Intel® Fortran Compiler for Linux* Systems
User's Guide
Volume II: Optimizing Applications

Document Number: 253260-002

Disclaimer and Legal Information

Information in this document is provided in connection with Intel products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING L IABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

This User's Guide Volume Il as well as the software described in it is fumished
under license and may only be used or copied in accordance with the terms of
the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document or any
software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The software described in this User's Guide Volume Il may contain software
defects which may cause the product to deviate from published specifications.
Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel
XScale, Itanium, MMX, MMX logo, Pentium, Pentium Il Xeon, Pentium Il Xeon,
Pentium M, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2003-2004.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Table Of Contents

Optimizing Applications: OVEIVIEWc.uiiviiiiiiiiiee e 9
How to Use This DOCUMENT ... 11
Notation CoNVENTIONS........cooiiiiiii e 11
Programming for High Performance...............oooii e 13
Programming for High Performance: Overviewc.ccooiiieieiiiieiiiiieeeees 13
Programming GUIElNES.........ccoouuiiiiiii e 13
Setting Data Type and Alignment............coouiiiiiiii e 13
Using Arrays Efficiently...........oooiiii e 20
Improving /O Performance............c.ui i 25
Improving Run-time EffiCIeNCYcoooiiiiiii e 30
Using Intrinsics for Itanium®-based Systemsc.cccoiiiiiiiiiiiiiieeeennn. 33
Coding Guidelines for Intel® Architectures............ccooeeviiiiiiiiiii 34
Analyzing and Timing Your Application..............coiiiii i, 37
Using Intel Performance Analysis TOOIScccoviiiiiiiiiiiii e, 37
Timing Your AppliCation..........ooeu i 38
Compiler Optimizationscuuiiiiiii e 41
Compiler Optimizations OVErVIEW...........ccovuiiiiiieiii e 41
Optimizing the Compilation ProCesscooveuiiiiiiiiiii e 41
Optimizing the Compilation Process OVerviewcccccceeveviiiiiiieeinnnnnn, 41
Efficient Compilation............oooiiiiii 41
Little-endian-to-Big-endian CONVErsioNnc.ccoeviiieiiiiiieeeiiieeeeeee e, 45

Table Of Contents

Default Compiler Optimizations............ccoooiiiiii i, 48
Using Compilation OptioNSooiieiiiiiii e 51
Optimizing Different Application TYPESoviiiiiiiiiei e 61
Optimizing Different Application Types OVerview...........ccccccevevviieiiieeennnnnns 61
Setting Optimizations with -On OptioNSc.ccovi i 62
Restricting Optimizations...........coouiiiiiiii e 65
Floating-point Arithmetic Optimizations..............cccoooiiiiiiiiii e, 66
Options Used for Both 1A-32 and Itanium® Architectures........................... 66
Floating-point Arithmetic Precision for IA-32 Systems..........ccccooeeveiiieeennnn. 69
Floating-point Arithmetic Precision for ltanium®-based Systems................ 70
Improving/Restricting FP Arithmetic Precisioncccocooviiiiiiiiiins 71
Optimizing for Specific ProCeSSOorsccouuiiiiiiiiiiiiei e 73
Optimizing for Specific Processors OVErvieW............ccceueeeeuiieiiineiiiieeenns 73
Targeting a Processor, -tpp{n}ccoouuiiiii e 73
Processor-specific Optimization (IA-32 only)cooovviieiiiiiiie e 75
Automatic Processor-specific Optimization (IA-32 only).........cccccovvveinnnen. 76
Processor-specific Run-time Checks, IA-32 Systems...........ccccoeevveviiieeennnn. 77
Interprocedural Optimizations (IPO)...........ccooiiiiiii e, 79
Overview of Interprocedural Optimizationscccooeviiiiiiiiiiis 79
IPO Compilation Model...........coouiiiiii e 80
Command Line for Creating an IPO Executableccccoooiiiiiiiinnnn. 81
Generating Multiple IPO Object Files ..o, 82
Capturing Intermediate Outputs of IPOccoiiiiiiii 83

Table Of Contents

Creating an IPO Executable Using xild.............cccoooiiiii i 83
Code Layout and Multi-Object IPO..........coouuiiiiiiii e 85
Compilation with Real Object Files...........ccooiiiiiii 86
Creating a Library from IPO Objects..........cccoiiiiiiiiiiii e 87
Using -ip with -Qoption Specifiers ... 88
Inline Expansion of FUNCHONSoiiiiiiii e 90
Profile-guided Optimizations............oouiiiiiii e 93
Profile-guided Optimizations OVErvieWccoouuiiiiiiiiiiiieiiieeeei e 93
Profile-guided Optimizations Methodology and Usage Model..................... 94
BasiC PGO OPLiONSuiiiiiiieiee e 97
Advanced PGO OPLtiONSooiiiiiiieeeie e 98
PGO Environment Variables ... 99
Example of Profile-Guided Optimizationcccooviiiiiiiiiee, 100
Merging the .dyn Files ... 101
Using profmerge to Relocate the Source Files...........ccccoiiiiiiiiiiiin. 102
Code-Ccoverage TOO.......ooouuuiiiiii e 103
Test Prioritization Toolcoouiiiii e 111
PGO API: Profile Information Generation Support..........ccccoovevviiiiiinnnnnn.. 118
High-level Language Optimizations (HLO).........ccouiiiiiiiiiiiii e 121
HLO OVEIVIEW ...ttt ettt e e e e e eeenes 121
Loop Transformations...........cooueoiiiiiii e 122
Scalar Replacement (IA-32 ONly).....coouuiiiiiiiiii e 123
Loop Unrolling with -unroll[N]........c.ooriii e, 123

Table Of Contents

Memory Dependency with IVDEP Directive.............cccovviiiiiiiiiiiiceen, 124
PrefetChing...... oo 125
Parallel Programming with Intel® Fortran...............cooooiiiii e, 127
Parallelism: @an OVEIVIEWc.uuuuiiii i 127
Parallel Program Development ... 128
Auto-vectorization (IA-32 ONlY)......ui i 130
VeCtorization OVEIVIEWcooiiiiiiiiiie e 130
VeCtorizer OPtiONS. v 131
Loop Parallelization and Vectorization................ccooiviiiiiiiiiieee, 132
Vectorization Key Programming Guidelines.............ccccovviiiiiiiiiiiiienennnnnn. 133
D= 1= D T=T o 1= o T 1= o o = 134
LOOP CONSIIUCEScuiiiiiee e 135
Loop ExXit ConditioNS........ccuuiiiiieieee e 136
Types of Loop VeCtorized 137
Strip-mining and CleanuUpcooviiiiii e 138
Statements in the Loop BOdYcooviiiiiiiiiiiii e 139
Vectorization EXamplesooouiiii e 140
Loop Interchange and Subscripts: Matrix Multiply..........cccccooiiiiiinnn. 142
Auto-parallelization ... 143
Auto-parallelization OVErVIEW............coovuiiiiiiiiiii e 143
Programming with Auto-parallelizationccoooviiiiii e, 144

Vi

Auto-parallelization: Enabling, Options, Directives, and Environment
Vari@DIES ... e 145

Auto-parallelization Threshold Control and Diagnostics.................c.......... 147

Table Of Contents

Parallelization with OpenMP™*, 149
Parallelization with OpenMP* OVerview...........c.cccoveviiieeiiiieiii e, 149
Programming with OpenMP 150
Parallel Processing Thread Model.............ccoooiiiiiiiii e, 156
Compiling with OpenMP, Directive Format, and Diagnostics.................... 158
OpenMP Directives and Clauses SUMMAry........cccooevvevieeeeeiiieeeeieeeeeennn. 160
OpenMP Directive DescCriptionscceviiiiiiiiiiieiee e 164
OpenMP Clause DescCriptionS.........ccuiiiiieiiiiee e 174
OpenMP Support Libraries ..o 182
OpenMP Environment Variablesccooeviiiiiiiiiieeee e 183
OpenMP Run-time Library Routines. ..o, 186
Intel Extension ROULINESiiiiiiiiiii e 189
Examples of OpenMP USage..........oooeuiiiiiiiiiieeiie e 191

Debugging Multithreaded Programs ..o 193
Debugging Multithread Programs OVerviewcccccoeeeeeeiiiieiieeeinnnnn. 193
Debugging Parallel REQIONSiiiiiiiiiiiiii e 195
Debugging Multiple Threads...........cooouiiiiiii e, 197
Debugging Shared Variablesccoviiiiiiiiii e, 201

Optimization Support Featuresov i 203

Optimization Support Features OVerview..............ccooovvieeiiiiiiiiiiceeeeeeen 203

(070 g a1 o1 1=T gl 1= Yo (L P 203
Compiler Directives OVEIVIEWccuuiiiiiiiiiiieee e 203
Pipelining for ltanium®-based Applications.............ccccoeeiiiiiiiiiiiiieee, 203

vii

Table Of Contents

Loop Count and Loop Distribution.............c.coieiiiiiiiiiieeee, 204
[WeTo) o I8 o] o] 11TaTe IR TN o] oo] S 205
Prefetching SUPPOIt... ... e 206
Vectorization SUPPOIt........oouniii e 206
Optimizations and Debuggingc.uuiiiiiiiiiiiiii e 210
Support for Symbolic Debugging, -g.....cooevveiiieiiiii e 211
The Use of ebp ReGISter........oiiieiiii e 211
Combining Optimization and Debuggingcccooiiiiiiiiiiiiiiieeei e, 211
Debugging and AssSemblingccoouiiiiiii e 212
Optimizer Report Generation............coovuiiiiiiiii e 213
Specifying Optimizations to Generate Reportscccoovviiiiiiiiiineennn. 213

(€] oTsTST=1 o PP 217
GlOSSANY ..ttt ettt aae 217
Lo 1= PP 221

viii

Optimizing Applications: Overview

This is the second volume in a two-volume Intel® Fortran Compiler User's Guide.

It covers the following topics:

Programming for high performance using the Intel Fortran Compiler:

Setting Data Type and Alignment

Using Arrays Efficiently

Improving I/O Performance

Improving Run-time Efficiency

Using Intrinsics for Itanium-based Systems
Coding Guidelines for Intel Architectures

Analyzing and timing your application:

Using Intel Performance Analysis Tools
Timing Your Application

Implementing Intel Fortran Compiler optimizations:

Optimizing the Compilation Process

Efficient Compilation

Stack Options for Automatic Allocation and Checking
Alignment Options

Symbol Visibility Attribute Options

Options to Optimize Different Application Types
Floating Point Arithmetic Optimizations
Optimizing for Specific Processors
Interprocedural Optimizations

Profile-guided Optimizations

High-level Language Optimizations (HLO)

Parallel programming with Intel Fortran:

Auto-vectorization (IA-32 Only)
Auto-parallelization

Parallelization with OpenMP*
Debugging Multi-Threaded Programs

Optimization support features:

Compiler Directives
Optimizations and Debugging

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

e Optimizer Report Generation

For information on new features in this release, see the topic titled What's New in
This Release, in Volume I. Also refer to the product Release Notes.

10

How to Use This Document

This User's Guide explains how you can use the Intel® Fortran Compiler to
enhance your application.

The optimizations provided by the Intel Fortran Compiler enable you to enhance
the performance of your application. Each optimization is performed using a set
of options discussed in the sections of this volume.

In addition to optimizations invoked by the compiler command line options, the
compiler includes features that enhance your application performance such as
directives, intrinsics, run-time library routines and various utilities. These features
are discussed in the Optimization Support Features section.

DNote

This document explains how information and instructions apply differently
to targeted architectures. If there is no reference to a specific architecture,
the description applies to all supported architectures.

This documentation assumes that you are familiar with the Fortran Standard

programming language and with the Intel® processor architecture. You should
also be familiar with the host computer's operating system.

Notation Conventions

This manual uses the following conventions:

Intel Fortran The name of the common compiler language
supported by the Intel® Fortran Compiler for
Windows™ and Intel® Fortran Compiler for Linux*®

products.
Fortran 95 These terms are references to versions of the
Fortran 90 Fortran language. The default is "Fortran," which
Fortran 77 corresponds to all versions.

THIS TYPE STYLE |Statements, keywords, and directives are shown in
all uppercase, in a normal font. . For example, “add
the USE statement...”.

This type style Bold, normal text indicates menu names, menu
items, button names, dialog window names, and
other user-interface items.

File > Open Menu names and menu items joined by a greater
than (>) sign indicate a sequence of actions. For
example, "Click File > Open" indicates that in the

11

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

File menu, click Open to perform this action.

ifort The use of the compiler command in examples
follows this general rule: when there is no usage
difference between architectures, only one
command is given. Whenever there is a difference
in usage, the commands for each architecture are
given.

Thi s type Regular, monospaced text indicates an element of

style syntax, a reserved word, a keyword, a file name, a
variable, or a code example. The text appears in
lowercase unless uppercase is required.

Thi s type Bold, monospaced text indicates user input. It

style shows what you type as a command or input.

Thi s type Italic, monospaced text indicates placeholders for
style information that you must supply. This style is also
used to introduce new terms.

[opti ons] ltems inside single square brackets are optional.
(In some examples, square brackets are used to
show arrays.)

{val ue | Braces and a vertical bar indicate a choice of

val ue} items. You must choose one of the items unless

all of the items are also enclosed in square
brackets.

In syntax examples, a horizontal ellipsis (three
dots) following an item indicates that the item
preceding the ellipsis can be repeated. In code
examples, a horizontal ellipsis means that not all of
the statements are shown.

Linux* systems

An asterisk at the end of a word or name indicates
it is a third-party product trademark.

12

Programming for High Performance

Programming for High Performance: Overview

This section provides information on the following:

e Programming Guidelines
This section discusses programming guidelines that can enhance
application performance and includes specific coding practices that use
the Intel® architecture features.

e Analyzing and Timing Your Application
This section discusses how to use the Intel performance analysis tools
and how to time program execution to collect information about problem
areas.

Programming Guidelines

Setting Data Type and Alignment
Data alignment considerations apply to the following kinds of variables:

e Those that are dynamically allocated

o Those that are members of a data structure

e Those that are global or local variables

e Those that are parameters passed on the stack

For best performance, align data as follows:

Align 8-bit data at any address.

Align 16-bit data to be contained within an aligned four byte word.
Align 32-bit data so that its base address is a multiple of four.
Align 64-bit data so that its base address is a multiple of eight.
Align 80-bit data so that its base address is a multiple of sixteen.
Align 128-bit data so that its base address is a multiple of sixteen.

Causes of Unaligned Data and Ensuring Natural Alignment

For optimal performance, make sure your data is aligned naturally. A natural
boundary is a memory address that is a multiple of the data item's size. For
example, a REAL (KIND=8) data item aligned on natural boundaries has an
address that is a multiple of 8. An array is aligned on natural boundaries if all of
its elements are so aligned.

13

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

All data items whose starting address is on a natural boundary are naturally
aligned. Data not aligned on a natural boundary is called unaligned data.

Although the Intel® Fortran Compiler naturally aligns individual data items when
it can, certain Fortran statements can cause data items to become unaligned.

You can use the command-line option - al i gn to ensure naturally aligned data,
but you should check and consider reordering data declarations of data items
within common blocks, derived-type structures, and record structures as follows:

Carefully specify the order and sizes of data declarations to ensure
naturally aligned data.

Start with the largest size numeric items first, followed by smaller size
numeric items, and then non-numeric (character) data.

The following statements can cause unaligned data:

14

Common blocks (COMMON statement)

The order of variables in the COMMON statement determines their
storage order. Unless you are sure that the data items in the common
block will be naturally aligned, specify either the -al i gn conmons or -
al i gn dconmons option, depending on the largest data size used. See
Alignment Options.

Derived-type (user-defined) data
Derived-type data items are declared after a TYPE statement.

If your data includes derived-type data structures, you should use the -
al i gn recor ds option, unless you are sure that the data items in the
derived-type structures will be naturally aligned.

If you omit the SEQUENCE statement, the - al i gn r ecor ds option
(default) ensures all data items are naturally aligned.

If you specify the SEQUENCE statement, the - al i gn recor ds option is
prevented from adding necessary padding to avoid unaligned data (data
items are packed) unless you specify the - al i gn sequence option.
When you use SEQUENCE , you should specify data declaration order so
that all data items are naturally aligned.

Record structures (RECORD and STRUCTURE statements)

Intel Fortran record structures usually contain multiple data items. The
order of variables in the STRUCTURE statement determines their storage

Programming for High Performance

order. The RECORD statement names the record structure. Record
structures are an Intel Fortran language extension.

If your data includes record structures, you should use the - al i gn
recor ds option, unless you are sure that the data items in the record
structures will be naturally aligned.

EQUIVALENCE statements

EQUIVALENCE statements can force unaligned data or cause data to
span natural boundaries. For more information, see the Intel® Fortran
Language Reference.

To avoid unaligned data in a common block, derived-type structure, or record
structure, use one or both of the following:

For new programs or for programs where the source code declarations
can be modified easily, plan the order of data declarations with care. For
example, you should order variables in a COMMON statement such that
numeric data is arranged from largest to smallest, followed by any
character data (see the data declaration rules in Ordering Data
Declarations to Avoid Unaligned Data below.

For existing programs where source code changes are not easily done or
for array elements containing derived-type or record structures, you can
use command line options to request that the compiler align numeric data
by adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments and
arrays that contain a derived-type structure or record structure:

When actual arguments from outside the program unit are not naturally
aligned, unaligned data access occurs. Intel Fortran assumes all passed
arguments are naturally aligned and has no information at compile time
about data that will be introduced by actual arguments during program
execution.

For arrays where each array element contains a derived-type structure or
record structure, the size of the array elements may cause some elements
(but not the first) to start on an unaligned boundary.

Even if the data items are naturally aligned within a derived-type structure
without the SEQUENCE statement or a record structure, the size of an
array element might require use of the -al i gn r ecor ds option to supply
needed padding to avoid some array elements being unaligned.

If you specify - al i gn nor ecor ds or specify - vire without - al i gn
recor ds, no padding bytes are added between array elements. If array
elements each contain a derived-type structure with the SEQUENCE
statement, array elements are packed without padding bytes regardless of

15

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

the Fortran command options specified. In this case, some elements will
be unaligned.

« Whenthe-align records option is in effect, the number of padding
bytes added by the compiler for each array element is dependent on the
size of the largest data item within the structure. The compiler determines
the size of the array elements as an exact multiple of the largest data item
in the derived-type structure without the SEQUENCE statement or a
record structure. The compiler then adds the appropriate number of
padding bytes. For instance, if a structure contains an 8-byte floating-point
number followed by a 3-byte character variable, each element contains
five bytes of padding (16 is an exact multiple of 8). However, if the
structure contains one 4-byte floating-point number, one 4-byte integer,
followed by a 3-byte character variable, each element would contain one
byte of padding (12 is an exact multiple of 4).

Checking for Inefficient Unaligned Data

During compilation, the Intel Fortran compiler naturally aligns as much data as
possible. Exceptions that can result in unaligned data are described above.

Because unaligned data can slow run-time performance, it is worthwhile to:

e Double-check data declarations within common blocks, derived-type
structures, or record structures to ensure all data items are naturally
aligned (see the data declaration rules in the subsection below). Using
modules to contain data declarations can ensure consistent alignment and
use of such data.

« Avoid the EQUIVALENCE statement or use it in a way that cannot cause
unaligned data or data spanning natural boundaries.

e Ensure that arguments passed from outside the program unit are naturally
aligned.

o Check that the size of array elements containing at least one derived-type
structure or record structure causes array elements to start on aligned
boundaries (see the previous subsection).

There are two ways unaligned data might be reported:

« During compilation, warning messages are issued for any data items that
are known to be unaligned, unless you specify the -war n noal i gnnent s
(or - W) option that suppresses all warnings.

« During program execution, warning messages are issued for any data that
is detected as unaligned. The message includes the address of the
unaligned access.

Consider the following run-time message:

16

Programming for High Performance

Unal i gned access pi d=24821 <a.out > va=140000154,
pc=3f f 80805d60, ra=1200017bc

This message shows that:

o The statement accessing the unaligned data (program counter) is located
at 3ff80805d60
« The unaligned data is located at address 140000154

Ordering Data Declarations to Avoid Unaligned Data

For new programs or when the source declarations of an existing program can
be easily modified, plan the order of your data declarations carefully to ensure
the data items in a common block, derived-type structure, record structure, or

data items made equivalent by an EQUIVALENCE statement will be naturally

aligned.

Use the following rules to prevent unaligned data:

o Always define the largest size numeric data items first.

« If your data includes a mixture of character and numeric data, place the
numeric data first.

« Add small data items of the correct size (or padding) before otherwise
unaligned data to ensure natural alignment for the data that follows.

When declaring data, consider using explicit length declarations, such as
specifying a KIND parameter. For example, specify INTEGER(KIND=4) (or
INTEGER(4)) rather than INTEGER. If you do use a default size (such as
INTEGER, LOGICAL, COMPLEX, and REAL), be aware that the compiler
options

-integer _size{16| 32| 64} or -real _size{32| 64| 128} can change the
size of an individual field's data declaration size and thus can alter the data
alignment of a carefully planned order of data declarations.

Using the suggested data declaration guidelines minimizes the need to use the -
al i gn keywor d options to add padding bytes to ensure naturally aligned data.
In cases where the - al i gn keywor d options are still needed, using the
suggested data declaration guidelines can minimize the number of padding bytes
added by the compiler.

Arranging Data Items in Common Blocks
The order of data items in a conmon statement determine the order in which the

data items are stored. Consider the following declaration of a common block
named X:

17

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

| ogi cal (kind=2) flag

i nt eger farry_i(3)
character(l en=5) name_ch

common /x/ flag, iarry_i(3), name_ch

As shown in Figure 1-1, if you omit the appropriate Fortran command options, the
common block will contain unaligned data items beginning at the first array
elementofiarry i.

Figure 1-1 Common Block with Unaligned Data

0 2 B 10 14 pamE cH 19 (byte offset)

FLAG | IARRY_IETY | IARRY_IE2Y | IARRY_IES)

1 byte per character

EK—EESQ.-".—EE_
As shown in Figure 1-2, if you compile the program units that use the common
block with the
-al i gn conmons option, data items will be naturally aligned.

Figure 1-2 Common Block with Naturally Aligned Data

ooz 4 : 12 18 pamE cH 21 (byte offset)

1 BRRY_ITY | IARRY_KZY | LARRY_IC3)

Padding 1 byte per character

Zk-GEE0A -GE

Because the common block x contains data items whose size is 32 bits or
smaller, specify the

-al i gn conmons option. If the common block contains data items whose size
might be larger than 32 bits (such as REAL (KIND=8) data), use the - al i gn
conmons option.

If you can easily modify the source files that use the common block data, define
the numeric variables in the COMMON statement in descending order of size
and place the character variable last. This provides more portability, ensures
natural alignment without padding, and does not require the command-line
options - al i gn commons or - al i gn dconmons option:

| ogi cal (kind=2) flag

i nt eger farry_i(3)
character(l en=5) name_ch

common /x/ iarry_i(3), flag, name_ch

18

Programming for High Performance

As shown in Figure 1-3, if you arrange the order of variables from largest to
smallest size and place character data last, the data items will be naturally
aligned.

Figure 1-3 Common Block with Naturally Aligned Reordered Data

0 4 = 12 14 pagEcH 19 (bvte offset)

ARRY_ICTY | IARRY_IK2Y | IARRY_IK3) | FLAG

1 byte per character
ZK-T154-GE

When modifying or creating all source files that use common block data, consider
placing the common block data declarations in a module so the declarations are
consistent. If the common block is not needed for compatibility (such as file
storage or Fortran 77 use), you can place the data declarations in a module
without using a common block.

Arranging Data Items in Derived-Type Data

Like common blocks, derived-type structures can contain multiple data items
(members).

Data item components within derived-type structures are naturally aligned on up
to 64-bit boundaries, with certain exceptions related to the use of the
SEQUENCE statement and Fortran options. See Options Controlling Alignment
for information about these exceptions.

Intel Fortran stores a derived data type as a linear sequence of values, as
follows:

« If you specify the SEQUENCE statement, the first data item is in the first
storage location and the last data item is in the last storage location. The
data items appear in the order in which they are declared. The Fortran
options have no effect on unaligned data, so data declarations must be
carefully specified to naturally align data. The - al i gn sequence option
specifically aligns data items in a SEQUENCE derived-type on natural
boundaries.

« If you omit the SEQUENCE statement, Intel Fortran adds the padding
bytes needed to naturally align data item components, unless you specify
the -al i gn norecords option.

Consider the following declaration of array CATALOG _SPRI NG of derived-type
PART DT:

nodul e data_defs
type part_dt

19

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

i nt eger identifier
real wei ght
character (|l en=15) description
end type part _dt

type(part _dt) catal og_spring(30)

end nodul e data_defs
Using Arrays Efficiently

Many of the array access efficiency techniques described in this section are
applied automatically by the Intel Fortran loop transformations optimizations.
Several aspects of array use can improve run-time performance:

o The fastest array access occurs when contiguous access to the whole
array or most of an array occurs. Perform one or a few array operations
that access all of the array or major parts of an array instead of numerous
operations on scattered array elements. Rather than use explicit loops for
array access, use elemental array operations, such as the following line
that increments all elements of array variable a:

a=-a+1

When reading or writing an array, use the array name and not a DO loop
or an implied DO-loop that specifies each element number. Fortran 95/90
array syntax allows you to reference a whole array by using its name in an
expression. For example:

real :: a(100, 100)

a=20.0

a=a+1 I Increnent all elenents
I of aby 1l

wite (8) a I Fast whole array use

Similarly, you can use derived-type array structure components, such as:

type X
i nt eger a(5)
end type X

type (x) z
wite (8)z% I Fast array structure
I conponent use

20

Programming for High Performance

Make sure multidimensional arrays are referenced using proper array
syntax and are traversed in the natural ascending storage order, which is
column-major order for Fortran. With column-major order, the leftmost
subscript varies most rapidly with a stride of one. Whole array access
uses column-major order.

Avoid row-major order, as is done by C, where the rightmost subscript
varies most rapidly.

For example, consider the nested do loops that access a two-dimension
array with the j loop as the innermost loop:

integer x(3,5), y(3,5), i, j

y =0

do i=1,3 I | outer |oop varies slowest
do j=1,5 I J inner |oop varies fastest

x (i,j) =vy(i,j) +1 I Inefficient row major storage
order

end do I (rightnost subscript varies
fastest)

end do

end pr ogram

Since j varies the fastest and is the second array subscript in the
expression x (i,]), the array is accessed in row-major order.

To make the array accessed in natural column-major order, examine the
array algorithm and data being modified. Using arrays x and y, the array
can be accessed in natural column-major order by changing the nesting
order of the do loops so the innermost loop variable corresponds to the
leftmost array dimension:

integer x(3,5), y(3,5), i, j

y =0

do j=1,5 ' J outer |oop varies slowest

do i=1,3 ' I inner |oop varies fastest

X (i,j) =y(i,j) +1 I Efficient colum-mjor storage
order

end do I (leftnost subscript varies
fastest)

end do

end pr ogram
The Intel Fortran whole array access (x = y + 1) uses efficient column

major order. However, if the application requires that J vary the fastest or
if you cannot modify the loop order without changing the results, consider

21

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

22

modifying the application program to use a rearranged order of array
dimensions. Program modifications include rearranging the order of:

e Dimensions in the declaration of the arrays x(5,3) and y(5,3)
e The assignmentof x(j,i) andy(j,i) within the do loops
o All other references to arrays x and y

In this case, the original DO loop nesting is used where J is the innermost
loop:

integer x(3,5), y(3,5), i, |

y =0

do i=1,3 I | outer | oop varies sl owest

do j=1,5 I J inner | oop varies fastest

X (j,i) =y(j,i) +1 ! Efficient colum-nmajor storage
order

end do I (leftnost subscript varies
fastest)

end do

end pr ogram

Code written to access multidimensional arrays in row-major order (like C)
or random order can often make use of the CPU memory cache less
efficient. For more information on using natural storage order during
record, see Improving I/O Performance.

Use the available Fortran 95/90 array intrinsic procedures rather than
create your own.

Whenever possible, use Fortran 95/90 array intrinsic procedures instead
of creating your own routines to accomplish the same task. Fortran 95/90
array intrinsic procedures are designed for efficient use with the various
Intel Fortran run-time components.

Using the standard-conforming array intrinsics can also make your
program more portable.

With multidimensional arrays where access to array elements will be
noncontiguous, avoid leftmost array dimensions that are a power of two
(such as 256, 512).

Since the cache sizes are a power of 2, array dimensions that are also a
power of 2 may make less efficient use of cache when array access is
noncontiguous. If the cache size is an exact multiple of the leftmost
dimension, your program will probably make inefficient use of the cache.

Programming for High Performance

This does not apply to contiguous sequential access or whole array
access.

One work-around is to increase the dimension to allow some unused
elements, making the leftmost dimension larger than actually needed. For
example, increasing the leftmost dimension of A from 512 to 520 would
make better use of cache:

real a(512, 100)
do i= 2,511
doj = 2,99
a(i,j)=(a(i+1,j-1) + a(i-1, j+1)) * 0.5
end do
end do

In this code, array a has a leftmost dimension of 512, a power of two. The
innermost loop accesses the rightmost dimension (row major), causing
inefficient access. Increasing the leftmost dimension of a to 520 (real a
(520, 100)) allows the loop to provide better performance, but at the
expense of some unused elements.

Because loop index variables | and J are used in the calculation, changing
the nesting order of the do loops changes the results.

For more information on arrays and their data declaration statements, see the
Intel® Fortran Language Reference.

Passing Array Arguments Efficiently
In Fortran, there are two general types of array arguments:
o Explicit-shape arrays used with Fortran 77.
These arrays have a fixed rank and extent that is known at compile time.
Other dummy argument (receiving) arrays that are not deferred-shape
(such as assumed-size arrays) can be grouped with explicit-shape array
arguments.
o Deferred-shape arrays introduced with Fortran 95/90.
Types of deferred-shape arrays include array pointers and allocatable
arrays. Assumed-shape array arguments generally follow the rules about

passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the
array or the address of an array descriptor is passed:

23

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

e When using explicit-shape (or assumed-size) arrays to receive an array,
the starting address of the array is passed.

« When using deferred-shape or assumed-shape arrays to receive an array,
the address of the array descriptor is passed (the compiler creates the
array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array can
slow run-time performance. This is because the compiler needs to create an
array temporary for the entire array. The array temporary is created because the
passed array may not be contiguous and the receiving (explicit-shape) array
requires a contiguous array. When an array temporary is created, the size of the
passed array determines whether the impact on slowing run-time performance is
slight or severe.

The following table summarizes what happens with the various combinations of
array types. The amount of run-time performance inefficiency depends on the
size of the array.

Actual Dummy Argument Array Types

Argument (choose one:)

,(Aérr:?c/);'gpes Explicit-Shape Arrays Deferred-Shape and

one:) Assumed-Shape Arrays
Result when using this Result when using this
combination: Very efficient. combination: Efficient. Only
Does not use an array allowed for assumed-shape
temporary. Does not pass an | arrays (not deferred-shape
array descriptor. Interface arrays). Does not use an array
block optional. temporary. Passes an array

descriptor. Requires an
interface block.

Result when using this Result when using this
combination: When passing combination: Efficient.

an allocatable array, very Requires an assumed-shape or
efficient. Does not use an array pointer as dummy

array temporary. Does not argument. Does not use an
pass an array descriptor. array temporary. Passes an
Interface block optional. array descriptor. Requires an

interface block.
When not passing an
allocatable array, not
efficient. Instead use
allocatable arrays whenever
possible.

Uses an array temporary.

24

Programming for High Performance

Does not pass an array
descriptor. Interface block
optional.

Improving I/O Performance

Improving overall I/O performance can minimize both device I/O and actual CPU
time. The techniques listed in this topic can significantly improve performance in
many applications.

I/O flow problems limit the maximum speed of execution by being the slowest
process in an executing program. In some programs, I/O is the bottleneck that
prevents an improvement in run-time performance. The key to relieving /O
problems is to reduce the actual amount of CPU and I/O device time involved in
l/O.

The problems can be caused by one or more of the following:

e A dramatic reduction in CPU time without a corresponding improvement in

I/O time
e Such coding practices as:
e Unnecessary formatting of data and other CPU-intensive
processing
e Unnecessary transfers of intermediate results
« Inefficient transfers of small amounts of data
o Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual
CPU time.

Intel offers software solutions to system-wide problems like minimizing device I/O
delays.

Use Unformatted Files Instead of Formatted Files

25

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Use unformatted files whenever possible. Unformatted I/O of numeric data is
more efficient and more precise than formatted I/O. Native unformatted data
does not need to be modified when transferred and will take up less space on an
external file.

Conversely, when writing data to formatted files, formatted data must be
converted to character strings for output, less data can transfer in a single
operation, and formatted data may lose precision if read back into binary form.

To write the array A(25, 25) in the following statements, S1 is more efficient
than S2:

s1 WRITE (7) A

S2 WRI TE (7,100) A
100 FORVAT (25(' ', 25F5.21))

Although formatted data files are more easily ported to other systems, Intel
Fortran can convert unformatted data in several formats; see Little-endian-to-Big-
endian Conversion.

Write Whole Arrays or Strings

To eliminate unnecessary overhead, write whole arrays or strings at one time
rather than individual elements at multiple times. Each item in an I/O list
generates its own calling sequence. This processing overhead becomes most
significant in implied-DO loops. When accessing whole arrays, use the array
name (Fortran array syntax) instead of using implied-DOloops.

Write Array Data in the Natural Storage Order

Use the natural ascending storage order whenever possible. This is column-
major order, with the leftmost subscript varying fastest and striding by 1. (See
Accessing Arrays Efficiently.) If a program must read or write data in any other
order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order
possible.

If you must use an unnatural storage order, in certain cases it might be more
efficient to transfer the data to memory and reorder the data before performing
the 1/0O operation.

Use Memory for Intermediate Results

Performance can improve by storing intermediate results in memory rather than
storing them in a file on a peripheral device. One situation that may not benefit

26

Programming for High Performance

from using intermediate storage is when there is a disproportionately large
amount of data in relation to physical memory on your system. Excessive page
faults can dramatically impede virtual memory performance.

