaults. The run-time
library routines enable you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run-time library routine overrides
any corresponding environment variable.

The following table specifies the interface to these routines. The names for the
routines are in user name space. The omp_lib.f, omp_lib.h and
omp_lib.mod header files are provided in the INCLUDE directory of your
compiler installation. The omp_lib.h header file is provided in the INCLUDE
directory of your compiler installation for use with the Fortran INCLUDE
statement. The omp_lib.mod file is provided in the INCLUDE directory for use
with the Fortran USE statement.

There are definitions for two different locks, omp_lock_t and
omp_nest_lock_t, which are used by the functions in the table that follows.

This topic provides a summary of the OpenMP run-time library routines. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

Function Description
Execution Environment Routines
subroutine
omp_set_num_threads(num_threads)
integer num_threads

Sets the number of
threads to use for
subsequent parallel
regions.

integer function omp_get_num_threads() Returns the number of
threads that are being
used in the current
parallel region.

integer function omp_get_max_threads() Returns the maximum
number of threads that
are available for parallel
execution.

integer function omp_get_thread_num() Determines the unique
thread number of the
thread currently
executing this section of
code.

integer function omp_get_num_procs() Determines the number
of processors available
to the program.

Parallel Programming with Intel® Fortran

187

logical function omp_in_parallel() Returns .TRUE. if called
within the dynamic extent
of a parallel region
executing in parallel;
otherwise returns
.FALSE..

subroutine
omp_set_dynamic(dynamic_threads)
logical dynamic_threads

Enables or disables
dynamic adjustment of
the number of threads
used to execute a
parallel region. If
dynamic_threads is
.TRUE., dynamic
threads are enabled. If
dynamic_threads is
.FALSE., dynamic
threads are disabled.
Dynamics threads are
disabled by default.

logical function omp_get_dynamic() Returns .TRUE. if
dynamic thread
adjustment is enabled,
otherwise returns
.FALSE..

subroutine omp_set_nested(nested)
integer nested

Enables or disables
nested parallelism. If
nested is .TRUE.,
nested parallelism is
enabled. If nested is
.FALSE., nested
parallelism is disabled.
 Nested parallelism is
disabled by default.

logical function omp_get_nested() Returns .TRUE. if
nested parallelism is
enabled, otherwise
returns .FALSE..

Lock Routines
subroutine omp_init_lock(lock)
integer (kind=omp_lock_kind)::lock

Initializes the lock
associated with lock for
use in subsequent calls.

subroutine omp_destroy_lock(lock)
integer (kind=omp_lock_kind)::lock

Causes the lock
associated with lock to
become undefined.

subroutine omp_set_lock(lock) Forces the executing

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

188

integer (kind=omp_lock_kind)::lock thread to wait until the
lock associated with
lock is available. The
thread is granted
ownership of the lock
when it becomes
available.

subroutine omp_unset_lock(lock)
integer (kind=omp_lock_kind)::lock

Releases the executing
thread from ownership of
the lock associated with
lock. The behavior is
undefined if the
executing thread does
not own the lock
associated with lock.

logical omp_test_lock(lock)
integer (kind=omp_lock_kind)::lock

Attempts to set the lock
associated with lock. If
successful, returns
.TRUE., otherwise
returns .FALSE..

subroutine omp_init_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

 Initializes the nested
lock associated with
lock for use in the
subsequent calls.

subroutine omp_destroy_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Causes the nested lock
associated with lock to
become undefined.

subroutine omp_set_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Forces the executing
thread to wait until the
nested lock associated
with lock is available.
The thread is granted
ownership of the nested
lock when it becomes
available.

subroutine omp_unset_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Releases the executing
thread from ownership of
the nested lock
associated with lock if
the nesting count is zero.
Behavior is undefined if
the executing thread
does not own the nested
lock associated with
lock.

Parallel Programming with Intel® Fortran

189

integer omp_test_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Attempts to set the
nested lock associated
with lock. If successful,
returns the nesting
count, otherwise returns
zero.

Timing Routines
double-precision function
omp_get_wtime()

Returns a double-
precision value equal to
the elapsed wallclock
time (in seconds) relative
to an arbitrary reference
time. The reference time
 does not change during
program execution.

double-precision function
omp_get_wtick()

Returns a double-
precision value equal to
the number of seconds
between successive
clock ticks.

Intel Extension Routines

The Intel® Fortran Compiler implements the following group of routines as an
extension to the OpenMP run-time library: getting and setting stack size for
parallel threads and memory allocation.

The Intel extension routines described in this section can be used for low-level
debugging to verify that the library code and application are functioning as
intended. It is recommended to use these routines with caution because using
them requires the use of the -openmp_stubs command-line option to execute
the program sequentially. These routines are also generally not recognized by
other vendor's OpenMP-compliant compilers, which may cause the link stage to
fail for these other compilers.

Stack Size

In most cases, environment variables can be used in place of the extension
library routines. For example, the stack size of the parallel threads may be set
using the KMP_STACKSIZE environment variable rather than the
kmp_set_stacksize() library routine.

Note
A run-time call to an Intel extension routine takes precedence over the
corresponding environment variable setting.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

190

The routines kmp_set_stacksize() and kmp_get_stacksize() take a 32-
bit argument only. The routines kmp_set_stacksize_s() and
kmp_get_stacksize_s() take a size_t argument, which can hold 64-bit
integers.

On Itanium-based systems, it is recommended to always use
kmp_set_stacksize() and kmp_get_stacksize(). These _s() variants
must be used if you need to set a stack size ≥ 2**32 bytes (4 gigabytes).

See the definitions of stack size routines in the table that follows.

Memory Allocation

The Intel® Fortran Compiler implements a group of memory allocation routines
as an extension to the OpenMP* run-time library to enable threads to allocate
memory from a heap local to each thread. These routines are: kmp_malloc,
kmp_calloc, and kmp_realloc.

The memory allocated by these routines must also be freed by the kmp_free
routine. While it is legal for the memory to be allocated by one thread and
kmp_free'd by a different thread, this mode of operation has a slight
performance penalty.

See the definitions of these routines in the table that follows.

Function/Routine Description
Stack Size
function kmp_get_stacksize_s()
integer(kind=kmp_size_t_kind)kmp_get
_stacksize_s

Returns the number of bytes that
will be allocated for each parallel
thread to use as its private stack.
This value can be changed via
the kmp_get_stacksize_s
routine, prior to the first parallel
region or via the
KMP_STACKSIZE environment
variable.

function kmp_get_stacksize()
integer kmp_get_stacksize

This routine is provided for
backwards compatibility only; use
kmp_get_stacksize_s
 routine for compatibility across
different families of Intel
processors.

subroutine kmp_set_stacksize_s(size)
integer (kind=kmp_size_t_kind) size

Sets to size the number of bytes
that will be allocated for each
parallel thread to use as its
private stack. This value can also

Parallel Programming with Intel® Fortran

191

be set via the KMP_STACKSIZE
environment variable. In order for
kmp_set_stacksize_s to have
an effect, it must be called before
the beginning of the first
(dynamically executed) parallel
region in the program.

subroutine kmp_set_stacksize(size)
integer size

This routine is provided for
backward compatibility only; use
kmp_set_stacksize_s(size)
for compatibility across different
families of Intel processors.

Memory Allocation
function kmp_malloc(size)
integer(kind=kmp_pointer_kind)kmp_malloc
integer(kind=kmp_size_t_kind)size

Allocate memory block of size
bytes from thread-local heap.

function kmp_calloc(nelem,elsize)
integer(kind=kmp_pointer_kind)kmp_calloc
integer(kind=kmp_size_t_kind)nelem
integer(kind=kmp_size_t_kind)elsize

Allocate array of nelem elements
of size elsize from thread-local
heap.

function kmp_realloc(ptr, size)
integer(kind=kmp_pointer_kind)kmp_realloc
integer(kind=kmp_pointer_kind)ptr
integer(kind=kmp_size_t_kind)size

Reallocate memory block at
address ptr and size bytes
from thread-local heap.

subroutine kmp_free(ptr)
integer (kind=kmp_pointer_kind) ptr

Free memory block at address
ptr from thread-local heap.
 Memory must have been
previously allocated with
kmp_malloc, kmp_calloc, or
kmp_realloc.

Examples of OpenMP Usage

The following examples show how to use the OpenMP feature. See more
examples in the OpenMP Fortran version 2.0 specifications.

DO: A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains a
different number of instructions. To get good load balancing, dynamic scheduling
is used. The END DO has a NOWAIT because there is an implicit BARRIER at
the end of the parallel region.

 subroutine do_1 (a,b,n)
real a(n,n), b(n,n)

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

192

c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
do i = 2, n
do j = 1, i
b(j,i) = (a(j,i) + a(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp end parallel
end

DO: Two Difference Operators

This example shows two parallel regions fused to reduce fork/join overhead.
The first END DO has a NOWAIT because all the data used in the second loop is
different than all the data used in the first loop.

 subroutine do_2 (a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d(m,m)
c$omp parallel
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
do i = 2, n
do j = 1, i
b(j,i) = (a(j,i) + a(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp do schedule(dynamic,1)
do i = 2, m
do j = 1, i
d(j,i) = (c(j,i) + c(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp end parallel
end

SECTIONS: Two Difference Operators

This example demonstrates the use of the SECTIONS directive. The logic is
identical to the preceding DO example, but uses SECTIONS instead of DO. Here
the speedup is limited to 2 because there are only two units of work whereas in
DO: Two Difference Operators above there are n-1 + m-1 units of work.

 subroutine sections_1 (a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d(m,m)
!$omp parallel

Parallel Programming with Intel® Fortran

193

!$omp& shared(a,b,c,d,m,n)
!$omp& private(i,j)
!$omp sections
!$omp section
do i = 2, n
do j = 1, i
b(j,i)=(a(j,i) + a(j,i-1)) / 2
enddo
enddo

!$omp section
do i = 2, m
do j = 1, i
d(j,i)=(c(j,i) + c(j,i-1)) / 2
enddo
enddo
!$omp end sections nowait
!$omp end parallel
end

SINGLE: Updating a Shared Scalar

This example demonstrates how to use a SINGLE construct to update an
element of the shared array a. The optional NOWAIT after the first loop is
omitted because it is necessary to wait at the end of the loop before proceeding
into the SINGLE construct.

 subroutine sp_1a (a,b,n)
real a(n), b(n)
!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i)
!$omp do
do i = 1, n
a(i) = 1.0 / a(i)
enddo
!$omp single
a(1) = min(a(1), 1.0)
!$omp end single
!$omp do
do i = 1, n
b(i) = b(i) / a(i)
enddo
!$omp end do nowait
!$omp end parallel
end

Debugging Multithreaded Programs
Debugging Multithread Programs Overview

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

194

The debugging of multithreaded program discussed in this section applies to both
the OpenMP* Fortran API and the Intel® Fortran parallel compiler directives.
When a program uses parallel decomposition directives, you must take into
consideration that the bug might be caused either by an incorrect program
statement or it might be caused by an incorrect parallel decomposition directive.
In either case, the program to be debugged can be executed by multiple threads
simultaneously.

To debug the multithreaded programs, you can use:

• The Intel® Debugger for IA-32 and the Intel Debugger for Itanium®-based
applications (idb)

• The Intel Fortran Compiler debugging options and methods.
• The Intel parallelization extension routines for low-level debugging.
• The VTune(TM) Performance Analyzer to define the problematic areas.

Other best known debugging methods and tips include:

• Correct the program in a single-threaded, uni-processor environment
• Statically analyze locks
• Use a trace statement (such as the PRINT statement)
• Think in parallel, make very few assumptions
• Step through your code
• Make sense of threads and callstack information
• Identify the primary thread
• Know what thread you are debugging
• Single stepping in one thread does not mean single stepping in others
• Watch out for context switch

Debugger Limitations for Multithread Programs

Debuggers such as Intel Debugger (IDB) for IA-32 and Intel Debugger (IDB) for
Itanium-based applications support the debugging of programs that are executed
by multiple threads. However, the currently available versions of such debuggers
do not directly support the debugging of parallel decomposition directives, and
therefore, there are limitations on the debugging features.