If you are primarily concerned with the CPU performance of the system, consider
using a memory file system (mfs) virtual disk to hold any files your code reads or
writes.

Enable Implied-DO Loop Collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally, each
element in an I/O list generates a separate call to the Intel Fortran run-time
library (RTL). The processing overhead of these calls can be most significant in
implied-DO loops.

Intel Fortran reduces the number of calls in implied-DO loops by replacing up to
seven nested implied-DO loops with a single call to an optimized run-time library
I/O routine. The routine can transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted I/O, but only if certain
conditions are met:

e The control variable must be an integer. The control variable cannot be a
dummy argument or contained in an EQUIVALENCE or VOLATILE
statement. Intel Fortran must be able to determine that the control variable
does not change unexpectedly at run time.

o The format must not contain a variable format expression.

For information on the VOLATILE attribute and statement, see the Intel® Fortran
Language Reference.

For loop optimizations, see Loop Transformations, Loop Unrolling, and
Optimization Levels.

Use of Variable Format Expressions

Variable format expressions (an Intel Fortran extension) are almost as flexible as
run-time formatting, but they are more efficient because the compiler can
eliminate run-time parsing of the 1/0 format. Only a small amount of processing
and the actual data transfer are required during run time.

On the other hand, run-time formatting can impair performance significantly. For
example, in the following statements, S1 is more efficient than S2 because the
formatting is done once at compile time, not at run time:

s1 WRI TE (6, 400) (A(1), 1=1,N)
400 FORMAT (1X, <N> F5.2)

27

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

2 WRI TE (CHFMT, 500) ' (1X,',N,' F5.2)"
500 FORMAT (A I3, A
WRI TE (6, FMT=CHFMI) (A(1), 1=1, N

Efficient Use of Record Buffers and Disk I/O

Records being read or written are transferred between the user's program buffers
and one or more disk block I/O buffers, which are established when the file is
opened by the Intel Fortran RTL. Unless very large records are being read or
written, multiple logical records can reside in the disk block I/O buffer when it is
written to disk or read from disk, minimizing physical disk I/O.

You can specify the size of the disk block physical I/O buffer by using the OPEN
statement BLOCKSIZE specifier; the default size can be obtained from

f st at (2). If you omit the BLOCKSIZE specifier in the OPEN statement, it is set
for optimal 1/0O use with the type of device the file resides on (with the exception
of network access).

The OPEN statement BUFFERCOUNT specifier specifies the number of /10
buffers. The default for BUFFERCOUNT is 1. Any experiments to improve |/O
performance should increase the BUFFERCOUNT value and not the
BLOCKSIZE value, to increase the amount of data read by each disk I/O.

If the OPEN statement has BLOCKSIZE and BUFFERCOUNT specifiers, then
the internal buffer size in bytes is the product of these specifiers. If the open
statement does not have these specifiers, then the default internal buffer size is
8192 bytes. This internal buffer will grow to hold the largest single record, but will
never shrink.

The default for the Fortran run-time system is to use unbuffered disk writes. That
is, by default, records are written to disk immediately as each record is written
instead of accumulating in the buffer to be written to disk later.

To enable buffered writes (that is, to allow the disk device to fill the internal buffer
before the buffer is written to disk), use one of the following:

« The OPEN statement BUFFERED specifier
e The-assune buffered i o command-line option
e The FORT_BUFFERED run-time environment variable

The OPEN statement BUFFERED specifier takes precedence over the - assune
buf f er ed_i o option. If neither one is set (which is the default), the
FORT_BUFFERED environment variable is tested at run time.

28

Programming for High Performance

The OPEN statement BUFFERED specifier applies to a specific logical unit. In
contrast, the

-assume nobuff ered_i o option and the FORT _BUFFERED environment
variable apply to all Fortran units.

Using buffered writes usually makes disk /0O more efficient by writing larger
blocks of data to the disk less often. However, a system failure when using
buffered writes can cause records to be lost, since they might not yet have been
written to disk. (Such records would have been written to disk with the default
unbuffered writes.)

When performing 1/O across a network, be aware that the size of the block of
network data sent across the network can impact application efficiency. When
reading network data, follow the same advice for efficient disk reads, by
increasing the BUFFERCOUNT. When writing data through the network, several
items should be considered:

« Unless the application requires that records be written using unbuffered
writes, enable buffered writes by a method described above.

o Especially with large files, increasing the BLOCKSIZE value increases the
size of the block sent on the network and how often network data blocks
get sent.

« Time the application when using different BLOCKSIZE values under
similar conditions to find the optimal network block size.

When writing records, be aware that 1/0 records are written to unified buffer
cache (UBC) system buffers. To request that I/O records be written from program
buffers to the UBC system buffers, use the FLUSH library routine (see the Intel®
Fortran Libraries Reference). Be aware that calling FLUSH also discards read-
ahead data in user buffer.

Specify RECL

The sum of the record length (RECL specifier in an OPEN statement) and its
overhead is a multiple or divisor of the blocksize, which is device-specific. For
example, if the BLOCKSIZE is 8192 then RECL might be 24576 (a multiple of 3)
or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over
capacity). Such values allow efficient moves, with each operation moving as
much data as possible; the least amount of space in the block is wasted. Avoid
using values larger than the block capacity, because they create very inefficient
moves for the excess data only slightly filling a block (allocating extra memory for
the buffer and writing partial blocks are inefficient).

29

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The RECL value unit for formatted files is always 1-byte units. For unformatted
files, the RECL unit is 4-byte units, unless you specify the -assunme byt er ecl
option to request 1-byte units (see

-assume byt erecl).

Use the Optimal Record Type

Unless a certain record type is needed for portability reasons, choose the most
efficient type, as follows:

o For sequential files of a consistent record size, the fixed-length record type
gives the best performance.

o For sequential unformatted files when records are not fixed in size, the
variable-length record type gives the best performance, particularly for
BACKSPACE operations.

o For sequential formatted files when records are not fixed in size, the
St r eam _LF record type gives the best performance.

Reading from a Redirected Standard Input File

Due to certain precautions that the Fortran run-time system takes to ensure the
integrity of standard input, reads can be very slow when standard input is
redirected from a file. For example, when you use a command such as
nyprogram exe < nyi nput.dat a>, the data is read using the READ(*) or
READ(5) statement, and performance is degraded. To avoid this problem, do
one of the following:

« Explicitly open the file using the OPEN statement. For example:
open(5, STATUS=" QLD , FILE= nyinput.dat"')
« Use an environment variable to specify the input file.

To take advantage of these methods, be sure your program does not rely on
sharing the standard input file.

For more information on Intel Fortran data files and I/O, see "Files, Devices, and
I/O" in Volume I; on OPEN statement specifiers and defaults, see "Open
Statement" in the Intel® Fortran Language Reference.

Improving Run-time Efficiency
Follow these source coding guidelines to improve run-time performance. The

amount of improvement in run-time performance is related to the number of times
a statement is executed. For example, improving an arithmetic expression

30

Programming for High Performance

executed within a loop many times has the potential to improve performance,
more than improving a similar expression executed once outside a loop.

Avoid Small Integer and Small Logical Data Items

Avoid using integer or logical data less than 32 bits. Accessing a 16-bit (or 8-bit)
data type can make data access less efficient, especially on Itanium-based
systems.

To minimize data storage and memory cache misses with arrays, use 32-bit data
rather than 64-bit data, unless you require the greater numeric range of 8-byte
integers or the greater range and precision of double precision floating-point
numbers.

Avoid Mixed Data Type Arithmetic Expressions

Avoid mixing integer and floating-point (REAL) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment
statement) as floating-point values eliminates the need to convert data between
fixed and floating-point formats. Expressing all numbers in an integer arithmetic
expression as integer values also achieves this. This improves run-time
performance.

For example, assuming that | and J are both INTEGER variables, expressing a
constant number (2.) as an integer value (2) eliminates the need to convert the
data:

Inefficient Code:

I NTECER I, J
Il =J 1/ 2.

Efficient Code:

I NTECER I, J
|l =J/ 2

You can use different sizes of the same general data type in an expression with
minimal or no effect on run-time performance. For example, using REAL,
DOUBLE PRECISION, and COMPLEX floating-point numbers in the same
floating-point arithmetic expression has minimal or no effect on run-time
performance.

Use Efficient Data Types

31

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

In cases where more than one data type can be used for a variable, consider
selecting the data types based on the following hierarchy, listed from most to
least efficient:

e Integer (also see above example)

« Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or
REAL*4

« Double-precision real, expressed explicitly as DOUBLE PRECISION,
REAL (KIND=8), or REAL*8

o Extended-precision real, expressed explicitly as REAL (KIND=16) or
REAL*16

However, keep in mind that in an arithmetic expression, you should avoid mixing
integer and floating-point (REAL) data (see example in the previous subsection).

Avoid Using Slow Arithmetic Operators

Before you modify source code to avoid slow arithmetic operators, be aware that
optimizations convert many slow arithmetic operators to faster arithmetic
operators. For example, the compiler optimizes the expression H=J* * 2 to be
H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster
arithmetic operator will change the accuracy of the results or impact the
maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved for
critical code areas. The following hierarchy lists the Intel Fortran arithmetic
operators, from fastest to slowest:

Addition (+), subtraction (-), and floating-point multiplication (*)
Integer multiplication (*)

Division (/)

Exponentiation (**)

Avoid Using EQUIVALENCE Statements
Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

e Force unaligned data or cause data to span natural boundaries.
o Prevent certain optimizations, including:
« Global data analysis under certain conditions (see -2 in Setting
Optimization with -On options).
e Implied-DOloop collapsing when the control variable is contained in
an EQUI VALENCE statement

32

Programming for High Performance

Use Statement Functions and Internal Subprograms

Whenever the Intel Fortran compiler has access to the use and definition of a
subprogram during compilation, it may choose to inline the subprogram. Using
statement functions and internal subprograms maximizes the number of
subprogram references that will be inlined, especially when multiple source files
are compiled together at optimization level - C3.

For more information, see Efficient Compilation.
Code DO Loops for Efficiency

Minimize the arithmetic operations and other operations in a DO loop whenever
possible. Moving unnecessary operations outside the loop will improve
performance (for example, when the intermediate nonvarying values within the
loop are not needed).

For more information on loop optimizations, see Pipelining for ltanium®-based
Applications and Loop Unralling; on the syntax of Intel Fortran statements, see
the Intel® Fortran Language Reference.

Using Intrinsics for Itanium®-based Systems

Intel® Fortran supports all standard Fortran intrinsic procedures and, in addition,
provides Intel-specific intrinsic procedures to extend the functionality of the
language. Intel Fortran intrinsic procedures are provided in the library

I'i bintrins. a. For more information on intrinsic procedures, see the Intel®
Fortran Language Reference.

This topic provides examples of the Intel-extended intrinsics that are helpful in
developing efficient applications.

CACHESIZE Intrinsic (Itanium® Compiler)

Intrinsic CACHESIZE (n)is used only with the Intel® Itanium® Compiler.
CACHESIZE (n) returns the size in kilobytes of the cache at level n; 1 represents
the first level cache. Zero is returned for a nonexistent cache level.

This intrinsic can be used in many scenarios where application programmers
would like to tailor their algorithms for the target processor's cache hierarchy. For
example, an application may query the cache size and use it to select block sizes
in algorithms that operate on matrices.

subrouti ne foo (level)

i nt eger |evel

if (cachesize(level) > threshold) then
cal | big_bar()

33

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

el se
call small _bar()
end if

end subroutine

Coding Guidelines for Intel® Architectures
This topic provides general guidelines for coding practices and techniques for:

e |A-32 architecture supporting MMX(TM) technology and Streaming SIMD
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2)
e Itanium® architecture

This topic describes practices, tools, coding rules and recommendations
associated with the architecture features that can improve the performance on
IA-32 and Itanium processor families. For details about optimization for IA-32
processors, see the Intel® Architecture Optimization Reference Manual. For all
details about optimization for Itanium processor family, see the Intel ltanium 2
Processor Reference Manual for Software Development and Optimization.

E)NOte

If a guideline refers to a particular architecture only, this architecture is
explicitly named. The default is for both I1A-32 and Itanium architectures.

Performance of compiler-generated code may vary from one compiler to another.
The Intel® Fortran Compiler generates code that is highly optimized for Intel
architectures. You can significantly improve performance by using various
compiler optimization options. In addition, you can help the compiler to optimize
your Fortran program by following the guidelines described here.

To achieve optimum processor performance in your Fortran application, do the
following:

e avoid memory access stalls

e ensure good floating-point performance

e ensure good SIMD integer performance

e use vectorization.

The coding practices, rules, and recommendations described here will contribute
to optimizing the performance on Intel architecture-based processors.

Memory Access

34

Programming for High Performance

The Intel compiler lays out Fortran arrays in column-major order. For example, in
a two-dimensional array, elements A(22, 34) and A(23, 34) are contiguous

in memory. For best performance, code arrays so that inner loops access them in
a contiguous manner. Consider the following examples.

The code in example 1 will likely have higher performance than the code in
example 2.

Example 1

The code above illustrates access to arrays Aand B in the inner loop | in a
contiguous manner which results in good performance.

Example 2

The code above illustrates access to arrays A and B in inner loop J in a non-
contiguous manner which results in poor performance.

The compiler itself can transform the code so that inner loops access memory in
a contiguous manner. To do that, you need to use advanced optimization
options, such as - (3 for both 1A-32 and Itanium architectures, and -O3 and -
ax{ K| W N| B| P} for IA-32 only.

Memory Layout

Alignment is a very important factor in ensuring good performance. Aligned
memory accesses are faster than unaligned accesses. If you use the
interprocedural optimization on multiple files (the - i po option), the compiler
analyzes the code and decides whether it is beneficial to pad arrays so that they
start from an aligned boundary. Multiple arrays specified in a single common
block can impose extra constraints on the compiler. For example, consider the
following COMMON statement:

COMMON / AREAL/ A(200), X, B(200)

35

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

If the compiler added padding to align A(1) at a 16-byte aligned address, the
element B(1) would not be at a 16-byte aligned address. So it is better to split
AREA1 as follows.

COVMON / AREAL/ A(200)
COVMON / AREA2/ X
COVMON / AREA3/ B(200)

The above code provides the compiler maximum flexibility in determining the
padding required for both A and B.

Optimizing for Floating-point Applications
To improve floating-point performance, observe these general rules:

e Avoid exceeding representable ranges during computation since handling
these cases can have a performance impact. Use REAL variables in
single-precision format unless the extra precision obtained through
DOUBLE or REAL*8 variables is required. Using variables with a larger
precision formation will also increase memory size and bandwidth
requirements.

o ForlA-32 only: Avoid repeatedly changing rounding modes between more
than two values, which can lead to poor performance when the
computation is done using non-SSE instructions. Hence avoid using
FLOOR and TRUNC instructions together when generating non-SSE code.
The same applies for using CElI L and TRUNC.

Another way to avoid the problem is to use the - x{ K| W N| B| P} options to
do the computation using SSE instructions.

e Reduce the impact of denormal exceptions for both architectures as
described below.

Denormal Exceptions

Floating point computations with underflow can result in denormal values that
have an adverse impact on performance.

For IA-32: Take advantage of the SIMD capabilities of Streaming SIMD
Extensions (SSE), and Streaming SIMD Extensions 2 (SSE2) instructions. The -
x{ K| W N| B| P} options enable the flush-to-zero (FTZ) mode in SSE and SSE2
instructions, whereby underflow results are automatically converted to zero,
which improves application performance. In addition, the - xP option also enables
the denormals-are-zero (DAZ) mode, whereby denormals are converted to zero
on input, further improving performance. An application developer willing to trade
pure IEEE-754 compliance for speed would benefit from these options. For more

36

Programming for High Performance

information on FTZ and DAZ, see Setting FTZ and DAZ Flags and "Floating-point
Exceptions" in the Intel® Architecture Optimization Reference Manual.

For ltanium architecture: enable flush-to-zero (FTZ) mode with the -ftz option set
by -O3 option.

Auto-vectorization

Many applications significantly increase their performance if they can implement
vectorization, which uses streaming SIMD SSE2 instructions for the main
computational loops. The Intel Compiler turns vectorization on (auto-
vectorization) or you can implement it with compiler directives.

See Auto-vectorization (IA-32 Only) section for complete details.

Creating Multithreaded Applications

The Intel Fortran Compiler and the Intel® Threading Toolset have the capabilities
that make developing multithreaded application easy. See Parallel Programming
with Intel Fortran. Multithreaded applications can show significant benefit on

multiprocessor Intel symmetric multiprocessing (SMP) systems or on Intel
processors with Hyper-Threading technology.

Analyzing and Timing Your Application

Using Intel Performance Analysis Tools

Intel offers a variety of application performance tools that are optimized to take
advantage of the Intel architecture-based processors. You can employ these
tools for developing the most efficient programs without having to write assembly
code.

The following performance tools help you analyze your application and find and
resolve problem areas:

e Intel® Debugger (IDB)

The IDB debugger provides extensive support for debugging programs
through a command-line or graphical user interface.

e Intel® VTune(TM) Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel architecture-
specific software performance data from the system-wide view down to a

37

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

specific module, function, and instruction in your code. For information, see
http://www.intel.com/software/products/vtune/.

e Intel® Threading Tools. The Intel Threading Tools consist of the following:
e Intel® Thread Checker
e Intel® Thread Profiler

For general information, see
http://www.intel.com/software/products/threadtool.htm.

Timing Your Application

One of the performance indicators is your application timing. Use the ti e
command to provide information about program performance. The following
considerations apply to timing your application:

e Run program timings when other users are not active. Your timing results
can be affected by one or more CPU-intensive processes also running
while doing your timings.

e Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a
previous version of the same program. Use the same CPU system (model,
amount of memory, version of the operating system, and so on) if
possible.

« If you do need to change systems, you should measure the time using the
same version of the program on both systems, so you know each system's
effect on your timings.

o For programs that run for less than a few seconds, run several timings to
ensure that the results are not misleading. Overhead functions like loading
shared libraries might influence short timings considerably.

Use the t i me command and specify the name of the executable program to
provide the following:

e The elapsed, real, or "wall clock" time, which will be greater than the total
charged actual CPU time.

e Charged actual CPU time, shown for both system and user execution. The
total actual CPU time is the sum of the actual user CPU time and actual
system CPU time.

Example

In the following example timings, the sample program being timed displays the
following line:

Average of all the nunbers is: 4368488960. 000000

38

Programming for High Performance

Using the Bourne* shell, the following program timing reports that the program
uses 1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for
user program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

$ time a.out

Average of all the nunbers is:
4368488960. 000000

r eal OnR. 46s
user OnD. 61s
Sys On0. 58s

Using the C shell, the following program timing reports 1.19 seconds of total
actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use), about 4 seconds (0:04) of
elapsed time, the use of 28% of available CPU time, and other information:

%time a.out
Average of all the nunbers is: 4368488960. 000000
0.61u 0.58s 0:04 28% 78+424k 9+5i o Opf +0w

Using the bash shell, the following program timing reports that the program uses
1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time for user
program use and 0.58 seconds of actual CPU time for system use) and 2.46
seconds of elapsed time:

[user @ystemuser]$ tine ./a.out

Average of all the nunbers is: 4368488960. 000000
el apsed O0Ont. 46s

user OnD. 61s

Sys OnD. 58s

Timings that indicate a large amount of system time is being used may suggest
excessive 1/0, a condition worth investigating.

If your program displays a lot of text, you can redirect the output from the

program on the time command line. Redirecting output from the program will
change the times reported because of reduced screen |/O.

39

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

For more information, see tine(1).

In addition to the t i me command, you might consider modifying the program to
call routines within the program to measure execution time. For example, use the
Intel Fortran intrinsic procedures, such as SECNDS, DCLOCK, CPU_TIME,
SYSTEM_CLOCK, TIME, and DATE_AND_TIME. See "Intrinsic Procedures" in
the Intel® Fortran Language Reference.

40

Compiler Optimizations

Compiler Optimizations Overview

Intel® Fortran Compiler optimizations enable you to enhance the performance of
your application. Optimization options are described in the following sections:

e Optimizing the compilation process (includes stack, alignment, and symbol
visibility attribute options)

Optimizing different application types

Floating-point arithmetic operations

Optimizing applications for specific processors

Interprocedural optimizations (IPO)

Profile-guided optimizations

High-level language optimizations

In addition to optimizations invoked by the compiler command-line options, other
performance-enhancing features such as directives, intrinsics, run-time library
routines and various utilities are provided. These features are discussed in the
Optimization Support Features section.

Optimizing the Compilation Process

Optimizing the Compilation Process Overview

This section describes the Intel® Fortran Compiler options that optimize the
compilation process. By default, the compiler converts source code directly to an
executable file. Appropriate options enable you not only to control the process
and obtain desired output file produced by the compiler, but also make the
compilation itself more efficient.

A group of options monitors the outcome of Intel compiler-generated code
without interfering with the way your program runs. These options control some
computation aspects, such as allocating the stack memory, setting or modifying
variable settings, and defining the use of some registers.

The options in this section provide you with the following capabilities of efficient
compilation:

« Automatic allocation of variables and stacks
o Aligning data
e Symbol visibility attribute options

Efficient Compilation

41

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Understandably, efficient compilation contributes to performance improvement.
Before you analyze your program for performance improvement, and improve
program performance, you should think of efficient compilation itself. Based on
the analysis of your application, you can decide which Intel Fortran Compiler
optimizations and command-line options can improve the run-time performance
of your application.

Efficient Compilation Techniques

The efficient compilation techniques can be used during the earlier stages and
later stages of program development.

During the earlier stages of program development, you can use incremental
compilation with minimal optimization. For example:

ifort -c -g -Q0 sub2.f90 (generates object file of sub2)
ifort -c -g -Q0 sub3.f90 (generates object file of sub3)
ifort -o main -g -Q nmain. f90 sub2.0 sub3.o0

The above commands turn off all compiler default optimizations (for example, -
@2) with -Q0. You can use the - g option to generate symbolic debugging
information and line numbers in the object code for all routines in the program for
use by a source-level debugger. The mai n file created in the third command
above contains symbolic debugging information as well.

During the later stages of program development, you should specify multiple
source files together and use an optimization level of at least - 2 (default) to
allow more optimizations to occur. For instance, the following command compiles
all three source files together using the default level of optimization, - C2:

ifort -o main main.f90 sub2.f90 sub3.f90

Compiling multiple source files lets the compiler examine more code for possible
optimizations, which results in:

e Inlining more procedures
e More complete data flow analysis
« Reducing the number of external references to be resolved during linking

For very large programs, compiling all source files together may not be practical.
In such instances, consider compiling source files containing related routines
together using multiple i f ort commands, rather than compiling source files
individually.

Options That Improve Run-Time Performance
42

Compiler Optimizations

The table below lists the options in alphabetical order that can directly improve
run-time performance. Most of these options do not affect the accuracy of the
results, while others improve run-time performance but can change some
numeric results. The Intel Fortran Compiler performs some optimizations by
default unless you turn them off by corresponding command-line options.
Additional optimizations can be enabled or disabled using command options.

Option Description
-align Analyzes and reorders memory layout for variables and
keywor d arrays.

Controls whether padding bytes are added between data
items within common blocks, derived-type data, and
record structures to make the data items naturally
aligned.

ax{ K| WN| B| P}
IA-32 and Intel®
Extended Memory
64 Technology
(Intel® EM64T)
systems only

Optimizes your application's performance for specific
processors. Regardless of which - ax suboption you
choose, your application is optimized to use all the
benefits of that processor with the resulting binary file
capable of being run on any Intel 1A-32 processor.

-f ast

Enables a collection of optimizations for run-time
performance.

-0l

Optimizes to favor code size and code locality. See
Setting Optimizations with -On Options.

-2

Optimizes for code speed. Sets performance-related
options. Setting Optimizations with -On Options.

-3B

Activates loop transformation optimizations. Setting
Optimizations with -On Options.

- opennp

Enables the parallelizer to generate multithreaded code
based on the OpenMP* directives.

-paral | el

Enables the auto-parallelizer to generate multithreaded
code for loops that can be safely executed in parallel.

-qp

Requests profiling information, which you can use to
identify those parts of your program where improving
source code efficiency would most likely improve run-
time performance. After you modify the appropriate
source code, recompile the program and test the run-
time performance.

-tpp{n}

Optimizes your application's performance for specific
Intel processors. See Targeting a Processor, -t pp{n}.

-unrolln

Specifies the number of times a loop is unrolled (n)
when specified with optimization level - G3. If you omit n
in -unrol |, the optimizer determines how many times
loops can be unrolled.

43

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Options That Slow Down the Run-time Performance

The table below lists options in alphabetical order that can slow down the run-
time performance. Some applications that require floating-point exception
handling or rounding might need to use the - f pen dynamic option. Other
applications might need to use the - assunme dummy_al i ases or - vis options
for compatibility reasons. Other options that can slow down the run-time
performance are primarily for troubleshooting or debugging purposes.

The following table lists the options that can slow down run-time performance.

Option Description

-assune Forces the compiler to assume that dummy (formal)
dummy_al i ases | arguments to procedures share memory locations
with other dummy arguments or with variables
shared through use association, host association, or
common block use. These program semantics slow
performance, so you should specify

-assume dummy_al i ases only for the called
subprograms that depend on such aliases.

The use of dummy aliases violates the Fortran 77
and Fortran 95/90 standards but occurs in some
older programs.

-check bounds | Generates extra code for array bounds checking at

run time.
- check Generates extra code to check integer calculations
overfl ow for arithmetic overflow at run time. Once the program

is debugged, omit this option to reduce executable
program size and slightly improve run-time

performance.

-fpe3 Using this option enables certain types of floating-
point exception handling, which can be expensive.

-9 Generate extra symbol table information in the object

file. Specifying this option also reduces the default
level of optimization to - Q) or - Q0 (no optimization).

Z_J‘]Note

The - g option only slows your program down when
no optimization level is specified, in which case - g
tums on - A0, which slows the compilation down. If -
g, - @2 are specified, the code runs very much the
same speed as if - g were not specified.

44

Compiler Optimizations

-0 Turns off optimizations. Can be used during the early
stages of program development or when you use the
debugger.

-save Forces the local variables to retain their values from

the last invocation terminated. This may change the

output of your program for floating-point values as it

forces operations to be carried out in memory rather
than in registers, which in turn causes more frequent
rounding of your results.

-VnB Controls certain VMS-related run-time defaults,
including alignment. If you specify the - virs option,
you may need to also specify the -al i gn records
option to obtain optimal run-time performance.

Little-endian-to-Big-endian Conversion

The Intel Fortran Compiler can write unformatted sequential files in big-endian
format and also can read files produced in big-endian format by using the little-
endian-to-big-endian conversion feature.

Both on |A-32-based processors and on Itanium®-based processors, Intel
Fortran handles internal data in little-endian format. The little-endian-to-big-
endian conversion feature is intended for Fortran unformatted input/output
operations in unformatted sequential files. The feature enables:

e processing of the files developed on processors that accept big-endian data
format
e producing big-endian files for such processors on little-endian systems.

The little-endian-to-big-endian conversion is accomplished by the following
operations:

« The WRITE operation converts little-endian format to big-endian format.
« The READ operation converts big-endian format to little-endian format.

The feature enables the conversion of variables and arrays (or array subscripts)
of basic data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable

In order to use the little-endian-to-big-endian conversion feature, specify the
numbers of the units to be used for conversion purposes by setting the
F_UFMTENDI AN environment variable. Then, the READ/WRITE statements that
use these unit numbers, will perform relevant conversions. Other READ/WRITE
statements will work in the usual way.

45

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

In the general case, the variable consists of two parts divided by a semicolon. No
spaces are allowed inside the F_UFMIENDI AN value. The variable has the
following syntax:

F_UFMTENDI AN=MODE | [MODE;] EXCEPTI ON

where:

MXDE = big | little

EXCEPTION = big: ULIST | little:ULIST | ULIST
ULI ST = U| ULIST, U

U = deci mal | deci mal - deci nal

« MODE defines current format of data, represented in the files; it can be
omitted.

The keyword | i t t | e means that the data have little endian format and will
not be converted. This keyword is a default.

The keyword bi g means that the data have big endian format and will be
converted. This keyword may be omitted together with the colon.

« EXCEPTI ONis intended to define the list of exclusions for MODE; it can be
omitted. EXCEPTI ON keyword (I i tt| e or bi g) defines data format in the
files that are connected to the units from the EXCEPTI ON list. This value
overrides MODE value for the units listed.

e Each list member Uis a simple unit number or a number of units. The
number of list members is limited to 64.
deci mal is a non-negative decimal number less than 2*.

Converted data should have basic data types, or arrays of basic data types.
Derived data types are disabled.

Command lines for variable setting with different shells:

Sh: export F_UFMTENDI AN=MODE; EXCEPTI ON

Csh: setenv F_UFMIENDI AN MODE; EXCEPTI ON

Z-J‘]Note

Environment variable values should be enclosed in quotes if a semicolon is
present.

Another Possible Environment Variable Setting
The environment variable can also have the following syntax:
F_UFMTENDI AN=u[, u]

Command lines for the variable setting with different shells:

46

Compiler Optimizations

Sh: export F_UFMIENDI AN=ul[, u] .
Csh: setenv F_UFMTENDI AN ul, u]

See error messages that may be issued during the little endian — big endian
conversion. They are all fatal. You should contact Intel if such errors occur.

Usage Examples

1.

F_UFMIENDI AN=bi g

All input/output operations perform conversion from big-endian to little-
endian on READ and from little-endian to big-endian on WRITE.

. F_UFMTENDI AN="1i tt 1 e; bi g: 10, 20"

or F_UFMIENDI AN=hi g: 10, 20
or F_UFMIENDI AN=10, 20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

F_UFMTENDI AN="bi g; little: 8"

In this case, on unit number 8 no conversion operation occurs. On all
other units, the input/output operations perform big-little endian
conversion.

. F_UFMIENDI AN=10- 20

Define 10, 11, 12, ..., 19, 20 units for conversion purposes; on these units,
the input/output operations perform big-little endian conversion.

Assume you set F_ UFMTENDI AN=10, 100 and run the following program.

i nteger*4 cc4a
i nt eger*8 cc8
i nteger*4 c4
i nt eger*8 c8
c4 = 456
c8 = 789

C prepare a little endian representation of data
open(1l,file="lit.tnp',form="unformatted)
wite(ll) c8

wite(1ll) c4

cl ose(11)

C prepare a big endi an representati on of data

47

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

open(10,file="big.tnmp',form=" unformatted')
wite(1l0) c8

wite(10) c4

cl ose(10)

C read big endian data and operate with them on
C little endian nmachine.

open(100,file="big.tnp' ,form=" unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been read

C Co
cl ose(100)
stop
end

Now compare | i t. t np and bi g. t np files with the help of od utility.
>o0d -t x4 lit.tnp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034

>o0d -t x4 big.tnp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.
Default Compiler Optimizations

If you invoke the Intel® Fortran Compiler without specifying any compiler options,
the default state of each option takes effect. The following tables summarize the
options whose default status is ON as they are required for Intel Fortran Compiler
default operation. The tables group the options by their functionality.

For the default states and values of all options, see the Alphabetical Quick
Reference Guide in the Intel® Fortran Compiler Options Quick Reference. The
table provides links to the sections describing the functionality of the options. If
an option has a default value, such value is indicated.

Depending on your application requirements, you can disable one or more
options. For general methods of disabling optimizations, see Volume |.

48

Compiler Optimizations

The following tables list all options that compiler uses for its default optimizations.

Data Setting and Fortran Language Conformance

Default Option

Description

-align records

Analyzes and reorders memory layout for
variables and arrays.

-align rec8byte

Specifies 8-byte boundary for alignment
constraint.

-al tparam

Specifies that the alternate form of
parameter constant declarations is
recognized.

-ansi _al ias

Enables assumption of the program's
ANSI conformance.

-assune cc_on

Enables OpenMP conditional compilation
directives.

-ccdef aul t
def aul t

Specifies default carriage control for units
6 and *.

-doubl e_si ze 64

Defines DOUBLE PRECISION
declarations, constants, functions, and
intrinsics as REAL*8.

-dps

Enables DEC* parameter statement
recognition.

-error _|limt 30

Specifies the maximum number of error-
level or fatal-level compiler errors
permissible.

-fpe3

Specifies floating-point exception handling
at run time for the main program.

-integer_size 32

Makes default integer and logical
variables 4 bytes long. INTEGER and
LOGICAL declarations are treated as
(KIND=4).

- pad Enables changing variable and array
memory layout.

- pc80 - pc{ 32| 64| 80} enables floating-point

|A-32 only significand precision control as follows: -

pc32 to 24-bit significand, - pc64 to 53-
bit significand, and - pc80 to 64-bit
significand.

-real _size 64

Specifies the size of REAL and COVPLEX
declarations, constants, functions, and
intrinsics.

49

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

-save Saves all variables in static allocation.
Disables
- aut o, that is, disables setting all
variables AUTOMATIC.

-Zp8 - Zpn specifies alignment constraint for

structures on 1-, 2-, 4-, 8-, or 16-byte
boundary. To disable, use
-noal i gn or -Zpl.

Optimizations

Default Option

Description

-assune cc_onp

Enables OpenMP conditional
compilation directives.

-fp Disables the use of the ebp register

|A-32 only in optimizations. Directs to use the
ebp-based stack frame for all
functions.

-fpe3 Specifies floating-point exception
handling at run time for the main
program. - f pe0 disables the option.

-1 PF_fltacc- Enables the compiler to apply

[tanium® compiler

optimizations that affect floating-point
accuracy.

-1 PF_fma
ltanium compiler

Enables the contraction of floating-
point multiply and add/subtract
operations into a single operation.

-1 PF_fp_specul ation

f ast
[tanium compiler

Sets the compiler to speculate on
floating-point operations. -

| PF_fp_specul ati onof f
disables this optimization.

-0 -2

Optimizes for maximum speed.

-opennp_reportl

Indicates loops, regions, and
sections parallelized.

opt _report _level mn

Specifies the minimal level of the
optimizations report.

-par _reportl

Indicates loops successfully auto-
parallelized.

-tpp2
[tanium compiler

Optimizes code for the Intel®
[tanium® 2 processor for ltanium-
based applications. Generated code
is compatible with the Itanium
processor.

50

Compiler Optimizations

-t pp7 Optimizes code for the Intel®

|A-32 only Pentium® 4 and Intel® Xeon(TM)
processor for IA-32 applications.

-unrol | -unrol | [n] : omit n to let the

compiler decide whether to perform
unrolling or not (default).

Specify n to set maximum number of
times to unroll a loop.

The Itanium compiler currently uses
only

n =0, -unrol | O (disabled option)
for compatibility.

-vec_reportl Indicates loops successfully
vectorized.

Disabling Default Options
To disable an option, you can generally use one of the following:

o To disable one or a group of optimization options, use - 0 opt i on. For
example:

ifort -O2 -Q0 input _file(s)

ENote

The - Q0 option is part of a mutually-exclusive group of options that
includes - Q0, - O, - AL, - @2, and - 3. The last of any of these options
specified on the command line will override the previous options from this

group.

o To disable options that include optional "-" shown as [-] , use that version
of the option in the command line, for example: -ft z-.

e To disable options that have an { n} parameter, use n=0 version, for
example: -unrol | 0.

ENote

If there are enabling and disabling versions of options on the line, the last
one takes precedence.

Using Compilation Options
Stacks: Automatic Allocation and Checking

The options in this group enable you to control the computation of stacks and
variables in the compiler generated code.

51

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Automatic Allocation of Variables
-auto

The - aut o option specifies that locally declared variables are allocated to the
run-time stack rather than static storage. If variables defined in a procedure do
not have the SAVE or ALLOCATABLE attribute, they are allocated to the stack. It
does not affect variables that appear in an EQUIVALENCE or SAVE statement,
or those that are in COMMON.

-aut o is the same as - aut omat i ¢ and - nosave.

- aut o may provide a performance gain for your program, but if your program
depends on variables having the same value as the last time the routine was
invoked, your program may not function properly. Variables that need to retain
their values across routine calls should appear in a SAVE statement.

If you specify - r ecur si ve or - opennp, the default is - aut o.
-auto_scal ar

The - aut o_scal ar option causes allocation of local scalar variables of intrinsic
type INTEGER, REAL, COMPLEX, or LOGICAL to the stack. This option does
not affect variables that appear in an EQUIVALENCE or SAVE statement, or
those that are in COMMON.

-aut o_scal ar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine
was invoked, your program may not function properly. Variables that need to
retain their values across subroutine calls should appear in a SAVE statement.
This option is similar to - aut o, which causes all local variables to be allocated
on the stack. The difference is that - aut o_scal ar allocates only scalar
variables of the stated above intrinsic types to the stack.

-aut o_scal ar enables the compiler to make better choices about which
variables should be kept in registers during program execution.

-save, -zero

The - save option is opposite of - aut 0: the - save option saves all variables in
static allocation except local variables within a recursive routine. If a routine is
invoked more than once, this option forces the local variables to retain their
values between the invocations. The - save option ensures that the final results
on the exit of the routine is saved on memory and can be reused at the next
occurrence of that routine. This may cause some performance degradation as it
causes more frequent rounding of the results.

52

Compiler Optimizations

When the compiler optimizes the code, the results are stored in registers. - save
is the same as - noaut o.

The - zer o -] option initializes to zero all local scalar variables of intrinsic type
INTEGER, REAL, COMPLEX, or LOGICAL, which are saved and not initialized
yet. Used in conjunction with - save. The default is - zer o- .

Summary

There are three choices for allocating variables: - save, - aut o, and -
aut o_scal ar. Only one of these three can be specified. The correlation among
them is as follows:

e -save disables - aut o, sets - noaut omat i ¢, and allocates all variables
not marked AUTOMATIC to static memory.
e -autodisables - save, sets - aut omat i ¢, and allocates all variables—
scalars and arrays of all types—not marked SAVE to the stack.
e -auto_scalar:
o It makes local scalars of intrinsic types INTEGER, REAL,
COMPLEX, and LOGICAL automatic.
o This is the default; there is no - noaut o_scal ar; however, -
recursive or - opennp disables - aut o_scal ar and makes -
aut o the default.

Checking the Floating-point Stack State (IA-32 only), - f pst kchk

The - f pst kchk option (IA-32 only) checks whether a program makes a correct
call to a function that should return a floating-point value. If an incorrect call is
detected, the option places a code that marks the incorrect call in the program.

When an application calls a function that retums a floating-point value, the
returned floating-point value is supposed to be on the top of the floating-point
stack. If return value is not used, the compiler must pop the value off of the
floating-point stack in order to keep the floating-point stack in correct state.

If the application calls a function, either without defining or incorrectly defining the
function's prototype, the compiler does not know whether the function must return
a floating-point value, and the return value is not popped off of the floating-point
stack if it is not used. This can cause the floating-point stack overflow.

The overflow of the stack results in two undesirable situations:
« A NaN value gets involved in the floating-point calculations
o The program results become unpredictable; the point where the program

starts making errors can be arbitrarily far away from the point of the actual
error.

53

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The - f pst kchk option marks the incorrect call and makes it easy to find the
error.

Z-J‘]Note

This option causes significant code generation after every
function/subroutine call to insure a proper state of a floating-point stack and
slows down compilation. It is meant only as a debugging aid for finding
floating point stack underflow/overflow problems, which can be otherwise
hard to find.

Aliases
-comon_args

The - conmon_ar gs option assumes that the "by-reference" subprogram
arguments may have aliases of one another.

Preventing CRAY* Pointer Aliasing

Option - saf e_cray_ptr specifies that the CRAY* pointers do not alias with
other variables. The default is OFF.

Consider the following example:
poi nter (pb, b)
pb = get storage()

doi =1, n
b(i) = a(i) + 1
enddo

When - saf e_cray_ptr is not specified (default), the compiler assumes that b
and a are aliased. To prevent such an assumption, specify this option, and the
compiler will treat b(i) and a(i) as independent of each other.

However, if the variables are intended to be aliased with CRAY pointers, using
the - saf e_cray_pt r option produces incorrect result. For the code example
below, - saf e_cr ay_ptr should not be used.

pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

-ansi _alias

The -ansi _al i as[-] enables (default) or disables the compiler to assume that
the program adheres to the ANSI Fortran type aliasablility rules. For example, an
object of type real cannot be accessed as an integer. You should see the ANSI
standard for the complete set of rules.

54

Compiler Optimizations

The option directs the compiler to assume the following:

e Arrays are not accessed out of arrays' bounds.

e Pointers are not cast to non-pointer types and vice-versa.

« References to objects of two different scalar types cannot alias. For
example, an object of type INTEGER cannot alias with an object of type
real or an object of type real cannot alias with an object of type double
precision.

If your program satisfies the above conditions, setting the - ansi _al i as option
will help the compiler better optimize the program. However, if your program may

not satisfy one of the above conditions, the option must be disabled, as it can
lead the compiler to generate incorrect code.

The synonym of - ansi _al i as is -assune [no] dummy_al i ases.
Alignment Options
-align recnbyte or-Zp[n]

Use the -al i gn recnbyt e (or - Zp[n]) option to specify the alignment
constraint for structures on n-byte boundaries (where n =1, 2, 4, 8, or 16 with -

Zp[n]).
When you specify this option, each structure member after the first is stored on

either the size of the member type or n-byte boundaries (where n = 1, 2, 4, 8, or
16), whichever is smaller.

For example, to specify 2 bytes as the packing boundary (or alignment
constraint) for all structures and unions in the file progl. f, use the following
command:

ifort -Zp2 progl.f

The default for IA-32 and Itanium-based systems is -al i gn rec8byt e or -
Zp8. The - Zp16 option enables you to align Fortran structures such as common
blocks. For information on Fortran record structures, see STRUCTURE
statement in the Intel® Fortran Language Reference.

If you specify - Zp (omit n), structures are packed at 8-byte boundary.

-align and - pad

The - al i gn option is a front-end option that changes alignment of variables in a
common block.

95

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Example:

common / bl ock1/ ch, doub, chl, i nt
i nt eger int

character(l en=1) ch, chl
doubl e precision doub

end

The - al i gn option enables padding inserted to ensure alignment of doub and
i nt on natural alignment boundaries. The - noal i gn option disables padding.

The - al i gn option applies mainly to structures. It analyzes and reorders
memory layout for variables and arrays and basically functions as - Zp{ n}. You
can disable either option with - noal i gn.

For-al i gn keyword options, see your User's Guide, Volume I.

The - pad option is effectively not different from - al i gn when applied to
structures and derived types. However, the scope of - pad is greater because it
applies also to common blocks, derived types, sequence types, and VAX*
structures.

Recommendations on Controlling Alignment with Options

The following options control whether the Intel Fortran compiler adds padding
(when needed) to naturally align multiple data items in common blocks, derived-
type structures, and Intel Fortran record structures:

o By default (with - @2), the -al i gn commons option requests that data in
common blocks be aligned on up to 4-byte boundaries, by adding padding
bytes as needed.

The - al i gn noconmons arbitrarily aligns the bytes of common block data.
In this case, unaligned data can occur unless the order of data items specified
in the COMMON statement places the largest numeric data item first,
followed by the next largest numeric data (and so on), followed by any
character data.

o By default (with - Q2), the - al i gn dconmons option requests that data in
common blocks be aligned on up to 8-byte boundaries, by adding padding
bytes as needed.

The - al i gn nodcommons arbitrarily aligns the bytes of data items in a
common data.

Specify the - al i gn dcomons option for applications that use common

blocks, unless your application has no unaligned data or, if the application
might have unaligned data, all data items are four bytes or smaller. For

56

Compiler Optimizations

applications that use common blocks where all data items are four bytes or
smaller, you can specify - al i gn commons instead of - al i gn dconmons.

« The-align norecords option requests that multiple data items in derived-
type data and record structures (an Intel Fortran extension) be aligned
arbitrarily on byte boundaries instead of being naturally aligned. The default
is-align records.

« The-align records option requests that multiple data items in record
structures (extension) and derived-type data without the SEQUENCE
statement be naturally aligned, by adding padding bytes as needed.

« The-align recnbyte option requests that fields of records and
components of derived types be aligned on either the size byte boundary
specified or the boundary that will naturally align them, whichever is smaller.
This option does not affect whether common blocks are naturally aligned or
packed.

« The-align sequence option controls alignment of derived-type
components declared with the SEQUENCE statement (sequenced
components).

The - al i gn nosequence option means that sequenced components are
packed regardless of any other alignment rules. Note that - al i gn none
implies - al i gn nosequence.

The - al i gn sequence option means that sequenced components obey
whatever alignment rules are currently in use. Consequently, since - al i gn
record is a default value, then - al i gn sequence alone on the command
line will cause the components of these derived types to be naturally aligned.

The default behavior is that multiple data items in derived-type structures and
record structures will be naturally aligned; data items in common blocks will not
(-al'ign records with -al i gn noconmons). In derived-type structures,
using the SEQUENCE statement prevents - al i gn r ecor ds from adding
needed padding bytes to naturally align data items.

Symbol Visibility Attribute Options

Applications that do not require symbol preemption or position-independent code
can obtain a performance benefit by taking advantage of the generic ABI visibility
attributes.

ENote

The visibility options are supported by both 1A-32 and Itanium compilers,
but currently the optimization benefits are for ltanium-based systems only.

Global Symbols and Visibility Attributes

S7

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

A global symbol is a symbol that is visible outside the compilation unit in which it
is declared (compilation unit is a single-source file with its include files). Each
global symbol definition or reference in a compilation unit has a visibility attribute
that controls how it may be referenced from outside the component in which it is
defined. The values for visibility are defined in the table that follows.

EXTERN The compiler must treat the symbol as though it is
defined in another component. This means that the
compiler must assume that the symbal will be
overridden (preempted) by a definition of the same
name in another component. (See Symbol Preemption.)
If a function symbol has external visibility, the compiler
knows that it must be called indirectly and can inline the
indirect call stub.

DEFAULT Other components can reference the symbol.
Furthermore, the symbol definition may be overridden
(preempted) by a definition of the same name in another
component.

PROTECTED Other components can reference the symbol, but it
cannot be preempted by a definition of the same name
in another component.

HI DDEN Other components cannot directly reference the symbol.
However, its address might be passed to other
components indirectly; for example, as an argument to a
call to a function in another component, or by having its
address stored in a data item referenced by a function
in another component.

| NTERNAL The symbol cannot be referenced outside the
component where it is defined, either directly or
indirectly.

Z-J‘]Note

Visibility applies to both references and definitions. A symbol reference's
visibility attribute is an assertion that the corresponding definition will have
that visibility.

Symbol Preemption and Optimization

Sometimes programmers need to use some of the functions or data items from a
shareable object, but at the same time, they need to replace other items with
definitions of their own. For example, an application may need to use the
standard run-time library shareable object, | i bc. so, but to use its own
definitions of the heap management routines mal | oc and f r ee. In this case it is
important that calls to mal | oc and f r ee within | i bc. so use the user's
definition of the routines and not the definitions in | i bc. so. The user's definition
should then override, or preempt, the definition within the shareable object.

58

Compiler Optimizations

This functionality of redefining the items in shareable objects is called symbol
preemption. When the run-time loader loads a component, all symbols within the
component that have default visibility are subject to preemption by symbols of the
same name in components that are already loaded. Note that since the main
program image is always loaded first, none of the symbols it defines will be
preempted (redefined).

The possibility of symbol preemption inhibits many valuable compiler
optimizations because symbols with default visibility are not bound to a memory
address until run-time. For example, calls to a routine with default visibility cannot
be inlined because the routine might be preempted if the compilation unit is
linked into a shareable object. A preemptable data symbol cannot be accessed
using GP-relative addressing because the name may be bound to a symbol in a
different component; and the GP-relative address is not known at compile time.

Symbol preemption is a rarely used feature and has negative consequences for
compiler optimization. For this reason, by default the compiler treats all global
symbol definitions as non-preemptable (protected visibility). Global references to
symbols defined in another compilation unit are assumed by default to be
preemptable (default visibility). In those rare cases where all global definitions as
well as references need to be preemptable, specify the - f pi ¢ option to override
this default.

Specifying Symbol Visibility Explicitly

The Intel Fortran Compiler has the visibility attribute options that provide
command-line control of the visibility attributes as well as a source syntax to set
the complete range of these attributes. The options ensure immediate access to
the feature without depending on header file modifications. The visibility options
cause all global symbols to get the visibility specified by the option. There are two
variety of options to specify symbol visibility explicitly:

-fvisibil
I

t y=keywor d
-fvisibility-

keyword=file

The first form specifies the default visibility for global symbols. The second form
specifies the visibility for symbols that are in a file (this form overrides the first
form).

The fil e is the pathname of a file containing the list of symbols whose visibility
you want to set; the symbols are separated by whitespace (spaces, tabs, or
newlines).

In both options, the keywor d is: ext er n, def aul t, prot ect ed, hi dden, and
i nt ernal , see definitions above.

59

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Z-J‘]Note

These two ways to explicitly set visibility are mutually exclusive: you may
use the visibility attribute on the declaration, or specify the symbol name in
afil e, butnotboth.

The option - fvi si bi i ty-keyword=fi | e specifies the same visibility
attribute for a number of symbols using one of the five command line options
corresponding to the keywor d:

-fvisibility-extern=file
-fvisibility-default=file
-fvisibility-protected=file
-fvisibility-hidden=file
-fvisibility-internal =file

where fi | e is the pathname of a file containing a list of the symbol names
whose visibility you wish to set; the symbol names in the fi | e are separated by
either blanks, tabs, or newlines. For example, the command line option:

-fvisibility-protected=prot.txt

where file prot . t xt contains symbols a, b, c, d, and e sets protected visibility
for symbols a, b, c, d, and e. This has the same effect as declared attribute
vi si bility=protected on the declaration for each of the symbols.

Specifying Visibility without Symbol File, - f vi si bi | i t y=keyword

This option sets the visiblity for symbols not specified in a visibility list file and
that do not have vi si bi | ty attribute in their declaration. If no symbol file
option is specified, all symbols will get the specified attribute. Command line
example:

ifort -fvisibility=protected a.f

You can set the default visibility for symbols using one of the following command
line options:

-fvisibility=extern
-fvisibility=default
-fvisibility=protected
-fvisibility=hidden
-fvisibility=internal

The above options are listed in the order of precedence: explicitly setting the
visibility to ext er n, by using either the attribute syntax or the command line
option, overrides any setting to def aul t, pr ot ect ed, hi dden, ori nt er nal .
Explicitly setting the visibility to def aul t overrides any setting to pr ot ect ed,
hi dden, ori nt er nal and so on.

60

Compiler Optimizations

The visibility attribute def aul t enables compiler to change the default symbol
visibility and then set the default attribute on functions and variables that require
the default setting. Since i nt er nal is a processor-specific attribute, it may not
be desirable to have a general option for it.

In the combined command-line options
-fvisibility=protected -fvisibility-default=prot.txt

file prot. t xt (see above) causes all global symbols except a, b, c, d, and e to
have protected visibility. Those five symbols, however, will have default visibility
and thus be preemptable.

Visibility-related Options
-fm nshared

Directs to treat the compilation unit as a component of a main program and not
to link it as a part of a shareable object.

Since symbols defined in the main program cannot be preempted, this enables
the compiler to treat symbols declared with default visibility as though they have
protected visibility. It means that

-fm nshar ed implies - f vi si bi |l i t y=pr ot ect ed. The compiler need not
generate position-independent code for the main program. It can use absolute
addressing, which may reduce the size of the global offset table (GOT) and may
reduce memory traffic.

-fpic
Specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (that is, preemptable) visibility unless explicitly

specified otherwise. Generates position-independent code. Required for building
shared objects on ltanium-based systems.

Optimizing Different Application Types

Optimizing Different Application Types Overview

This section discusses the command-line options - @0, - OL, - O2 (or - O, and -
3. The - A option disables optimizations. Each of the other three turns on
several compiler capabilities. To specify one of these optimizations, take into
consideration the nature and structure of your application as indicated in the
more detailed description of the options.

In general terms, - OL, - Q2 (or - O), and - O3 optimize as follows:

61

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

- Ol : code size and locality

-2 (or - O : code speed; this is the default option

- (8: enables - @2 with more aggressive optimizations.

-fast: enables - B and - i po to enhance speed across the entire program.

These options behave similarly on IA-32 and Itanium® architectures, with some
specifics that are detailed in the sections that follow.

Setting Optimizations with -On Options

The following table details the effects of the - 0, - OL, - @2, - O3, and - f ast
options. The table first describes the characteristics shared by both 1A-32 and
Itanium architectures and then explicitly describes the specifics (if any) of the -
On and - f ast options’ behavior on each architecture.

Option Effect

-0 Disables - On optimizations. On |A-32 systems, this
option sets the - f p option.

-01 Optimizes to favor code size and code locality.

Disables loop unrolling.

May improve performance for applications with very
large code size, many branches, and execution time
not dominated by code within loops.

In most cases, - Q2 is recommended over - O1.

On IA-32 systems:

Disables intrinsics inlining to reduce code size.
Enables optimizations for speed. Also disables
intrinsic recognition and the - f p option.

On ltanium-based systems:

Disables software pipelining and global code
scheduling. Enables optimizations for server
applications (straight-line and branch-like code with
flat profile). Enables optimizations for speed, while
being aware of code size. For example, this option
disables software pipelining and loop unrolling.

62

Compiler Optimizations

This option is the default for optimizations. However,
if - g is specified, the default is - 0.

Optimizes for code speed.

This is the generally recommended optimization
level. However, if - g is specified, - Q2 is turned off
and - Q0 is the default unless - @2 (or -OL or - 3) is
explicitly specified in the command line together with
- g

On |A-32 systems, this option is the same as the -
OL option.

On ltanium-based systems:

Enables optimizations for speed, including global
code scheduling, software pipelining, predication,
and speculation.

On these systems, the - Q2 option enables inlining of
intrinsics. It also enables the following capabilities for
performance gain: constant propagation, copy
propagation, dead-code elimination, global register
allocation, global instruction scheduling and control
speculation, loop unrolling, optimized code selection,
partial redundancy elimination, strength
reduction/induction variable simplification, variable
renaming, exception handling optimizations, tail
recursions, peephole optimizations, structure
assignment lowering and optimizations, and dead
store elimination.

63

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

-8B

Enables - 2 optimizations and in addition, enables
more aggressive optimizations such as prefetching,
scalar replacement, and loop and memory access
transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance
unless loop and memory access transformation take
place. The - 3 optimizations may slow down code in
some cases compared to - Q2 optimizations.
Recommended for applications that have loops that
heavily use floating-point calculations and process
large data sets.

On IA-32 systems:

In conjunction with - ax{ K| W N| B| P} or -

x{ K| W N B| P} options, this option causes the
compiler to perform more aggressive data
dependency analysis than for - Q2. This may result in
longer compilation times.

On ltanium-based systems, enables optimizations
for technical computing applications (loop-intensive
code): loop optimizations and data prefetch.

-fast

This option is a single, simple method to enable a
collection of optimizations for run-time performance.
Sets the following options that can improve run-time
performance:

- @3: maximum speed and high-level optimizations,
see above

-1 po: enables interprocedural optimizations across
files

- st ati c: prevents linking with shared libraries

On IA-32 and Intel® EM64T systems, -fast sets
these three options and also sets -xP.

Provides a shortcut that requests several important
compiler optimizations. To override one of the
options set by - f ast, specify that option after the -
f ast option on the command line.

The options set by the - f ast option may change
from release to release.

On IA-32 systems:

64

Compiler Optimizations

In conjunction with - ax{ K| W N B| P} or -
x{ K| W N BJ| P} options, this option provides the
best run-time performance.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your
program:

-0 Disables optimizations. Enables -
f p option.
-9 Turns off the default - @2 option

and makes - Q0 the default unless
-2 (or - OL or - @) is explicitly
specified in the command line
together with - g. See
Optimizations and Debugging.

-np Restricts optimizations that cause
some minor loss or gain of
precision in floating-point arithmetic
to maintain a declared level of
precision and to ensure that
floating-point arithmetic more
nearly conforms to the ANSI and
IEEE* standards. See - np option
for more details.

-nolib_inline Disables inline expansion of

65

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

intrinsic functions.

For more information on ways to restrict optimization, see Using - i p with -
Qoption Specifiers.

Floating-point Arithmetic Optimizations

Options Used for Both 1A-32 and Itanium® Architectures

The options described in this section all provide optimizations with varying
degrees of precision in floating-point (FP) arithmetic for IA-32 and Itanium®
architectures.

The - npl (IA-32 only) and - np options improve floating-point precision, but also
affect the application performance. See more details about these options in
Improving/Restricting FP Arithmetic Precision.

The FP options provide optimizations with varying degrees of precision in
floating-point arithmetic. The option that disables these optimizations is - Q0.

- np Option

Use - np to limit floating-point optimizations and maintain declared precision. For
example, the Intel® Fortran Compiler can change floating-point division
computations into multiplication by the reciprocal of the denominator. This
change can alter the results of floating point division computations slightly. The -
np switch may slightly reduce execution speed. For more information, see
Improving/Restricting FP Arithmetic Precision.

-npl Option

Use the - np1 option to restrict floating-point precision to be closer to declared

precision with less impact to performance than with the - np option. The option
will ensure the out-of-range check of operands of transcendental functions and
improve accuracy of floating-point compares.

Flushing to Zero Denormal Values, -ft z[- |
Option - ft z[-] flushes denormal results to zero when the application is in the
gradual underflow mode. Flushing the denormal values to zero with - f t z may

improve performance of your application.

The default status of is OFF (- ft z-). By default, the compiler lets results
gradually underflow. With the default - Q2 option, -ft z[-] is OFF.

66

Compiler Optimizations

-ftz[-] on Itanium-based systems
On Itanium-based systems only, the - 3 option turnson -ft z.

If the - f t z option produces undesirable results of the numerical behavior of your
program, you can turn the flush-to-zero (FTZ) mode off by using - ft z- in the
command line while still benefiting from the - 8 optimizations:

ifort -O3 -ftz- nyprog.f
Usage:

« Use this option if the denormal values are not critical to application
behavior.

e -ftz[-] only needs tobe used on the source that contains the mai n
program to turn the FTZ mode on. The initial thread, and any threads
subsequently created by that process, will operate in FTZ mode.

The -ft z[-] option affects the results of floating underflow as follows:

e -ftz- resultsin gradual underflow to 0: the result of a floating underflow
is a denormalized number or a zero.

e -ftzresults in abrupt underflow to O: the result of a floating underflow is
set to zero and execution continues. - f t z also makes a denormal value
used in a computation be treated as a zero so no floating invalid exception
occurs. On ltanium-based systems, the - O3 option sets the abrupt
underflow to zero (- f t z is on). At lower optimization levels, gradual
underflow to 0 is the default on the Itanium-based systems.

On |A-32, setting abrupt underflow by - f t z may improve performance of
SSE/SSE2 instructions, while it does not affect either performance or numerical
behavior of x87 instructions. Thus, - f t z will have no effect unless you select the
- X or - ax options, which activate instructions of the more recent IA-32 Intel
processors.

On ltanium-based processors, gradual underflow to 0 can degrade performance.
Using higher optimization levels to get the default abrupt underflow or explicitly
setting - f t z improves performance.

- ft z may improve performance on Itanium® 2 processor, even in the absence
of actual underflow, most frequently for single-precision code.

Using the Floating-point Exception Handling, - f pen

Use the - f pen option to control the handling of exceptions. The - f pen option
controls floating-point exceptions according to the value of n.

67

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The following are the kinds of floating-point exceptions:

Floating overflow: the result of a computation is too large for the floating-
point data type. The result is replaced with the exceptional value Infinity
with the proper "+" or "-" sign. For example, 1E30 * 1E30 overflows single-
precision floating-point value and results in a +Infinity; -1E30 * 1E30
results in a -Infinity.

Floating divide-by-zero: if the computation is 0.0 / 0.0, the result is the
exceptional value NaN (Not a Number), a value that means the
computation was not successful. If the numerator is not 0.0, the resultis a
signed Infinity.

Floating underflow: the result of a computation is too small for the floating-
poinit type. Each floating-point type (32-, 64-, and 128-bit) has a
denormalized range where very small numbers can be represented with
some loss of precision. For example, the lower bound for normalized
single-precision floating-point value is approximately 1E-38; the lower
bound for denormalized single-precision floating-point value is 1E-45. 1E-
30 / 1E10 underflows the normalized range but not the denormalized
range so the result is the denormal exceptional value 1E-40. 1E-30 / 1E30
underflows the entire range and the result is zero. This is known as
gradual underflow to 0.

Floating invalid: when the exceptional value (signed Infinities, NaN,
denormal) is used as input to a computation, the result is also a NaN.

The - f pen option allows some control over the results of floating-point exception
handling at run time for the main program.

68

- f peO restricts floating-point exceptions as follows:

« Floating overflow, floating divide-by-zero, and floating invalid cause
the program to print an error message and abort.

o If afloating underflow occurs, the result is set to zero and execution
continues. This is called abrupt underflow to 0.

- f pel restricts only floating underflow:

o Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

o If afloating underflow occurs, the result is set to zero and execution
continues.

The default is - f pe3 on both IA-32 and Itanium-based processors. This
allows full floating-point exception behavior:

o Floating overflow, floating divide-by-zero, and floating invalid
produce exceptional values (NaN and signed Infinities) and
execution continues.

e Floating underflow is gradual: denormalized values are produced
until the result becomes 0.

Compiler Optimizations

The - f pen only affects the Fortran main program. The floating-point exception
behavior set by the Fortran main program is in effect throughout the execution of
the entire program. If the main program is not Fortran, you can use the Fortran
intrinsic FOR_SET _FPE to set the floating-point exception behavior.

When compiling different routines in a program separately, you should use the
same value of n in - f pen.

For more information, refer to the Intel Fortran Compiler User's Guide for Linux*®
Systems, Volume |, section "Controlling Floating-point Exceptions."

Floating-point Arithmetic Precision for IA-32 Systems

- pr ec_di v Option

The Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. Use - pr ec_di v to disable
floating point division-to-multiplication optimization resulting in more accurate
division results. May have speed impact.

-pc{ 32| 64| 80} Option

Use the - pc{ 32| 64| 80} option to enable floating-point significand precision
control. Some floating-point algorithms, created for specific IA-32 and ltanium®-
based systems, are sensitive to the accuracy of the significand or fractional part
of the floating-point value. Use appropriate version of the option to round the
significand to the number of bits as follows:

- pc32: 24 bits (single precision)

- pc64: 53 bits (double precision)

- pc80: 64 bits (extended precision)

The default version is - pc80 for full floating-point precision.

This option enables full optimization. Using this option does not have the
negative performance impact of using the - np option because only the fractional

part of the floating-point value is affected. The range of the exponent is not
affected.

Z-J‘]Note

This option only has an effect when the module being compiled contains
the main program.

69

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

ACaution

A change of the default precision control or rounding mode (for example, by
using the - pc32 option or by user intervention) may affect the results
returned by some of the mathematical functions.

Rounding Control, -rcd, -fp_port

The Intel Fortran Compiler uses the - r cd option to disable changing of rounding
mode for floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. This means
that values are rounded during floating-point calculations. However, the Fortran
language requires floating-point values to be truncated when a conversion to an
integer is involved. To do this, the compiler must change the rounding mode to
truncation before each floating-point conversion and change it back afterwards.

The -r cd option disables the change to truncation of the rounding mode for all
floating-point calculations, including floating-point-to-integer conversions. Turning
on this option can improve performance, but floating-point conversions to integer
will not conform to Fortran semantics.

You can also use the -f p_port option to round floating-point results at
assignments and casts. May cause some speed impact, but also makes sure that
rounding to the user-declared precision at assignments is always done. The -
npl option implies - f p_port.

Floating-point Arithmetic Precision for Itanium®-based Systems

The following Intel® Fortran Compiler options enable you to control the compiler
optimizations for floating-point computations on ltanium®-based systems.

Contraction of FP Multiply and Add/Subtract Operations

-1 PF_fma[-] enables or disables the contraction of floating-point multiply and
add/subtract operations into a single operations. Unless - np is specified, the
compiler tries to contract these operations whenever possible. The - np option
disables the contractions.

-1 PF_fma and - | PF_f ma- can be used to override the default compiler
behavior. For example, a combination of - np and - | PF_f ma enables the
compiler to contract operations:

ifort -mp -1 PF_fma nyprog.f

FP Speculation

70

Compiler Optimizations

-1 PF_f p_specul at i onnode sets the compiler to speculate on floating-point
operations in one of the following nodes:

f ast : sets the compiler to speculate on floating-point operations; this is the
default.

saf e: enables the compiler to speculate on floating-point operations only when it
is safe.

stri ct: enables the compiler's speculation on floating-point operations
preserving floating-point status in all situations. In the current version, this mode
disables the speculation of floating-point operations (same as of f).

of f : disables the speculation on floating-point operations.

FP Math Function Optimization

-IPF_fp_relaxed[-] enables or disables use of faster, but slightly less accurate
code sequences for math functions such as divide and sqrt. Compared to strict
IEEE* precision, this option slightly reduces the accuracy of floating-point
calculations performed by these functions (usually limited to the least significant
digit). The default is -QIPF_fp_relaxed-.

FP Operations Evaluation

-IPF_flt_eval nethod{O0| 2} directs the compiler to evaluate the
expressions involving floating-point operands in the following way:

-1 PF_fl1t_eval nethodO directs the compiler to evaluate the expressions
involving floating-point operands in the precision indicated by the variable types
declared in the program.

-IPF_flt_eval nethod2 is not supported in the current version.

Controlling Accuracy of the FP Results

-1 PF_f 1 t acc disables the optimizations that affect floating-point accuracy. The
default is

-1 PF_fltacc- toenable such optimizations.

The ltanium® compiler may reassociate floating-point expressions to improve
application performance. Use - | PF_f | t acc or - np to disable or restrict these

floating-point optimizations.

Improving/Restricting FP Arithmetic Precision

71

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The - np and - np1 options maintain and restrict, respectively, floating-point
precision, but also affect the application performance. The - np1 option causes
less impact on performance than the - np option. - npl ensures the out-of-range
check of operands of transcendental functions and improve accuracy of floating-
point compares. For |IA-32 systems, the - np option implies - np1; - npl implies -
f p_port. -np slows down performance the most of these three, - f p_port the
least of these three.

The - np option restricts some optimizations to maintain declared precision and
to ensure that floating-point arithmetic conforms more closely to the ANSI and
IEEE* standards. This option causes more frequent stores to memory, or
disallow some data from being register candidates altogether. The Intel
architecture normally maintains floating point results in registers. These registers
are 80 bits long, and maintain greater precision than a double-precision number.
When the results have to be stored to memory, rounding occurs. This can affect
accuracy toward getting more of the "expected" result, but at a cost in speed.
The - pc{ 32| 64| 80} option (IA-32 only) can be used to control floating point
accuracy and rounding, along with setting various processor IEEE flags.

For most programs, specifying the - np option adversely affects performance. If
you are not sure whether your application needs this option, try compiling and
running your program both with and without it to evaluate the effects on
performance versus precision.

Specifying this option has the following effects on program compilation:

e On IA-32 systems, floating-point user variables declared as floating-point
types are not assigned to registers.

e On ltanium®-based systems, floating-point user variables may be
assigned to registers. The expressions are evaluated using precision of
source operands. The compiler will not use Floating-point Multiply and
Add (FMA) function to contract multiply and add/subtract operations in a
single operation. The contractions can be enabled by using - | PF_f ma
option. The compiler will not speculate on floating-point operations that
may affect the floating-point state of the machine. See Floating-point
Arithmetic Precision for Itanium-based Systems.

e Floating-point arithmetic comparisons conform to IEEE 754.

e The exact operations specified in the code are performed. For example,
division is never changed to multiplication by the reciprocal.

o The compiler performs floating-point operations in the order specified
without reassociation.

e The compiler does not perform the constant folding on floating-point
values. Constant folding also eliminates any multiplication by 1, division by
1, and addition or subtraction of 0. For example, code that adds 0.0 to a
number is executed exactly as written. Compile-time floating-point

72

Compiler Optimizations

arithmetic is not performed to ensure that floating-point exceptions are
also maintained.