Some of the new features used in OpenMP are not yet fully supported by the
debuggers, so it is important to understand how these features work to know how
to debug them. The two problem areas are:

• Multiple entry points
• Shared variables

The Intel Debugger (IDB) is not aware of and currently does not handle unique
OpenMP features that relate to multi-threading.

Parallel Programming with Intel® Fortran

195

Debugging Parallel Regions

The compiler implements a parallel region by enabling the code in the region and
putting it into a separate, compiler-created entry point. Although this is different
from outlining � the technique employed by other compilers, that is, creating a
subroutine, � the same debugging technique can be applied.

Constructing an Entry-point Name

The compiler-generated parallel region entry point name is constructed with a
concatenation of the following strings:

• "__" character
• entry point name for the original routine (for example, _parallel)
• "_" character
• line number of the parallel region
• __par_region for OpenMP parallel regions (!$OMP PARALLEL)

__par_loop for OpenMP parallel loops (!$OMP PARALLEL DO),
__par_section for OpenMP parallel sections (!$OMP PARALLEL
SECTIONS)

• sequence number of the parallel region (for each source file, sequence
number starts from zero.)

When you use routine names (for example, padd) and entry names (for example,
_PADD, ___PADD_6__par_loop0), the following occurs. The Fortran
Compiler, by default, first changes lower/mixed case routine names to upper
case. For example, pAdD() becomes PADD(), and this becomes entry name by
adding one underscore. The secondary entry name change happens after that.
That's why the "__par_loop" part of the entry name stays as lower case. For
some reason, the debugger doesn't accept the upper case routine name "PADD"
to set the breakpoint. Instead, it accepts the lower case routine name "padd".

Example 1 shows the debugging of the code with a parallel region. Example 1 is
produced by this command:

ifort -openmp -g -O0 -S file.f90

Let us consider the code of subroutine parallel in Example 1.

Subroutine PARALLEL() source listing

1 subroutine parallel
2 integer id,OMP_GET_THREAD_NUM
3 !$OMP PARALLEL PRIVATE(id)
4 id = OMP_GET_THREAD_NUM()

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

196

5 !$OMP END PARALLEL
6 end

The parallel region is at line 3. The compiler created two entry points:
parallel_ and ___parallel_3__par_region0. The first entry point
corresponds to the subroutine parallel(), while the second entry point
corresponds to the OpenMP parallel region at line 3.

Example 1 Debugging Code with Parallel Region

Machine Code Listing of the Subroutine parallel()

 .globl parallel_
parallel_:
..B1.1: # Preds ..B1.0
..LN1:
pushl %ebp #1.0
movl %esp, %ebp #1.0
subl $44, %esp #1.0
pushl %edi #1.0
...
..B1.13: # Preds ..B1.9
addl $-12, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.2, (%esp) #6.0
movl $0, 4(%esp) #6.0
movl $_parallel__6__par_region1, 8(%esp) #6.0
call __kmpc_fork_call #6.0
 # LOE
..B1.31: # Preds ..B1.13
addl $12, %esp #6.0
 # LOE
..B1.14: # Preds ..B1.31 ..B1.30
..LN4:
leave #9.0
ret #9.0
 # LOE

.type parallel_,@function

.size parallel_,.-parallel_

.globl _parallel__3__par_region0
_parallel__3__par_region0:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
..B1.15: # Preds ..B1.0
pushl %ebp #9.0
movl %esp, %ebp #9.0
subl $44, %esp #9.0
..LN5:
call omp_get_thread_num_ #4.0
 # LOE eax
..B1.32: # Preds ..B1.15
movl %eax, -32(%ebp) #4.0

Parallel Programming with Intel® Fortran

197

 # LOE
..B1.16: # Preds ..B1.32
movl -32(%ebp), %eax #4.0
movl %eax, -20(%ebp) #4.0
..LN6:
leave #9.0
ret #9.0
 # LOE
.type _parallel__3__par_region0,@function
.size _parallel__3__par_region0,._parallel__3__par_region0
.globl _parallel__6__par_region1
_parallel__6__par_region1:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
..B1.17: # Preds ..B1.0

pushl %ebp #9.0
movl %esp, %ebp #9.0
subl $44, %esp #9.0
..LN7:
call omp_get_thread_num_ #7.0
 # LOE eax
..B1.33: # Preds ..B1.17
movl %eax, -28(%ebp) #7.0
 # LOE
..B1.18: # Preds ..B1.33
movl -28(%ebp), %eax #7.0
movl %eax, -16(%ebp) #7.0
..LN8:
leave #9.0
ret #9.0
.align 4,0x90
mark_end;

Debugging the program at this level is just like debugging a program that uses
POSIX threads directly. Breakpoints can be set in the threaded code just like any
other routine. With GNU debugger, breakpoints can be set to source-level routine
names (such as parallel). Breakpoints can also be set to entry point names (such
as parallel_ and _parallel__3__par_region0). Note that the Intel Fortran Compiler
for Linux converted the upper case Fortran subroutine name to the lower case
one.

Debugging Multiple Threads

When in a debugger, you can switch from one thread to another. Each thread
has its own program counter so each thread can be in a different place in the
code. Example 2 shows a Fortran subroutine PADD(). A breakpoint can be set at
the entry point of OpenMP parallel region.

Source listing of the Subroutine PADD()

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

198

12. SUBROUTINE PADD(A, B, C, N)
13. INTEGER N
14. INTEGER A(N), B(N), C(N)
15. INTEGER I, ID, OMP_GET_THREAD_NUM
16. !$OMP PARALLEL DO SHARED (A, B, C, N) PRIVATE(ID)
17. DO I = 1, N
18. ID = OMP_GET_THREAD_NUM()
19. C(I) = A(I) + B(I) + ID
20. ENDDO
21. !$OMP END PARALLEL DO
22. END

The Call Stack Dumps

The first call stack below is obtained by breaking at the entry to subroutine PADD
using GNU debugger. At this point, the program has not executed any OpenMP
regions, and therefore has only one thread. The call stack shows a system run-
time __libc_start_main function calling the Fortran main program
parallel(), and parallel() calls subroutine padd(). When the program is
executed by more than one thread, you can switch from one thread to another.
The second and the third call stacks are obtained by breaking at the entry to the
parallel region. The call stack of master contains the complete call sequence. At
the top of the call stack is _padd__6__par_loop0(). Invocation of a threaded
entry point involves a layer of Intel OpenMP library function calls (that is,
functions with __kmp prefix). The call stack of the worker thread contains a
partial call sequence that begins with a layer of Intel OpenMP library function
calls.

ERRATA: The GNU debugger sometimes fails to properly unwind the call stack
of the immediate caller of the Intel OpenMP library function
__kmpc_fork_call().

Call Stack Dump of Master Thread upon Entry to Subroutine PADD

Switching from One Thread to Another

Parallel Programming with Intel® Fortran

199

Call Stack Dump of Master Thread upon Entry to Parallel Region

Call Stack Dump of Worker Thread upon Entry to Parallel Region

Example 2 Debugging Code Using Multiple Threads with Shared Variables

Subroutine PADD() Machine Code Listing
 .globl padd_
padd_:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
parameter 3: 16 + %ebp
parameter 4(n): 20 + %ebp
..B1.1: # Preds ..B1.0
..LN1:
pushl %ebp #1.0
...

..B1.19: # Preds ..B1.15
addl $-28, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl $4, 4(%esp) #6.0
movl $_padd__6__par_loop0, 8(%esp) #6.0
movl -196(%ebp), %eax #6.0
movl %eax, 12(%esp) #6.0
movl -152(%ebp), %eax #6.0
movl %eax, 16(%esp) #6.0
movl -112(%ebp), %eax #6.0
movl %eax, 20(%esp) #6.0
lea 20(%ebp), %eax #6.0
movl %eax, 24(%esp) #6.0
call __kmpc_fork_call #6.0
 # LOE
..B1.39: # Preds ..B1.19
addl $28, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0
 # LOE
..B1.20: # Preds ..B1.30
...

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

200

call __kmpc_for_static_init_4 #6.0
 # LOE
..B1.40: # Preds ..B1.20
addl $36, %esp #6.0
 # LOE
...

..B1.26: # Preds ..B1.28 ..B1.21
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl -8(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_for_static_fini #6.0
 # LOE
..B1.41: # Preds ..B1.26
addl $8, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0
 # LOE
..B1.27: # Preds ..B1.28 ..B1.25
..LN7:
call omp_get_thread_num_ #8.0
 # LOE eax
..B1.42: # Preds ..B1.27
...

cmpl %edx, %eax #10.0
jle ..B1.27 # Prob 50% #10.0
jmp ..B1.26 # Prob 100% #10.0
 # LOE
.type padd_,@function
.size padd_,.-padd_
.globl _padd__6__par_loop0
_padd__6__par_loop0:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
parameter 3: 16 + %ebp
parameter 4: 20 + %ebp
parameter 5: 24 + %ebp
parameter 6: 28 + %ebp
..B1.30: # Preds ..B1.0
..LN16:
pushl %ebp #13.0
movl %esp, %ebp #13.0
subl $208, %esp #13.0
movl %ebx, -4(%ebp) #13.0
..LN17:
movl 8(%ebp), %eax #6.0
movl (%eax), %eax #6.0
movl %eax, -8(%ebp) #6.0
movl 28(%ebp), %eax #6.0
..LN18:
movl (%eax), %eax #7.0
movl (%eax), %eax #7.0

Parallel Programming with Intel® Fortran

201

movl %eax, -80(%ebp) #7.0
movl $1, -76(%ebp) #7.0
movl -80(%ebp), %eax #7.0
testl %eax, %eax #7.0
jg ..B1.20 # Prob 50% #7.0
 # LOE
..B1.31: # Preds ..B1.41 ..B1.39 ..B1.38
..B1.30
..LN19:
movl -4(%ebp), %ebx #13.0
leave #13.0
ret #13.0
.align 4,0x90
mark_end;

Debugging Shared Variables

When a variable appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clause on some block, the variable is made private to the parallel
region by redeclaring it in the block. SHARED data, however, is not declared in
the threaded code. Instead, it gets its declaration at the routine level. At the
machine code level, these shared variables become incoming subroutine call
arguments to the threaded entry points (such as ___PADD_6__par_loop0).

In Example 2, the entry point ___PADD_6_par_loop0 has six incoming
parameters. The corresponding OpenMP parallel region has four shared
variables. First two parameters (parameters 1 and 2) are reserved for the
compiler's use, and each of the remaining four parameters corresponds to one
shared variable. These four parameters exactly match the last four parameters to
__kmpc_fork_call() in the machine code of PADD.

Note

The FIRSTPRIVATE, LASTPRIVATE, and REDUCTION variables also
require shared variables to get the values into or out of the parallel region.

Due to the lack of support in debuggers, the correspondence between the shared
variables (in their original names) and their contents cannot be seen in the
debugger at the threaded entry point level. However, you can still move to the
call stack of one of the subroutines and examine the contents of the variables at
that level. This technique can be used to examine the contents of shared
variables. In Example 2, contents of the shared variables A, B, C, and N can be
examined if you move to the call stack of PARALLEL().

203

Optimization Support Features
Optimization Support Features Overview
This section describes the Intel® Fortran features such as directives, intrinsics,
run-time library routines and various utilities which enhance your application
performance in support of compiler optimizations. These features are Intel
Fortran language extensions that enable you to optimize your source code
directly. This section includes examples of optimizations supported by Intel
extended directives and intrinsics or library routines that enhance and/or help
analyze performance.