On |A-32 systems, whenever an expression is spilled, it is spilled as 80 bits
(extended precision), not 64 bits (DOUBLE PRECISION). Floating-point
operations conform to IEEE 754. When assignments to type REAL and
DOUBLE PRECISION are made, the precision is rounded from 80 bits
(extended) down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION).
When you do not specify - Q0, the extra bits of precision are not always
rounded away before the variable is reused.

e Even if vectorization is enabled by the - x{ K| W N| B| P} options, the
compiler does not vectorize reduction loops (loops computing the dot
product) and loops with mixed precision types. Similarly, the compiler
does not enable certain loop transformations. For example, the compiler
does not transform reduction loops to perform partial summation or loop
interchange.

Optimizing for Specific Processors

Optimizing for Specific Processors Overview

This section describes targeting a processor and processor dispatch and
extensions support options.

The options -t pp{ 5| 6| 7} optimize for the IA-32 processors, and the options -
t pp{ 1| 2} optimize for the Itanium® processor family. The options -

x{ K| WN B| P} and - ax{ K| W N| B| P} generate code that is specific to
processor-instruction extensions.

Note that you can run your application on the latest processor-based systems,
like Intel® Pentium® M processor or Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support and still gear your code
to any of the previous processors specified by N, W or K versions of the - x
and - ax options.

Targeting a Processor, -tpp{n}

The - t pp{ n} optimizes your application's performance for specific Intel
processors. This option generates code that is tuned for the processor
associated with its version. For example, -t pp7 generates code optimized for
running on Intel® Pentium® 4, Intel® Xeon(TM), Intel® Pentium® M processors
and Intel® Pentium® 4 processors with Streaming SIMD Extensions 3 (SSE3)
instruction support, and -t pp2 generates code optimized for running on
[tanium® 2 processor.

73

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The -t pp{ n} option always generates code that is backwards compatible with
Intel® processors of the same family. This means that code generated with -

t pp7 will run correctly on Pentium Pro or Pentium |l processors, possibly just
not quite as fast as if the code had been compiled with -t pp6. Similarly, code
generated with - t pp2 will run correctly on ltanium processor, but possibly not
quite as fast as if it had been generated with - t pp1.

Processors for IA-32 Systems
The -t pp5, -t pp6, and - t pp7 options optimize your application's performance

for a specific Intel IA-32 processor as listed in the table below. The resulting
binaries will also run correctly on any of the processors mentioned in the table.

Option Optimizes your application for...

-t pp5 Intel® Pentium® and Pentium® with MMX(TM) technology processor

-t ppb6 Intel® Pentium® Pro, Pentium® Il and Pentium® Ill processors

tpp7 Intel Pentium 4 processors, Intel® Xeon(TM) processors, Intel®
(d ee‘gult) Pentium® M processors, and Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support

Example

The invocations listed below each result in a compiled binary of the source
program pr og. f optimized for Pentium 4 and Intel Xeon processors by default.
The same binary will also run on Pentium, Pentium Pro, Pentium Il, and Pentium
Ill processors.

ifort prog.f

ifort -tpp7 prog.f

However if you intend to target your application specifically to the Intel Pentium
and Pentium with MMX technology processors, use the -t pp5 option:

ifort -tpp5 prog.f
Processors for Itanium®-based Systems
The -t ppl and - t pp2 options optimize your application's performance for a

specific Intel Itanium® processor as listed in the table below. The resulting
binaries will also run correctly on both processors mentioned in the table.

Option Optimizes your application for...

74

Compiler Optimizations

-tppl Intel® Itanium® processor

E(;[ee‘gglt) Intel® Itanium® 2 processor

Example

The following invocation results in a compiled binary of the source program
prog. f optimized for the ltanium 2 processor by default. The same binary will
also run on ltanium processors.

ifort prog.f

ifort -tpp2 prog.f

However if you intend to target your application specifically to the Intel ltanium
processor, use the -t ppl option:

ifort -tppl prog.f
Processor-specific Optimization (IA-32 only)
The - x{ K| W N| B| P} options target your program to run on a specific Intel

processor. The resulting code might contain unconditional use of features that
are not supported on other processors.

Option Optimizes for...

- xK Intel Pentium® Il and compatible Intel processors.
- XW Intel Pentium 4 and compatible Intel processors.
- XN Intel Pentium 4 and compatible Intel processors. When the main

program is compiled with this option, it will detect non-compatible
processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor
specific-optimizations.

-xB Intel® Pentium® M and compatible Intel processors. When the main
program is compiled with this option, it will detect non-compatible
processors and generate an error message during execution. This
option also enables new optimizations in addition to Intel processor-
specific optimizations.

Intel® Pentium® 4 processors with Streaming SIMD Extensions 3
(SSE3) instruction support. When the main program is compiled with
this option, it will detect non-compatible processors and generate an
error message during execution. This option also enables new

- XP

75

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

optimizations in addition to Intel processor-specific optimizations.

To execute a program on x86 processors not provided by Intel Corporation, do
not specify the
-x{ K| W N| B| P} option.

Example

The invocation below compiles nmypr og. f for Intel Pentium 4 and compatible
processors. The resulting binary might not execute correctly on Pentium,
Pentium Pro, Pentium Il, Pentium Ill, or Pentium with MMX technology
processors, or on x86 processors not provided by Intel corporation.

ifort -xN nyprog.f

.&Caution

If a program compiled with - x{ K| W N| B| P} is executed on a non-
compatible processor, it might fail with an illegal instruction exception, or
display other unexpected behavior. Executing programs compiled with - xN
, - XB, or - xP on unsupported processors (see table above) will display the
following run-time error:

Fatal error: This programwas not built to run on the
processor in your system

Automatic Processor-specific Optimization (IA-32 only)

The - ax{ K| W N| B| P} options direct the compiler to find opportunities to
generate separate versions of functions that take advantage of features that are
specific to the specified Intel processor. If the compiler finds such an opportunity,
it first checks whether generating a processor-specific version of a function is
likely to result in a performance gain. If this is the case, the compiler generates
both a processor-specific version of a function and a generic version of the
function. The generic version will run on any IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel
processor in use. In this way, the program can benefit from performance gains on
more advanced Intel processors, while still working properly on older 1A-32
processors.

The disadvantages of using - ax{ K| W N B| P} are:

o The size of the compiled binary increases because it contains processor-
specific versions of some of the code, as well as a generic version of the
code.

76

Compiler Optimizations

Performance is affected slightly by the run-time checks to determine which
code to use.

E)NOte

Applications that you compile to optimize themselves for specific
processors in this way will execute on any Intel IA-32 processor. If you
specify both the - x and - ax options, the - x option forces the generic code
to execute only on processors compatible with the processor type specified

by the - x option.

Option Optimizes Your Code for...
-axK Intel Pentium® Il and compatible Intel processors.
-axW |Intel Pentium 4 and compatible Intel processors.
Intel Pentium 4 and compatible Intel processors. This option also
-axN enables new optimizations in addition to Intel processor-specific
optimizations.
Intel Pentium M and compatible Intel processors. This option also
-axB enables new optimizations in addition to Intel processor-specific
optimizations.
Intel® Pentium® 4 processors with Streaming SIMD Extensions 3
-axP (SSE3) instruction support. This option also enables new optimizations
in addition to Intel processor-specific optimizations.
Example

The compilation below generates a single executable that includes:

ifort

A generic version for use on any IA-32 processor

A version optimized for Intel Pentium 4 processors, as long as there is a
performance benefit.

A version optimized for Intel Pentium M processors, as long as there is a
performance benéefit.

-axNB prog.f90

Processor-specific Run-time Checks, I1A-32 Systems

The Intel Fortran Compiler optimizations take effect at run-time. For 1A-32
systems, the compiler enhances processor-specific optimizations by inserting in
the main routine a code segment that performs run-time checks described below.

Check for Supported Processor with - xB, - xB, or - xP

77

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

To prevent from execution errors, the compiler inserts code in the main routine of
the program to check for proper processor usage. Programs compiled with
options - xN, - xB, or - xP check at run-time whether they are being executed on
the Intel Pentium® 4, Intel® Pentium® M processor or the Intel® Pentium® 4
processor with Streaming SIMD Extensions 3 (SSE3) instruction support,
respectively, or a compatible Intel processor. If the program is not executed on
one of these processors, the program terminates with an error.

Example

To optimize a program f 0o. f 90 for an Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3 (SSE3) instruction support, issue the following
command:

ifort -xP foo.f90 -0 foo. exe

f 00. exe aborts if it is executed on a processor that is not validated to support
the Intel® Pentium® 4 processor with Streaming SIMD Extensions 3 (SSE3)
instruction support to account for the fact that this processor may have some
additional feature enabling.

If you intend to run your programs on multiple IA-32 processors, do not use the -
x options that optimize for processor-specific features; consider using -ax to
attain processor-specific performance and portability among different processors.

Setting FTZ and DAZ Flags

Previously, the default status of the flags flush-to-zero (FTZ) and denormals-are-
zero (DAZ) for IA-32 processors were off by default. However, even at the cost of
losing IEEE compliance, turning these flags on significantly increases the
performance of programs with denormal floating-point values in the gradual
underflow mode run on the most recent IA-32 processors. Hence, for the Intel
Pentium lll, Pentium 4, Pentium M, Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3) instruction support, and compatible 1A-32 processors,
the compiler's default behavior is to tumn these flags on. The compiler inserts
code in the program to perform a run-time check for the processor on which the
program runs to verify it is one of the afore-listed Intel processors.

o Executing a program on a Pentium lll processor enables the FTZ flag, but
not DAZ.

o Executing a program on an Intel Pentium M processor or Intel® Pentium®
4 processor with Streaming SIMD Extensions 3 (SSE3) instruction support
enables both the FTZ and DAZ flags.

These flags are only tumed on by Intel processors that have been validated to
support them.

78

For non-Intel processors, the flags can be set manually by calling the following

Intel Fortran intrinsic:

Compiler Optimizations

RESULT = FOR SET_FPE (FOR M ABRUPT_UND)

Interprocedural Optimizations (IPO)

Overview of Interprocedural Optimizations

Use -i p and - i po to enable interprocedural optimizations (IPO), which enable
the compiler to analyze your code to determine where you can benefit from the

optimizations listed in tables that follow.

IA-32 and Itanium®-based applications

Optimization

Affected Aspect of Program

Inline function expansion

Calls, jumps, branches, and
loops

Interprocedural constant
propagation

Arguments, global variables,
and return values

Monitoring module-level
static variables

Further optimizations and loop
invariant code

Dead code elimination

Code size

Propagation of function
characteristics

Call deletion and call
movement

Multifile optimization

The same aspects as - i p, but
across multiple files

IA-32 applications only

Optimization

Affected Aspect of Program

Passing arguments in
registers

Calls and register usage

Loop-invariant code
motion

Further optimizations and loop
invariant code

Inline function expansion is one of the main optimizations performed by the
interprocedural optimizer. For function calls that the compiler believes are
frequently executed, the compiler might decide to replace the instructions of the
call with code for the function itself.

With - i p, the compiler performs inline function expansion for calls to procedures
defined within the current source file. However, when you use - i po to specify

79

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

multifile IPO, the compiler performs inline function expansion for calls to
procedures defined in separate files.

To disable the IPO optimizations, use the - Q0 option.

ACaution

The -i p and - i po options can in some cases significantly increase
compile time and code size.

Option -aut o_i | p32 for Itanium®-based Systems

On ltanium-based systems, the - aut o_i | p32 option requires interprocedural
analysis over the whole program. This optimization allows the compiler to use 32-
bit pointers whenever possible as long as the application does not exceed a 32-
bit address space. Using the - aut o_i | p32 option on programs that exceed 32-
bit address space might cause unpredictable results during program execution.

Because this optimization requires interprocedural analysis over the whole
program, you must use the
-aut o_i | p32 option with the - i po option.

On Intel® EM64T systems, - aut o_i | p32 has no effect unless - xP or - axPis
also specified.

IPO Compilation Model
For the topics in this section, the term IPO generally refers to multi-file IPO.

When you use the -i po option, the compiler collects information from individual
program modules of a program. Using this information, the compiler performs
optimizations across modules. In order to do this, the - i po option is applied to
both the compilation phase and the link phase.

One of the main benefits of IPO is that it enables more inlining. For information
on inlining and the minimum inlining criteria, see Criteria for Inline Function
Expansion and Controlling Inline Expansion of User Functions. Inlining and other
optimizations are improved by profile information. For a description of how to use
IPO with profile information for further optimization, see Example of Profile-
Guided Optimization.

Compilation Phase

When using IPO, as each source file is compiled, the compiler stores an
intermediate representation (IR) of the source code in the object file, which
includes summary information used for optimization.

80

Compiler Optimizations

By default, the compiler produces "mock" object files during the compilation
phase of IPO. Generating mock files instead of real object files reduces the time
spent in the IPO compilation phase. Each mock object file contains the IR for its
corresponding source file, but no real code or data. These mock objects must be
linked using the - i po option ini fort or using the xi | d tool. (See Creating a
Multifile IPO Executable with xild.)

ﬂNote

Failure to link "mock" objects with i fort and -i po or xi | d will result in
linkage errors. There are situations where mock object files cannot be
used. See Compilation with Real Object Files for more information.

Linkage Phase

When you invoke the linker, adding - i po to the command line causes the
compiler to be invoked a final time before the linker. The compiler performs IPO
across all object files that have an IR. The compiler first analyzes all of the
summary information, and then finishes compiling the pieces of the application
for which it has IR. Having global information about the application while it is
compiling individual pieces can improve the quality of optimization.

f) Note

The compiler does not support multifile IPO for static libraries (. a files). See
Compilation with Real Object Files for more information.

-1 po enables the driver and compiler to attempt detecting a whole program
automatically. If a whole program is detected, the interprocedural constant
propagation, stack frame alignment, data layout and padding of common blocks
perform more efficiently, while more dead functions get deleted. This option is
safe.

Command Line for Creating an IPO Executable

The command line options to enable IPO for compilations targeted for both the
IA-32 and Itanium® architectures are identical.

To produce mock object files containing IR, compile your source files with - i po
as follows:

ifort -ipo -c a.f b.f c.f

This produces a. 0, b. 0, and c. o object files. These files contain Intel®
compiler intermediate representation (IR) corresponding to the compiled source
filesa.f,b.f,and c. f. Using - c to stop compilation after generating . o files is
required.

81

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

You can now optimize interprocedurally by adding -i po to your link command
line. The following example produces an executable named app:

ifort -oapp -ipo a.o b.oc.o

This command invokes the compiler on the objects containing IR and creates a
new list of object(s) to be linked. The command then calls GCC | d to link the
specified object files and produce app, as specified by the - o option. IPO is
applied only to the object files that contain IR; otherwise the object file passes to
link stage.

f)Note

For the above step, you can use the xi | d tool instead of i fort.

The two steps described above can be combined, as shown in the following:

ifort -ipo -oapp a.f b.f c.f
Generating Multiple IPO Object Files

For the most part, IPO generates a single object file for the link-time compilation.
This can be clumsy for very large applications, perhaps even making it
impossible to use - i po on the application. The compiler provides two ways to
avoid this problem. The first way is a size-based heuristic, which automatically
causes the compiler to generate multiple object files for large link-time
compilations. The second way is using one of two explicit command line controls
for that tell the compiler to do multi-object IPO:

o -ipoN, where N indicates the number of object files to generate
o -1 po_separ at e, which tells the compiler to generate a separate IPO
object file for each source file.

These options are alternatives to the - i po option, that is, they indicate an IPO
compilation. Explicitly requesting a multi-object IPO compilation turns the size-
based heuristic off.

The number of files generated by the link-time compilation is invisible to the user
unless eitherthe -i po_c or -i po_Soption is used. In this case the compiler
appends a number to the file name. For example, consider this command line:
ifort a.o b.o c.o0 -ipo_separate -ipo_c

In this command line, a. 0, b. 0, and c. o all contain IR, so the compiler will
generate i po_out . o0,i po_out 1. 0,i po_out 2. 0, and i po_out 3. 0.

82

Compiler Optimizations

The first object file contains global symbols. The other object files correspond to
the source files.

This naming convention is also applied to user-specified names. For example:
ifort a.o b.o c.o0 -ipo_separate -ipo_c -0 appl.o

This will generate appl . o, appl 1. o, appl 2. o, and appl 3. o.

Capturing Intermediate Outputs of IPO

The -i po_c and -i po_S options are useful either for analyzing the effects of
IPO, or when using IPO on modules that do not make up a complete program.

Use the - i po_c option to optimize across files and produce an object file. This
option performs optimizations as described for - i po, but stops prior to the final
link stage, leaving an optimized object file. The default name for this file is

I po_out. 0. You can use the - 0 option to specify a different name. For
example:

ifort -tpp6 -ipo_c -ofilenane a.f b.f c.f

Use the - i po_S option to optimize across files and produce an assembly file.
This option performs optimizations as described for - i po, but stops prior to the
final link stage, leaving an optimized assembly file. The default name for this file
isi po_out. s. You can use the - 0 option to specify a different name. For
example:

ifort -tpp6 -ipo_S -ofilenanme a.f b.f c.f

The -i po_c and -i po_S options generate multiple outputs if multi-object IPO is
being used. The name of the first file is taken from the value of the - o option.
The name of subsequent files is derived from this file by appending a numeric
value to the file name. For example, if the first object file is named f 0o. o, the
second object file will be named f ool. o.

The compiler generates a message indicating the name of each object or

assembly file it is generating. These files can be added to the real link step to
build the final application.

Creating an IPO Executable Using xild

Use the Intel® linker, xi | d instead of step 2 in Command Line for Creating an
IPO Executable. The linker xi | d performs the following steps:

1. Invokes the compiler to perform IPO if objects containing | R are found.

83

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

2. Invokes GCC | d to link the application.
The command-line syntax for xi | d is the same as that of the GCC linker:
xild [<options>] <LINK commandline>
where:

e [<opti ons>] (optional) may include any GCC linker options or options
supported only by xi | d.

e <LI NK _conmandl i ne> is your linker command line containing a set of
valid arguments to the | d.

To create app using IPO, use the option - of i | enane as shown in the following
example:

xild -oapp a.0 b.o c.o
xi | d calls the compiler to perform IPO for objects containing | Rand creates a

new list of object(s) to be linked. Then xi | d calls | d to link the object files that
are specified in the new list and produce app.

ENote

The - i po option can reorder object files and linker arguments on the

command line. Therefore, if your program relies on a precise order of

arguments on the command line, - i po can affect the behavior of your
program.

The xi | d command recognizes all three spellings the IPO switch (-i po, -
i poN, and -i po_separ at e).

Usage Rules
You must use the Intel linker xi | d to link your application if:
e Your source files were compiled with IPO enabled. IPO is enabled by
specifying the - i po command-line option
e You normally would invoke the GCC linker (I d) to link your application.

The xi | d Options

The additional options supported by xi | d may be used to examine the results of
IPO. These options are described in the following table.

-qi po_faf[file.s] Produces an assembly listing for the

84

Compiler Optimizations

IPO compilation. You can specify an
optional name for the listing file, or a
directory (with the backslash) in which
to place the file. The default listing
name is i po_out. s.

-qi po_fo[file.O] Produces an object file for the IPO
compilation. You can specify an
optional name for the object file, or a
directory (with the backslash) in which
to place the file. The default object file
name is i po_out. o.

-i po_fcode-asm Adds code bytes to the assembly
listing.

-i po_f source-asm Adds high-level source code to the
assembly listing.

-ipo_fverbose-asm Enables and disables, respectively,

-1 po_f nover bose-asm inserting comments containing version

and options used in the assembly
listing for xi | d.

If the xi | d invocation leads to an IPO multi-object compilation (either because
the application is big, or because the user explicity asked for multiple objects),
the first . s file takes its name from the - qi po_f a option. The compiler derives
the names of subsequent . s files by appending a number to the name, for
example, f 00. s and f ool. s for - qi po_f af oo.s. The same is true for the -
gi po_f o option.

Code Layout and Multi-Object IPO

One of the optimizations performed during an IPO compilation is code layout.
IPO analysis determines a layout order for all of the routines for which it has IR. If
a single object is being generated, the compiler generates the layout simply by
compiling the routines in the desired order.

For a multi-object IPO compilation, the compiler must tell the linker about the
desired order. The compiler first puts each routine in a named text section (the
first routine in .t ext 00001, the second in . t ext 00002, and so forth). It then
generates a linker script that tells the linker to first link contributions from
.1ext 00001, then.text 00002. This happens transparently when the same
i fort (orxi | d)invocation is used for both the link-time compilation and the
final link.

However, the linker script must be taken into account by the user if -i po_c or
i po_Sis used. With these switches, the IPO compilation and actual link are
done by different invocations of i f ort. When this occurs, i f ort will issue an

85

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

informational message indicating that it is generating an explicit linker script,
i po_l ayout. script.

When i po_| ayout . scri pt is generated, the typical response is to modify your
link command to use this script:

--script=ipo_layout.script

If your application already requires a custom linker script, you can place the
necessary contents of i po_| ayout . scri pt in your script. The layout-specific
contentof i po_I| ayout . scri pt is at the beginning of the description of the

. t ext section. For example, to describe the layout order for 12 routines:

.text

. text 00001) *(.text00002) *(.text00003) *(.text00004)
. t ext 00005)

. text 00006) *(.text00007) *(.text00008) *(.text00009)
. text 00010)

.text00011) *(.text 00012)

* X X X XM

- UNTNNANAN

For applications that already require a linker script, you can add this section of
the . t ext section description to the customized linker script. If you add these
lines to your linker script, it is desirable to add additional entries to account for
future development. This is harmless, since the “*(...)” syntax makes these
contributions optional.

If you choose to not use the linker script your application will still build, but the
layout order will be random. This may have an adverse affect on application
performance, particularly for large applications.

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To
force the compiler to produce real object files instead of "mock" ones with IPO,
you must specify - i po_obj in addition to

-1 po.

Use of -i po_obj is necessary under the following conditions:

e The objects produced by the compilation phase of - i po will be placed in a
static library without the use of xi ar. The compiler does not support
multifile IPO for static libraries, so all static libraries are passed to the
linker. Linking with a static library that contains "mock" object files will
result in linkage errors because the objects do not contain real code or
data. Specifying

86

Compiler Optimizations

-1 po_obj causes the compiler to generate object files that can be used
in static libraries.

« Alternatively, if you create the static library using xi ar, then the resulting
static library will work as a normal library.

« The objects produced by the compilation phase of - i po might be linked
without the - i po option and without the use of xi ar .

e You want to generate an assembly listing for each source file (using - S)
while compiling with - i po. If you use -i po with - S, but without -
i po_obj , the compiler issues a warning and an empty assembly file is
produced for each compiled source file.

Implementing the . i | Files with Version Numbers

An IPO compilation consists of two parts: the compile phase and the link phase.
In the compile phase, the compiler produces an intermediate language (IL)
version of the users’ code. In the link phase, the compiler reads the IL and
completes the compilation, producing a real object file or executable.

Generally, different compiler versions produce IL based on different definitions,
and therefore the ILs from different compilations can be incompatible. Intel
Fortran Compiler assigns a unique version number with each compiler’s IL
definition. If a compiler attempts to read IL in a file with a version number other
than its own, the compilation proceeds, but the IL is discarded and not used in
the compilation. The compiler then issues a warning message about an
incompatible IL detected and discarded.

The IL produced by the Intel compiler is stored in file with a suffix . i | . Then the
.11 file is placed in the library. If this library is used in an IPO compilation
invoked with the same compiler as produced the IL for the library, the compiler
can extract the . i | file from the library and use it to optimize the program. For
example, it is possible to inline functions defined in the libraries into the users’
source code.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of
objects, the library manager will insert the objects into a named library to be used
in subsequent link steps.

Xiar cru user.a a.o b.o

The above command creates a library named user . a that contains the a. o and
b. o objects.

87

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

If, however, the objects have been created using - i po - c, then the objects will
not contain a valid object but only the intermediate representation (I R) for that
object file. For example:

ifort -ipo -c a.f b.f

will produce a. o0 and b. o that only contains | Rto be used in a link time
compilation. The library manager will not allow these to be inserted in a library.

In this case, you must use the Intel library driver xi | d - ar. This program will
invoke the compiler on the | Rsaved in the object file and generate a valid object
that can be inserted in a library.

xild -lib cru user.a a.o b.o
See Creating a Multifile IPO Executable Using xi | d.
Using -ip with -Qoption Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular
application by experimenting with memory and interprocedural optimizations.

Enter the - Qopt i on option with the applicable keywords to select particular
inline expansions and loop optimizations. The option must be entered with an -
i p or-i po specification, as follows:

-i p[-Qoption,tool, opts]

where t ool is Fortran (f) and opt s are - Qopt i on specifiers (see below). Also
refer to Criteria for Inline Function Expansion to see how these specifiers may
affect the inlining heuristics of the compiler.

For more information about passing options to other tools, see
(/ Qopti on, tool , opts).

- Qopt i on Specifiers

If you specify -i p or -i po without any - Qopt i on qualification, the compiler
does the following:

Expands functions in line

Propagates constant arguments
Passes arguments in registers
Monitors module-level static variables.

88

Compiler Optimizations

You can refine interprocedural optimizations by using the following - Qopt i on
specifiers. To have an effect, the - Qopt i on option must be entered with either -
i p or-i po also specified, as in this example:

-ip -Qoption, f,ip_specifier

where i p_speci fi er isone of the - Qopt i on specifiers described in the
following table:

- Qopt i on Specifiers

-ip_args_in_regs=0 Disables the passing of
arguments in registers. By
default, external functions can
pass arguments in registers
when called locally. Normally,
only static functions can pass
arguments in registers, provided
the address of the function is not
taken and the function does not
use a variable number of
arguments.

-ip_ninl _max_stats=n Sets the valid number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The
number of intermediate
language statements usually
exceeds the actual number of
source language statements.
The default value for n is 230.

-ip_ninl _mn_stats=n Sets the valid m n number of
intermediate language
statements for a function that is
expanded in line. The number n
is a positive integer. The default
valueforip ninl _mn_stats
is:

IA-32 compiler:
ip_ninl_mn_stats=7
[tanium® compiler:
ip_ninl_mn_stats =15

- _ Sets the maximum increase in

i p_ninl _max_total _stats=n | gjze of a function, measured in
intermediate language
statements, due to inlining. The

89

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

number n is a positive integer.
The default value for n is 2000.

The following command activates procedural and interprocedural optimizations
on source.f and sets the maximum increase in the number of intermediate
language statements to five for each function:

ifort -ip -Qoption,f,-ip_ninl_max_stats=5 source.f

Inline Expansion of Functions

Criteria for Inline Function Expansion

For a call to be considered for inlining, it has to meet certain minimum criteria.
There are three main components of a call:

Call-site is the site of the call to the function that might be inlined.
Caller is the function that contains the call-site.
Callee is the function being called that might be inlined.
Minimum call-site criteria:
e The number of actual arguments must match the number of formal
arguments of the callee.
e The number of return values must match the number of return values of
the callee.
o The data types of the actual and formal arguments must be compatible.
e No multilingual inlining is permitted. Caller and callee must be written in
the same source language.
Minimum criteria for the caller:
e At most 2000 intermediate statements will be inlined into the caller from all
the call-sites being inlined into the caller. You can change this value by
specifying the option

-Qoption, f,-ip_ninl_max_total stats=new val ue

 The function must be called if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

o Does not have variable argument list.

90

Compiler Optimizations

e Is not considered infrequent due to the name. Routines which contain the
following substrings in their names are not inlined: abort, al | oca,
denied,err,exit,fail,fatal,fault,halt,init,interrupt,
invalid,quit,rare,stop,timeout,trace,trap,and warn.

« Is not considered unsafe for other reasons.

Selecting Routines for Inlining with or without PGO

Once the above criteria are met, the compiler picks the routines whose inline
expansions will provide the greatest benefit to program performance. This is
done using the default heuristics. The inlining heuristics used by the compiler
differ based on whether you use profile-guided optimizations (- pr of _use) or
not.

When you use profile-guided optimizations with -i p or - i po, the compiler uses
the following heuristics:

o The default heuristic focuses on the most frequently executed call sites,
based on the profile information gathered for the program.

« By default, the compiler does not inline functions with more than 230
intermediate statements. You can change this value by specifying the
option - Qopti on, f, -i p_ni nl _max_st at s=new val ue.

o The default inline heuristic will stop inlining when direct recursion is
detected.

o The default heuristic always inlines very small functions that meet the
minimum inline criteria.

o Default for ltanium®-based applications: i p_ninl _mn_stats =
15.
o Default for IA-32 applications: i p_ninl _mn_stats = 7.
e These limits can be modified with the option - Qopti on, f, -
i p_ninl_mn_stat s=new val ue.

See -Qoption Specifiers and Profile-Guided Optimization (PGO).

When you do not use profile-guided optimizations with - i p or - i po, the compiler
uses less aggressive inlining heuristics: it inlines a function if the inline expansion
does not increase the size of the final program.

Inlining and Preemption

Preemption of a function means that the code, which implements that function at
run-time, is replaced by different code. When a function is preempted, the new
version of this function is executed rather than the old version. Preemption can
be used to replace an erroneous or inferior version of a function with a correct or
improved version.

91

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The compiler assumes that when - i p is on, any externally visible function might
be preempted and therefore cannot be inlined. Currently, this means that all
Fortran subprograms, except for internal procedures, are not inlinable when - i p
is on.

However, if you use -i po and -i po_obj on a file-by-file basis, the functions
can be inlined. See Compilation with Real Object Files.

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with
the options shown in the following summary.

Option Effect

-ip_no_inlining This option is only useful if -i p or -i po is
also specified. In this case, -

I p_no_inlining disables inlining that would
result from the - i p interprocedural
optimizations, but has no effect on other
interprocedural optimizations.

-inline_debug_i nfo | Preserve the source position of inlined code
instead of assigning the call-site source
position to inlined code.

-ip_no_pinlining Disables partial inlining; can be used if -i p or
-1 po is also specified.

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard
and math library functions at the point of the call to that function, which usually
results in faster computation.

However, the inlined library functions do not set the er r no variable when being
expanded inline. In code that relies upon the setting of the er r no variable, you
should use the -nol i b_i nl i ne option. Also, if one of your functions has the
same name as one of the compiler-supplied library functions, then when this
function is called, the compiler assumes that the call is to the library function and
replaces the call with an inlined version of the library function.

So, if the program defines a function with the same name as one of the known
library routines, you must use the - nol i b_i nl i ne option to ensure that the
user-supplied function is used.

-nol i b_i nl i ne disables inlining of all intrinsics.

92

Compiler Optimizations

f) Note

Automatic inline expansion of library functions is not related to the inline
expansion that the compiler does during interprocedural optimizations. For
example, the following command compiles the program sum f without
expanding the math library functions:

ifort -ip -nolib_inline sumf
Profile-guided Optimizations

Profile-guided Optimizations Overview

Profile-guided optimizations (PGO) tell the compiler which areas of an application
are most frequently executed. By knowing these areas, the compiler is able to be
more selective and specific in optimizing the application. For example, the use of
PGO often enables the compiler to make better decisions about function inlining,
thereby increasing the effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source
code and special code from the compiler. Each time this instrumented code is
executed, the instrumented program generates a dynamic information file. When
you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to
optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of
IPO and PGO vary. This is due to each program having a different profile and
different opportunities for optimizations. The guidelines provided help you
determine if you can benefit by using IPO and PGO. You need to understanding
the principles of the optimizations and the unique aspects of your source code.

Added Performance with PGO

In this version of the Intel® Fortran Compiler, PGO is improved in the following
ways:

o Register allocation uses the profile information to optimize the location of
spill code.

o Forindirect function calls, branch prediction is improved by identifying the
most likely targets. With the Intel® Pentium® 4 and Intel® Xeon(TM)
processors' longer pipeline, improving branch prediction translates into
high performance gains.

93

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

e The compiler detects and does not vectorize loops that execute only a
small number of iterations, reducing the run time overhead that
vectorization might otherwise add.

Profile-guided Optimizations Methodology and Usage Model

PGO works best for code with many frequently executed branches that are
difficult to predict at compile time. An example is the code with intensive error-
checking in which the error conditions are false most of the time. The "cold"
error-handling code can be placed such that the branch is hardly ever
mispredicted. Minimizing "cold" code interleaved into the "hot" code improves
instruction cache behavior.

PGO Phases
The PGO methodology requires three phases and options:

1. Instrumentation compilation and linking with - pr of _gen

2. Instrumented execution by running the executable; as a result, the
dynamic-information files (. dyn) are produced.

3. Feedback compilation with - prof _use

The flowcharts below illustrate this process for IA-32 compilation and ltanium®-
based compilation . A key factor in deciding whether you want to use PGO lies in
knowing which sections of your code are the most heavily used. If the data set
provided to your program is very consistent and it elicits a similar behavior on
every execution, then PGO can probably help optimize your program execution.
However, different data sets can elicit different algorithms to be called. This can
cause the behavior of your program to vary from one execution to the next.

Phases of Basic Profile-Guided Optimization

94

1. Instrumented Compilation:
ifort CProf_gen alf

Compiler Optimizations

2. Imetrurmentad Execution:
A . aut

Cutput executable files with
instrumented code:

a.out

P

Cutput dymamic information
filag with uniqua names for

| §

3. Feedback Compilation:
ifort -prof_use -my opbtion a.f

| mach exscution:

8 hex digits.dyn

I

Creates and uses mergead

Profile-Guided
Crptimized Code

dynamic information
surnmary file:

pgopti.dpi

PGO Usage Model

The chart that follows presents PGO usage model.

95

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Step One:
Cornpile with Keep the static profile information
prof_genz .5pi for coverage analysis and PGT

¥ Step Th_ree:_
Instrumented Executables PGO Comnpile with
prof_use
app ExXe l
¥ Optimized Executables

"1

\
Step two: } u app exe

Run instrurnented executables

Merge
Dynaric Profile Information
Keep the dynamic profile information
.dpi for coverage analysis and PGT

Here are the steps for a simple example (nmyApp. f 90) for IA-32 systems.

1.