For complete details of the Intel® Fortran Compiler directives and examples of
their use, see Chapter 14, "Directive Enhanced Compilation," in the Intel®
Fortran Language Reference. For intrinsic procedures, see Chapter 9, "Intrinsic
Procedures," in the Intel® Fortran Language Reference.

A final topic describes options that enable you to generate optimization reports
for major compiler phases and major optimizations. The optimization report
capability is used for Itanium®-based applications only.

Compiler Directives
Compiler Directives Overview

This section discusses the Intel® Fortran language extended directives that
enhance optimizations of application code, such as software pipelining, loop
unrolling, prefetching and vectorization. For complete list, descriptions and code
examples of the Intel® Fortran Compiler directives, see "Directive Enhanced
Compilation", section "General Directives", in the Intel® Fortran Language
Reference.

Pipelining for Itanium®-based Applications

The SWP and NOSWP directives indicate preference for a loop to get software-
pipelined or not. The SWP directive does not help data dependence, but
overrides heuristics based on profile counts or lop-sided control flow.

The software pipelining optimization triggered by the SWP directive applies
instruction scheduling to certain innermost loops, allowing instructions within a
loop to be split into different stages, allowing increased instruction level
parallelism. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Loops chosen for software pipelining are always innermost
loops that do not contain procedure calls that are not inlined. Because the

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

204

optimizer no longer considers fully unrolled loops as innermost loops, fully
unrolling loops can allow an additional loop to become the innermost loop (see -
unroll[n]]). You can request and view the optimization report to see whether
software pipelining was applied (see Optimizer Report Generation).

!DEC$ SWP
do i = 1, m
if (a(i) .eq. 0) then
b(i) = a(i) + 1
else
b(i) = a(i)/c(i)
endif
enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Loop Count and Loop Distribution

LOOP COUNT (N) Directive

The LOOP COUNT (n) directive indicates the loop count is likely to be n, where n
is an integer constant.

The value of loop count affects heuristics used in software pipelining,
vectorization and loop-transformations.

!DEC$ LOOP COUNT (10000)
do i =1,m
b(i) = a(i) +1 ! This is likely to enable
! the loop to get software-
! pipelined
enddo

For more details on this directive, see "Directive Enhanced Compilation", section
"General Directives", in the Intel® Fortran Language Reference.

Loop Distribution Directive

The DISTRIBUTE POINT directive indicates a preference of performing loop
distribution.

Loop distribution may cause large loops be distributed into smaller ones. This
may enable more loops to get software-pipelined. If the directive is placed inside
a loop, the distribution is performed after the directive and any loop-carried
dependency is ignored. If the directive is placed before a loop, the compiler will
determine where to distribute and data dependency is observed. Currently only
one distribute directive is supported if it is placed inside the loop.

Optimization Support Features

205

!DEC$ DISTRIBUTE POINT
do i =1, m
b(i) = a(i) +1
....
c(i) = a(i) + b(i) ! Compiler will decide where
 ! to distribute.
 ! Data dependency is observed
....
d(i) = c(i) + 1
enddo

do i =1, m
b(i) = a(i) +1
....
!DEC$ DISTRIBUTE POINT
call sub(a, n) ! Distribution will start here,
 ! ignoring all loop-carried
 ! dependency
c(i) = a(i) + b(i)
....
d(i) = c(i) + 1
enddo

For more details on this directive, see "Directive Enhanced Compilation", section
"General Directives", in the Intel® Fortran Language Reference.

Loop Unrolling Support

The UNROLL[n] directive tells the compiler how many times to unroll a counted
loop.

The n is an integer constant from 0 through 255.

The UNROLL directive must precede the DO statement for each DO loop it
affects.

If n is specified, the optimizer unrolls the loop n times. If n is omitted or if it is
outside the allowed range, the optimizer assigns the number of times to unroll the
loop.

The UNROLL directive overrides any setting of loop unrolling from the command
line.

Currently, the directive can be applied only for the innermost loop nest. If applied
to the outer loop nests, it is ignored. The compiler generates correct code by
comparing n and the loop count.

!DEC$ UNROLL(4)
do i = 1, m

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

206

b(i) = a(i) + 1
d(i) = c(i) + 1
enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Prefetching Support

The PREFETCH and NOPREFETCH directives assert that the data prefetches
be generated or not generated for some memory references. This affects the
heuristics used in the compiler.

If loop includes expression a(j), placing PREFETCH a in front of the loop,
instructs the compiler to insert prefetches for a(j + d) within the loop. d is
determined by the compiler. This directive is supported when option -O3 is on.

CDEC$ NOPREFETCH c
CDEC$ PREFETCH a
do i = 1, m
b(i) = a(c(i)) + 1
enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Vectorization Support

The directives discussed in this topic support vectorization.

IVDEP Directive

The IVDEP directive instructs the compiler to ignore assumed vector
dependences. To ensure correct code, the compiler treats an assumed
dependence as a proven dependence, which prevents vectorization. This
directive overrides that decision. Use IVDEP only when you know that the
assumed loop dependences are safe to ignore.

For example, if the expression j >= 0 is always true in the code fragment
bellow, the IVDEP directive can communicate this information to the compiler.
This directive informs the compiler that the conservatively assumed loop-carried
flow dependences for values j < 0 can be safely ignored:

Optimization Support Features

207

!DEC$ IVDEP
do i = 1, 100
a(i) = a(i+j)
enddo

Note
The proven dependences that prevent vectorization are not ignored, only
assumed dependences are ignored.

The usage of the directive differs depending on the loop form.

Loop 1
Do i
= a(*) + 1
a(*) =
enddo
Loop 2
Do i
a(*) =
= a(*) + 1
enddo

For loops of the form 1, use old values of a, and assume that there is no loop-
carried flow dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-
carried anti-dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output
dependency.
Example 1
CDEC$ IVDEP
do j=1,n
a(j) = a(j+m) + 1
enddo
Example 2
CDEC$ IVDEP
do j=1,n
a(j) = b(j) +1
b(j) = a(j+m) + 1
enddo

Example 1 ignores the possible backward dependencies and enables the loop to
get software pipelined.

Example 2 shows possible forward and backward dependencies involving array
a in this loop and creating a dependency cycle. With IVDEP , the backward
dependencies are ignored.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

208

IVDEP has options: IVDEP:LOOP and IVDEP:BACK. The IVDEP:LOOP option
implies no loop-carried dependencies. The IVDEP:BACK option implies no
backward dependencies.

The IVDEP directive is also used with the -ivdep_parallel option for
Itanium®-based applications.

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to IVDEP directive, there are more directives that can be used to
override the efficiency heuristics of the vectorizer:

VECTOR ALWAYS
NOVECTOR
VECTOR ALIGNED
VECTOR UNALIGNED
VECTOR NONTEMPORAL

The VECTOR directives control the vectorization of the subsequent loop in the
program, but the compiler does not apply them to nested loops. Each nested
loop needs its own directive preceding it. You must place the vector directive
before the loop control statement.

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

The VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive overrides the efficiency heuristics of the
vectorizer, but it only works if the loop can actually be vectorized, that is: use
IVDEP to ignore assumed dependences.

The VECTOR ALWAYS directive can be used to override the default behavior of
the compiler in the following situation. Vectorization of non-unit stride references
usually does not exhibit any speedup, so the compiler defaults to not vectorizing
loops that have a large number of non-unit stride references (compared to the
number of unit stride references). The following loop has two references with
stride 2. Vectorization would be disabled by default, but the directive
overrides this behavior.
!DEC$ VECTOR ALWAYS
do i = 1, 100, 2
a(i) = b(i)
enddo

Optimization Support Features

209

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization
results in a performance regression rather than improvement), the NOVECTOR
directive can be used in the source text to disable vectorization of a loop. For
instance, the Intel® Compiler vectorizes the following example loop by default. If
this behavior is not appropriate, the NOVECTOR directive can be used, as
shown below.
!DEC$ NOVECTOR
do i = 1, 100
a(i) = b(i) + c(i)
enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

The VECTOR ALIGNED and UNALIGNED Directives

Like VECTOR ALWAYS, these directives also override the efficiency heuristics.
The difference is that the qualifiers UNALIGNED and ALIGNED instruct the
compiler to use, respectively, unaligned and aligned data movement instructions
for all array references. This disables all the advanced alignment optimizations of
the compiler, such as determining alignment properties from the program context
or using dynamic loop peeling to make references aligned.

Note
The directives VECTOR [ALWAYS, UNALIGNED, ALIGNED] should be
used with care. Overriding the efficiency heuristics of the compiler should
only be done if the programmer is absolutely sure the vectorization will
improve performance. Furthermore, instructing the compiler to implement
all array references with aligned data movement instructions will cause a
run-time exception in case some of the access patterns are actually
unaligned.

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

The VECTOR NONTEMPORAL Directive

The VECTOR NONTEMPORAL directive results in streaming stores on
Pentium® 4 based systems. A floating-point type loop together with the
generated assembly are shown in the example below. For large n, significant
performance improvements result on a Pentium 4 systems over a non-streaming
implementation.

The following example illustrates the use of the VECTOR NONTEMPORAL
directive:

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

210

 subroutine set(a,n)
 integer i,n
 real a(n)
!DEC$ VECTOR NONTEMPORAL
!DEC$ VECTOR ALIGNED
 do i = 1, n
 a(i) = 1
 enddo
 end
 program setit
 parameter(n=1024*1204)
 real a(n)
 integer i
 do i = 1, n
 a(i) = 0
 enddo
 call set(a,n)
 do i = 1, n
 if (a(i).ne.1) then
 print *, 'failed nontemp.f', a(i), i
 stop
 endif
 enddo
 print *, 'passed nontemp.f'
 end

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Optimizations and Debugging
This topic describes the command-line options that you can use to debug your
compilation and to display and check compilation errors.

The options that enable you to get debug information while optimizing are as
follows:

-O0 Disables optimizations. Enables -fp option.
-g Generates symbolic debugging information and line

numbers in the object code for use by the source-
level debuggers. Turns off -O2 and makes -O0
the default unless -O2 (or -O1 or -O3) is
explicitly specified in the command line together
with -g.

-debug keyword Specifies settings that enhance debugging. To use
this option, you must also specify the -g option.
The only choice for keyword is

Optimization Support Features

211

variable_locations, which produces
enhanced debug information useful in finding
scalar local variables.

-fp
IA-32 only

Disables the use of the ebp register in
optimizations. Directs to use the ebp-based stack
frame for all functions.

Support for Symbolic Debugging, -g

Use the -g option to direct the compiler to generate code to provide symbolic
debugging information and line numbers in the object code that will be used by
your source-level debugger. For example:

ifort -g prog1.f

Turns off -O2 and makes -O0 the default unless -O2 (or -O1 or -O3) is explicitly
specified in the command line together with -g.

The Use of ebp Register

-fp (IA-32 only)

Most debuggers use the ebp register as a stack frame pointer to produce a stack
backtrace. The -fp option disables the use of the ebp register in optimizations
and directs the compiler to generate code that maintains and uses ebp as a
stack frame pointer for all functions so that a debugger can still produce a stack
backtrace without turning off -O1, -O2, or -O3 optimizations.

Note that using this option reduces the number of available general-purpose
registers by one, and results in slightly less efficient code.

-fp Summary

Default OFF
-O1 , -O2, or -
O3

Disables -fp

-O0 Enables -fp

The -traceback Option

The -traceback option also forces the compiler to use ebp as the stack frame
pointer. In addition, the -traceback option causes the compiler to generate
extra information into the object file, which allows a symbolic stack traceback to
be produced if a run-time failure occurs.

Combining Optimization and Debugging

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

212

The -O0 option turns off all optimizations so you can debug your program before
any optimization is attempted. To get the debug information, use the -g option.

The compiler lets you generate code to support symbolic debugging while one of
the -O1, -O2, or -O3 optimization options is specified on the command line along
with -g, which produces symbolic debug information in the object file.