96

Set the following:

PROF_DI R=c: / myApp/ prof _dir
Issue the following command:
ifort -prof_genx myApp. f90

This command compiles the program and generates instrumented binary
nyApp. exe as well as the corresponding static profile information

pgopti .spi.
Execute ny App.

Each invocation of nyApp runs the instrumented application and
generates one or more new dynamic profile information files that have an
extension . dyn in the directory specified by PROF_DI R

Issue the following command:

ifort -prof _use nyApp.f90

Compiler Optimizations

At this step, the compiler merges all the . dyn files into one . dpi file
representing the total profile information of the application and generates
the optimized binary. The default name of the . dpi file is pgopti . dpi .

Basic PGO Options
The options used for basic PGO optimizations are:

e -prof _gen to generate instrumented code
e -prof _use to generate a profile-optimized executable
e -prof_format_32 to produce 32-bit counters for . dyn and . dpi files

In cases where your code behavior differs greatly between executions, you have
to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles. In the basic profile-guided optimization, the following
options are used in the phases of the PGO:

Generating Instrumented Code, - pr of _gen

The - pr of _gen option instruments the program for profiling to get the execution
count of each basic block. It is used in phase 1 of the PGO to instruct the
compiler to produce instrumented code in your object files in preparation for
instrumented execution. Parallel make is automatically supported for - pr of _gen
compilations.

Generating a Profile-optimized Executable, - pr of _use

The - pr of _use option is used in phase 3 of the PGO to instruct the compiler to
produce a profile-optimized executable and merges available dynamic-
information (. dyn) files into a pgopt i . dpi file.

Z-J‘]Note

The dynamic-information files are produced in phase 2 when you run the
instrumented executable.

If you perform multiple executions of the instrumented program, - pr of _use
merges the dynamic-information files again and overwrites the previous
pgopti . dpi file.

Using 32-bit Counters, - prof _f or mat _32

The Intel Fortran compiler by default produces profile data with 64-bit counters to
handle large numbers of events in the . dyn and . dpi files. The -

prof format 32 option produces 32-bit counters for compatibility with the
earlier compiler versions. If the format of the . dyn and . dpi files is incompatible

97

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

with the format used in the current compilation, the compiler issues the following
message:

Error: xxx.dyn has old or inconpatible file format - delete
file and redo instrunentation conpil ation/execution.

The 64-bit format for counters and pointers in . dyn and . dpi files eliminate the
incompatibilities on various platforms due to different pointer sizes.

Disabling Function Splitting, -fnspl it -

-fnspl it- disables function splitting on Itanium®-based systems. Function
splitting is enabled by - pr of _use in phase 3 to improve code locality by splitting
routines into different sections: one section to contain the cold or very
infrequently executed code and one section to contain the rest of the code (hot
code).

You can use -fnspl i t - to disable function splitting for the following reasons:

« Most importantly, to get improved debugging capability. In the debug
symbol table, it is difficult to represent a split routine, that is, a routine with
some of its code in the hot code section and some of its code in the cold
code section. The - f nspl i t - option disables the splitting within a routine
but enables function grouping, an optimization in which entire routines are
placed either in the cold code section or the hot code section. Function
grouping does not degrade debugging capability.

e Another reason can arise when the profile data does not represent the

actual program behavior, that is, when the routine is actually used
frequently rather than infrequently.

Z-J‘]Note

For ltanium®-based applications, if you intend to use the - pr of _use
option with optimizations at the - O3 level, the - O3 option must be on. If you
intend to use the - pr of _use option with optimizations at the - Q2 level or
lower, you can generate the profile data with the default options.

See an example of using PGO.
Advanced PGO Options

The options controlling advanced PGO optimizations are:

e -prof_dirdirname
e -prof_filefilenane.

98

Compiler Optimizations

Use the - prof _di rdi r nanme option to specify the directory in which you intend
to place the dynamic information (. dyn) files to be created. The default is the
directory where the program is compiled. The specified directory must already
exist.

You should specify - pr of _di r di r name option with the same directory name
for both the instrumentation and feedback compilations. If you move the . dyn
files, you need to specify the new path.

The - prof _filefil enane option specifies file name for profiling summary
file.

Guidelines for Using Advanced PGO
When you use PGO, consider the following guidelines:

e Minimize the changes to your program after instrumented execution and
before feedback compilation. During feedback compilation, the compiler
ignores dynamic information for functions modified after that information
was generated.

f)Note

The compiler issues a warning that the dynamic information does not
correspond to a modified function.

e Repeat the instrumentation compilation if you make many changes to your
source files after execution and before feedback compilation.

e Specify the name of the profile summary file using the -
prof filefilenanme option

See PGO Environment Variables.
PGO Environment Variables
The environment variables determine the directory in which to store dynamic

information files or whether to overwrite pgopti . dpi . The PGO environment
variables are described in the table below.

Variable Description

PROF_DI R Specifies the directory in which dynamic
information files are created. This variable
applies to all three phases of the profiling
process.

PROF_DUMP_| NTERVAL | Initiates interval profile dumping in an
instrumented user application.

99

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

PROF_NO_CLOBBER Alters the feedback compilation phase slightly.
By default, during the feedback compilation
phase, the compiler merges the data from all
dynamic information files and creates a new
pgopti . dpi file, even if one already exists.
When this variable is set, the compiler does not
overwrite the existing pgopt i . dpi file. Instead,
the compiler issues a warning and you must
remove the pgopti . dpi file if you want to use
additional dynamic information files.

See the documentation for your operating system for instructions on how to
specify environment variables and their values.

Example of Profile-Guided Optimization
The following is an example of the basic PGO phases:

1. Instrumentation Compilation and Linking—Use - pr of _gen to produce
an executable with instrumented information. Use also the - prof _di r
option as recommended for most programs, especially if the application
includes the source files located in multiple directories. - prof _dir
ensures that the profile information is generated in one consistent place.
For example:

ifort -prof _gen -prof _dir/usr/profdata -c al.f a2.f
a3. f
ifort -oal al.o a2.0 a3.o0

In place of the second command, you could use the linker (I d) directly to
produce the instrumented program. If you do this, make sure you link with
thelibirc. alibrary.

2. Instrumented Execution—Run your instrumented program with a
representative set of data to create a dynamic information file.

pronpt > al

The resulting dynamic information file has a unique name and . dyn suffix
every time you run al. The instrumented file helps predict how the
program runs with a particular set of data. You can run the program more
than once with different input data.

3. Feedback Compilation—Compile and link the source files with -

pr of _use to use the dynamic information to optimize your program
according to its profile:

100

Compiler Optimizations

ifort -prof _use -prof _dir/usr/profdata -ipo al.f a2.f
a3. f

Besides the optimization, the compiler produces a pgopt i . dpi file. You
typically specify the default optimizations (- Q2) for phase 1, and specify
more advanced optimizations (-i p or - i po) for phase 3. This example
used - 2 in phase 1 and the - i po in phase 3.

Z-J‘]Note

The compiler ignores the - i p or the - i po options with - pr of _gen.

See Basic PGO Options.

Merging the .dyn Files

To merge the . dyn files, use the pr of ner ge utility. The compiler executes
pr of mer ge automatically during the feedback compilation phase when you
specify - pr of _use.

The command-line usage for pr of mer ge is as follows:

prof merge [-nol ogo] [-prof _dirdirnane]

where - pr of _di rdi rnane is a prof mer ge utility option.

This merges all . dyn files in the current directory or the directory specified by -
prof dir, and produces the summary file pgopt i . dpi .

The - prof _filefil enane option enables you to specify the name of the . dpi
file.

The command-line usage for pr of mer ge with - prof _fil efil enane is as
follows:

profnerge [-nologo] [-prof_filefilenane]

where / prof _filefil enaneis a prof merge utility option.

FlNote

The pr of mer ge tool merges all the . dyn files that exist in the given
directory. It is very important to make sure that unrelated . dyn files,
oftentimes from previous runs, are not present in that directory. Otherwise,
profile information will be based on invalid profile data. This can negatively
impact the performance of optimized code as well as generate misleading
coverage information.

101

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Z-J‘]Note

The . dyn files can be merged to a . dpi file by the pr of ner ge tool
without recompiling the application.

Dumping Profile Data

This subsection provides an example of how to call the C PGO API routines from
Fortran. For complete description of the PGO API support routines, see PGO
API: Profile Information Generation Support.

As part of the instrumented execution phase of profile-guided optimization, the
instrumented program writes profile data to the dynamic information file (. dyn
file). The file is written after the instrumented program returns normally from
mai n() or calls the standard exit function. Programs that do not terminate
normally, can use the PGOPTI _Pr of _Dunp function. During the
instrumentation compilation

(- pr of _gen) you can add a call to this function to your program. Here is an
example:

| NTERFACE

SUBROUTI NE PGOPTI _PROF_DUVP()

| DEC$ ATTR BUTES G,

ALl AS: ' PGOPTI _Prof _Dunp' : : PGOPTI _PROF_DUWP
END SUBROUTI NE

END | NTERFACE

CALL PGOPTI _PROF_DUVP()

Z-]]Note

You must remove the call or comment it out prior to the feedback
compilation with - pr of _use.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file for each routine to look up the
profile summary information associated with that routine. By default, this prevents
you from:

e Using the profile summary file (. dpi) if you move your application
sources.

« Sharing the profile summary file with another user who is building identical
application sources that are located in a different directory.

To enable the movement of application sources, as well as the sharing of profile

summary files, use the pr of ner ge with - src_ol d and - src_newoptions. For
example:

102

Compiler Optimizations

pronpt >prof nerge -prof _dir c:/work -src_old c:/work/sources
-src_new d:/project/src

The above command will read the c: / wor k/ pgopti . dpi file. For each routine
represented in the pgopt i . dpi file, whose source path begins with the

c: / wor k/ sour ces prefix, pr of mer ge replaces that prefix with

d:/ project/src. Thec:/work/ pgopti.dpi fileis updated with the new
source path information.

The following rules apply:

e You can execute profmerge more than once on a given pgopti.dpi file. You
may need to do this if the source files are located in multiple directories.
For example:

profnerge -src_old "c:/programfiles" -src_new
“e:/programfiles”

profnmerge -src_old c:/proj/application -src_new d:/app

e In the values specified for - src_ol d and - src_new, uppercase and
lowercase characters are treated as identical. Likewise, forward slash (/)
and backward slash (\) characters are treated as identical.

« Because the source relocation feature of pr of mer ge modifies the
pgopti . dpi file, you may wish to make a backup copy of the file prior to
performing the source relocation.

Code-coverage Tool

The Intel® Compilers Code-coverage tool can be used for both 1A-32 and
ltanium® architectures, in a number of ways to improve development efficiency,
reduce defects, and increase application performance. The major features of the
Intel Compilers code-coverage tool are:

o Visual presentation of the application's code coverage information with the
code-coverage coloring scheme

o Display of the dynamic execution counts of each basic block of the
application

« Differential coverage, or comparison of the profiles of the application's two
runs

The syntax for this tool is as follows:

codecov [-codecov_option]

103

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

where - codecov_opti on is a tool option you choose to run the code coverage

with. If you do not use any option, the tool will provide the top level code
coverage for your whole program.

The tool uses options that are listed in the table that follows.

Option Description Default

-hel p Prints all the options of the code-coverage tool.

-spi file Sets the path name of the static profile information pgopti . spi
file . spi .

-dpi file | Setsthe path name of the dynamic profile pgopti . dpi
information file . dpi .

- prj Sets the project name.

-counts Generates dynamic execution counts.

- Treats partially covered code as fully covered

nopartial | code.

-conp Sets the filename that contains the list of files of
interest.

-ref Finds the differential coverage with respect to
ref dpi_file.

- demang Demangles both function names and their
arguments.

- mane Sets the name of the web-page owner.

- maddr Sets the email address of the web-page owner.

- bcol or Sets the html color name or code of the #if££99
uncovered blocks.

-fcol or Sets the html color name or code of the #ffcccc
uncovered functions.

- pcol or Sets the html color name or code of the partially | #f af ad2
covered code.

-ccol or Sets the html color name or code of the covered | #ffffff
code.

- ucol or Sets the html color name or code of the #HEEEfEff
unknown code.

Visual Presentation of the Application's Code Coverage

Based on the profile information collected from running the instrumented binaries
when testing an application, Intel® Compiler creates HTML files using a code-
coverage tool. These HTML files indicate portions of the source code that were
or were not exercised by the tests. When applied to the profile of the
performance workloads, the code-coverage information shows how well the
training workload covers the application's critical code. High coverage of
performance-critical modules is essential to taking full advantage of the profile-
guided optimizations.

104

Compiler Optimizations

The code-coverage tool can create two levels of coverage:

e Top level: for a group of selected modules
e Individual module source view

Top Level Coverage

The top-level coverage reports the overall code coverage of the modules that
were selected. The following options are provided:

e You can select the modules of interest
o For the selected modules, the tool generates a list with their coverage
information. The information includes the total number of functions and
blocks in a module and the portions that were covered.
« By clicking on the title of columns in the reported tables, the lists may be
sorted in ascending or descending order based on:
e basic block coverage
« function coverage
« function name.

The screenshot that follows shows a sample top-level coverage summary for a
project. By clicking on a module name (for example, SAMPLE. C), the browser will
display the coverage source view of that particular module.

-=]:InhH.1_i Compilets code-coverage information for Sannple_Project - Microsolt Internet Expliorer E _, =10 =f
Ble B WYew Favofes Took Help “
gefiack v = o Zd 0 | DSeach [ElFaories GPRedw o3| By 2 K5 - 5] |
fukdimss |] DulCoveragel iR Cornpie g s pe SO0 _COVERAGE, HTML = @ |
| =l
1 g, sevated by Intei Compaee; Coverage Summary of Sample_Project
Sl ol Fog
_: Files Functions Blocks
1 tofal ol wiewrd curg® dotal oend wncerd cvrg® todal cend wncvrd | curg
| 3 2 1 BRET 19 5 14 o i A T . 1M GG
| b |
| .) = o |
Covered Files in Sample_Project 1 Uncovered Filez im Sample_Praject
Functions Blocks 1 Funcsions Hincks
Hann 1 Hanen
total | curd | curg: todal oerd | oergie 1 indal imal
SAMELED & ? 1 s 2 4am | SAME|ES 7 B
SAMPLEC 5 4 @000 38| 23| ETES |

‘Wab Paga Sunar:

. gerarated by Loty
intel. Garpite b

it gavarabed bp Inbgl@ Sormpiges WekePele G | TR B
nitsgl 1

G i o

|) - =l
& F

Browsing the Frames

105

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The coverage tool creates frames that facilitate browsing through the code to
identify uncovered code. The top frame displays the list of uncovered functions
while the bottom frame displays the list of covered functions. For uncovered
functions, the total number of basic blocks of each function is also displayed. For
covered functions, both the total number of blocks and the number of covered
blocks as well as their ratio (that is, the coverage rate) are displayed.

For example, 66.67(4/6) indicates that four out of the six blocks of the
corresponding function were covered. The block coverage rate of that function is
thus 66.67%. These lists can be sorted based on the coverage rate, number of
blocks, or function names. Function names are linked to the position in source
view where the function body starts. So, just by one click, the user can see the
least-covered function in the list and by another click the browser displays the
body of the function. The user can then scroll down in the source view and
browse through the function body.

Individual Module Source View

Within the individual module source views, the tool provides the list of uncovered
functions as well as the list of covered functions. The lists are reported in two
distinct frames that provide easy navigation of the source code. The lists can be
sorted based on:

o the number of blocks within uncovered functions
« the block coverage in the case of covered functions
« the function names.

The following screen shows the coverage source view of SAMPLE. C.

106

Compiler Optimizations

A Irkel & Compllers code-coverage Information for Of\ COVERAGE | IA2', COMPILER | SAMPLE\ SAMPLES\SASFLE - Microsolt Intermet Explope 00 =
me [ft dew Faorbes Tk feb E3
cbak - = - B A Dsexon [(ElFweors Freie (| - o B -]
Sirmss (2] 0o a6y CondeCannaringeill_COVERAGE [ATE COMPILER,_SAMPLE_SEMPLES SAMILE_C.HTML | Ea
@y wold £1 (int n) Ll
109
iﬁ‘.?. i} if pfmo== 1) || & & == O3]
;l 124 princt |1 oE DyeY):
uncoyare] lieiong ta !
143)
15y
blocks function 16y wold £F {int @)
E g% 17h o
1) Af ffno=m 1] || & B == 4] O
i9) princt ("1 oe DLeY):
200 1
Z1h)
223
3y wold gl (iRt @)
=l 4y |
;l TEY ine j, ki
covered funclions 2E)
2T fore (= 0 5 < m: § 4] [
ZEh Ea
CRVEFNE fumat bnay et) —
667 (%48 [2 ELO]
[ERY]
232 {_.u} a1 323 wold g (int m)
10000 (A ai 313 ff
100,00 (15/15) main 3y iar R
35
35} foe (f = 0; 3 £ om: § e
3T F=n
B 1
L |
= a0y =

£

k= My Compuber

=

Setting the Coloring Scheme for the Code Coverage

The tool provides a visible coloring distinction of the following coverage

categories:

e covered code
e uncovered basic blocks
e uncovered functions

o partially covered code

e unknown.

The default colors that the tool uses for presenting the coverage information are
shown in the tables that follows.

This color

Means

Covered code

The portion of code colored in this color was exercised by the
tests. The default color can be overridden with the - ccol or
option.

Uncovered basic

Basic blocks that are colored in this color were not exercised

block by any of the tests.
They were, however, within functions that were executed
during the tests.
The default color can be overridden with the - bcol or option.
Uncovered Functions that are colored in this color were never called

107

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

function during the tests. The default color can be overridden with the -
f col or option.

Partially covered More than one basic block was generated for the code at this

code position.

Some of the blocks were covered while some were not. The
default color can be overridden with the - pcol or option.

Unknown No code was generated for this source line. Most probably, the
source at this position is a comment, a header-file inclusion, or
a variable declaration. The default color can be overridden with
the - ucol or option.

The default colors can be customized to be any valid HTML by using the options
mentioned for each coverage category in the table above.

For code-coverage colored presentation, the coverage tool uses the following
heuristic. Source characters are scanned until reaching a position in the source
that is indicated by the profile information as the beginning of a basic block. If the
profile information for that basic block indicates that a coverage category
changes, then the tool changes the color corresponding to the coverage
condition of that portion of the code, and the coverage tool inserts the
appropriate color change in the HTML files.

Z-J‘]Note

You need to interpret the colors in the context of the code. For instance,
comment lines that follow a basic block that was never executed would be
colored in the same color as the uncovered blocks. Another example is the
closing brackets in C/C++ applications.

Coverage Analysis of a Modules Subset

One of the capabilities of the Intel Compilers code-coverage tool is efficient
coverage analysis of an application' s subset of modules. This analysis is
accomplished based on the selected option - conp of the tool's execution.

You can generate the profile information for the whole application, or a subset of
it, and then break the covered modules into different components and use the
coverage tool to obtain the coverage information of each individual component. If
only a subset of the application modules is compiler with the - pr of _genx
option, then the coverage information is generated only for those modules that
are involved with this compiler option, thus avoiding the overhead incurred for
profile generation of other modules.

To specify the modules of interest, use the tool's - conp option. This option takes

the name of a file as its argument. That file must be a text file that includes the
name of modules or directories you would like to analyze. Here is an example:

108

Compiler Optimizations

codecov -prj Project_ Nane -conp conponent 1

f)Note

Each line of component file should include one, and only one, module
name.

Any module of the application whose full path name has an occurrence of any of
the names in the component file will be selected for coverage analysis. For
example, if aline of file conponent 1 in the above example contains nod1. f 90,
then all modules in the application that have such a name will be selected. The
user can specify a particular module by giving more specific path information. For
instance, if the line contains / cnpl/ nod1. f 90, then only those modules with
the name mod1.c will be selected that are in a directory named cnpl. If no
component file is specified, then all files that have been compiled with -

pr of _genx are selected for coverage analysis.

Dynamic Counters

This feature displays the dynamic execution count of each basic block of the
application, and as such it is useful for both coverage and performance tuning.

The coverage tool can be configured to generate the information about the
dynamic execution counts. This configuration requires using the - count s option.
The counts information is displayed under the code after a » sign precisely under
the source position where the corresponding basic block begins. If more than one
basic block is generated for the code at a source position (for example, for
macros), then the total number of such blocks and the number of the blocks that
were executed are also displayed in front of the execution count.

For example, line 11 in the code is an | F statement:

11 IF ((N.EQ 1).0R (N .EQ 0))

AT10 (1 2)
12 PRI NT N
AT

The coverage lines under code lines 11 and 12 contain the following information:

o The |l F statement in line 11 was executed 10 times.

e Two basic blocks were generated for the | F statement in line 11.

« Only one of the two blocks was executed, hence the partial coverage
color.

e Only seven out of the ten times variable n had a value of 0 or 1.

In certain situations, it may be desirable to consider all the blocks generated for a
single source position as one entity. In such cases, it is necessary to assume
that all blocks generated for one source position are covered when at least one

109

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

of the blocks is covered. This assumption can be configured with the

-noparti al option. When this option is specified, decision coverage is
disabled, and the related statistics are adjusted accordingly. The code lines 11
and 12 indicate that the PRINT statement in line 12 was covered. However, only
one of the conditions in line 11 was ever true. With the - nopar ti al option, the
tool treats the partially covered code (like the code on line 11) as covered.

Differential Coverage

Using the code-coverage tool, you can compare the profiles of the application's
two runs: a reference run and a new run identifying the code that is covered by
the new run but not covered by the reference run. This feature can be used to
find the portion of the application’s code that is not covered by the application’s
tests but is executed when the application is run by a customer. It can also be
used to find the incremental coverage impact of newly added tests to an
application’s test space.

The dynamic profile information of the reference run for differential coverage is
specified by the - r ef option. such as in the following command:

codecov -prj Project Nane -dpi custoner.dpi -ref
appTests. dpi

The coverage statistics of a differential-coverage run shows the percentage of
the code that was exercised on a new run but was missed in the reference run. In
such cases, the coverage tool shows only the modules that included the code
that was uncovered.

The coloring scheme in the source views also should be interpreted accordingly.
The code that has the same coverage property (covered or not covered) on both
runs is considered as covered code. Otherwise, if the new run indicates that the
code was executed while in the reference run the code was not executed, then
the code is treated as uncovered. On the other hand, if the code is covered in the
reference run but not covered in the new run, the differential-coverage source
view shows the code as covered.

Running for Differential Coverage

To run the Intel Compilers code-coverage tool for differential coverage, the
following files are required:

e The application sources

« The. spi file generated by Intel Compilers when compiling the application
for the instrumented binaries with the - pr of _genx option.

« The . dpi file generated by Intel Compilers pr of mer ge utility as the result
of merging the dynamic profile information . dyn files or the . dpi file

110

Compiler Optimizations

generated implicitly by Intel Compilers when compiling the application with
the - pr of _use option.

See Usage Model of the Profile-guided Optimizations.

Once the required files are available, the coverage tool may be launched from
this command line:

codecov -prj Project_Nane -spi pgopti.spi -dpi pgopti.dpi
The - spi and - dpi options specify the paths to the corresponding files.

The coverage tool also has the following additional options for generating a link
at the bottom of each HTML page to send an electronic message to a named
contact by using -nmane and - naddr options.

codecov -prj Project_Nane -manme John_Sm th -maddr
] s@onpany. com

Test Prioritization Tool

The Intel® Compilers Test-prioritization tool enables the profile-guided
optimizations to select and prioritize application's tests based on prior execution
profiles of the application. The tool offers a potential of significant time saving in
testing and developing large-scale applications where testing is the major
bottleneck. The tool can be used for both IA-32 and Itanium® architectures.

This tool enables the users to select and prioritize the tests that are most relevant
for any subset of the application's code. When certain modules of an application
are changed, the test-prioritization tool suggests the tests that are most probably
affected by the change. The tool analyzes the profile data from previous runs of
the application, discovers the dependency between the application's components
and its tests, and uses this information to guide the process of testing.

Features and Benefits

The tool provides an effective testing hierarchy based on the application's code
coverage. The advantages of the tool usage can be summarized as follows:

« Minimizing the number of tests that are required to achieve a given overall
coverage for any subset of the application: the tool defines the smallest
subset of the application tests that achieve exactly the same code
coverage as the entire set of tests.

e Reducing the turn-around time of testing: instead of spending a long time
on finding a possibly large number of failures, the tool enables the users to
quickly find a small number of tests that expose the defects associated
with the regressions caused by a change set.

111

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

o Selecting and prioritizing the tests to achieve certain level of code
coverage in a minimal time based on the data of the tests' execution time.

Command-line Syntax
The syntax for this tool is as follows:
tselect -dpi_list file

where - dpi _| i st is a required tool option that sets the path to the DPI listfi |l e
that contains the list of the . dpi files of the tests you need to prioritize.

Tool Options

The tool uses options that are listed in the table that follows.

Option Description

-hel p Prints all the options of the test-prioritization
tool.

-spi file Sets the path name of the static profile
information file . spi . The default is
pgopti . spi.

-dpi _I'i st Sets the path name of the file that contains the

file name of the dynamic profile information (. dpi)
files. Each line of the file should contain one
. dpi name optionally followed by its execution
time. The name must uniquely identify the test.

]: plr of _dpi Sets the path name of the output report file.

ile

-conp Sets the filename that contains the list of
files of interest.

-cut of f Terminates when the cumulative block

val ue coverage reaches val ue% of pre-computed
total coverage. val ue must be greater than
0.0 (for example, 99.00). It may be set to
100.

- not ot al Does not pre-compute the total coverage.

-mntime Minimizes testing execution time. The
execution time of each test must be
provided on the same line of dpi _| i st file
after the test name in dd: hh: nm ss format.

-verbose Generates more logging information about
the program progress.

Usage Requirements

112

Compiler Optimizations

To run the test-prioritization tool on an application’s tests, the following files are
required:

o« The. spi file generated by Intel Compilers when compiling the application
for the instrumented binaries with the - pr of _genx option.

« The . dpi files generated by Intel Compilers pr of mer ge tool as a result
of merging the dynamic profile information . dyn files of each of the
application tests. The user needs to apply the pr of ner ge tool to all . dyn
files that are generated for each individual test and name the resulting
. dpi in a fashion that uniquely identifies the test. The profmerge tool
merges all the . dyn files that exist in the given directory.

Z-]]Note

It is very important that the user makes sure that unrelated . dyn files,
oftentimes from previous runs or from other tests, are not present in that
directory. Otherwise, profile information will be based on invalid profile data.
This can negatively impact the performance of optimized code as well as
generate misleading coverage information.

e User-generated file containing the list of tests to be prioritized.
For successful tool execution, you should:

« Name each test . dpi file so that the file names uniquely identify
each test.

o Create a DPI list file: a text file that contains the names of all . dpi
test files. The name of this file serves as an input for the test-
prioritization tool execution command. Each line of the DPI list file
should include one, and only one, . dpi file name. The name can
optionally be followed by the duration of the execution time for a
corresponding test in the dd: hh: mm ss format.

For example: Test 1. dpi 00: 00: 60: 35 informs that Test1 lasted 0
days, 0 hours, 60 minutes and 35 seconds.

The execution time is optional. However, if it is not provided, then the tool
will not prioritize the test for minimizing execution time. It will prioritize to
minimize the number of tests only.

Usage Model

The chart that follows presents the test-prioritization tool usage model.

113

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

i

Step L:
L:T;“;;:ﬂ_m Eeep the static profile mformation
— & for cowerage analysis and PGT
_

Instrumented Exeousbles

|:‘ | App axa |

- -\--\-"‘--_
™ —
____FFF‘# s ¥ i e
= . g Ty
[- b, - Ly
1 | i
r Step 2.1 Step 2.n
i Rur instrumenisd sxecubsbles on Aun insfrumenbed sxeoutables on
Test_1 Test_n

Margs Dy iairmie Profike Thlorimakon Mairgs Cignarmo: Pralie Inlormatson
dyn files

dyni files
N W W N

Test_1.dpd Test_Z.dpi Test_..dpi | Toeest_m.opi

5
-

o =

e
-
-
.
g
. Y

Step 3
| Aum Test Pricntizer

Here are the steps for a simple example (myApp. f 90) for IA-32 systems.

1. Set the following:
PROF_DI R=c: / myApp/ prof _dir
2. Issue the following command:
ifort -prof_genx myApp.f90

This command compiles the program and generates instrumented binary
nyApp as well as the corresponding static profile information

pgopti . spi.
3. Issue the following command:
rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.

114

Compiler Optimizations

. Issue the following command:

nyApp < datal

Invocation of this command runs the instrumented application and
generates one or more new dynamic profile information files that have an
extension . dyn in the directory specified by PROF_DI R

. Issue the following command:

prof merge -prof_dpi Testl. dpi

At this step, the pr of ner ge tool merges all the . dyn files into one file
(Test 1. dpi) that represents the total profile information of the application
on Test1.

. Issue the following command:

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.

. Issue the following command:

nyApp < dat a2

This command runs the instrumented application and generates one or
more new dynamic profile information files that have an extension . dyn in
the directory specified by PROF_DI R

. Issue the following command:

prof merge -prof_dpi Test2. dpi

At this step, the pr of ner ge tool merges all the . dyn files into one file
(Test 2. dpi) that represents the total profile information of the application
on Test2.

. Issue the following command:

rm PROF_DIR /*.dyn

Make sure that there are no unrelated . dyn files present.

10. Issue the following command:

nyApp < dat a3

115

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

This command runs the instrumented application and generates one or
more new dynamic profile information files that have an extension . dyn in
the directory specified by PROF_DI R.
11.Issue the following command:
prof merge -prof_dpi Test3. dpi
At this step, the pr of ner ge tool merges all the . dyn files into one file
(Test 3. dpi) that represents the total profile information of the application
on Test3.
12.Create a file named t est s_| i st with three lines. The first line contains
Test 1. dpi , the second line contains Test 2. dpi , and the third line
contains Test 3. dpi .
When these items are available, the test-prioritization tool may be
launched from the command line in PROF_DI R directory as described in
the following examples.
Note that in all examples, the discussion references the same set of data.
Example 1 Minimizing the Number of Tests
tselect -dpi _list tests |list -spi pgopti. spi

where the / spi option specifies the path to the . spi file.

Here is a sample output from this run of the test-prioritization tool.

Tot al nunber of tests = 3
Tot al bl ock coverage ~ 52.17
Total function coverage ~ 50.00
Num | %RatCvrg | %8l kCvrg %ncCvrg Test Nane @
Opt i ons
1 87. 50 45. 65 37.50 Test 3. dpi
2 100. 00 52. 17 50. 00 Test 2. dpi

In this example, the test-prioritization tool has provided the following information:

« By running all three tests, we achieve 52.17% block coverage and 50.00%
function coverage.

116

Compiler Optimizations

« Test3 by itself covers 45.65% of the basic blocks of the application, which
is 87.50% of the total block coverage that can be achieved from all three
tests.

« By adding Test2, we achieve a cumulative block coverage of 52.17% or
100% of the total block coverage of Test1, Test2, and Test3.

« Elimination of Test1 has no negative impact on the total block coverage.

Example 2 Minimizing Execution Time

Suppose we have the following execution time of each test in thetests_| i st
file.

Test 1. dpi 00: 00: 60: 35
Test 2. dpi 00: 00: 10: 15
Test 3. dpi 00: 00: 30: 45

The following command executes the test-prioritization tool to minimize the
execution time with the

-m nti e option:

tselect -dpi_list tests list -spi pgopti.spi -mntine

Here is a sample output.

Tot al nunber of tests = 3

Tot al bl ock coverage ~ b52.17
Total function coverage ~ 50.00
Tot al execution tine = 1:41:35

num | el apsedTine | %RatCvrg | %8Bl kCvrg | %ncCvrg | Test Name
@ Opti ons

1 10: 15 75. 00 39. 13 25. 00 Test 2. dpi
2 41: 00 100. 00 52. 17 50. 00 Test 3. dpi

In this case, the results indicate that the running all tests sequentially would
require one hour, 45 minutes, and 35 seconds, while the selected tests would
achieve the same total block coverage in only 41 minutes.

ENote

The order of tests when prioritization is based on minimizing time (first
Test2, then Test3) could be different than when prioritization is done based
on minimizing the number of tests. See example above: first Test3, then

117

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Test2. In Example 2, Test2 is the test that gives the highest coverage per
execution time. So, it is picked as the first test to run.

Using Other Options

The - cut of f option enables the test-prioritization tool to exit when it reaches a
given level of basic block coverage.

tselect -dpi_list tests_list -spi pgopti.spi -cutoff 85.00

If the tool is run with the cutoff value of 85.00 in the above example, only Test3
will be selected, as it achieves 45.65% block coverage, which corresponds to
87.50% of the total block coverage that is reached from all three tests.

The test-prioritization tool does an initial merging of all the profile information to
figure out the total coverage that is obtained by running all the tests. The -

not ot al option. enables you to skip this step. In such a case, only the absolute
coverage information will be reported, as the overall coverage remains unknown.

PGO API: Profile Information Generation Support
PGO API Support Overview

The Profile Information Generation Support (Profile IGS) enables you to control
the generation of profile information during the instrumented execution phase of
profile-guided optimizations.

Normally, profile information is generated by an instrumented application when it
terminates by calling the standard exi t () function.

To ensure that profile information is generated, the functions described in this
section may be necessary or useful in the following situations:

o The instrumented application exits using a non-standard exit routine.

« The instrumented application is a non-terminating application: exi t () is
never called.

« The application requires control of when the profile information is
generated.

A set of functions and an environment variable comprise the Profile IGS.
The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header
file at the top of any source file where the functions may be used.

#i ncl ude
118

pgouser. h"

Compiler Optimizations

Z-J‘]Note

The Profile IGS functions are written in C language. Fortran applications
need to call C functions.

The rest of the topics in this section describe the Profile IGS functions.

f)Note

Without instrumentation, the Profile IGS functions cannot provide PGO API
support.

The Profile IGS Environment Variable

The environment variable for Profile IGS is PROF_DUVP_| NTERVAL. This
environment variable may be used to initiate Interval Profile Dumping in an
instrumented user application. For more information, see the recommended
usage of PGOPTI _Set I nterval Prof Dunp().

Dumping Profile Information

The PGOPTI _Prof _Dunp() function dumps the profile information collected by
the instrumented application and has the following prototype:

voi d _PGOPTI _Prof_Dunp(voi d);

The profile information is generated in a . dyn file (generated in phase 2 of the
PGO).

Recommended usage

Insert a single call to this function in the body of the function which terminates the
user application. Normally, PGOPTI _Pr of _Dunp() should be called just once.

It is also possible to use this function in conjunction with the
_PGOPTI _Prof Reset () function to generate multiple . dyn files (presumably
from multiple sets of input data).

Example:

I selectively collect profile information
I' for the portion of the application
I involved in processing input data

i nput _data = get i nput _dat a()
do while (input_data)

call _PGOPTI _Prof Reset ()

cal |l process_dat a(i nput _data)
cal | _PGOPTI _Prof Dunmp();

119

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

i nput _data = get i nput_data();
end do

Resetting the Dynamic Profile Counters

The PGOPTI _Prof Reset () function resets the dynamic profile counters and
has the following prototype:

voi d PGOPTI _Prof Reset (void);
Recommended usage

Use this function to clear the profile counters prior to collecting profile information
on a section of the instrumented application. See the example under
_PGOPTI _Prof _Dunp().

Dumping and Resetting Profile Information

The PGOPTI _Prof Dunp_And_Reset () function dumps the profile
information to a new . dyn file and then resets the dynamic profile counters.
Then the execution of the instrumented application continues. The prototype of
this function is:

voi d _PGOPTI _Prof_Dunp_And_Reset (voi d);

This function is used in non-terminating applications and may be called more
than once.

Recommended usage

Periodic calls to this function enables a non-terminating application to generate
one or more profile information files (. dyn files). These files are merged during
the feedback phase (phase 3) of profile-guided optimizations. The direct use of
this function enables your application to control precisely when the profile
information is generated.

Interval Profile Dumping

The PGOPTI _Set | nterval _Prof_Dunp() function activates Interval Profile
Dumping and sets the approximate frequency at which dumps occur. The
prototype of the function call is:

voi d _PGOPTI _Set _Interval _Prof _Dunp(int interval);

This function is used in non-terminating applications.

120

Compiler Optimizations

The i nt er val parameter specifies the time interval at which profile dumping
occurs and is measured in milliseconds. For example, if interval is set to 5000,
then a profile dump and reset will occur approximately every 5 seconds. The
interval is approximate because the time-check controlling the dump and reset is
only performed upon entry to any instrumented function in your application.

Z-J‘]Note

1. Setting interval to zero or a negative number will disable interval
profile dumping.

2. Setting a very small value for interval may cause the instrumented
application to spend nearly all of its time dumping profile information.
Be sure to set interval to a large enough value so that the application
can perform actual work and substantial profile information is
collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to
initiate Interval Profile Dumping. Note that an alternative method of initiating
Interval Profile Dumping is by setting the environment variable,

PROF_DUMP_| NTERVAL, to the desired interval value prior to starting the
application.

The intention of Interval Profile Dumping is to allow a non-terminating application
to be profiled with minimal changes to the application source code.

High-level Language Optimizations (HLO)
HLO Overview

High-level optimizations exploit the properties of source code constructs (for
example, loops and arrays) in the applications developed in high-level
programming languages, such as Fortran and C++. The high-level optimizations
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-
jam, blocking, data prefetch, scalar replacement, data layout optimizations and
loop unrolling techniques.

The option that turns on the high-level optimizations is - 8. The scope of
optimizations turned on by - O3 is different for IA-32 and Itanium®-based
applications. See Setting Optimization Levels.

IA-32 and Itanium®-based Applications

121

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The - G3 option enables the - 2 option and adds more aggressive optimizations;
for example, loop transformation and prefetching. - O3 optimizes for maximum
speed, but may not improve performance for some programs.

IA-32 Applications

In conjunction with the vectorization options, - ax{ K| W N B| P} and -

x{ K| WN BJ| P}, the - OB option causes the compiler to perform more aggressive
data dependency analysis than for default - Q2. This may result in longer
compilation times.

Itanium-based Applications

The -i vdep_paral | el option asserts there is no loop-carried dependency in
the loop where | VDEP directive is specified. This is useful for sparse matrix
applications.

Key Techniques to Tune Your Itanium-based Applications
Follow these steps to tune applications on Itanium-based systems:

1. Compile your program with - B and -i po. Use profile guided
optimization whenever possible.

2. ldentify hot spots in your code.

3. Turn on Optimization reporting.

4. Check why loops are not software pipelined.

o Use CDECS$ i vdep to tell the compiler there is no dependency.
You may also need the option -i vdep_paral | el toindicate
there is no loop carried dependency.

o Use CDEC$ swp to enable software pipelining (useful for lop-sided
control and unknown loop count).

o Use CDEC$ | oop count(n) when needed.

o If cray pointers are used, use -saf e_cray_ptr toindicate there is
no aliasing.

o Use CDEC$ distribute point to splitlarge loops (normally,
this is automatically done).

5. Check that the prefetch distance is correct. Use CDEC$ pr ef et ch to
override the distance when it is needed.

Loop Transformations
The loop transformation techniques include:

e loop normalization

122

Compiler Optimizations

loop reversal

loop interchange and permutation

loop distribution

loop fusion

scalar replacement

absence of loop-carried memory dependency with the IVDEP directive
runtime data dependencies checking (ltanium®-based systems only)

The loop transformations listed above are supported by data dependence. The
loop transformation techniques also include:

induction variable elimination
constant propagation

copy propagation

forward substitution

and dead code elimination.

In addition to the loop transformations listed for both 1A-32 and ltanium®
architectures above, the Itanium architecture enables implementation of the
collapsing techniques.

Scalar Replacement (IA-32 Only)

The goal of scalar replacement is to reduce memory references. This is done
mainly by replacing array references with register references.

While the compiler replaces some array references with register references when
- Ol or - 2 is specified, more aggressive replacement is performed when - B (-
scal ar _r ep) is specified. For example, with - O3 the compiler attempts
replacement when there are loop-carried dependences or when data-
dependence analysis is required for memory disambiguation.

-scal ar_rep[-] Enables (default) or disables scalar
replacement performed during loop
transformations (requires - C3).

Loop Unrolling with -unroll[n]
The -unrol | [n] option is used in the following way:

e -unrol |l n specifies the maximum number of times you want to unroll a
loop. The following example unrolls a loop at most four times:

ifort -unroll 4 a.f

123

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

To disable loop unrolling, specify n as 0. On IA-32 systems, specifying 0
also disables the vectorizer's unroller, except for the unrolling required to
resolve cache line splits penalties. The following example disables loop
unrolling:

ifort -unroll 0 af

e« -unroll (nomitted) lets the compiler decide whether to perform unrolling
or not. This is the default; the compiler uses default heuristics or defines n.
e -unroll0(n=0)disables the unroller.

The ltanium® compiler currently uses only n = 0; any other value is NOP.
Benefits and Limitations of Loop Unrolling
The benéefits are:

« Unrolling eliminates branches and some of the code.

« Unrolling enables you to aggressively schedule (or pipeline) the loop to
hide latencies if you have enough free registers to keep variables live.

e The Intel® Pentium® 4 or Intel® Xeon(TM) processors can correctly
predict the exit branch for an inner loop that has 16 or fewer iterations, if
that number of iterations is predictable and there are no conditional
branches in the loop. Therefore, if the loop body size is not excessive, and
the probable number of iterations is known, unroll inner loops for:

- Pentium 4 or Intel Xeon processor, until they have a maximum of 16
iterations
- Pentium Ill or Pentium Il processors, until they have a maximum of 4
iterations

The potential cost: excessive unrolling, or unrolling of very large loops can lead
to increased code size.

For more information on how to optimize with - unr ol | [n], refer to the Intel®
Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference Manual.

Memory Dependency with IVDEP Directive

For ltanium®-based applications, the - i vdep_par al | el option indicates there
is absolutely no loop-carried memory dependency in the loop where | VDEP
directive is specified. This technique is useful for some sparse matrix
applications.

For example, the following loop requires -i vdep_par al | el in addition to the
directive IVDEP to ensure there is no loop-carried dependency for the store into

a().

124

Compiler Optimizations

Dl | VDEP

do j=1,n

a(b(j)) = a(b(j))+1
enddo

See also Vectorization Support.

Prefetching

The goal of - pr ef et ch insertion is to reduce cache misses by providing hints to
the processor about when data should be loaded into the cache. The prefetching
optimizations implement the following options:

-prefetch[-] Enables or disables (- pref et ch-)
prefetch insertion. This option
requires that - O3 be specified. The
default with - @3 is - pr ef et ch.

To facilitate compiler optimization:

e Minimize use of global variables and pointers.
e Minimize use of complex control flow.
o Choose data types carefully and avoid type casting.

For more information on how to optimize with - pref et ch[-], refer to the
Intel® Pentium® 4 and Intel® Xeon(TM) Processor Optimization Reference
Manual.

In addition to the - pr ef et ch option, an intrinsic subroutine, MM_PREFETCH
and compiler directive PREFETCH are also available. The subroutine
MM_PREFETCH prefetches data from the specified address on one memory
cache line. The compiler directive PREFETCH enables a data prefetch from
memory.

The following example is for ltanium®-based systems only:

do j=1,lastrowfirstrowtl
I = rowstr(j)
iresidue = mod(rowstr(j+1)-i, 8)
sum = 0.dO
CDEC$ NOPREFETCH a, p, col i dx
do k=i ,i +iresidue-1
sum = sum + a(k)*p(colidx(k))
enddo
CDEC$ NOPREFETCH col i dx
CDEC$ PREFETCH a: 1: 40
CDEC$ PREFETCH p: 1: 20
do k=i +iresidue, rowstr(j+1)-8, 8

125

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

sum = sum + a(k)*p(colidx(k))
& + a(k+1l)*p(colidx(k+1)) + a(k+2)*p(colidx(k+2))
& + a(k+3)*p(colidx(k+3)) + a(k+4)*p(colidx(k+4))
& + a(k+5)*p(colidx(k+5)) + a(k+6)*p(colidx(k+6))
& + a(k+7)*p(colidx(k+7))

enddo

q(j) = sum
enddo

For details, refer to the Intel® Fortran Language Reference.

126

Parallel Programming with Intel®

Fortran

Parallelism: an Overview

This section discusses the three major features of parallel programming
supported by the Intel® Fortran compiler: OpenMP*, Auto-parallelization, and
Auto-vectorization. Each of these features contributes to the application
performance depending on the number of processors, target architecture (1A-32
or ltanium® architecture), and the nature of the application. The three features
OpenMP, Auto-parallelization and Auto-vectorization, can be combined arbitrarily
to contribute to the application performance.

Parallel programming can be explicit, that is, defined by a programmer using
OpenMP directives. Parallel programming can be implicit, that is, detected
automatically by the compiler. Implicit parallelism is exploited by either Auto-
parallelization of outer-most loops or Auto-vectorization of innermost loops (or
both).

Parallelism defined with OpenMP and Auto-parallelization directives is based on
thread-level parallelism (TLP). Parallelism defined with Auto-vectorization
techniques is based on instruction-level parallelism (ILP).

The Intel Fortran compiler supports OpenMP and Auto-parallelization on both IA-
32 and Iltanium architectures for multiprocessor systems as well as on single IA-
32 processors with Hyper-Threading Technology (for Hyper-Threading
Technology, refer to the 1A-32 Intel® Architecture Optimization Reference
Manual). Auto-vectorization is supported on the families of the Pentium®,
Pentium with MMX(TM) technology, Pentium II, Pentium lll, and Pentium 4
processors. To enhance the compilation of the code with Auto-vectorization, the
users can also add vectorizer directives to their program. A closely related
technique that is available on the Itanium-based systems is software pipelining
(SWP).

The table below summarizes the different ways in which parallelism can be
exploited with the Intel Fortran compiler.

Parallelism

Explicit Implicit

Parallelism programmed Parallelism generated by the compiler and by user-

by the user supplied hints

OpenMP*(TLP) Auto-parallelization Auto-vectorization
(TLP) (ILP)

127

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

IA-32 and Itanium of outer-most loops of inner-most loops
architectures
IA-32 and Itanium IA-32 only
architectures
Software pipelining for
[tanium architecture

Supported on: Supported on:
IA-32 or Itanium-based Multiprocessor systems; Pentium®, Pentium
with MMX™

IA-32 Hyper-Threading Technology-enabled systems. | Technology, Pentium I,
Pentium lll, and
Pentium 4 processors

Parallel Program Development

The Intel Fortran Compiler supports the OpenMP Fortran version 2.0 API
specification available from the www.openmp.org web site. The OpenMP
directives relieve the user from having to deal with the low-level details of
iteration space partitioning, data sharing, and thread scheduling and
synchronization.

The Auto-parallelization feature of the Intel Fortran Compiler automatically
translates serial portions of the input program into semantically equivalent
multithreaded code. Automatic parallelization determines the loops that are good
worksharing candidates, performs the dataflow analysis to verify correct parallel
execution, and partitions the data for threaded code generation as is needed in
programming with OpenMP directives. The OpenMP and Auto-parallelization
applications provide the performance gains from shared memory on
multiprocessor systems and IA-32 processors with the Hyper-Threading
Technology.

Auto-vectorization detects low-level operations in the program that can be done
in parallel, and then converts the sequential program to process 2, 4, 8 or up to
16 elements in one operation, depending on the data type. In some cases auto-
parallelization and vectorization can be combined for better performance results.
For example, in the code below, TLP can be exploited in the outermost loop,
while ILP can be exploited in the innermost loop.

DOl =1, 100 I execute groups of iterations in
di f fer ent

I threads (TLP)

DOJ =1, 32 I execute in SIMD style with

mul timedi a

I extension (ILP)
A(J, 1) = A(J, 1) +1
ENDDO

ENDDO

128

Parallel Programming with Intel® Fortran

Auto-vectorization can help improve performance of an application that runs on
the systems based on Pentium®, Pentium with MMX(TM) technology, Pentium

1, Pentium lll, and Pentium 4 processors.

The following table lists the options that enable Auto-vectorization, Auto-
parallelization, and OpenMP support.

Auto-vectorization, I1A-32 only

- x{ KW N| B| P}

Generates specialized code to run
exclusively on processors with the
extensions specified by { Kl WN| B| P}.

-ax{K| WN B| P}

Generates, in a single binary, code
specialized to the extensions specified by
{ K| W N| B| P} and also generic |1A-32
code. The generic code is usually slower.

-vec_report{0| 1| 2| 3| 4| 5}

Controls the diagnostic messages from the
vectorizer, see subsection that follows the
table.

Auto-parallelization, 1A-32 and Itanium architectures

- paral | el

Enables the auto-parallelizer to generate
multithreaded code for loops that can be
safely executed in parallel. Default: OFF.

- par _t hr eshol d{n}

Sets a threshold for the auto-parallelization
of loops based on the probability of
profitable execution of the loop in parallel,
n=0 to 100. n=0 implies "always." Default:
n=100.

- par _report {0] 1] 2| 3}

Controls the auto-parallelizer's diagnostic
levels.
Default: - par _report 1.

OpenMP, IA-32 and Itanium architectures

- opennp

Enables the parallelizer to generate
multithreaded code based on the OpenMP
directives. Default: OFF.

- opennp_report{0]| 1] 2}

Controls the OpenMP parallelizer's
diagnostic levels. Default:

Qopennp_report1.

- opennp_st ubs

Enables compilation of OpenMP programs
in sequential mode. The OpenMP directives
are ignored and a stub OpenMP library is

linked. Default: OFF.

f)Note

When both - opennp and - par al | el are specified on the command line,
the - par al | el option is only honored in routines that do not contain

129

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

OpenMP Directives. For routines that contain OpenMP directives, only the
- opennp option is honored.

With the right choice of options, the programmers can:

e Increase the performance of your application with minimum effort
o Use compiler features to develop multithreaded programs faster

With a relatively small effort of adding the OpenMP directives to their code, the
programmers can transform a sequential program into a parallel program. The
following are examples of the OpenMP directives within the code:

I OMP$ PARALLEL PRI VATE(NUM), SHARED (X, A B, O
IDefines a paral lel region

OMP$ PARALLEL DO ! Specifies a parallel region that
I inplicitly contains a single DO directive

DOl =1, 1000

NUM = FOQ(B(i), C(1))

X(1) = BAR(A(1), NUM

I Assunme FOO and BAR have no side effects

ENDDO

See examples of the Auto-parallelization and Auto-vectorization directives in the
respective sections.

Auto-vectorization (IA-32 Only)

Vectorization Overview

The vectorizer is a component of the Intel® Fortran Compiler that automatically
uses SIMD instructions in the MMX(TM), SSE, SSE2 and SSE3 instruction sets.
The vectorizer detects operations in the program that can be done in parallel,
and then converts the sequential operations like one SIMD instruction that
processes 2, 4, 8 or up to 16 elements in parallel, depending on the data type.

This section provides options description, guidelines, and examples for Intel
Fortran Compiler vectorization implemented by IA-32 compiler only. For
additional information, see Publications on Compiler Optimizations.

The following list summarizes this section contents.

e Descriptions of compiler options to control vectorization
o \Vectorization Key programming guidelines
o Discussion and general guidelines on vectorization levels:
o Automatic vectorization
o Vectorization with user intervention
 Examples demonstrating typical vectorization issues and resolutions

130

Parallel Programming with Intel® Fortran

The Intel Fortran compiler supports a variety of directives that can help the
compiler to generate effective vector instructions. See compiler directives
supporting vectorization.

Vectorizer Options

Vectorization is an 1A-32-specific feature and can be summarized by the
command line options described in the following tables. Vectorization depends
upon the compiler's ability to disambiguate memory references. Certain options
may enable the compiler to do better vectorization. These options can enable
other optimizations in addition to vectorization. When an - x{ K| W N| B| P} or -
ax{ K| W N| B| P} is used and - @ (which is ON by default) is also in effect, the
vectorizer is enabled. The - x{ K| W N B| P} or - ax{ K| W N B| P} options
enable vectorizer with - OL and - C3 options also.

-x{ K| W N| B| P} Generates specialized code to run
exclusively on the processors
supporting the extensions indicated by
{K| W N| B| P} . See Processor-specific
Optimization (IA-32 only) for details.

-ax{K| W N| B| P} Generates, in a single binary, code
specialized to the extensions specified
by { K| WN| B| P} and also generic IA-
32 code. The generic code is usually
slower. See Automatic Processor-
specific Optimization (IA-32 only) for

details.
-vec_report Controls the diagnostic messages from
{0] 1] 2| 3| 4] 5} the vectorizer, see the subsection that
Default: follows the table.

-vec_reportl

Vectorization Reports

The -vec_report {0]| 1] 2| 3| 4| 5} options directs the compiler to generate the
vectorization reports with different level of information as follows:

-vec_r eport 0: no diagnostic information is displayed

-vec_report 1: display diagnostics indicating loops successfully vectorized
(default)

-vec_report 2: same as -vec_report 1, plus diagnostics indicating loops not
successfully vectorized

131

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

-vec_report 3: same as -vec_report 2, plus additional information about any
proven or assumed dependences

-vec_r eport 4: indicate non-vectorized loops

-vec_report 5: indicate non-vectorized loops and the reason why they were not
vectorized.

If you specify - vec_r eport without a number, the default of - vec_report1lis
used.

Usage with Other Options

The vectorization reports are generated in the final compilation phase when
executable is generated. Therefore if you use the - ¢ option and a -
vec_report{n} option in the command line, no report will be generated.

If you use - c, -1 po and -x{K|W| N| B| P} or -ax{K|W| N| B| P} and -
vec_report{n}, the compiler issues a warning and no report is generated.

To produce a report when using the above mentioned options, you need to add
the - i po_obj option. The combination of - ¢ and -i po_obj produces a single
file compilation, and hence does generate object code, and eventually a report is
generated.

The following commands generate vectorization report:
ifort -x{KJW|N B|P} -vec_report3 file.f
ifort -x{K|W[N B|P} -ipo -ipo_obj -vec report3 file.f

ifort -c -x{KJW|N B|P} -ipo -ipo_obj -vec report3 file.f

Loop Parallelization and Vectorization

Combining the - par al | el and - x{ K| W N| B| P} options instructs the compiler
to attempt both automatic loop parallelization and automatic loop vectorization in
the same compilation. In most cases, the compiler will consider outermost loops
for parallelization and innermost loops for vectorization. If deemed profitable,
however, the compiler may even apply loop parallelization and vectorization to
the same loop. See Guidelines for Effective Auto-parallelization Usage and
Vectorization Key Programming Guidelines.

Note that in some rare cases successful loop parallelization (either automatically

or by means of OpenMP* directives) may affect the messages reported by the
compiler for a non-vectorizable loop in a non-intuitive way.

132

Parallel Programming with Intel® Fortran

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data
(SIMD) processing automatically. Users can help however by supplying the
compiler with additional information; for example, directives. Review these
guidelines and restrictions, see code examples in further topics, and check them
against your code to eliminate ambiguities that prevent the compiler from
achieving optimal vectorization.

You will often need to make some changes to your loops. Guidelines for loop
bodies follow.

Use:

Straight-line code (a single basic block)

Vector data only; that is, arrays and invariant expressions on the right
hand side of assignments. Array references can appear on the left hand
side of assignments.

Only assignment statements

Avoid:

Function calls

Unvectorizable operations (other than mathematical)

Mixing vectorizable types in the same loop

Data-dependent loop exit conditions

Loop unrolling (compiler does it)

Decomposing one loop with several statements in the body into several
single-statement loops.

There are a number of restrictions that you should be aware of. Vectorization
depends on the two major factors:

Hardware: The compiler is limited by restrictions imposed by the
underlying hardware. In the case of Streaming SIMD Extensions, the
vector memory operations are limited to st ri de- 1 accesses with a
preference to 16-byte-aligned memory references. This means that if the
compiler abstractly recognizes a loop as vectorizable, it still might not
vectorize it for a distinct target architecture.

Style: The style in which you write source code can inhibit optimization.
For example, a common problem with global pointers is that they often
prevent the compiler from being able to prove that two memory references
refer to distinct locations. Consequently, this prevents certain reordering
transformations.

133

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Many stylistic issues that prevent automatic vectorization by compilers are found
in loop structures. The ambiguity arises from the complexity of the keywords,
operators, data references, and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret
diagnostic messages, you can modify your program to overcome the known
limitations and enable effective vectorization. The following sections summarize
the capabilities and restrictions of the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the
operations in serial loops. Because vectorization rearranges the order in which
operations are executed, any auto-vectorizer must have at its disposal some
form of data dependence analysis.

An example where data dependencies prohibit vectorization is shown below. In
this example, the value of each element of an array is dependent on the value of
its neighbor that was computed in the previous iteration.

Example of Data-dependent Loop:

REAL DATA(O: N)

| NTEGER |

DO =1, N1

DATA(1) =DATA(I-1)*0. 25+DATA(1) *0. 5+DATA(| +1) *0. 25
END DO

The loop in the above example is not vectorizable because the WRITE to the
current element DATA(|) is dependent on the use of the preceding element

DATA(| - 1), which has already been written to and changed in the previous

iteration. To see this, look at the access patterns of the array for the first two

iterations as shown below.

Example of Data Dependence Vectorization Patterns:

| =1: READ DATA (0)
READ DATA (1)

READ DATA (2)

WR TE DATA (1)

| =2: READ DATA(1)
READ DATA (2)

READ DATA (3)

WR TE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from
during the second iteration was written to in the first iteration. For vectorization, it

134

Parallel Programming with Intel® Fortran

must be possible to do the iterations in parallel, without changing the semantics
of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two
memory accesses may overlap. Given two references in a program, the
conditions are defined by:

e Whether the referenced variables may be aliases for the same (or
overlapping) regions in memory, and, for array references
« The relationship between the subscripts

For IA-32, data dependence analyzer for array references is organized as a
series of tests, which progressively increase in power as well as in time and
space costs. First, a number of simple tests are performed in a dimension-by-
dimension manner, since independence in any dimension will exclude any
dependence relationship. Multidimensional arrays references that may cross their
declared dimension boundaries can be converted to their linearized form before
the tests are applied.

Some of the simple tests that can be used are the fast greatest common divisor
(GCD) test and the extended bounds test. The GCD test proves independence if
the GCD of the coefficients of loop indices cannot evenly divide the constant
term. The extended bounds test checks for potential overlap of the extreme
values in subscript expressions. If all simple tests fail to prove independence, we
eventually resort to a powerful hierarchical dependence solver that uses Fourier-
Motzkin elimination to solve the data dependence problem in all dimensions.

Loop Constructs

Loops can be formed with the usual DO - END DO and DO WHILE, or by using
IF/GOTO statements and a label. However, the loops must have a single entry
and a single exit to be vectorized. Following are the examples of correct and
incorrect usages of loop constructs.

Example of Correct Usage:

SUBROUTI NE FOO (A, B, O
DI MENSI ON A(100) , B(100), C(100)

| NTEGER |

| =1

DO WH LE (1 .LE. 100)

ACl) = B(I) * 1)

IF (A(1) .LT. 0.0) A(l) = 0.0
| =1 +1

ENDDO

135

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

RETURN
END

Example of Incorrect Usage:

SUBROQUTI NE FOO (A, B, O

DI MENSI ON A(100), B(100), C(100)

| NTECER |

=1

DO WH LE (I .LE 100)

ACl) = B(I) * 1)

C The next statenent allows early
Cexit fromthe |l oop and prevents
C vectorization of the | oop.

| F (A(I) .LT. 0.0) @QOTO 10

| =1 +1

ENDDO

10 CONTI NUE

RETURN

END

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For
example, fixed indexes for loops determine the iterations. The loop iterations
must be countable; that is, the number of iterations must be expressed as one of
the following:

e A constant
e Aloop invariant term
e Alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below
show countable and non-countable loop constructs.

Correct Usage for Countable Loop, Example 1:

SUBRQUTI NE FOO (A, B, C, N, LB)

DI MENSI ON A(N), B(N), C(N)

| NTEGER N, LB, 1, C(lJ

I Nunber of |terat|ons is "N- LB + 1"
COUNT = N

DO WH LE (COUNT . GE. LB)

A(l) = B(I) C(I)

COUNT =

I =1 + 1

ENDDO ! LB is not defined within |oop
RETURN

END

136

Parallel Programming with Intel® Fortran

Correct Usage for Countable Loop, Example 2:

I Nunber of iterations is (N-Mt2) /2
SUBRQUTINE FOO (A, B, CC M N, LB)
DI MENSI ON A(N), B(N) C(N)

INTEGERI L, M

I 1,

DOL: M N, 2

A(l) = B(ll) * 1)

I =1 +
ENDDO
RETURN
END

Example of Incorrect Usage for Non-Countable Loop:

I Nunber of iterations is dependent on A(l)
SUBROUTI NE FOO (A, B, C)

DI MENSI ON A(100), B(100), C(100)

| NTEGER |

I =1

DO WH LE (A(l) .GT. 0.0)

ﬁ(l) =+B(1I) = 1)

ENDDO
RETURN
END

Types of Loop Vectorized

For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD
Extensions 2 (SSE2) provide SIMD instructions for most arithmetic and logical
operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved.
A 32-bit shift-right operator, for instance, is not vectorized in 16-bit mode if the
final stored value is a 16-bit integer. Because the MMX(TM) and SSE2 instruction
sets are not fully orthogonal (shifts on byte operands, for instance, are not
supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision
floating-point numbers, SSE/SSE2 provides SIMD instructions for the arithmetic
operators '+', '-', "', and '/'. In addition, SSE/SSE2 provides SIMD instructions for
the binary M N and MAX and unary SQRT operators. SIMD versions of several
other mathematical operators (like the trigonometric functions SIN, COS, TAN)
are supported in software in a vector mathematical run-time library that is
provided with the Intel® Fortran Compiler, of which the compiler takes
advantage.

137

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Strip-mining and Cleanup

Strip-mining, also known as loop sectioning, is a loop transformation technique
for enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. By fragmenting a large loop into smaller segments or
strips, this technique transforms the loop structure in two ways:

e ltincreases the temporal and spatial locality in the data cache if the data
are reusable in different passes of an algorithm.

o It reduces the number of iterations of the loop by a factor of the length of
each "vector," or number of operations being performed per SIMD
operation. In the case of Streaming SIMD Extensions, this vector or strip-
length is reduced by 4 times: four floating-point data items per single
Streaming SIMD Extensions single-precision floating-point SIMD operation
are processed.

First introduced for vectorizers, this technique consists of the generation of code
when each vector operation is done for a size less than or equal to the maximum
vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop.

Example of Strip Mining and Cleaning Up Loops:

I Before Vectorization
=n
+ c(i) ! Oiginal |oop code

I After Vectorization

I The vectorizer generates the follow ng two | oops
i =1
do while (i < (n - nod(n,4)))

i

I Vector strip-mned |oop.

a(i:i+3) = b(i:i+3) + c(i:i+3)

i =i + 4

end do

do while (i <= n)

a(i) = b(i) + c(i) ' Scal ar cl ean-up | oop
i =i +1

end do

Loop Blocking

138

Parallel Programming with Intel® Fortran

It is possible to treat loop blocking as strip-mining in two or more dimensions.
Loop blocking is a useful technique for memory performance optimization. The
main purpose of loop blocking is to eliminate as many cache misses as possible.
This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be
small enough to fit all the data for a given computation into the cache, thereby
maximizing data reuse.

Consider the following example. The two-dimensional array A is referenced in the
j (column) direction and then in the i (row) direction (column-major order); array
B is referenced in the opposite manner (row-major order). Assume the memory
layout is in column-major order; therefore, the access strides of array A and B for
the code would be 1 and MAX, respectively.

In the B. example: BS = block_size; MAX must be evenly divisible by BS.
Example of Loop Blocking of Arrays:

A. Oiginal | oop
REAL A(MAX, MAX), B(MAX, MAX)
DO I =1, MNAX
DOJ =1, MAX

A(l,J) = A(1,J) + B(J, 1)
ENDDO
ENDDO

B. Transf ormed Loop after bl ocking

REAL A(MAX, MAX), B(MAX, MAX)
DO | =1, MAX, BS
DOJ = 1, MAX, BS
DO Il = I, |+MAX, BS-1
DOJ = J, J+MAX, BS-1
ACI1,33) = A(I'1,33) + B(JJ, 1)
ENDDO
ENDDO
ENDDO
ENDDO

Statements in the Loop Body
The vectorizable operations are different for floating point and integer data.
Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on
arrays). Arithmetic operations supported are addition, subtraction, multiplication,

139

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

division, negation, square root, MAX, MIN, and mathematical functions such as
SIN and COS. Note that conversion to/from some types of floats is not valid.
Operation on DOUBLE PRECISION types is not valid, unless optimizing for an
Intel® Pentium® 4 and Intel® Xeon(TM) processors' system, and Intel®
Pentium® M processor, using the - xXWor - axWcompiler option.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations
(again, typically for arrays). Arithmetic operations are limited to such operations
as addition, subtraction, ABS, MIN, and MAX. Logical operations include bitwise
AND, OR and XCR operators. You can mix data types only if the conversion can be
done without a loss of precision. Some example operators where you can mix
data types are multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are
permitted. The loop body cannot contain any function calls other than the ones
described above.

Vectorization Examples

This section contains simple examples of some common issues in vector
programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because
the compiler cannot prove that DEST(A(1)) and DEST(B(1)) are distinct.

Example of Unvectorizable Copy Due to Unproven Distinction:

SUBROUTI NE VEC_COPY(DEST, A, B, LEN)
DI MENSI ON DEST(*)

| NTEGER A(*), B(*)

| NTEGER LEN, |

DO | =1, LEN

DEST(A(1)) = DEST(B(1))

END DO

RETURN
END

Data Alignment

140

Parallel Programming with Intel® Fortran

A 16-byte or greater data structure or array should be aligned so that the
beginning of each structure or array element is aligned in a way that its base
address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a
data cache unit (DCU) split due to misaligned data. The code loads the
misaligned data across a 16-byte boundary, which results in an additional
memory access causing a six- to twelve-cycle stall. You can avoid the stalls if
you know that the data is aligned and you specify to assume alignment

Misaligned Data Crossing 16-Byte
Boundary

18 Byie 16 Byte

L Boundaries + Soundaries J[
| 1

Misaligned Data

After vectorization, the loop is executed as shown in figure below.

Vector and Scalar Clean-up Iterations

2 vactor iterations 2 clean-up iterations
in scalar moda
il fime- sl fiam-
i=1,2, 3,4 i=56 7,8 i=9 10

Both the vector iterations A(1: 4) = B(1l:4);and A(5:8) = B(5:8); can be
implemented with aligned moves if both the elements A(1) and B(1) are 16-
byte aligned.

&Caution

If you specify the vectorizer with incorrect alignment options, the compiler
will generate code with unexpected behavior. Specifically, using aligned
moves on unaligned data, will result in an illegal instruction exception!

Alignment Strategy

The compiler has at its disposal several alignment strategies in case the
alignment of data structures is not known at compile-time. A simple example is
shown below (several other strategies are supported as well). If in the loop
shown below the alignment of A is unknown, the compiler will generate a prelude
loop that iterates until the array reference, that occurs the most, hits an aligned
address. This makes the alignment properties of A known, and the vector loop is
optimized accordingly. In this case, the vectorizer applies dynamic loop peeling,
a specific Intel® Fortran feature.

141

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Example of Data Alignment:
Original loop:

SUBROUTINE DOIT(A)

REAL A(100) I'alignment of argument A is unknown
DO =1, 100

A(l)=A()+1.0

ENDDO

END SUBROUTINE

Aligning Data:

I The vectorizer will apply dynam c | oop peeling as foll ows:
SUBROUTI NE DO T(A)

REAL A(100)

I let P be (A%6)where A is address of A(1l)

IF (P .NE. 0) THEN

P=1(16 - P) /4 I determ ne run-tinme peeling
I factor

DOI =1, P

A(l) = A(l) + 1.0

ENDDO

ENDI F

I Now this loop starts at a 16-byte boundary,

I and will be vectorized accordingly

DOI =P + 1, 100

A(l) = A(l) + 1.0

ENDDO

END SUBRQUTI NE

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example.