Note that if you specify an -O1, -O2, or -O3 option with the -g option, some of
the debugging information returned may be inaccurate as a side-effect of
optimization.

It is best to make your optimization and/or debugging choices explicit:

• If you need to debug your program excluding any optimization effect, use
the -O0 option, which turns off all the optimizations.

• If you need to debug your program with optimization enabled, then you
can specify the -O1, -O2, or -O3 option on the command line along with -
g.

Note
The -g option slows down the program when no optimization level (-On) is
specified. In this case -g turns on -O0, which is what slows the program
down. However, if, for example, both -O2 and -g are specified, the code
should run very nearly at the same speed as if -g were not specified.

Refer to the table below for the summary of the effects of using the -g option
with the optimization options.

These
options

Produce these results

-g Debugging information produced, -O0
enabled (optimizations disabled), -fp
enabled for IA-32-targeted compilations

-g -O1 Debugging information produced, -O1
optimizations enabled.

-g -O2 Debugging information produced, -O2
optimizations enabled.

-g -O3 -fp Debugging information produced, -O3
optimizations enabled, -fp enabled for
IA-32-targeted compilations.

Debugging and Assembling

The assembly listing file is generated without debugging information, but if you
produce an object file, it will contain debugging information. If you link the object

Optimization Support Features

213

file and then use the GDB debugger on it, you will get full symbolic
representation.

Optimizer Report Generation
The Intel® Fortran Compiler provides options to generate and manage
optimization reports.

• -opt_report generates optimizations report and places it in a file
specified in
-opt_report_filefilename. If -opt_report_file is not specified,
-opt_report directs the report to stderr. The default is OFF: no
reports are generated.

• -opt_report_filefilename generates optimizations report and
directs it to a file specified in filename.

• -opt_report_level{min|med|max} specifies the detail level of the
optimizations report. The min argument provides the minimal summary
and the max the full report. The default is -opt_report_levelmin.

• -opt_report_routine [substring] generates reports from all
routines with names containing the substring as part of their name. If
[substring] is not specified, reports from all routines are generated.
The default is to generate reports for all routines being compiled.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase
argument of the
-opt_report_phasephase option.

The option can be used multiple times on the same command line to generate
reports for multiple optimizers.

Currently, the reports for the following optimizers are supported:

Optimizer Logical
Name

Optimizer Full Name

ipo Interprocedural Optimizer
hlo High-level Language

Optimizer
ilo Intermediate Language

Scalar Optimizer
ecg Itanium®-based Compiler

Code Generator
all All optimizers

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

214

When one of the above logical names for optimizers are specified all reports from
that optimizer will be generated. For example, -opt_report_phaseipo and -
opt_report_phaseecg generate reports from the interprocedural optimizer
and the code generator.

Each of the optimizers can potentially have specific optimizations within them.
Each of these optimizations are prefixed with the optimizer's logical name. For
example:

Optimizer_optimization Full Name
ipo_inl Interprocedural Optimizer, inline

expansion of functions
ipo_cp Interprocedural Optimizer, copy

propagation
hlo_unroll High-level Language Optimizer, loop

unrolling
hlo_prefetch High-level Language Optimizer,

prefetching
ilo_copy_propagation Intermediate Language Scalar

Optimizer, copy propagation
ecg_swp Itanium®-based Compiler Code

Generator, software pipelining

The following command generates a report for the Itanium®-based Compiler
Code Generator (ecg):

ifort -c -opt_report -opt_report_phase ecg myfile.f

where:

• -c tells the compiler to stop at generating the object code, not linking
• -opt_report invokes the report generator
• -opt_report_phaseecg indicates the phase (ecg) for which to

generate the report; the space between the option and the phase is
optional.

The entire name for a particular optimization within an optimizer need not be
specified in full, just a few characters is sufficient. All optimization reports that
have a matching prefix with the specified optimizer are generated. For example,
if -opt_report_phase ilo_co is specified, a report from both the constant
propagation and the copy propagation are generated.

The Availability of Report Generation

Optimization Support Features

215

The -opt_report_help option lists the logical names of optimizers and
optimizations that are currently available for report generation.

For IA-32 systems, the reports can be generated for:

• ilo
• hlo if -O3 is on
• ipo if interprocedural optimizer is invoked with -ip or -ipo
• all the above optimizers if -O3 and -ip or -ipo options are on

For Itanium-based systems, the reports can be generated for:

• ilo
• ecg
• hlo if -O3 is on
• ipo if interprocedural optimizer is invoked with -ip or -ipo
• all the above optimizers if -O3 and -ip or -ipo options are on

Note
If hlo or ipo report is requested, but the controlling option (-O3 or -ip--
ipo, respectively) is not on, the compiler generates an empty report.

217

Glossary
Glossary

alignment
constraint

The proper boundary of the stack where data must be stored.

alternate loop
transformation

An optimization in which the compiler generates a copy of a
loop and executes the new loop depending on the boundary
size.

branch count
profiler

A tool that counts the number of times a program executes
each branch statement. The utility also generates a database
that shows how the program executed.

branch
probability
database

The database generated by the branch count profiler. The
database contains the number of times each branch is
executed.

cache hit The situation when the information the processor wants is in
the cache.

call site A call site consists of the instructions immediately preceding
a call instruction and the call instruction itself.

common
subexpression
elimination

An optimization in which the compiler detects and combines
redundant computations.

conditionals Any operation that takes place depending on whether or not
a certain condition is true.

constant
argument
propagation

An optimization in which the compiler replaces the formal
arguments of a routine with actual constant values. The
compiler then propagates constant variables used as actual
arguments.

constant
branches

Conditionals that always take the same branch.

constant folding An optimization in which the compiler, instead of storing the
numbers and operators for computation when the program
executes, evaluates the constant expression and uses the
result.

copy propagation An optimization in which the compiler eliminates
unnecessary assignments by using the value assigned to a
variable instead of using the variable itself.

dataflow The movement of data through a system, from entry to
destination.

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

218

dead-code
elimination

An optimization in which the compiler eliminates any code
that generates unused values or any code that will never be
executed in the program.

dynamic linking The process in which a shared object is mapped into the
virtual address space of your program at run time.

empty
declaration

A semicolon and nothing before it.

frame pointer A pointer that holds a base address for the current stack and
is used to access the stack frame.

in-line function
expansion

An optimization in which the compiler replaces each function
call with the function body expanded in place.

induction
variable
simplification

An optimization in which the compiler reduces the complexity
of an array index calculation by using only additions.

instruction
scheduling

An optimization in which the compiler reorders the generated
machine instructions so that more than one can execute in
parallel.

instruction
sequencing

An optimization in which the compiler eliminates less efficient
instructions and replaces them with instruction sequences
that take advantage of a particular processor's features.

interprocedural
optimization

An optimization that applies to the entire program except for
library routines.

loop blocking An optimization in which the compiler reorders the execution
sequence of instructions so that the compiler can execute
iterations from outer loops before completing all the iterations
of the inner loop.

loop unrolling An optimization in which the compiler duplicates the
executed statements inside a loop to reduce the number of
loop iterations.

loop-invariant
code movement

An optimization in which the compiler detects multiple
instances of a computation that does not change within a
loop.

padding The addition of bytes or words at the end of each data type in
order to meet size and alignment constraints.

preloading An optimization in which the compiler loads the vectors, one
cache at a time, so that during the loop computation the
number of external bus turnarounds is reduced.

profiling A process in which detailed information is produced about
the program's execution.

Glossary

219

register variable
detection

An optimization in which the compiler detects the variables
that never need to be stored in memory and places them in
register variables.

side effects Results of the optimization process that might increase the
code size and/or processing time.

static linking The process in which a copy of the object file that contains a
function used in your program is incorporated in your
executable file at link time.

strength
reduction

An optimization in which the compiler reduces the complexity
of an array index calculation by using only additions.

strip mining An optimization in which the compiler creates an additional
level of nesting to enable inner loop computations on vectors
that can be held in the cache. This optimization reduces the
size of inner loops so that the amount of data required for the
inner loop can fit the cache size.

token pasting The process in which the compiler treats two tokens
separated by a comment as one (for example, a/**/b become
ab).

transformation A rearrangement of code. In contrast, an optimization is a
rearrangement of code where improved run-time
performance is guaranteed.

unreachable
code

Instructions that are never executed by the compiler.

unused code Instructions that produce results that are not used in the
program.

variable
renaming

An optimization in which the compiler renames instances of a
variable that refer to distinct entities.

221

Index
1

128-bit Streaming SIMD Extensions
.. 137

16-bit data

accessing13, 30, 137

16-byte

aligned address 140

boundary 140

3

32-bit

counters 97

data.............................13, 30, 137

exceed 79

pointers 79

6

64-bit data................. 13, 30, 97, 189

64-bit MMX(TM) 137

8

80-bit data.................................... 13

8-bit data.........................13, 30, 137

8-byte13, 30, 55

A

ABI visibility options......................57

ABS ... 139

absence

of loop-carried memory
dependency 124

accessing

16-bit ..30

accuracy

controlling.................................70

added performance93

advanced PGO options.................98

affected aspect of the program79

ALIAS .. 101

-align compiler option13

-align dcommons compiler option.13,
41, 55

ALIGNED 206

aligning

data.. 140

alignment

example.................................. 140

options......................................55

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

222

setting 13

strategy 140

ALLOCATABLE 51

allocating temporary arrays......... 158

-altparam compiler option 48

analyzing

effects of IPO............................ 83

programming 13

ANSI Fortran standard................ 160

ANSI standard

conformance with................ 65, 71

-ansi_alias compiler option 48, 51

application

basic block 103

code coverage........................ 103

OpenMP..........................127, 150

pipelining................................ 203

tests 103

visual presentation.................. 103

architectures

coding guidelines for................. 34

argument

aliasing................................... 140

using efficiently20

arithmetic precision

improving and restricting71

arrays

accessing20

assumed-shape20

compiler creates20

derived-part13

efficient compilation using41

natural storage order.................25

operations............................... 139

output argument array types......20

requirements.............................20

using efficiently20

assembling................................. 210

assembly files

generating83, 86, 210

-assume compiler option......... 25, 41

assumed-shape arrays20

ATOMIC directive 150, 170

-auto compiler option....................51

automatic

allocation of stacks.............. 41, 51

Index

223

checking of stacks 51

optimization for IA-32 systems... 76

-automatic compiler option............ 51

AUTOMATIC statement................ 51

auto-parallelization

data flow................................. 144

diagnostic............................... 147

enabling 145

environment variables............. 145

overview................................. 143

processing.............................. 144

programming with 144

threshold control 147

threshold needed.................... 145

auto-parallelized loops.......... 48, 147

auto-parallelizer

control 127

enabling127, 145

threshold 147

auto-vectorization................. 34, 127

auto-vectorizer 134

-ax compiler option..........34, 62, 131

B

BACKSPACE25

-backtrace compiler option.......... 210

BARRIER directive

description of 160

using 150, 170

basic PGO options

profile-guided optimization... 94, 97

bcolor option of code-coverage tool
... 103

big-endian.............................. 41, 45

binding to a parallel region.......... 150

block size................................... 138

BLOCKSIZE

increasing.................................25

omitting.....................................25

values.......................................25

browsing

frames 103

BUFFERCOUNT

buffered_io option25

default25

increase....................................25

buffers

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

224

UBC ... 25

C

-c compiler option................... 41, 81

c$OMP BARRIER 170

c$OMP DO PRIVATE................. 170

c$OMP END PARALLEL 170

c$OMP PARALLEL 170

c$OMP prefix for OpenMP directives
.......................................158, 191

cache size

funtion returning........................ 33

CACHESIZE 33

call stack dumps

master thread 197

worker thread 197

callee... 90

calls

and DO-loop collapsing............. 25

malloc....................................... 57

OMP_SET_NUM_THREADS .. 164

callstack..................................... 193

cc_omp keyword for -assume....... 48

-ccdefault compiler option............. 48

ccolor option of code coverage tool
... 103

CDEC$ prefix for general directives
................ 145, 203, 204, 205, 206

CEIL rounding mode.....................34

character data........................ 13, 55

checking

floating-point stack state............51

inefficient unaligned data...........13

chunk size

specifying 180

clauses

COPYIN 175

cross-reference of 160

DEFAULT 175

FIRSTPRIVATE 176

in worksharing constructs........ 166

LASTPRIVATE 176

list of....................................... 174

overview of 160, 174

PRIVATE................................ 176

REDUCTION 178

SHARED 180

summary of............................. 160

Index

225

to debug shared variables 201

cleanup of loops......................... 138

code

assembly.......................... 37, 206

preparing................................ 150

codecov command 103

codecov_option for code coverage
tool ... 103

code-coverage tool..................... 103

coding guidelines

for Intel architectures 34

coloring scheme

setting 103

combined parallel and worksharing
constructs........................150, 169

command line

options 48, 55, 65, 131

syntax for code coverage tool.. 103

syntax for IPO executable 81

syntax for linker tool 83

syntax for OpenMP directives.. 158

syntax for test prioritization tool111

comma-separated list

for clauses...............164, 166, 174

for variables............................ 160

COMMON

block..13, 34, 41, 55, 57, 150, 164,
174, 175

statement...................... 13, 34, 55

compilation

controlling.................................55

customizing process of..............41

efficient.....................................41

optimizing41

options.....................48, 51, 55, 57

parallel programming 127

phase80

techniques................................41

using linker tool.........................83

with real object files...................86

compilation:..................................80

compiler

applying heuristic 147

commands................................41

compiler-supplied library92

creating temporary array20

debugging parallel regions 195

default optimizations48

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

226

defining the size of the array
elements 13

directives 203

efficient compilation 41

Intel extension routines189, 195

IPO benefits.............................. 79

issuing warnings86, 97, 98, 99,
131, 160

merging the data from all .dyn files
... 99

optimization levels 62

producing profile-guided
optimization................... 86, 100

relocating the source files........ 102

report generation 213

selecting routines for inlining 90

treating assumed dependence 206

using OpenMP.................150, 158

vectorization130, 206

COMPLEX13, 30, 48, 51

conditional parallel region execution
.. 164

conforming

ANSI .. 65

IEEE 754 71

constructing an entry-point name 195

controlling

advanced PGO optimizations98

alignment with options...............55

auto-parallelizer's diagnostic levels
................................... 127, 147

compilation process41

complex flow........................... 125

computation of stacks and
variables51

data scope attributes............... 166

floating-point accuracy .. 69, 70, 71

floating-point computations........70

generation of profile information
... 118

inline expansion........................92

loop vectorization 206

number of threads................... 164

OpenMP* diagnostics.............. 158

rounding69

speculation62

your program with OpenMP..... 186

conventions

in the User's Guide, Volume II ...11

COPYIN clause.. 156, 160, 164, 174,
175

Index

227

COPYPRIVATE clause............... 160

correct usage of loops135, 136

coverage analysis 103

CPU

more effective use of................. 20

time.................................... 25, 38

CRAY pointer aliasing

preventing 51

creating

DPI list.................................... 111

multifile IPO executable using xild
... 83

multifile IPO executable with
command line........................ 81

multithreaded applications......... 34

criteria for inline function expansion
.. 90

CRITICAL directive......150, 160, 170

customizing

compilation process 41

D

data

alignment.....................13, 55, 140

cache unit............................... 140

declarations.............................. 13

dependence.... 122, 123, 134, 144,
147, 203

flow 127, 143

items ..13

options......................................51

partitioning.............................. 144

prefetching...................... 121, 204

scope attribute clauses............ 174

settings.....................................48

sharing 150

type............... 13, 30, 66, 127, 130

data flow analysis............... 127, 143

data scope attribute clauses 174

DATE_AND_TIME........................38

DCLOCK......................................38

-debug compiler option 210

debugger.................................... 193

debugging

code 195

multiple threads 197

multithread programs overview 193

optimizations and.................... 210

parallel regions 195

shared variables 201

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

228

statements.............................. 193

symbolic 210

default

compiler optimizations............. 147

for record buffers 25

level optimization 41

listing.. 83

name.. 83

optimizations 48

value 147

DEFAULT Clause....................... 175

deferred-shape arrays 20

demang option for code coverage
tool ... 103

denormal

exceptions 34

flushing............................... 66, 70

values............................34, 66, 70

denormals-are-zero................ 34, 77

dependence of data.................... 134

dequeuing.................................. 170

derived-type components 13, 20

determining parallelization 127

device-specific blocksize 25

diagnostic reports............... 147, 158

diagnostics

auto-parallelizer 127, 147

indicating loops....................... 131

indicating MASTER................. 158

OpenMP................................. 158

difference operators.................... 191

differential coverage 103

DIMENSION....................... 135, 136

directives

controls................................... 156

enhanced compilation 203, 206

format............................. 145, 158

IVDEP 124, 206

name.............................. 145, 158

overview 203

preceding................................ 206

usage rules............................. 150

VECTOR 206

directory

specifying98

disable

-fp... 210

Index

229

function splitting........................ 97

inlining...................................... 48

intrinsics inlining 62

IPO... 79

-On optimizations...................... 62

disclaimer3

disk I/O .. 25

dispatch options 73

DISTRIBUTE POINT directive 204

division-to-multiplication optimization
.. 69

DO directive 150, 166, 170, 176

DO loop20, 25, 30, 166, 176, 180

DO WHILE.......... 135, 136, 166, 170

document number1

DO-ENDDO 135

DOUBLE...................................... 34

DOUBLE PRECISION

returns.................................... 186

types 139

variables

KIND..................................... 48

variables................................... 48

double_size 64............................. 48

-double_size compiler option48

dpi

dpi customer.dpi 103

dpi file.......... 94, 97, 101, 103, 111

DPI list.................................... 111

dpi options.............................. 103

dpi pgopti.dpi 103

dps ..48

-dps compiler option48

dummy argument 20, 25, 41

dummy_aliases 41, 51

dumping

profile data.............................. 101

profile information 119, 120

dyn files

dynamic-information files. 100, 101

dynamic

counters 103

DYNAMIC....................... 170, 180

dynamic_threads 186

dynamic-information

files 94, 97

dynamic-information..................97

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

230

information files 98

profile counters....................... 120

E

eax195, 197

ebp register

use... 210

ebp-based............................ 48, 210

ebx .. 197

ecg .. 213

EDB

use... 13

edi ... 195

edx .. 197

effective auto-parallelization usage
.. 144

effects

analyzing.................................. 83

multiple IPO.............................. 83

efficient

code... 30

compilation 30, 41

use of

arrays 20

record buffers........................ 25

use of25

elapsed time............................... 111

elsize ... 189

email .. 103

enable

auto-parallelizer 127, 145

DEC ...48

denormals-as-zero....................34

-fp option 65, 210

implied-DO loop collapsing........25

inlining......................................92

-O2 optimizations......................62

parallelizer 127

SIMD-encodings 138

test-prioritization 111

encounters

SINGLE 166

end

DO ... 166

parallel construct..................... 156

REDUCTION 178

worksharing

construct 156

Index

231

worksharing.....................150, 160

END CRITICAL directive 170

END DO directive................150, 166

END INTERFACE 101

END MASTER directive.......160, 170

END ORDERED directive....160, 170

END PARALLEL directive....156, 164

END PARALLEL DO directive..... 169

END PARALLEL SECTIONS
directive.................................. 169

END SECTION directive............. 166

END SECTIONS directive ...150, 166

END SINGLE directive150, 166

END SUBROUTINE101, 140

endian.. 45

Enhanced Debugger 37

ensuring natural alignment 13

entry

parallel region......................... 197

subroutine PADD.................... 197

entry/exit 144

entry-point name

constructing............................ 195

environment

data environment directive 156

OpenMP environment routines 186

uniprocessor 193

variables25, 45, 99, 118, 145, 158,
164, 183, 186, 189

EQUIVALENCE statement

avoid ..13

EQV................................... 170, 178

ERRATA 197

errno variable

setting92

error_limit 3048

-error_limit compiler option48

esp 195, 197

examples

OpenMP................................. 191

PGO....................................... 100

vectorization 140

exceed

32-bit ..79

EXCEPTION

list ..45

executable files41

executing

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

232

BARRIER 150

SINGLE.................................. 166

test-prioritization 111

execution

environment routines 186

flow .. 156

existing

pgopti.dpi.................................. 99

explicit symbol visibility specification
.. 57

explicit-shape arrays 20

EXTENDED PRECISION 71

extended-precision....................... 30

extensions support 73

EXTERN symbol visibility attribute
value .. 57

F

F_UFMTENDIAN

setting 45

value .. 45

-fast compiler option..................... 62

fcolor ... 103

feature

contributes

application........................... 127

contributes.............................. 127

display.................................... 103

enable45

OpenMP contains 150

overview 203

work 193

feedback compilation.................. 100

FIELDS 174, 175

file

.dpi97, 103, 111

.dyn files 101

assembly83, 86, 210

default output............................41

dynamic-information..................97

executable.. 38, 41, 76, 81, 83, 86,
94, 97, 100, 131, 145, 149, 150

input ...25

multiple IPO..............................80

multiple source files41

object41, 48, 80, 81, 83, 86, 97

pathname57

real object files..........................86

relocating the source files........ 102

Index

233

required.....................81, 103, 111

specifying symbol files 57

FIRSTPRIVATE clause

use... 176

floating-point

applications 34

arithmetic precision

IA-32 systems 69

Itanium-based systems.......... 70

-mp option............................. 66

-mp1 option........................... 66

options.................................. 66

overview 66

arithmetic precision..66, 69, 70, 71

exception handling.............. 34, 66

floating-point-to-integer 69

multiply and add (FA)................ 71

type.. 66

FLOW.. 144

FLUSH directive

use... 170

flushing

denormal 66, 70

zero denormal..................... 66, 70

FMA...71

-fnsplit- compiler option.................97

FOR_SET_FPE intrinsic

FOR_M_ABRUPT_UND77

fork/join 191

format

auto-parallelization directives .. 145

big-endian.................................45

expressions25

floating-point applications..........34

OpenMP directives.................. 158

formatted files

unformatted files25

FORT_BUFFERED

run-time environment variable ...25

Fortran

API150, 156, 193

FORTRAN 77

dummy aliases41

FORTRAN 77 13, 20, 41

Fortran standard9

Fortran uninitialized...................57

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

234

Fortran USE statement 186

INCLUDE statement 186

Fourier-Motzkin elimination......... 134

FP

multiply..................................... 70

operations evaluation................ 70

options 66

results 70

-fp compiler option...................... 210

frames

browsing................................. 103

-ftz compiler option....................... 34

FTZ flag

Itanium®-based systems........... 66

setting 77

full name.................................... 213

function

best Performance 77

function splitting

disabling 97

function splitting........................ 97

function/routine....................... 189

function/subroutine 51

G

-g compiler option....................... 210

GCC

ld 81

GCD .. 134

GDB

use... 210

general-purpose registers........... 210

generating

instrumented code97

non-SSE...................................34

processor-specific function version
...76

profile-optimized executable......97

reports.................................... 213

vectorization reports................ 131

gigabytes 183, 189

global symbols57

GNU* (see also GCC) 195, 197

GOT (global offset table)57

GP-relative...................................57

GUIDED (schedule type) 180

guidelines

advanced PGO.........................98

Index

235

auto-parallelization.................. 144

coding 34

vectorization 133

H

help

od utility.................................... 45

HIDDEN visibility attribute............. 57

high performance

programming 13

high-level

optimizer................................. 213

parallelization 144

HLO

hlo_prefetch............................ 213

hlo_unroll................................ 213

overview................................. 121

prefetching 125

unrolling 123

HTML files 103

Hyper-Threading technology 34, 127,
149

I

I/O

list .. 25

parsing25

performance25

IA-32

floating-point arithmetic69

Hyper-Threading Technology-
enabled............................... 127

Intel® Debugger...................... 193

Intel® Enhanced Debugger37

IA-32 applications....................... 121

IA-32 systems 69, 73, 77

IA-32-based

little-endian...............................45

processors........................ 45, 150

IA-32-specific feature.................. 131

IA-32-targeted compilations 210

IAND...........................160, 170, 178

identifying

synchronization....................... 170

IEEE

IEEE 754

conform.................................71

IEEE 75471

IEEE-754..................................34

IEOR...........................160, 170, 178

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

236

IF

generated............................... 103

statement 103

IF clause.................................... 164

-iface compiler option 48

ifort . 9, 41, 48, 55, 57, 66, 70, 73, 75,
76, 77, 80, 81, 83, 88, 92, 94, 100,
111, 123, 131, 145, 147, 158, 195,
210, 213