The use of B(K, J), is nota stri de- 1 reference and therefore will not normally
be vectorizable. If the loops are interchanged, however, all the references will
become st ri de-1 as in the Matrix Multiplication with Stride-1 example that
follows.

142

Parallel Programming with Intel® Fortran

Z-J‘]Note

Interchanging is not always possible because of dependencies, which can
lead to different results.

Example of Matrix Multiplication with Stride-1:

DO J=1, N
DO K=1, N
DO =1, N
c(1,d) = 1,3 + Al,K*B(K, J)
ENDDO
ENDDO
ENDDO

For additional information, see publications on Compiler Optimizations.

Auto-parallelization

Auto-parallelization Overview

The auto-parallelization feature of the Intel® Fortran Compiler automatically
translates serial portions of the input program into equivalent multithreaded code.
The auto-parallelizer analyzes the dataflow of the program’s loops and generates
multithreaded code for those loops which can be safely and efficiently executed
in parallel. This enables the potential exploitation of the parallel architecture
found in symmetric multiprocessor (SMP) systems.

Automatic parallelization relieves the user from:

« Having to deal with the details of finding loops that are good worksharing
candidates

« Performing the dataflow analysis to verify correct parallel execution

« Partitioning the data for threaded code generation as is needed in
programming with OpenMP* directives.

The parallel run-time support provides the same run-time features as found in
OpenMP, such as handling the details of loop iteration modification, thread
scheduling, and synchronization.

While OpenMP directives enable serial applications to transform into parallel
applications quickly, the programmer must explicitly identify specific portions of
the application code that contain parallelism and add the appropriate compiler
directives. Auto-parallelization triggered by the - par al | el option automatically
identifies those loop structures, which contain parallelism. During compilation, the
compiler automatically attempts to decompose the code sequences into separate
threads for parallel processing. No other effort by the programmer is needed.

143

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The following example illustrates how a loop’s iteration space can be divided so
that it can be executed concurrently on two threads:

Oiginal Serial Code

do i=1,100
a(i) = a(i) + b(i) * c(i)
enddo

Transforned Parall el Code
Thread 1

do i=1,50

a(i) = a(i) + b(i) * c(i)
enddo

Thread 2

do i=51, 100

a(i) = a(i) + b(i) * c(i)
enddo

Programming with Auto-parallelization

Auto-parallelization feature implements some concepts of OpenMP, such as
worksharing construct (with the PARALLEL DO directive). See Programming with
OpenMP for worksharing construct. This section provides specifics of auto-
parallelization.

Guidelines for Effective Auto-parallelization Usage
Aloop is parallelizable if:

e The loop is countable at compile time: this means that an expression
representing how many times the loop will execute (also called "the loop
trip count") can be generated just before entering the loop.

e There are no FLOW(READ after WRITE), QUTPUT (WRITE after WRITE)
or ANTI (WRITE after READ) loop-carried data dependences. A loop-
carried data dependence occurs when the same memory location is
referenced in different iterations of the loop. At the compiler's discretion, a
loop may be parallelized if any assumed inhibiting loop-carried
dependencies can be resolved by run-time dependency testing.

The compiler may generate a run-time test for the profitability of executing in
parallel for loop with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these
coding guidelines:

144

Parallel Programming with Intel® Fortran

Expose the trip count of loops whenever possible; specifically use constants
where the trip count is known and save loop parameters in local variables.
Avoid placing structures inside loop bodies that the compiler may assume to
carry dependent data, for example, procedure calls, ambiguous indirect
references or global references.

Insert the |DEC$ PARALLEL directive to disambiguate assumed data
dependencies.

Insert the |DEC$ NOPARALLEL directive before loops known to have
insufficient work to justify the overhead of sharing among threads.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis ---> Loop classification ---> Dependence analysis --->
High-level parallelization --> Data partitioning --->Multi-threaded code
generation.

These steps include:

Data flow analysis: compute the flow of data through the program

Loop classification: determine loop candidates for parallelization based on
correctness and efficiency as shown by threshold analysis

Dependence analysis: compute the dependence analysis for references in
each loop nest

High-level parallelization:

- analyze dependence graph to determine loops which can execute in
parallel.

- compute run-time dependency
Data partitioning: examine data reference and partition based on the
following types of access: SHARED, PRIVATE, and FIRSTPRIVATE
Multi-threaded code generation:

- modify loop parameters

- generate entry/exit per threaded task

- generate calls to parallel run-time routines for thread creation and
synchronization

Auto-parallelization: Enabling, Options, Directives, and
Environment Variables

145

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

To enable the auto-parallelizer, use the - par al | el option. The - paral | el
option detects parallel loops capable of being executed safely in parallel and
automatically generates multithreaded code for these loops. An example of the
command using auto-parallelization is as follows:

ifort -c -parallel nyprog.f
Auto-parallelization Options

The - paral | el option enables the auto-parallelizer if the - Q2 (or - GB)
optimization option is also on (the default is - Q2). The - par al | el option detects
parallel loops capable of being executed safely in parallel and automatically
generates multithreaded code for these loops.

-paral | el Enables the auto-parallelizer
- par _t hr eshol d{0- | Controls the work threshold
100} needed for auto-parallelization.

- Controls the diagnostic
par_report{1] 2| 3} | messages from the auto-
parallelizer, see later
subsection.

Auto-parallelization Directives

Auto-parallelization uses two specific directives, |DEC$ PARALLEL and 'DEC$
NOPARALLEL.

The format of an Intel Fortran auto-parallelization compiler directive is:
<prefix> <directive>
where the brackets above mean:
e <xxx>: the prefix and directive are required
For fixed form source input, the prefix is |DEC$ or CDEC$
For free form source input, the prefix is IDECS$ only.
The prefix is followed by the directive name; for example:
IDEC$ PARALLEL
Since auto-parallelization directives begin with an exclamation point, the

directives take the form of comments if you omit the - par al | el option.

146

Parallel Programming with Intel® Fortran

Examples

The 'DEC$ PARALLEL directive instructs the compiler to ignore dependencies
which it assumes may exist and which would prevent correct parallelization in the
immediately following loop. However, if dependencies are proven, they are not
ignored.

The |DEC$ NOPARALLEL directive disables auto-parallelization for the
immediately following loop.

program mai n
par anet er (n=100)
i nt eger x(n), a(n)

| DEC$ NOPARALLEL
do i=1,n
x(i) =i

enddo

| DEC$ PARALLEL
do i=1,n

a(x(i)) =i
enddo

end

Auto-parallelization Environment Variables

Option Description Default
OMP_NUM_THREADS | Controls the number of Number of processors
threads used. currently installed in the

system while
generating the
executable

OMP_SCHEDULE Specifies the type of run- | static
time scheduling.

Auto-parallelization Threshold Control and Diagnostics

Threshold Control

The - par _t hr eshol d{n} option sets a threshold for auto-parallelization of
loops based on the probability of profitable execution of the loop in parallel. The
value of n can be from 0 to 100. The default value is 100. The -

par _t hreshol d{n} option should be used when the computation work in loops
cannot be determined at compile-time.

The meaning for various values of n is as follows:

147

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

e n =100. Parallelization will only proceed when performance gains are
predicted based on the compiler analysis data. This is the default. This
value is used when - par _t hreshol d{n} is not specified on the command
line or is used without specifying a value of n.

e n=0,-par_threshol dO is specified. The loops get auto-parallelized
regardless of computation work volume, that is, parallelize always.

o The intermediate 1 to 99 values represent the percentage probability for
profitable speed-up. For example, n=50 would mean: parallelize only if there
is a 50% probability of the code speeding up if executed in parallel.

The compiler applies a heuristic that tries to balance the overhead of creating
multiple threads versus the amount of work available to be shared amongst the
threads.

Diagnostics

The - par _report {0] 1] 2| 3} option controls the auto-parallelizer's diagnostic
levels 0, 1, 2, or 3 as follows:

- par _report 0 = no diagnostic information is displayed.

-par _report 1 = indicates loops successfully auto-parallelized (default). Issues
a "LOOP AUTO- PARALLELI ZED" message for parallel loops.

- par _report 2 = indicates successfully auto-parallelized loops as well as
unsuccessful loops.

- par _report 3 = same as 2 plus additional information about any proven or
assumed dependences inhibiting auto-parallelization (reasons for not
parallelizing).

The following example shows an output generated by - par _report 3 as a result
from the command:

ifort -c -parallel -par_report3 myprog.f90

where the program nypr og. f 90 is as follows:

pr ogr am nypr og
i nteger a(10000), q
C Assuned side effects

do i =1, 10000
a(i) = foo(i)
enddo
C Actual dependence
do i =1, 10000
a(i) =a(i-1) +i
enddo

148

Parallel Programming with Intel® Fortran

end

Example of - par _r eport Output:

program nmyprog
procedur e: nyprog

serial loop: line 5: not a parallel candi date
due to statenent at line 6
serial loop: line 9

fl ow data dependence fromline 10 to |ine
10, due to "a"
12 Lines Conpil ed

Troubleshooting Tips

e Use -par_threshol dO to see if the compiler assumed there was not
enough computational work

e Use-par_report 3 to view diagnostics

o Use the |DIR$ PARALLEL directive to eliminate assumed data
dependencies

e« Use -i po to eliminate assumed side-effects done to function calls.

Parallelization with OpenMP*

Parallelization with OpenMP* Overview

The Intel® Fortran Compiler supports the OpenMP* Fortran version 2.0 API
specification, except for the WORKSHARE directive. OpenMP provides
symmetric multiprocessing (SMP) with the following major features:

o Relieves the user from having to deal with the low-level details of iteration
space partitioning, data sharing, and thread scheduling and
synchronization.

e Provides the benéefit of the performance available from shared memory,
multiprocessor systems; and, for IA-32 systems, from Hyper-Threading
Technology-enabled systems (for Hyper-Threading Technology, refer to
the 1A-32 Intel® Architecture Optimization Reference Manual).

The Intel Fortran Compiler performs transformations to generate multithreaded
code based on the user's placement of OpenMP directives in the source program
making it easy to add threading to existing software. The Intel compiler supports
all of the current industry-standard OpenMP directives, except WORKSHARE ,
and compiles parallel programs annotated with OpenMP directives.

In addition, the Intel Fortran Compiler provides Intel-specific extensions to the
OpenMP Fortran version 2.0 specification including run-time library routines and
environment variables.

149

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

See parallelization options summary for all options of the OpenMP feature in the
Intel Fortran Compiler. For complete information on the OpenMP standard, visit
the www.openmp.org web site. For complete Fortran language specifications,
see the OpenMP Fortran version 2.0 specifications.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the
code with OpenMP directives in the form of the Fortran program comments. The
Intel Fortran Compiler first processes the application and produces a
multithreaded version of the code which is then compiled. The output is a Fortran
executable with the parallelism implemented by threads that execute parallel
regions or constructs. See Programming with OpenMP.

Performance Analysis

For performance analysis of your program, you can use the VTune(TM) analyzer
and/or the Intel® Threading Tools to show performance information. You can
obtain detailed information about which portions of the code that require the
largest amount of time to execute and where parallel performance problems are
located.

Programming with OpenMP

The Intel® Fortran Compiler accepts a Fortran program containing OpenMP
directives as input and produces a multithreaded version of the code. When the
parallel program begins execution, a single thread exists. This thread is called
the master thread. The master thread will continue to process serially until it
encounters a parallel region.

Parallel Region

A parallel region is a block of code that must be executed by a team of threads in
parallel. In the OpenMP Fortran API, a parallel construct is defined by placing

OpenMP directives PARALLEL at the beginning and END PARALLEL at the end
of the code segment. Code segments thus bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements
with a single point of entry at the top and a single point of exit at the bottom.

The Intel Fortran Compiler supports worksharing and synchronization constructs.
Each of these constructs consists of one or two specific OpenMP directives and
sometimes the enclosed or following structured block of code. For complete
definitions of constructs, see the OpenMP Fortran version 2.0 specifications.

150

Parallel Programming with Intel® Fortran

At the end of the parallel region, threads wait until all team members have
arrived. The team is logically disbanded (but may be reused in the next parallel
region), and the master thread continues serial execution until it encounters the
next parallel region.

Worksharing Construct

A worksharing construct divides the execution of the enclosed code region
among the members of the team created on entering the enclosing parallel
region. When the master thread enters a parallel region, a team of threads is
formed. Starting from the beginning of the parallel region, code is replicated
(executed by all team members) until a worksharing construct is encountered. A
worksharing construct divides the execution of the enclosed code among the
members of the team that encounter it.

The OpenMP SECTIONS or DO constructs are defined as worksharing
constructs because they distribute the enclosed work among the threads of the
current team. A worksharing construct is only distributed if it is encountered
during dynamic execution of a parallel region. If the worksharing construct occurs
lexically inside of the parallel region, then it is always executed by distributing the
work among the team members. If the worksharing construct is not lexically
(explicitly) enclosed by a parallel region (that is, it is or phaned), then the
worksharing construct will be distributed among the team members of the closest
dynamically-enclosing parallel region, if one exists. Otherwise, it will be executed
serially.

When a thread reaches the end of a worksharing construct, it may wait until all
team members within that construct have completed their work. When all of the
work defined by the worksharing construct is finished, the team exits the
worksharing construct and continues executing the code that follows.

A combined parallel/worksharing construct denotes a parallel region that contains
only one worksharing construct.

Parallel Processing Directive Groups
The parallel processing directives include the following groups:
Parallel Region
o PARALLEL and END PARALLEL
Worksharing Construct

« The DO and END DO directives specify parallel execution of loop iterations.

151

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

o« The SECTIONS and END SECTIONS directives specify parallel execution
for arbitrary blocks of sequential code. Each SECTION is executed once by
a thread in the team.

o The SINGLE and END SINGLE directives define a section of code where
exactly one thread is allowed to execute the code; threads not chosen to
execute this section ignore the code.

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

o« PARALLEL DO and END PARALLEL DO
o« PARALLEL SECTIONS and END PARALLEL SECTIONS

Synchronization and MASTER

Synchronization is the interthread communication that ensures the consistency of
shared data and coordinates parallel execution among threads. Shared data is
consistent within a team of threads when all threads obtain the identical value
when the data is accessed. A synchronization construct is used to insure this
consistency of the shared data.

e The OpenMP synchronization directives are CRITICAL, ORDERED,
ATOMIC, FLUSH, and BARRIER.

e Within a parallel region or a worksharing construct only one thread
at a time is allowed to execute the code within a CRITICAL
construct.

« The ORDERED directive is used in conjunction with a DO or
SECTIONS construct to impose a serial order on the execution of a
section of code.

o« The ATOMIC directive is used to update a memory location in an
uninterruptable fashion.

o The FLUSH directive is used to insure that all threads in a team
have a consistent view of memory.

« ABARRIER directive forces all team members to gather at a
particular point in code. Each team member that executes a
BARRIER waits at the BARRIER until all of the team members
have arrived. A BARRIER cannot be used within worksharing or
other synchronization constructs due to the potential for deadlock.

« The MASTER directive is used to force execution by the master thread.

See the list of OpenMP Directives and Clauses.

152

Parallel Programming with Intel® Fortran

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct
by using the SHARED and PRIVATE clauses. All variables in the SHARED
clause are shared among the members of a team. It is the application’s
responsibility to:

e Synchronize access to these variables. All variables in the PRIVATE
clause are private to each team member. For the entire parallel region,
assuming t team members, there are t +1 copies of all the variables in the
PRIVATE clause: one global copy that is active outside parallel regions
and a PRIVATE copy for each team member.

o Initialize PRIVATE variables at the start of a parallel region, unless the
FIRSTPRIVATE clause is specified. In this case, the PRIVATE copy is
initialized from the global copy at the start of the construct at which the
FIRSTPRIVATE clause is specified.

o Update the global copy of a PRIVATE variable at the end of a parallel
region. However, the LASTPRIVATE clause of a DO directive enables
updating the global copy from the team member that executed serially the
last iteration of the loop.

In addition to shar ed and PRIVATE variables, individual variables and entire
COMMON blocks can be privatized using the THREADPRIVATE directive.

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. Orphaning is a situation when directives
related to a parallel region are not required to occur lexically within a single
program unit. Directives such as CRITICAL, BARRIER, SECTIONS, SINGLE,
MASTER and DO, can occur by themselves in a program unit, dynamically
“binding” to the enclosing parallel region at run time.

Orphaned directives enable parallelism to be inserted into existing code with a
minimum of code restructuring. Orphaning can also improve performance by
enabling a single parallel region to bind with multiple do directives located within
called subroutines. Consider the following code segment:

I $onp paral l el
call phasel

call phase2

'$onmp end parall el

subrouti ne phasel
I $onp do private(i) shared(n)
doi =1, n

153

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

call sonme_wor k(i)
end do

'$onmp end do

end

subrouti ne phase2

I'$onp do private(j) shared(n)
doj =1, n

call more_work(j)

end do

I'$onmp end do

end

The following orphaned directives usage rules apply

e An orphaned worksharing construct (SECTIONS, SINGLE, DO) is
executed by a team consisting of one thread, that is, serially.

« Any collective operation (worksharing construct or BARRIER) executed
inside of a worksharing construct is illegal.

« ltisillegal to execute a collective operation (worksharing construct or
BARRIER) from within a synchronization region (CRITICAL/ORDERED).

e The opening and closing directives of a directive pair (for example, DO
and END DO) must occur in a single block of the program.

« Private scoping of a variable can be specified at a worksharing construct.
Shared scoping must be specified at the parallel region. For complete
details, see the OpenMP Fortran version 2.0 specifications.

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using
OpenMP. Typically, the first two stages can be done on uniprocessor or
multiprocessor systems; later stages are typically done only on multiprocessor
systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for
parallel execution by doing the following:

e Place local variables on the stack. This is the default behavior of the Intel
Fortran Compiler when - opennp is used.

e Use-automatic (or-auto_scal ar) to make the locals automatic. This
is the default behavior of the Intel Fortran Compiler when - opennp is
used. Avoid using the - save option, which inhibits stack allocation of local
variables. By default, automatic local scalar variables become shared
across threads, so you may need to add synchronization code to ensure
proper access by threads.

154

Parallel Programming with Intel® Fortran

Analyze
Analysis includes the following major actions:

o Profile the program to find out where it spends most of its time. This is the
part of the program that benefits most from parallelization efforts. This
stage can be accomplished using VTune(TM) analyzer or basic PGO
options.

o Wherever the program contains nested loops, choose the outer-most loop,
which has very few cross-iteration dependencies.

Restructure

To restructure your program for successful OpenMP implementation, you can
perform some or all of the following actions:

1. If a chosen loop is able to execute iterations in parallel, introduce a
PARALLEL DO construct around this loop.

2. Try to remove any cross-iteration dependencies by rewriting the
algorithm.

3. Synchronize the remaining cross-iteration dependencies by placing
CRITICAL constructs around the uses and assignments to variables
involved in the dependencies.

4. List the variables that are present in the loop within appropriate
SHARED, PRIVATE, LASTPRIVATE, FIRSTPRIVATE, or
REDUCTION clauses.

5. List the DO index of the parallel loop as PRIVATE. This step is
optional.

6. COMMON block elements must not be placed on the PRIVATE list if
their global scope is to be preserved. The THREADPRIVATE directive
can be used to privatize to each thread the common block containing
those variables with global scope. THREADPRIVATE creates a copy
of the COMMON block for each of the threads in the team.

7. Any I/O in the parallel region should be synchronized.

8. Identify more parallel loops and restructure them.

9. If possible, merge adjacent PARALLEL DO constructs into a single
parallel region containing multiple DO directives to reduce execution
overhead.

Tune
The tuning process should include minimizing the sequential code in critical

sections and load balancing by using the SCHEDULE clause or the
onp_schedul e environment variable.

155

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Z-J‘]Note

This step is typically performed on a multiprocessor system.

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more
definitions of the terms used in the parallel programming.

The Execution Flow

A program containing OpenMP Fortran APl compiler directives begins execution
as a single process, called the master thread of execution. The master thread
executes sequentially until the first parallel construct is encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives define
the parallel construct. When the master thread encounters a parallel construct, it
creates a team of threads, with the master thread becoming the master of the
team. The program statements enclosed by the parallel construct are executed in
parallel by each thread in the team. These statements include routines called
from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of
the construct. The dynamic extent includes the static extent as well as the
routines called from within the construct. When the END PARALLEL directive is
encountered, the threads in the team synchronize at that point, the team is
dissolved, and only the master thread continues execution. The other threads in
the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a
result, thread teams can be created and dissolved many times during program
execution.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives.
Directives that are not in the lexical extent of the parallel construct, but are in the
dynamic extent, are called orphaned directives. Orphaned directives allow you to
execute major portions of your program in parallel with only minimal changes to
the sequential version of the program. Using this functionality, you can code
parallel constructs at the top levels of your program call tree and use directives to
control execution in any of the called routines. For example:

subroutine F

156

Parallel Programming with Intel® Fortran

I'$OWP parallel...
call G
éﬂbroutine G

| SOMP DO. . .

The !$OMP DO is an orphaned directive because the parallel region it will
execute in is not lexically present in G.

Data Environment Directive

A data environment directive controls the data environment during the execution
of parallel constructs.

You can control the data environment within parallel and worksharing constructs.
Using directives and data environment clauses on directives, you can:

« Privatize named common blocks by using THREADPRIVATE directive
« Control data scope attributes by using the THREADPRIVATE directive's
clauses.

The data scope attribute clauses are:

COPYIN
DEFAULT
PRIVATE
FIRSTPRIVATE
LASTPRIVATE
REDUCTION
SHARED

O O OO0 OO0 O

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

For detailed descriptions of the clauses, see the OpenMP Fortran version 2.0
specifications.

Pseudo Code of the Parallel Processing Model
A sample program using some of the more common OpenMP directives is shown

in the code example that follows. This example also indicates the difference
between serial regions and parallel regions.

157

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

PROGRAM NAI N

| $OVP PARALLEL
t eam

team

| $OMP SECTI ONS
| $OMP SECTI ON
| $OVP SECTI ON

| $OMP END SECTI ONS
conpl ete

" 1$aWP DO
DO

END DO
| SOVP_END DO NOAAI T
NOWAI T

wai t

| $OMP END PARALLEL
t eam

END PROGRAM MAI N

Begi n serial execution
Only the master thread executes
Begin a Parallel construct, forma

This is Replicated Code where each

nmenber executes the sane code
Begin a Wrksharing construct
One unit of work

Anot her unit of work

Wait until both units of work

Mor e Replicated Code

Begin a Wrksharing construct,

each iteration is a unit of work
Work is distributed anong the team

End of Wérkshari ng construct,
is specified (threads need not

until all work is conpleted before
pr oceedi ng)

Mor e Replicated Code

End of PARALLEL construct, disband
and continue with serial execution
Possi bly nore PARALLEL Constructs
End serial execution

Compiling with OpenMP, Directive Format, and Diagnostics

To run the Intel® Fortran Compiler in OpenMP* mode, you need to invoke the

Intel compiler with the
- opennp option:

ifort

-opennp input _file(s)

Before you run the multithreaded code, you can set the number of desired
threads to the OpenMP environment variable, OVP_NUM THREADS. See the
OpenMP Environment Variables section for further information. The Intel
Extensjon Routines topic describes the OpenMP extensions to the specification
that have been added by Intel in the Intel® Fortran Compiler.

- opennp Option

158

Parallel Programming with Intel® Fortran

The - opennp option enables the parallelizer to generate multithreaded code
based on the OpenMP directives. The code can be executed in parallel on both
uniprocessor and multiprocessor systems.

The - opennp option works with both - Q0 (no optimization) and any optimization
level of - O1,

- 2 (default) and - GB. Specifying - Q0 with - opennp helps to debug OpenMP
applications.

When you use the - opennp option, the compiler sets the - aut o option (causes

all variables to be allocated on the stack, rather than in local static storage.) for
the compiler unless you specified it on the command line.

OpenMP Directive Format and Syntax
The OpenMP directives use the following format:
<prefix> <directive> [<clause> [[,] <clause> . . .]]
where the brackets above mean:
o« <xxx>: the prefix and directive are required
e [<xxx>]: if adirective uses one clause or more, the clause(s) is
required
e [,]: commas between the <cl ause>s are optional.
For fixed form source input, the prefix is ! $onp or c$onp
For free form source input, the prefix is ! $onp only.
The prefix is followed by the directive name; for example:

'$onp paral |l el

Since OpenMP directives begin with an exclamation point, the directives take the
form of comments if you omit the - opennp option.

Syntax for Parallel Regions in the Source Code

The OpenMP constructs defining a parallel region have one of the following
syntax forms:

' $onp <directive>
<structured bl ock of code>
' $onp end <directive>

159

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

or
I $onp <directive>
<structured bl ock of code>

or
'$onp <directive>
where <di recti ve> is the name of a particular OpenMP directive.

OpenMP Diagnostic Reports

The - opennp_report{0]| 1| 2} option controls the OpenMP parallelizer's
diagnostic levels 0, 1, or 2 as follows:

—-openmp_report0 = no diagnostic information is displayed.

-openmp_reportl = display diagnostics indicating loops, regions, and
sections successfully parallelized.

—-openmp_report2 = same as - opennp_r eport 1 plus diagnostics indicating
MASTER constructs, SINGLE constructs, CRITICAL constructs, ORDERED
constructs, ATOMIC directives, etc. successfully handled.

The default is —openmp_reportl.

OpenMP Directives and Clauses Summary

This topic provides a summary of the OpenMP directives and clauses. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

OpenMP Directives

Directive Description

PARALLEL Defines a parallel region.

END PARALLEL

DO Identifies an iterative worksharing construct in

END DO which the iterations of the associated loop
should be executed in parallel.

SECTIONS Identifies a non-iterative worksharing construct

END SECTIONS that specifies a set of structured blocks that are
to be divided among threads in a team.

SECTION Indicates that the associated structured block
should be executed in parallel as part of the
enclosing sections construct.

160

Parallel Programming with Intel® Fortran

SINGLE
END SINGLE

Identifies a construct that specifies that the
associated structured block is executed by only
one thread in the team.

PARALLEL DO

END PARALLEL DO

A shortcut for a parallel region that contains a
single DO directive.

f)] Note

The PARALLEL DO or DO OpenMP directive
must be immediately followed by a DO
statement (do- st nt as defined by R818 of
the ANSI Fortran standard). If you place
another statement or an OpenMP directive
between the PARALLEL DO or DO directive
and the DO statement, the Intel Fortran
Compiler issues a syntax error.

PARALLEL Provides a shortcut form for specifying a parallel
SECTIONS region containing a single SECTIONS construct.
END PARALLEL

SECTIONS

MASTER Identifies a construct that specifies a structured
END MASTER block that is executed by only the MASTER

thread of the team.

CRITICAL[l ock]
END
CRITICAL[l ock]

Identifies a construct that restricts execution of
the associated structured block to a single
thread at a time. Each thread waits at the
beginning of the critical construct until no other
thread is executing a critical construct with the
same | ock argument.

BARRIER Synchronizes all the threads in a team. Each
thread waits until all of the other threads in that
team have reached this point.

ATOMIC Ensures that a specific memory location is

updated atomically, rather than exposing it to
the possibility of multiple, simultaneously writing
threads.

FLUSH[(Ii st)]

Specifies a "cross-thread" sequence point at
which the implementation is required to ensure
that all the threads in a team have a consistent
view of certain objects in memory. The optional
| i st argument consists of a comma-separated
list of variables to be flushed.

ORDERED
END ORDERED

The structured block following an ORDERED
directive is executed in the order in which
iterations would be executed in a sequential
loop.

161

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

THREADPRIVATE
(Iist)

Makes the named COMMON blocks or variables
private to a thread. The | i st argument consists
of a comma-separated list of COMMON blocks

or variables.

OpenMP Clauses

Clause

Description

PRIVATE (I'i st)

Declares variables in | i st to be
PRIVATE to each thread in a
team.

FIRSTPRIVATE (I i st)

Same as PRIVATE, but the copy
of each variable in the | i st is
initialized using the value of the
original variable existing before
the construct.

LASTPRIVATE (I i st)

Same as PRIVATE, but the
original variables in | i st are
updated using the values
assigned to the corresponding
PRIVATE variables in the last
iteration in the DO construct loop
or the last SECTION construct.

COPYPRIVATE (I st)

Uses private variables in | i st to
broadcast values, or pointers to
shared objects, from one member
of a team to the other members at
the end of a single construct.

NOWAIT

Specifies that threads need not
wait at the end of worksharing
constructs until they have
completed execution. The threads
may proceed past the end of the
worksharing constructs as soon
as there is no more work available
for them to execute.

SHARED (i st)

Shares variables in | i st among
all the threads in a team.

DEFAULT (mode)

Determines the default data-
scope attributes of variables not
explicitly specified by another
clause. Possible values for node
are PRIVATE, SHARED, or
NONE.

REDUCTION

Performs a reduction on variables

162

Parallel Programming with Intel® Fortran

({operator|intrinsic}list)

that appear in | i st with the
operator oper at or or the
intrinsic procedure name

i ntrinsic;operator is one of
the following: +, *, . and., . or.,
.eqVv.,.neqv.;intrinsic
refers to one of the following:
MAX, MIN, IAND, IOR, or IEOR.

ORDERED
END ORDERED

Used in conjunction with a DO or
SECTIONS construct to impose a
serial order on the execution of a
section of code. If ORDERED
constructs are contained in the
dynamic extent of the DO
construct, the ordered clause
must be present on the DO
directive.

IF
(scal ar _I ogi cal _expressi on)

The enclosed parallel region is
executed in parallel only if the
scal ar _| ogi cal _expressi on
evaluates to . TRUE. ; otherwise
the parallel region is serialized.

NUM_THREADS
(scal ar _i nt eger _expressi on)

Requests the number of threads
specified by

scal ar _i nteger_expressi on
for the parallel region.

SCHEDULE (t ype[,chunk])

Specifies how iterations of the DO
construct are divided among the
threads of the team. Possible
values for the t ype argument are
STATIC, DYNAMIC, GUIDED,
and RUNTIME. The optional
chunk argument must be a
positive scalar integer expression.

COPYIN (I st)

Specifies that the master thread's
data values be copied to the
THREADPRIVATE's copies of the
common blocks or variables
specified in | i st at the beginning
of the parallel region.

Directives and Clauses Cross-reference

Directive

Uses These Clauses

PARALLEL

COPYIN, DEFAULT, PRIVATE,

163

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

END PARALLEL

FIRSTPRIVATE, REDUCTION, SHARED

DO PRIVATE, FIRSTPRIVATE, LASTPRIVATE,

END DO REDUCTION, SCHEDULE

SECTIONS PRIVATE, FIRSTPRIVATE, LASTPRIVATE,

END SECTIONS REDUCTION

SECTION PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
REDUCTION

SINGLE PRIVATE, FIRSTPRIVATE

END SINGLE

PARALLEL DO
END PARALLEL DO

COPYIN, DEFAULT, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE,
REDUCTION, SHARED, SCHEDULE

PARALLEL SECTIONS COPYIN, DEFAULT, PRIVATE,
END PARALLEL FIRSTPRIVATE, LASTPRIVATE,
SECTIONS REDUCTION, SHARED
MASTER None

END MASTER

CRITICALJl ock] None

END CRITICALJl ock]

BARRIER None

ATOMIC None

FLUSH[(l i st)] None

ORDERED None

END ORDERED

THREADPRIVATE (I i st) |None

OpenMP Directive Descriptions

Parallel Region Directives

The PARALLEL and END PARALLEL directives define a parallel region as

follows:

I $OVP PARALLEL
I parallel region
I $OVP END PARALLEL

When a thread encounters a parallel region, it creates a team of threads and
becomes the master of the team. You can control the number of threads in a
team by the use of an environment variable or a run-time library call, or both.

164

Parallel Programming with Intel® Fortran

The PARALLEL directive takes an optional comma-separated list of clauses.
Clauses include:

o IF: whether the statements in the parallel region are executed in parallel
by a team of threads or serially by a single thread.

o PRIVATE, FIRSTPRIVATE, SHARED, or REDUCTION: variable types

e DEFAULT: variable data scope attribute

e COPYIN: master thread common block values are copied to
THREADPRIVATE copies of the common block

Changing the Number of Threads

Once created, the number of threads in the team remains constant for the
duration of that parallel region. To explicitly change the number of threads used
in the next parallel region, call the OVP_SET_NUM THREADS run-time library
routine from a serial portion of the program. This routine overrides any value you
may have set using the OVP_NUM_THREADS environment variable.

Assuming you have used the OVP_NUM_THREADS environment variable to set
the number of threads to 6, you can change the number of threads between
parallel regions as follows:

CALL OWP_SET_NUM THREADS(3)
| SOMP PARALLEL

| SOMP END PARALLEL
CALL OMP_SET NUM THREADS(4)
| SOVP PARALLEL DO

| $OMP END PARALLEL DO

Setting Units of Work

Use the worksharing directives such as DO, SECTIONS, and SINGLE to divide
the statements in the parallel region into units of work and to distribute those
units so that each unit is executed by one thread.

In the following example, the !{$OMP DO and !'$OMP END DO directives and all
the statements enclosed by them comprise the static extent of the parallel region:

' $OVP PARALLEL

165

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

'$OVP END DO
' $OVP END PARALLEL

In the following example, the !$OMP DO and !$OMP END DO directives and all
the statements enclosed by them, including all statements contained in the
WORK subroutine, comprise the dynamic extent of the parallel region:

I $OVP PARALLEL DEFAULT(SHARED)

I SOMP DO

DO =1, N

CALL WORK(I, N)
END DO

| SOMP END DO

' $OVP END PARALLEL

Setting Conditional Parallel Region Execution

When an IF clause is present on the PARALLEL directive, the enclosed code
region is executed in parallel only if the scalar logical expression evaluates to

. TRUE. . Otherwise, the parallel region is serialized. When there is no IF clause,
the region is executed in parallel by default.