IL

compiler reads.......................... 86

files .. 86

produced 86

ilo .. 213

ILP... 127

implied DO loop

collapsing 25

improving

I/O performance........................ 25

run-time performance................ 30

improving/restricting FP arithmetic
precision................................... 71

include

floating-point-to-integer 69

incorrect usage

non-countable loop 136

increase

BLOCKSIZE specifier................25

BUFFERCOUNT specifier25

individual module source view 103

industry-standard........................ 149

inefficient

code ...30

unaligned data

checking................................13

unaligned data..........................13

infinity ..66

init routine90

initialization 178

initializer.......................................57

initiating

interval profile dumping 120

inlinable90

inline

choose......................................30

expansion

controlling..............................92

library functions92

Index

237

expansion.............. 65, 90, 92, 213

-inline_debug_info compiler option92

inlined

library 92

source position 92

inlining

affect .. 88

intrinsics 62

prevents 41

INPUT

arguments 20

files .. 25

input/output............................... 45

test-prioritization 111

instruction-level 127

instrumentation

compilation 94, 100

compilation/execution 97

repeat....................................... 98

instrumented

code generating........................ 97

execution�run 100

program.................................... 93

INTEGER

variables...................................30

-integer_size compiler option48

Intel®

architecture-based 150

architecture-based processors .34,
37

architecture-specific37

Intel® architectures

coding 9, 34

Intel® Compiler

adjusting optimization................88

coding guidelines 25, 30, 34

directives 203

running in OpenMP mode........ 158

using 38, 83, 87

vectorization support 206

Intel® Debugger

IA-32 applications 193

Itanium®-based applications ... 193

Intel® Enhanced Debugger

IA-32 ..37

Intel® extensions

extended intrinsics33

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

238

OpenMP routines.................... 189

Intel® Fortran language

record structures....................... 13

RTL .. 25

Intel® Itanium® Compiler 33

Intel® Itanium® processor 48, 73

Intel® Pentium® 4 processor . 75, 76,
77

Intel® Pentium® III processor 75, 76,
77

Intel® Pentium® M processor 73, 75,
76, 77, 139

Intel® Pentium® processors

refer123, 125

Intel® processors

optimizing for73, 75, 76, 77

Intel® Threading Toolset 34, 37

Intel® VTune Performance Analyzer
.. 37

Intel®-specific 33, 149

INTERFACE 101

intermediate language scalar
optimizer................................. 213

intermediate results

use memory.............................. 25

internal subprograms.................... 30

INTERNAL visibility attribute.........57

interprocedural

during.......................................92

use...34

interprocedural optimizations (IPO)

compilation with real object files 86

criteria for inline function
expansion..............................90

inline expansion of user functions
...92

library of IPO objects.................87

multiple IPO executable83

-Qoption specifiers88

interprocedural optimizer 79, 213

interthread.................................. 150

interval profile dumping

initiating.................................. 120

intrinsics

cashesize33

functions................................. 170

inlining......................................62

procedures 203

invoking

GCC ld83

Index

239

IOR.............................160, 170, 178

-ip compiler option 65, 79, 88, 90, 92,
100, 213

ip_ninl_max_total_stats 88

ip_ninl_min_stats 88, 90

-ip_no_inlining compiler option 48, 92

-ip_no_pinlining compiler option.... 92

ip_specifier................................... 88

-IPF_flt_eval_method compiler
option 70

-IPF_fltacc compiler option 70

-IPF_fma compiler option.............. 70

-IPF_fp_relaxed compiler option ... 70

-IPF_fp_speculation compiler option
.. 70

IPO

code layout............................... 85

compilation 86

disable...................................... 79

generating multiple IPO object files
... 82

intermediate output 83

IPO executable......................... 81

objects...................................... 87

options 83, 86

overview 79, 80

phases......................................80

results93

stores80

-ipo compiler option79

-ipo_c compiler option83

-ipo_obj compiler option... 48, 86, 90,
131

-ipo_S compiler option..................83

IR

containing........................... 81, 83

object file80

ISYNC.. 170

Itanium® acrchitectures................34

Itanium® compiler

-auto_ilp32 compiler option79

code generator........................ 213

Itanium® processors......... 34, 48, 73

Itanium®-based applications

pipelining 203

Itanium®-based compilation94

Itanium®-based multiprocessor... 127

Itanium®-based processors66

Itanium®-based systems

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

240

default 90

Intel® Debugger 193

optimization reports................. 213

pipelining................................ 203

software pipelining.................. 127

using intrinsics.......................... 33

IVDEP directive...........121, 124, 206

ivdep_parallel............................. 124

-ivdep_parallel compiler option .. 121,
124, 206

K

KIND parameter

double-precision variables......... 48

specifying 13

kmp183, 197

KMP_ALL_THREADS 183

KMP_BLOCKTIME..................... 183

KMP_BLOCKTIME value............ 182

kmp_calloc................................. 189

kmp_free.................................... 189

kmp_get_stacksize..................... 189

kmp_get_stacksize_s 189

KMP_LIBRARY.......................... 183

kmp_malloc................................ 189

KMP_MONITOR_STACKSIZE.... 183

kmp_pointer_kind....................... 189

kmp_realloc................................ 189

kmp_set_stacksize 189

kmp_set_stacksize_s 189

kmp_size_t_kind 189

KMP_STACKSIZE.............. 183, 189

KMP_VERSION 183

kmpc_for_static_fini.................... 197

kmpc_for_static_init_4................ 197

kmpc_fork_call195, 197, 201

L

LASTPRIVATE

clauses................................... 176

use... 176

ld 83, 100

legal information.............................3

level coverage............................ 103

libc.so ..57

libc_start_main........................... 197

libdir...48

-libdir keyword compiler option......48

libguide.a 182

Index

241

libirc.a library.............................. 100

libraries

functions................................... 92

inline expansion........................ 92

libintrins.a................................. 33

library I/O.................................. 25

OpenMP runtime routines 186

routines 186

limitations

loop unrolling.......................... 123

line

DPI list.................................... 111

dpi_list.................................... 111

lines compiled......................... 147

LINK_commandline...................... 83

linkage phase............................... 80

list

tool generates......................... 103

tool provides 103

listing

file containing 111

xild ... 83

little-endian

big-endian.................................45

converting.................................41

little-endian-to-big-endian conversion

environment variable.................45

Lock routines.............................. 186

LOGICAL 13, 51

-logo compiler option 101

loop

blocking.................................. 138

body 139

collapsing25

constructs............................... 135

count 204

diagnostics 131, 147

directives 204

distribution.............................. 204

exit conditions......................... 136

interchange............................. 142

LOOP option of IVDEP directive
... 206

parallelization.................. 127, 132

parallelizer73

parallelizing 73, 150

peeling............................ 140, 206

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

242

sectioning............................... 138

skewing 122

transformations..........71, 122, 204

types vectorized...................... 137

unrolling123, 205

variable assignment................ 176

vectorization132, 206

vectorized types...................... 137

loop-carried memory dependency

absence 124

loops

changing................................... 20

computing................................. 71

lower/mixed................................ 193

M

machine code listing

subroutine 195

maddr option for code-coverage tool
.. 103

maintainability 30

makefile 83

malloc

calls.. 57

MASTER directive...............150, 170

master thread

call stack dump....................... 197

use... 170

math libraries92

matrix multiplication.................... 142

MAX............ 137, 138, 139, 170, 178

maximum number.. 48, 123, 183, 186

memory

access34

allocation 189

dependency............................ 124

layout34

MIN.......88, 137, 139, 160, 170, 178,
191, 213

minimizing

execution time 111

number................................... 111

mintime option for test-prioritization
tool ... 111

misaligned

data crossing 16-byte boundary
... 140

mispredicted.................................94

mixed data type arithmetic
expressions30

Index

243

mixing

vectorizable 133

MM_PREFETCH........................ 125

MMX(TM) technology 127

MODE.. 45

modules subset

coverage analysis 103

more replicated code.................. 156

-mp compiler option...................... 66

-mp1 compiler option.................... 66

multidimensional arrays........ 20, 134

multifile .. 80

multifile IPO

IPO executable......................... 83

xild ... 83

multifile optimization 79

multiple threads

debugging 197

multithread programs

debugger limitations................ 193

overview................................. 193

multithreaded

applications 34

debugging............................... 193

produces 149, 150

run.. 158

multi-threaded 144

mutually-exclusive

part...48

N

names

optimizers 213

NAN value.............................. 51, 70

natural storage order25

naturally aligned

data..13

records13

reordered data..........................13

-noalign compiler option................55

noalignments keyword..................13

-noauto compiler option51

-noauto_scalar compiler option51

-noautomatic compiler option........51

-nobuffered_io keyword25

nocommons keyword....................55

nodcommons keyword..................55

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

244

-nolib_inline compiler option ... 65, 92

-nologo compiler option 101

non-countable loop

incorrect usage....................... 136

NONE.. 175

noniterative worksharing SECTIONS

use... 166

non-OpenMP 182

non-preemptable.......................... 57

non-SSE

generating 34

NONTEMPORAL

use... 206

nonvarying values 30

non-vectorizable loop 132

non-vectorized loops 131

NOP .. 123

NOPARALLEL directive.......144, 145

nopartial option 103

NOPREFTCH directives 206

-nosave compiler option 51

nosequence keyword 55

NOSWP directives 203

nototal.. 111

NOUNROLL 205

NOVECTOR directives 206

NOWAIT option 166

-nozero compiler option51

NUM 111, 127

num_threads...................... 160, 186

number

changing................................. 164

minimizing 111

O

-O compiler option........................62

-o filename compiler option...........81

-O0 compiler option62, 65, 210

-O1 compiler option62

-O2 compiler option30, 41, 48, 55,
61, 62, 65, 66, 100, 121, 123, 131,
145, 158, 210

-O3 compiler option34, 62, 66, 70,
97, 121, 131, 210

object files

IR ...80

od utility

help ..45

omitting

Index

245

BLOCKSIZE 25

SEQUENCE 13

OMP ... 127, 150, 156, 158, 175, 183,
191

OMP ATOMIC............................ 170

OMP BARRIER...................166, 170

OMP CRITICAL 170

OMP DO.............................156, 164

OMP DO LASTPRIVATE............ 176

OMP DO ORDERED,SCHEDULE
.. 170

OMP DO REDUCTION............... 178

OMP END CRITICAL 170

OMP END DO............................ 164

OMP END DO directives 164

OMP END MASTER................... 170

OMP END ORDERED................ 170

OMP END PARALLEL164, 166, 170,
176, 180, 195

OMP END PARALLEL DO .164, 169,
178, 197

OMP END PARALLEL SECTIONS
.. 169

OMP END SECTIONS 166

OMP END SINGLE 166

OMP FLUSH.............................. 170

OMP MASTER 170

OMP ORDERED 170

OMP PARALLEL. 164, 166, 176, 195

OMP PARALLEL DEFAULT 164,
166, 170, 175, 180

OMP PARALLEL DO...164, 169, 195

OMP PARALLEL DO DEFAULT 175,
178

OMP PARALLEL DO SHARED... 197

OMP PARALLEL IF 164

OMP PARALLEL PRIVATE 176, 195

OMP PARALLEL SECTIONS 169,
195

OMP SECTION 166, 169

OMP SECTIONS........................ 166

OMP SINGLE............................. 166

OMP THREADPRIVATE 174, 175

omp_destroy_lock 186

omp_destroy_nest_lock.............. 186

OMP_DYNAMIC 183

omp_get_dynamic 186

omp_get_max_threads 186

omp_get_nested 186

omp_get_num_procs.......... 164, 186

omp_get_num_threads....... 180, 186

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

246

omp_get_thread_num 170, 180, 186,
195, 197

omp_get_wtick 186

omp_get_wtime.......................... 186

omp_in_parallel.......................... 186

omp_init_lock............................. 186

omp_init_nest_lock..................... 186

omp_lib.mod file......................... 186

omp_lock_kind........................... 186

omp_lock_t 186

omp_nest_lock_kind................... 186

omp_nest_lock_t........................ 186

OMP_NESTED 183

OMP_NUM_THREADS145, 158,
164, 183

OMP_SCHEDULE145, 150, 180,
183

omp_set_dynamic 186

omp_set_lock............................. 186

omp_set_nest_lock 186

omp_set_nested......................... 186

omp_set_num_threads........164, 186

omp_test_lock............................ 186

omp_test_nest_lock 186

omp_unset_lock......................... 186

omp_unset_nest_lock................. 186

-On compiler option 61, 62

one thread.................................. 197

open statement

OPEN statement BUFFERED ...25

-openmp compiler option 127, 158

OpenMP*

clauses................................... 160

directives 160

environment variables 183

examples................................ 191

extension environment variables
... 183

Intel® extensions 189

par_loop 195

par_region 195

par_section............................. 195

parallelizer option controls....... 158

processing.............................. 150

run-time library routines........... 186

synchronization directives 150

usage 191

uses 150

OpenMP*-compliant compilers.... 189

Index

247

-openmp_report compiler option .. 48,
127, 158

-openmp_stubs compiler option. 127,
189

operator/intrinsic......................... 178

operator|intrinsic......................... 160

-opt_report compiler option... 48, 213

optima record

use... 25

optimization-level

options 61

restricting.................................. 65

setting 62

optimizations

debugging and optimizations... 210

different application types............9

floating-point arithmetic precision
... 66

HLO 121

IPO... 79

optimizer report generation 213

optimizing for specific processors
... 73

overview................................... 41

PGO... 93

reports.......................48, 203, 213

optimizer

allowing41

full name................................. 213

logical name 213

report generation 213

reports.................................... 213

optimizers

names 213

your code..................................76

optimizing (see also optimizations)

application types61

floating-point applications..........34

for specific processors 9, 73

option

causes......................................62

controls

auto-parallelizer's 147

OpenMP parallelizer's.......... 158

controls......................98, 147, 158

disables....................................97

forces51

initializes...................................51

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

248

places....................................... 51

reduces 210

options

compiler optimization 41

correspond 57

debugging summary 210

improve run-time performance... 41

instruct 132

output summary...................... 210

overviews127, 210

OR...................... 103, 139, 170, 178

ORDERED

specify.................................... 170

use... 170

ORDERED clause...................... 166

ORDERED directive150, 166, 170

ordering

data declarations 13

kmp_set_stacksize_s 189

original serial code 143

output

argument.................................. 20

overriding

vectorizer's efficiency heuristics
... 206

overview

compiler optimization options41

P

PADD

using GNU.............................. 197

-par_report compiler option.. 48, 127,
145, 147

-par_threshold compiler option... 127,
145, 147

PARALLEL. 144, 145, 150, 156, 160,
164, 169, 175, 176, 178, 180, 201

parallel construct

begin 156

end... 156

PARALLEL directive145, 164, 170

PARALLEL DO

use... 169

PARALLEL DO directive..... 144, 180

parallel invocations with makefile .83,
97

PARALLEL PRIVATE 127

parallel processing

directive groups 150

thread model

Index

249

pseudo code 156

thread model 156

parallel program development 127

parallel regions

debugging 195

directives 164

entry....................................... 197

PARALLEL SECTIONS

use... 169

PARALLEL SECTIONS/END
PARALLEL SECTIONS........... 169

parallel/worksharing150, 169

parallelism 127

parallelization

loops 127

overview.....48, 127, 144, 156, 158

relieves................................... 143

parsing

I/O.. 25

part

mutually-exclusive 48

pathname..................................... 57

-pc compiler option................. 48, 69

pcolor... 103

Pentium® 4 processors73

Pentium® III processors73

Pentium® M processors73

performance analysis 149

performance analyzer........... 37, 193

performance-critical 103, 182

performance-related options41

performing

data flow......................... 127, 143

I/O ..25

PGO

environment variables99

methodology.............................94

PGO API 101

phases......................................94

usage model94

PGO API support

dumping and resetting profile
information 120

dumping profile information 119

interval profile dumping 120

overview 118

resetting the dynamic profile
counters.............................. 120

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

250

resetting the profile information120

pgopti.dpi file

compiler produces 100

existing..................................... 99

remove 99

pgopti.spi94, 103, 111

PGOPTI_Prof_Dump...........101, 119

PGOPTI_Prof_Dump_And_Reset
.. 120

PGOPTI_Prof_Reset119, 120

PGOPTI_Set_Interval_Prof_Dump
.. 120

pgouser.h................................... 118

phase1....................................... 150

phase2....................................... 150

pipelining

Itanium®-based applications ... 203

optimization 203

placing

PREFETCH 206

pointer aliasing............................. 51

pointers.....20, 51, 79, 125, 133, 160,
210

position-independent code............ 57

POSIX 195

-prec_div compiler option..............69

preemption

preemptable..............................57

preempted 57, 90

PREFETCH

placing.................................... 206

prefetching

optimizations........................... 125

option 125

support 206

preparing

code 150

preventing

CRAY pointers..........................51

inlining......................................41

PRINT.. 176

PRINT statement........................ 103

prioritization................................ 111

PRIVATE

use... 176

PRIVATE clause 176, 178

private scoping

variable................................... 150

Index

251

procedure names 160

process

overview................................... 41

process_data 119

processor

processor-based....................... 73

processor-instruction................. 73

targeting 73

produced

IL 86

multithreaded...................149, 150

profile-optimized 97

-prof_dir dirname compiler option.. 98

prof_dpi file 111

prof_dpi Test1.dpi 111

prof_dpi Test2.dpi 111

prof_dpi Test3.dpi 111

PROF_DUMP_INTERVAL.... 99, 118

-prof_file filename compiler option 98

-prof_gen compiler option............. 97

PROF_NO_CLOBBER 99

-prof_use compiler option 97

profile data

dumping 101

profile IGS

describe.................................. 118

environment variable............... 118

functions................................. 118

variable................................... 118

profile information

dumping 119

generation support 118

profile-guided optimizations (see
also PGO)

instrumented program...............93

methodology.............................94

overview93

phases......................................94

utilities 101

profile-optimized

executable................................97

generating97

produce97

profiling summary

specifying98

profmerge

tool 101, 111

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

252

use... 102

utility....................................... 101

program

affected aspect 79

program loops

dataflow.................................. 143

programming

high performance...................... 13

project makefile............................ 83

PROTECTED............................... 57

providing

superset 176

pseudo code

parallel processing model........ 156

pushl...................................195, 197

Q

-qipo_fa xild option 83

-qipo_fo xild option 83

-Qoption compiler option............... 88

R

-rcd compiler option...................... 69

READ

READ DATA........................... 134

READ/WRITE statements.............45

REAL

REAL DATA............................ 134

real object files86

REAL*16......................................30

REAL*4..30

REAL*8..30

-real_size compiler option.............48

reassociation...................70, 71, 178

rec8byte keyword55

RECL

value ..25

recnbyte keyword55

recommendations

coding34

controlling alignment55

record buffers

efficient use of25

RECORD statement13

-recursive compiler option.............51

redeclaring................................. 201

redirected standard25

REDUCTION

Index

253

clause..................................... 178

completed............................... 178

end... 178

use... 178

variables..........................178, 201

reduction/induction variable 62

ref_dpi_file

respect 103

relieving

I/O.. 25

relocating source files................. 102

removing

pgopti.dpi.................................. 99

reordering

transformations....................... 133

repeating

instrumentation......................... 98

replicated code........................... 156

report

availability............................... 213

generation 213

optimizer................................. 213

stderr...................................... 213

resetting

dynamic profile counters 120

profile information 120

restricting

FP arithmetic precision..............71

optimizations.............................65

RESULT77

results

IPO...93

RETURN

double-precision 186

return values.............................51

REVERSE.................................. 176

rm PROF_DIR............................ 111

rounding

control69

significand69

round-to-nearest...........................69

routines

selecting...................................90

timing 186

RTL..25

run

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

254

differential coverage................ 103

multithreaded.......................... 158

test prioritization 111

run-time

call ... 189

checks for IA-32 systems 77

library routines........................ 186

peeling 140

performance 41

processor-specific checks 77

scheduling.............................. 145

S

-S compiler option 86

-safe_cray_ptr compiler option...... 51

SAVE statement........................... 51

scalar

clean-up iterations 140

replacement............................ 123

scalar_integer_expression 160

scalar_logical_expression 160

-scalar_rep 123

-scalar_rep compiler option......... 123

SCHEDULE

clause..................................... 180

specifying 180

use... 166

scoping 174

SCRATCH 174, 175

screenshot 103

SECNDS......................................38

SECTION....................150, 160, 166

SECTION directive166, 169, 176

SECTIONS

directive.......................... 166, 169

use... 166

selecting

routines90

SEQUENCE

omit ..13

specify......................................13

statement............................ 13, 55

use...13

setenv..45

setting

arguments13

coloring scheme...................... 103

Index

255

conditional parallel region
execution 164

email 103

errno .. 92

F_UFMTENDIAN variable......... 45

FTZ .. 77

html files................................. 103

integer and floating-point data... 13

optimization level 62

units 164

SHARED

clause..................................... 180

debugging 201

shared scoping 150

shared variables 197

updating 191

use... 180

significand

round.. 69

SIMD34, 127, 130, 133, 137, 138

SIMD SSE2

streaming 34

SIMD-encodings

enabling 138

simple difference operator 191

SIN 137, 139

SINGLE

directive.......................... 166, 170

encounters.............................. 166

executing................................ 166

use... 166

single-instruction 133

single-precision 30, 66

single-statement loops................ 133

single-threaded 193

small logical data items.................30

small_bar33

SMP..............................34, 143, 149

software pipelining.......127, 203, 204

source

code 158

coding guidelines30

files relocation......................... 102

input 145, 158

listing.............................. 195, 197

view.. 103

specialized code...... 75, 76, 127, 131

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

256

specific

optimizing................................. 73

specifying

8-byte data 48

DEFAULT............................... 175

directory 98

END DO 166

KIND .. 13

ORDERED 170

profiling summary 98

RECL 25

schedule................................. 180

SEQUENCE 13

symbol visibility explicitly........... 57

vectorizer................................ 140

visibility without symbol file........ 57

spi

file103, 111

option 111

pgopti.spi.........................103, 111

SQRT .. 164

SSE........................ 34, 66, 130, 137

SSE2 34, 130

stacks

size .. 189

standard

OpenMP clauses 160

OpenMP directives.................. 160

OpenMP environment variables
... 183

statements

accessing13

BLOCKSIZE25

BUFFERCOUNT.......................25

BUFFERED25

functions...................................30

STATIC...................................... 180

STATUS25

stderr

report...................................... 213

Stream_LF25

streaming

SIMD SSE234

Streaming SIMD Extensions

single-precision....................... 138

stride-1

example.................................. 142

Index

257

strings.. 25

strip-mining 138

STRUCTURE statements 13, 55

SUBDOMAIN 180

subl.....................................195, 197

subobjects 176

suboption..................................... 41

subroutine

machine code listing 195

PADD

entry 197

source listing....................... 197

PADD..................................... 197

PARALLEL 195

PGOPTI_PROF_DUMP 101

VEC_COPY............................ 140

WORK.................................... 170

subscripts

array... 20

loop.. 142

varying 25

substring

containing............................... 213

superset..................................... 176

support

loop unrolling 205

MMX...34

OpenMP Libraries 143, 182

prefetching.............................. 206

symbolic debugging 210

vectorization 206

worksharing 150

SWP directive 203

symbol

file ..57

preemption57

visibility attribute options57

symbolic debugging.................... 210

synchronization

constructs............................... 170

identify.................................... 170

worksharing construct directives
... 166

syntax 145, 158

SYSTEM_CLOCK38

systems66

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

258

T

table operators/intrinsics............. 178

TAN ... 137

targeting a processor.................... 73

terabytes.................................... 183

test prioritization tool

Test1

Test1.dpi............................. 111

Test1.dpi 00 111

Test2.dpi............................. 111

Test1...................................... 111

Test2

adding................................. 111

Test2.dpi 00 111

Test2...................................... 111

Test3

Test3.dpi............................. 111

Test3.dpi 00 111

Test3...................................... 111

tests_list file............................ 111

tselect command..................... 111

THREADPRIVATE

directive...........................150, 174

variables................................. 175

threads....................................... 164

threshold

auto-parallelization.................. 145

control 147

option sets.............................. 147

time interval for profile dumping .. 120

TIME intrinsic procedure...............38

timeout...90

timing

routines 186

your application.........................38

tips

troubleshooting 147

TLP.. 127

tool

code coverage

list 103

code coverage 103

test prioritization...................... 111

-tpp compiler option................ 48, 73

-traceback compiler option.......... 210

transformations

Index

259

reordering............................... 133

transformed parallel code........ 143

troubleshooting

tips ... 147

TRUNC.. 34

tselect command........................ 111

two-dimensional

array... 34

type

aliasablility................................ 51

casting.................................... 125

INTEGER 51

padd_,@function 197

parallel_,@function................. 195

part_dt...................................... 13

REAL 71

TYPE statement 13

U

UBC

buffers...................................... 25

ucolor code-coverage tool option 103

ULIST .. 45

UNALIGNED directives 206

unary

SQRT 137

unbuffered....................................25

underflow/overflow51

undispatched.............................. 166

unformatted files...........................25

unformatted I/O25

uninterruptable........................... 150

uniprocessor150, 158, 193

units

setting 164

unpredicatble51

unproven distinction

unvectorizable copy 140

-unroll compiler option 48, 123

UNROLL directive 205

unrolling

loop .. 123

unvectorizable............................ 133

updating

shared 191

usage

model 94, 111

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

260

requirements 111

rules................................. 83, 166

user functions............................... 92

using

32-bit counters.......................... 97

advanced PGO......................... 98

ATOMIC 170

auto-parallelization.................. 144

BARRIER 170

COPYIN 175

CRITICAL............................... 170

DEFAULT............................... 175

ebp register 210

EDB ... 13

efficient data types.................... 30

EQUIVALENCE statements 30

FIRSTPRIVATE...................... 176

FLUSH 170

formatted files........................... 25

GDB....................................... 210

GOTO 166

GP-relative 57

implied-DO loops 25

Intel® performance analysis tools
...37

interprocedural optimizations....34,
79

intrinsics33

IPO..................................... 79, 93

IVDEP 206

LASTPRIVATE 176

MASTER 170

memory25

noniterative worksharing
SECTIONS.......................... 166

non-SSE instructions.................34

NONTEMPORAL 206

optimal record...........................25

ORDERED 170

orphaned directives................. 156

PARALLEL DO 169

PARALLEL SECTIONS........... 169

PRIVATE................................ 176

profile-guided optimization....... 100

profmerge utility 102

REAL data type.........................30

REAL variables34

RECORD..................................13

Index

261

REDUCTION 178

SCHEDULE............................ 166

SECTIONS............................. 166

SEQUENCE 13

SHARED 180

SINGLE.................................. 166

slow arithmetic operators 30

SSE.. 34

THREADPRIVATE directive 156

unbuffered disk writes 25

unformatted files 25

vectorization 34

VTune(TM) Performance Analyzer
....................................149, 150

worksharing............................ 164

utilities for PGO.......................... 101

V

value

1E-40 66

infinity....................................... 66

mixed data type 30

NaN.. 66

specified for -src_old and -
src_new 102

threshold control 147

visibility attributes......................57

variables

AUTOMATIC48

automatic allocation51

comma-separated list.............. 160

correspond20

existing................................... 160

ISYNC 170

length25

loop .. 176

PGO environment99

private scoping........................ 150

profile IGS 118

renaming62

scalars......................................51

setting 13, 189

VAX*..55

-vec_report compiler option .. 48, 131

VECTOR ALWAYS directive....... 206

vector copy 140

VECTOR directives

VECTOR ALIGNED 206

Intel® Fortran Compiler for Linux* Systems User�s Guide Vol II

262

VECTOR ALWAYS................. 206

VECTOR NONTEMPORAL..... 206

VECTOR UNALIGNED 206

vectorizable

mixing..................................... 133

vectorization (see also Loop)

avoiding.................................. 206

examples................................ 140

key programming guidelines.... 133

levels...................................... 130

loop.. 206

options121, 131

overview................................. 130

reports.................................... 131

support 206

vectorize

loops .. 93

vectorized48, 131, 135, 137, 140,
206

vectorizer

efficiency heuristics

overriding............................ 206

efficiency heuristics................. 206

options 131

vectorizing compilers.................. 133

vectorizing loops 206

version numbers...........................86

view

XMM...37

violation

FORTRAN-7741

visibility

specifying57

symbol......................................57

visual presentation

application's code coverage 103

-vms compiler option 13, 41

VMS-related41

VOLATILE statement....................25

VTune(TM) Performance Analyzer

use... 149

W

-W0 compiler option......................13

wallclock 186

whitespace...................................57

work

work/pgopti.dpi file 102

Index

263

work/sources 102

worker thread

call stack dump....................... 197

WORKSHARE 149

worksharing

construct directives 166

end..................................150, 160

exits 150

use... 164

WRITE

WRITE DATA 134

write whole arrays 25

X

-x compiler option....................... 131

X_AXIS.......................166, 169, 170

x86 processors............................. 75

XFIELD...............................174, 175

xiar .. 86

xild

listing.. 83

options

-ipo_[no]verbose-asm83

-ipo_fcode-asm......................83

-ipo_fsource-asm...................83

-qipo_fa.................................83

-qipo_fo.................................83

options......................................83

tool ...80

XMM

view..37

XOR... 139

Y

Y_AXIS166, 169, 170

YFIELD 174, 175

Z

Z_AXIS 166, 169

zero denormal

flushing............................... 66, 70

ZFIELD 174, 175

-Zp compiler option................. 48, 55

	Intel(R) Fortran Compiler for Linux* Systems User's Guide Vol II
	Disclaimer and Legal Information
	Optimizing Applications: Overview
	How to Use This Document
	Programming for High Performance
	Programming for High Performance: Overview
	Programming Guidelines
	Setting Data Type and Alignment
	Using Arrays Efficiently
	Improving I/O Performance
	Improving Run-time Efficiency
	Using Intrinsics for Itanium®-based Systems
	Coding Guidelines for Intel® Architectures

	Analyzing and Timing Your Application
	Using Intel Performance Analysis Tools
	Timing Your Application

	Compiler Optimizations
	Compiler Optimizations Overview
	Optimizing the Compilation Process
	Optimizing the Compilation Process Overview
	Efficient Compilation
	Little-endian-to-Big-endian Conversion
	Default Compiler Optimizations
	Using Compilation Options

	Optimizing Different Application Types
	Optimizing Different Application Types Overview
	Setting Optimizations with -On Options
	Restricting Optimizations

	Floating-point Arithmetic Optimizations
	Options Used for Both IA-32 and Itanium® Archite�
	Floating-point Arithmetic Precision for IA-32 Systems
	Floating-point Arithmetic Precision for Itanium®�
	Improving/Restricting FP Arithmetic Precision

	Optimizing for Specific Processors
	Optimizing for Specific Processors Overview
	Targeting a Processor, -tpp{n}
	Processor-specific Optimization (IA-32 only)
	Automatic Processor-specific Optimization (IA-32 only)
	Processor-specific Run-time Checks, IA-32 Systems

	Interprocedural Optimizations (IPO)
	Overview of Interprocedural Optimizations
	IPO Compilation Model
	Command Line for Creating an IPO Executable
	Generating Multiple IPO Object Files
	Capturing Intermediate Outputs of IPO
	Creating an IPO Executable Using xild
	Code Layout and Multi-Object IPO
	Compilation with Real Object Files
	Creating a Library from IPO Objects
	Using -ip with -Qoption Specifiers
	Inline Expansion of Functions

	Profile-guided Optimizations
	Profile-guided Optimizations Overview
	Profile-guided Optimizations Methodology and Usage Model
	Basic PGO Options
	Advanced PGO Options
	PGO Environment Variables
	Example of Profile-Guided Optimization
	Merging the .dyn Files
	Using profmerge to Relocate the Source Files
	Code-coverage Tool
	Test Prioritization Tool
	PGO API: Profile Information Generation Support

	High-level Language Optimizations (HLO)
	HLO Overview
	Loop Transformations
	Scalar Replacement (IA-32 Only)
	Loop Unrolling with -unroll[n]
	Memory Dependency with IVDEP Directive
	Prefetching

	Parallel Programming with Intel® Fortran
	Parallelism: an Overview
	Auto-vectorization (IA-32 Only)
	Vectorization Overview
	Vectorizer Options
	Loop Parallelization and Vectorization
	Vectorization Key Programming Guidelines
	Data Dependence
	Loop Constructs
	Loop Exit Conditions
	Types of Loop Vectorized
	Strip-mining and Cleanup
	Statements in the Loop Body
	Vectorization Examples
	Loop Interchange and Subscripts: Matrix Multiply

	Auto-parallelization
	Auto-parallelization Overview
	Programming with Auto-parallelization
	Auto-parallelization: Enabling, Options, Directives, and Environment Variables
	Auto-parallelization Threshold Control and Diagnostics

	Parallelization with OpenMP*
	Parallelization with OpenMP* Overview
	Programming with OpenMP
	Parallel Processing Thread Model
	Compiling with OpenMP, Directive Format, and Diagnostics
	OpenMP Directives and Clauses Summary
	OpenMP Directive Descriptions
	OpenMP Clause Descriptions
	OpenMP Support Libraries
	OpenMP Environment Variables
	OpenMP Run-time Library Routines
	Intel Extension Routines
	Examples of OpenMP Usage

	Debugging Multithreaded Programs
	Debugging Multithread Programs Overview
	Debugging Parallel Regions
	Debugging Multiple Threads
	Debugging Shared Variables

	Optimization Support Features
	Optimization Support Features Overview
	Compiler Directives
	Compiler Directives Overview
	Pipelining for Itanium®-based Applications
	Loop Count and Loop Distribution
	Loop Unrolling Support
	Prefetching Support
	Vectorization Support

	Optimizations and Debugging
	Optimizer Report Generation

	Glossary
	Glossary

	Index