In the following example, the statements enclosed within the !$OMP DO and
ISOMP END DO directives are executed in parallel only if there are more than
three processors available. Otherwise the statements are executed serially:

I $OMP PARALLEL | F (OMP_GET_NUM PROCS() .GT. 3)
I $OVP DO

DO | =1, N

Y(1) = SQRT(Z(1))

END DO

' $OVP END DO
' $OMP END PARALLEL

If a thread executing a parallel region encounters another parallel region, it
creates a new team and becomes the master of that new team. By default,
nested parallel regions are always executed by a team of one thread.

f)Note

To achieve better performance than sequential execution, a parallel region
must contain one or more worksharing constructs so that the team of
threads can execute work in parallel. It is the contained worksharing
constructs that lead to the performance enhancements offered by parallel
processing.

Worksharing Construct Directives

166

Parallel Programming with Intel® Fortran

A worksharing construct must be enclosed dynamically within a parallel region if
the worksharing directive is to execute in parallel. No new threads are launched
and there is no implied barrier on entry to a worksharing construct.

The worksharing constructs are:

e DO and END DO directives
e SECTIONS, SECTION, and END SECTIONS directives
e SINGLE and END SINGLE directives

DO and END DO

The DO directive specifies that the iterations of the immediately following DO
loop must be dispatched across the team of threads so that each iteration is
executed by a single thread. The loop that follows a DO directive cannot be a DO
WHILE or a DO loop that does not have loop control. The iterations of the DO
loop are dispatched among the existing team of threads.

The DO directive optionally lets you:

o Control data scope attributes (see Controlling Data Scope Attributes)
o Use the SCHEDULE clause to specify schedule type and chunk size (see
Specifying Schedule Type and Chunk Size)

Clauses Used
The clauses for DO directive specify:

o Whether variables PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION

o How loop iterations are SCHEDULEAd onto threads

e In addition, the ORDERED clause must be specified if the ORDERED
directive appears in the dynamic extent of the DO directive.

« If you do not specify the optional NOWAIT clause on the END DO directive,
threads synchronize at the END DO directive. If you specify NOWAIT,
threads do not synchronize, and threads that finish early proceed directly to
the instructions following the END DO directive.

Usage Rules

e You cannot use a GOTO statement, or any other statement, to transfer
control onto or out of the DO construct.

« If you specify the optional END DO directive, it must appear immediately
after the end of the DO loop. If you do not specify the END DO directive, an
END DO directive is assumed at the end of the DO loop, and threads
synchronize at that point.

167

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

o The loop iteration variable is private by default, so it is not necessary to
declare it explicitly.

SECTIONS, SECTION and END SECTIONS

Use the noniterative worksharing SECTIONS directive to divide the enclosed
sections of code among the team. Each section is executed just one time by one
thread.

Each section should be preceded with a SECTION directive, except for the first
section, in which the SECTION directive is optional. The SECTION directive must
appear within the lexical extent of the SECTIONS and END SECTIONS
directives.

The last section ends at the END SECTIONS directive. When a thread completes
its section and there are no undispatched sections, it waits at the END
SECTIONS directive unless you specify NOWAIT.

The SECTIONS directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION.

The following example shows how to use the SECTIONS and SECTION
directives to execute subroutines X AXI S, Y_AXI S, and Z_AXI Sin parallel. The
first SECTION directive is optional:

| SOMP PARALLEL

| $OVP SECTI ONS

| $OVP SECTI ON

CALL X AXI'S

| $OVMP SECTI ON

CALL Y AXIS

| $OMP SECTI ON

CALL Z AXI'S

I SOMP END SECTI ONS
| SOMP END PARALLEL

SINGLE and END SINGLE

Use the SINGLE directive when you want just one thread of the team to execute
the enclosed block of code.

Threads that are not executing the SINGLE directive wait at the END SINGLE
directive unless you specify NOWAIT.

The SINGLE directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE or FIRSTPRIVATE.

168

Parallel Programming with Intel® Fortran

When the END SINGLE directive is encountered, an implicit barrier is erected
and threads wait until all threads have finished. This can be overridden by using
the NOWAIT option.

In the following example, the first thread that encounters the SINGLE directive
executes subroutines QUTPUT and | NPUT:

| $OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)

I $OVP BARRI ER

I SOVP SI NGLE

CALL OUTPUT(X)

CALL | NPUT(Y)

I $OMP END SI NGLE

CALL WORK(Y)

I $OMP END PARALLEL

Combined Parallel/Worksharing Constructs

The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

« PARALLEL DO
o« PARALLEL SECTIONS

PARALLEL DO and END PARALLEL DO

Use the PARALLEL DO directive to specify a parallel region that implicitly
contains a single DO directive.

You can specify one or more of the clauses for the PARALLEL and the DO
directives.

The following example shows how to parallelize a simple loop. The loop iteration
variable is private by default, so it is not necessary to declare it explicitly. The
END PARALLEL DO directive is optional:

' $OVP PARALLEL DO

DO 1=1, N
B(1) = (A(1) + A(1-1)) / 2.0
END DO

' $OVP END PARALLEL DO

PARALLEL SECTIONS and END PARALLEL SECTIONS

Use the PARALLEL SECTIONS directive to specify a parallel region that
implicitly contains a single SECTIONS directive.

169

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

You can specify one or more of the clauses for the PARALLEL and the
SECTIONS directives.

The last section ends at the END PARALLEL SECTIONS directive.

In the following example, subroutines X AXI S, Y_AXI S, and Z_AXI S can be
executed concurrently. The first SECTION directive is optional. Note that all
SECTION directives must appear in the lexical extent of the PARALLEL
SECTIONS/END PARALLEL SECTIONS construct:

'$OVP PARALLEL SECTI ONS
' $OVP SECTI ON
CALL X AXI' S
'$OVP SECTI ON
CALL Y_AXI'S
'$OVP SECTI ON
CALL Z_AXI S
' $OVP END PARALLEL SECTI ONS

Synchronization Constructs

Synchronization constructs are used to ensure the consistency of shared data
and to coordinate parallel execution among threads.

The synchronization constructs are:

ATOMIC directive
BARRIER directive
CRITICAL directive
FLUSH directive
MASTER directive
ORDERED directive

ATOMIC Directive

Use the ATOMIC directive to ensure that a specific memory location is updated
atomically instead of exposing the location to the possibility of multiple,
simultaneously writing threads.

This directive applies only to the immediately following statement, which must
have one of the following forms:

X = X operator expr
X = expr operator X
X = intrinsic (x, expr)

170

Parallel Programming with Intel® Fortran

X = intrinsic (expr, X)
In the preceding statements:

e X is a scalar variable of intrinsic type

e expr is a scalar expression that does not reference x

e intrinsiciseither MAX, MIN, IAND, IOR, or IEOR

e operator iseither+,*,-,/,. AND.,. QR ,. EQV., or. NEQV.

This directive permits optimization beyond that of a critical section around the
assignment. An implementation can replace all ATOMIC directives by enclosing
the statement in a critical section. All of these critical sections must use the same
unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected by
using the ATOMIC directive, except those that are known to be free of race
conditions. The function i ntri nsi c, the operator oper at or, and the
assignment must be the intrinsic function, operator, and assignment.

This restriction applies to the ATOMIC directive: All references to storage
location x must have the same type parameters.

In the following example, the collection of Y locations is updated atomically:

I $OVP ATOM C
Y=Y+ B(I)

BARRIER Directive

To synchronize all threads within a parallel region, use the BARRIER directive.
You can use this directive only within a parallel region defined by using the
PARALLEL directive. You cannot use the BARRIER directive within the DO,
PARALLEL DO, SECTIONS, PARALLEL SECTIONS, and SINGLE directives.

When encountered, each thread waits at the BARRIER directive until all threads
have reached the directive.

In the following example, the BARRIER directive ensures that all threads have
executed the first loop and that it is safe to execute the second loop:

C$OVP PARALLEL
c$OVP DO PRI VATE(i)
1, 100

c$OVMP BARR ER
c$OVP DO PRI VATE(i)

171

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

DOi = 1, 100
a(i) = b(101-i)
END DO

c$OVP END PARALLEL

CRITICAL and END CRITICAL

Use the CRITICAL and END CRITICAL directives to restrict access to a block of
code, referred to as a critical section, to one thread at a time.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section having the same name.

When a thread enters the critical section, a latch variable is set to closed and all
other threads are locked out. When the thread exits the critical section at the
END CRITICAL directive, the latch variable is set to open, allowing another
thread access to the critical section.

If you specify a critical section name in the CRITICAL directive, you must specify
the same name in the END CRITICAL directive. If you do not specify a name for
the CRITICAL directive, you cannot specify a name for the END CRITICAL
directive.

All unnamed CRITICAL directives map to the same name. Critical section names
are global to the program.

The following example includes several CRITICAL directives, and illustrates a
gueuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation must be in a
critical section. Because there are two independent queues in this example, each
queue is protected by CRITICAL directives having different names, X_AXIS and
Y _AXIS, respectively:

| $OVP PARALLEL DEFAULT(PRI VATE, SHARED(X, Y)
I $OVP CRI TI CAL(X_AXI S)

CALL DEQUEUE(| X_NEXT, X)

I $OVP END CRI TI CAL(X_AXI S)

CALL WORK(| X_NEXT,

I $OVP CRI TI CAL(Y_AXI S)

CALL DEQUEUE(|Y_NEXT,Y)

I $OVP END CRI TI CAL(Y_AXI S)

CALL WORK(| Y_NEXT, Y)

| $OVP END PARALLEL

Unnamed critical sections use the global lock from the Pthread package. This
allows you to synchronize with other code by using the same lock. Named locks
are created and maintained by the compiler and can be significantly more
efficient.

172

Parallel Programming with Intel® Fortran

FLUSH Directive

Use the FLUSH directive to identify a synchronization point at which a consistent
view of memory is provided. Thread-visible variables are written back to memory
at this point.

To avoid flushing all thread-visible variables at this point, include a list of comma-
separated named variables to be flushed.

The following example uses the FLUSH directive for point-to-point
synchronization between thread 0 and thread 1 for the variable | SYNC:

| $OMP PARALLEL DEFAULT(PRI VATE), SHARED(| SYNC)
| AM = OMP_GET_THREAD NUM)

| SYNG(1 AM) = 0
| $OVP BARRI ER
CALL WORK()

' I Am Done Wth My Work, Synchronize Wth M/ Nei ghbor
| SYNC(1AM) =1

' $OVP FLUSH(| SYNC)

I Wait Till Neighbor Is Done

DO WH LE (I SYNC(NEI GH) .EQ 0)

' $OVP FLUSH(| SYNC)

END DO

I $OVP END PARALLEL

MASTER and END MASTER

Use the MASTER and END MASTER directives to identify a block of code that is
executed only by the master thread.

The other threads of the team skip the code and continue execution. There is no
implied barrier at the END MASTER directive.

In the following example, only the master thread executes the routines QUTPUT
and | NPUT:

| $OVP PARALLEL DEFAULT(SHARED)
CALL WORK(X)

I $OMP MASTER

CALL OUTPUT(X)

CALL | NPUT(Y)

| $OVP END MASTER

CALL WORK(Y)

| $OVP END PARALLEL

ORDERED and END ORDERED

173

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Use the ORDERED and END ORDERED directives within a DO construct to
allow work within an ordered section to execute sequentially while allowing work
outside the section to execute in parallel.

When you use the ORDERED directive, you must also specify the ORDERED
clause on the DO directive.

Only one thread at a time is allowed to enter the ordered section, and then only
in the order of loop iterations.

In the following example, the code prints out the indexes in sequential order:

| $OVP DO ORDERED, SCHEDULE(DYNAM C)
DO | =LB, UB, ST

CALL WORK(1)

END DO

SUBROUTI NE WORK(K)

| $OVP ORDERED

WRI TE(*, *) K

I $OVP END ORDERED

THREADPRIVATE Directive

You can make named common blocks private to a thread, but global within the
thread, by using the THREADPRIVATE directive.

Each thread gets its own copy of the common block with the result that data
written to the common block by one thread is not directly visible to other threads.
During serial portions and MASTER sections of the program, accesses are to the
master thread copy of the common block.

You cannot use a thread private common block or its constituent variables in any
clause other than the COPYIN clause.

In the following example, common blocks BLK1 and FI ELDS are specified as
thread private:

COMMON / BLK1/ SCRATCH
COWDN / FlI ELDS/ XFI ELD, YFI ELD, ZFl ELD
I $OVP THREADPRI VATE(/ BLK1/ , / FI ELDS/)

OpenMP Clause Descriptions

Controlling Data Scope

Data Scope Attribute Clauses Overview

174

Parallel Programming with Intel® Fortran

You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do not
specify a data scope attribute clause on a directive, the default is SHARED for
those variables affected by the directive.

Each of the data scope attribute clauses accepts a list, which is a comma-
separated list of named variables or named common blocks that are accessible
in the scoping unit. When you specify named common blocks, they must appear
between slashes (/nane/).

Not all of the clauses are allowed on all directives, but the directives to which
each clause applies are listed in the clause descriptions.

The data scope attribute clauses are:

COPYIN
DEFAULT
PRIVATE
FIRSTPRIVATE
LASTPRIVATE
REDUCTION
SHARED

COPYIN Clause

Use the COPYIN clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to copy the data in the master thread common block to the
thread private copies of the common block. The copy occurs at the beginning of
the parallel region. The COPYIN clause applies only to common blocks that have
been declared THREADPRIVATE.

You do not have to specify a whole common block to be copied in; you can
specify named variables that appear in the THREADPRIVATE common block. In
the following example, the common blocks BLK1 and FI ELDS are specified as
thread private, but only one of the variables in common block FI ELDS is
specified to be copied in:

COWVON / BLK1/ SCRATCH
COWDN / FlI ELDS/ XFI ELD, YFI ELD, ZFI ELD
I $OVP THREADPRI VATE(/ BLK1/, /FI ELDS/)
' $OVP PARALLEL DEFAULT(PRI VATE), COPYI N(/ BLK1/, ZFI ELD)

DEFAULT Clause
Use the DEFAULT clause on the PARALLEL, PARALLEL DO, and PARALLEL

SECTIONS directives to specify a default data scope attribute for all variables
within the lexical extent of a parallel region. Variables in THREADPRIVATE

175

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

common blocks are not affected by this clause. You can specify only one
DEFAULT clause on a directive. The default data scope attribute can be one of
the following:

« PRIVATE

Makes all named objects in the lexical extent of the parallel region private to a
thread. The objects include common block variables, but exclude
THREADPRIVATE variables.

« SHARED

Makes all named objects in the lexical extent of the parallel region shared
among all the threads in the team.

« NONE

Declares that there is no implicit default as to whether variables are
PRIVATE or SHARED. You must explicitly specify the scope attribute for
each variable in the lexical extent of the parallel region.

If you do not specify the DEFAULT clause, the default is DEFAULT(SHARED).
However, loop control variables are always PRIVATE by default.

You can exempt variables from the default data scope attribute by using other
scope attribute clauses on the parallel region as shown in the following example:

| SOMP PARALLEL DO DEFAULT(PRI VATE),
FI RSTPRI VATE(1), SHARED(X)
| $OMP& SHARED(R) LASTPRI VATE(I)

PRIVATE, FIRSTPRIVATE, and LASTPRIVATE Clauses

PRIVATE

Use the PRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to declare variables to be
private to each thread in the team.

The behavior of variables declared PRIVATE is as follows:

« A new object of the same type and size is declared once for each thread
in the team, and the new object is no longer storage associated with the
original object.

« All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

176

Parallel Programming with Intel® Fortran

o Variables defined as PRIVATE are undefined for each thread on entering
the construct, and the corresponding shared variable is undefined on exit
from a parallel construct.

« Contents, allocation state, and association status of variables defined as
PRIVATE are undefined when they are referenced outside the lexical
extent, but inside the dynamic extent, of the construct unless they are
passed as actual arguments to called routines.

In the following example, the values of | and J are undefined on exit from the
parallel region:

I NTECER I, J

I =1

J =2

' $OVP PARALLEL PRI VATE(I) FI RSTPRI VATE(J)
| =3

J =J+ 2

' $OVP END PARALLEL

PRINT *, |, J

FIRSTPRIVATE

Use the FIRSTPRIVATE clause on the PARALLEL , DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to provide a superset of
the PRIVATE clause functionality.

In addition to the PRIVATE clause functionality, private copies of the variables
are initialized from the original object existing before the parallel construct.

LASTPRIVATE

Use the LASTPRIVATE clause on the DO, SECTIONS, PARALLEL DO, and
PARALLEL SECTIONS directives to provide a superset of the PRIVATE clause
functionality.

When the LASTPRIVATE clause appears on a DO or PARALLEL DO directive,
the thread that executes the sequentially last iteration updates the version of the
object it had before the construct.

When the LASTPRIVATE clause appears on a SECTIONS or PARALLEL
SECTIONS directive, the thread that executes the lexically last section updates
the version of the object it had before the construct.

Subobjects that are not assigned a value by the last iteration of the DO loop or
the lexically last SECTION directive are undefined after the construct.

Correct execution sometimes depends on the value that the last iteration of a
loop assigns to a variable. You must list all such variables as arguments to a

177

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

LASTPRIVATE clause so that the values of the variables are the same as when
the loop is executed sequentially. As shown in the following example, the value
of | at the end of the parallel region is equal to N+1, as it would be with sequential
execution.

| SOMP PARALLEL
| SOMP DO LASTPRI VATE()
DO =1, N

A1) = B(1) + C(1)
END DO

| SOMP END PARALLEL
CALL REVERSE(I)

REDUCTION Clause

Use the REDUCTION clause on the PARALLEL, DO, SECTIONS, PARALLEL
DO, and PARALLEL SECTIONS directives to perform a reduction on the
specified variables by using an operator or intrinsic as shown:

REDUCTI ON (
oper at or
or
intrinsic
list)

Oper at or can be one of the following: +, *, -, . AND., . OR., . EQV. , or
. NEQV.

I nt rinsi ¢ can be one of the following: MAX, MIN, IAND, IOR, or IEOR.

The specified variables must be named scalar variables of intrinsic type and must
be SHARED in the enclosing context. A private copy of each specified variable is
created for each thread as if you had used the PRIVATE clause. The private
copy is initialized to a value that depends on the operator or intrinsic as shown in
the following table. The actual initialization value is consistent with the data type
of the reduction variable.

Operators/Intrinsics and Initialization Values for Reduction Variables

Operator/Intrinsic | Initialization
Value
0

* 1

178

Parallel Programming with Intel® Fortran

- 0

. AND. . TRUE.

. OR. . FALSE.

. EQV. . TRUE.

. NEQV. . FALSE.

MAX Largest
representable
number

MIN Smallest
representable
number

IAND All bits on

IOR 0

IEOR 0

At the end of the construct to which the reduction applies, the shared variable is
updated to reflect the result of combining the original value of the SHARED
reduction variable with the final value of each of the private copies using the
specified operator.

Except for subtraction, all of the reduction operators are associative and the
compiler can freely reassociate the computation of the final value. The partial
results of a subtraction reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread
reaches the clause containing the reduction, and it remains undefined until the
reduction computation is complete. Normally, the computation is complete at the
end of the REDUCTION construct. However, if you use the REDUCTION clause
on a construct to which NOWAIT is also applied, the shared variable remains
undefined until a barrier synchronization has been performed. This ensures that
all of the threads have completed the REDUCTION clause.

The REDUCTION clause is intended to be used on a region or worksharing
construct in which the reduction variable is used only in reduction statements
having one of the following forms:

X operator expr

expr operator x (except for subtraction)
intrinsic (x,expr)

intrinsic (expr, X)

X X X X
I

Some reductions can be expressed in other forms. For instance, a MAX
reduction might be expressed as follows:

IF (x .LT. expr) x = expr

179

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Alternatively, the reduction might be hidden inside a subroutine call. Be careful
that the operator specified in the REDUCTION clause matches the reduction
operation.

Any number of reduction clauses can be specified on the directive, but a variable
can appear only once in a REDUCTION clause for that directive as shown in the
following example:

| $OMP DO REDUCTI ON(+: A, Y), REDUCTION(. OR.: AM)
The following example shows how to use the REDUCTION clause:

| SOMP PARALLEL DO DEFAULT(PRI VATE) , SHARED(A, B, REDUCTI ON(+:
A, B)

DO =1, N

CALL WORK(ALOCAL, BLOCAL)

A = A + ALOCAL

B = B + BLOCAL

END DO

| SOMP END PARALLEL DO

SHARED Clause

Use the SHARED clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to make variables shared among all the threads in a team.

In the following example, the variables X and NPO NTS are shared among all the
threads in the team:

| $OVP PARALLEL DEFAULT(PR VATE) , SHARED(X, NPO NTS)
| AM = OVP_GET_THREAD NUM)

NP = OVP_GET NUM THREADS()

| PO NTS = NPOI NTS/ NP

CALL SUBDOMAI N(X, | AM | POl NTS)

I $OVP END PARALLEL

Specifying Schedule Type and Chunk Size

The SCHEDULE clause of the DO or PARALLEL DO directive specifies a
scheduling algorithm that determines how iterations of the DOloop are divided
among and dispatched to the threads of the team. The SCHEDULE clause
applies only to the current DO or PARALLEL DO directive.

Within the SCHEDULE clause, you must specify a schedule type and, optionally,
a chunk size. A chunk is a contiguous group of iterations dispatched to a thread.
Chunk size must be a scalar integer expression.

180

Parallel Programming with Intel® Fortran

The following list describes the schedule types and how the chunk size affects
scheduling:

STATIC

The iterations are divided into pieces having a size specified by chunk. The
pieces are statically dispatched to threads in the team in a round-robin
manner in the order of thread number.

When chunk is not specified, the iterations are first divided into contiguous
pieces by dividing the number of iterations by the number of threads in the
team. Each piece is then dispatched to a thread before loop execution

begins.
DYNAMIC

The iterations are divided into pieces having a size specified by chunk. As
each thread finishes its currently dispatched piece of the iteration space,
the next piece is dynamically dispatched to the thread.

When no chunk is specified, the default is 1.

GUIDED

The chunk size is decreased exponentially with each succeeding dispatch.
Chunk specifies the minimum number of iterations to dispatch each time. If
there are less than chunk number of iterations remaining, the rest are
dispatched.

When no chunk is specified, the default is 1.

RUNTIME

The decision regarding scheduling is deferred until run time. The schedule
type and chunk size can be chosen at run time by using the

QOVP_SCHEDULE environment variable.

When you specify RUNTIME, you cannot specify a chunk size.

The following list shows which schedule type is used, in priority order:

1.

2.

The schedule type specified in the SCHEDULE clause of the current DO
or PARALLEL DO directive

If the schedule type for the current DO or PARALLEL DO directive is
RUNTIME, the default value specified in the OMP_SCHEDULE environment
variable

181

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

3. The compiler default schedule type of STATIC
The following list shows which chunk size is used, in priority order:

1. The chunk size specified in the SCHEDULE clause of the current DO or
PARALLEL DO directive

2. For RUNTIME schedule type, the value specified in the OVP_SCHEDUL E
environment variable

3. For DYNAMIC and GUIDED schedule types, the default value 1

4. If the schedule type for the current DO or PARALLEL DO directive is
STATIC, the loop iteration space divided by the number of threads in the
team.

OpenMP Support Libraries

The Intel Fortran Compiler with OpenMP* support provides a production support
library, | i bgui de. a. This library enables you to run an application under
different execution modes. It is used for normal or performance-critical runs on
applications that have already been tuned.

Execution modes

The compiler with OpenMP enables you to run an application under different
execution modes that can be specified at run time. The libraries support the
serial, turaround, and throughput modes. These modes are selected by using
the knp_| i br ary environment variable at run time.

Turnaround

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads will yield to other threads while
waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment
(that is, the system load) and to adjust its resource usage to produce efficient
execution in a dynamic environment. This mode is the default.

After completing the execution of a parallel region, threads wait for new parallel
work to become available. After a certain period of time has elapsed, they stop
waiting and sleep. Sleeping allows the threads to be used, until more parallel
work becomes available, by non-OpenMP threaded code that may execute
between parallel regions, or by other applications. The amount of time to wait
before sleeping is set either by the KMP_BLOCKTI VE environment variable or by
the knp_set bl ocktinme() function. A small KMP_BLOCKTI ME value may offer

182

Parallel Programming with Intel® Fortran

better overall performance if your application contains non-OpenMP threaded
code that executes between parallel regions. A larger KMP_BLOCKTI ME value
may be more appropriate if threads are to be reserved solely for use for OpenMP
execution, but may penalize other concurrently-running OpenMP or threaded
applications.

Throughput

In a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important to
effectively utilize all of the processors all of the time. The turnaround mode is
designed to keep active all of the processors involved in the parallel computation
in order to minimize the execution time of a single job. In this mode, the worker
threads actively wait for more parallel work, without yielding to other threads.

ENote

Avoid over-allocating system resources. This occurs if either too many
threads have been specified, or if too few processors are available at run
time. If system resources are over-allocated, this mode will cause poor
performance. The throughput mode should be used instead if this occurs.

OpenMP Environment Variables

This topic describes the standard OpenMP* environment variables (with the
OMP__ prefix) and Intel-specific environment variables (with the KMP__ prefix) that
are Intel extensions to the standard Fortran Compiler .

Standard Environment Variables

Variable Description Default
OVP_SCHEDULE Sets the run-time schedule STATIC,
type and chunk size. no chunk
size
specified
OVP_NUM_THREADS | Sets the number of threads | Number of
to use during execution. processors
OVWP_DYNAM C Enables (t rue) or disables | fal se

(f al se) the dynamic
adjustment of the number of
threads.

OWP_NESTED Enables (t r ue) or disables | fal se
(f al se)nested parallelism.

Intel Extension Environment Variables

183

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Environment Variable Description Default

KMP_ALL_THREADS Sets the max(32, 4 *
maximum OVP_NUM_THREADS,
number of 4 * nunber of

threads that can
be used by any
parallel region.

processors)

KMP_BL OCKTI ME

Sets the time, in
milliseconds,
that a thread
should wait,
after completing
the execution of
a parallel region,
before sleeping.

See also the
throughput
execution mode
and the

KMP_ LI BRARY
environment
variable. Use the
optional
character suffix
s, m, h,ord, to
specify seconds,
minutes, hours,

200 milliseconds

or days.

KMP_LI BRARY Selects the t hr oughput
OpenMP run- (execution mode)
time library

throughput. The
options for the
variable value
are: serial

t ur nar ound, or
t hr oughput
indicating the
execution mode.
The default
value of

t hr oughput is
used if this
variable is not

184

Parallel Programming with Intel® Fortran

specified.

KMP_MONI TOR_STACKSI ZE

Sets the number
of bytes to
allocate for the
monitor thread,
which is used for
book-keeping
during program
execution. Use
the optional
suffix b, k, m g,
ort, to specify
bytes, kilobytes,

max(32k, system
m ni mum t hr ead
stack si ze)

megabytes,
gigabytes, or
terabytes.
KMP_STACKSI ZE Sets the number | IA-32: 2m
of bytes to [tanium compiler: 4m

allocate for each
parallel thread to
use as its private
stack. Use the
optional suffix b,
k, mg,ort, to
specify bytes,
kilobytes,
megabytes,
gigabytes, or
terabytes.

KMP_VERSI ON

Enables (set) or
disables (unset)
the printing of
OpenMP run-
time library
version
information
during program
execution.

Disabled

185

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

OpenMP Run-time Library Routines

OpenMP provides several run-time library routines to assist you in managing
your program in parallel mode. Many of these run-time library routines have
corresponding environment variables that can be set as defaults. The run-time
library routines enable you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run-time library routine overrides
any corresponding environment variable.

The following table specifies the interface to these routines. The names for the
routines are in user name space. Theonp_l i b.f,onp_l i b. h and

onp_I i b. nod header files are provided in the INCLUDE directory of your
compiler installation. The onp_Ili b. h header file is provided in the INCLUDE
directory of your compiler installation for use with the Fortran INCLUDE
statement. The onp_I i b. nod file is provided in the INCLUDE directory for use
with the Fortran USE statement.

There are definitions for two different locks, onp_| ock_t and
onp_nest | ock_t, which are used by the functions in the table that follows.

This topic provides a summary of the OpenMP run-time library routines. For
detailed descriptions, see the OpenMP Fortran version 2.0 specifications.

Function Description
Execution Environment Routines

subrouti ne Sets the number of
onp_set _num_t hreads(num_t hr eads) threads to use for

integer numthreads subsequent parallel

regions.

i nteger function onp_get numthreads() | Returnsthe number of
threads that are being
used in the current
parallel region.

i nteger function onp_get max_threads() | Returnsthe maximum
number of threads that
are available for parallel
execution.

i nteger function onp_get thread num() Determines the unique
thread number of the
thread currently
executing this section of
code.

i nteger function onp_get_num procs() Determines the number
of processors available
to the program.

186

Parallel Programming with Intel® Fortran

| ogi cal function onp_in_parallel()

Returns . TRUE. if called
within the dynamic extent
of a parallel region
executing in parallel;
otherwise returns

. FALSE. .

subrouti ne
onp_set _dynam c(dynam c_t hreads)
| ogi cal dynam c_t hreads

Enables or disables
dynamic adjustment of
the number of threads
used to execute a
parallel region. If
dynam c_t hr eads is
. TRUE. , dynamic
threads are enabled. If
dynam c_t hr eads is
. FALSE. , dynamic
threads are disabled.
Dynamics threads are
disabled by default.

| ogi cal function onp_get_dynam c()

Returns . TRUE. if
dynamic thread
adjustment is enabled,
otherwise returns

. FALSE. .

subrouti ne onp_set nest ed(nested)
i nt eger nested

Enables or disables
nested parallelism. If
nestedis. TRUE. ,
nested parallelism is
enabled. If nestedis
. FALSE. , nested
parallelism is disabled.
Nested parallelism is
disabled by default.

| ogical function onp_get nested()

Returns . TRUE. if
nested parallelism is
enabled, otherwise
returns . FALSE. .

Lock Routines

subroutine onmp_init_| ock(l ock)
i nt eger (ki nd=onp_l ock_kind)::Iock

Initializes the lock
associated with | ock for
use in subsequent calls.

subrouti ne onp_destroy_Il ock(Il ock)
i nt eger (ki nd=onp_lock _kind)::Iock

Causes the lock
associated with | ock to
become undefined.

subrouti ne onp_set | ock(Ilock)

Forces the executing

187

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

i nt eger (kind=onmp_l|ock _kind)::Ilock

thread to wait until the
lock associated with

| ock is available. The
thread is granted
ownership of the lock
when it becomes
available.

subrouti ne onp_unset | ock(| ock)
i nt eger (ki nd=onp_l ock_kind)::Iock

Releases the executing
thread from ownership of
the lock associated with

| ock. The behavior is
undefined if the
executing thread does
not own the lock
associated with | ock.

| ogi cal onp_test | ock(l ock)
i nt eger (kind=onmp_l|ock _kind)::Ilock

Attempts to set the lock
associated with | ock. If
successful, retumns

. TRUE. , otherwise
returns . FALSE. .

subrouti ne onp_i nit_nest | ock(Il ock)
i nt eger (ki nd=onp_nest | ock_kind)::1ock

Initializes the nested
lock associated with
| ock for use in the
subsequent calls.

subrouti ne onp_destroy_nest | ock(Il ock)
i nt eger (ki nd=onp_nest | ock_kind): :1ock

Causes the nested lock
associated with | ock to
become undefined.

subrouti ne onp_set _nest _| ock(! ock)
i nt eger (ki nd=onp_nest | ock_kind): :1ock

Forces the executing
thread to wait until the
nested lock associated
with | ock is available.
The thread is granted
ownership of the nested
lock when it becomes
available.

subrouti ne onp_unset nest | ock(I ock)
i nt eger (ki nd=onp_nest | ock_kind)::lock

Releases the executing
thread from ownership of
the nested lock
associated with | ock if
the nesting count is zero.
Behavior is undefined if
the executing thread
does not own the nested
lock associated with

| ock.

188

Parallel Programming with Intel® Fortran

i nt eger onp_test nest | ock(l ock) Attempts to set the

i nt eger (ki nd=onp_nest _| ock_kind)::lock | nested lock associated
with | ock. If successful,
returns the nesting
count, otherwise returns

zero.

Timing Routines

doubl e-preci sion function Returns a double-
onp_get _wti me() precision value equal to

the elapsed wallclock
time (in seconds) relative
to an arbitrary reference
time. The reference time
does not change during
program execution.

doubl e-preci sion function Returns a double-
onp_get _wti ck() precision value equal to
the number of seconds
between successive
clock ticks.

Intel Extension Routines

The Intel® Fortran Compiler implements the following group of routines as an
extension to the OpenMP run-time library: getting and setting stack size for
parallel threads and memory allocation.

The Intel extension routines described in this section can be used for low-level
debugging to verify that the library code and application are functioning as
intended. It is recommended to use these routines with caution because using
them requires the use of the - opennp_st ubs command-line option to execute
the program sequentially. These routines are also generally not recognized by
other vendor's OpenMP-compliant compilers, which may cause the link stage to
fail for these other compilers.

Stack Size

In most cases, environment variables can be used in place of the extension
library routines. For example, the stack size of the parallel threads may be set
using the KMP_STACKSI ZE environment variable rather than the

knp_set _stacksi ze() library routine.

Z-]]Note

A run-time call to an Intel extension routine takes precedence over the
corresponding environment variable setting.

189

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The routines knp_set _stacksi ze() and knp_get st acksi ze() take a 32-
bit argument only. The routines knp_set st acksi ze_s() and

knp_get _stacksi ze_s() take a si ze_t argument, which can hold 64-bit
integers.

On ltanium-based systems, it is recommended to always use
knp_set stacksize() and knp_get _stacksi ze(). These _s() variants
must be used if you need to set a stack size = 2**32 bytes (4 gigabytes).

See the definitions of stack size routines in the table that follows.
Memory Allocation

The Intel® Fortran Compiler implements a group of memory allocation routines
as an extension to the OpenMP* run-time library to enable threads to allocate
memory from a heap local to each thread. These routines are: knp_nmal | oc,
knp_cal | oc, and knp_real | oc.

The memory allocated by these routines must also be freed by the knp_free
routine. While it is legal for the memory to be allocated by one thread and
knmp_fr ee'd by a different thread, this mode of operation has a slight
performance penalty.

See the definitions of these routines in the table that follows.

Function/Routine | Description

Stack Size

functi on knp_get stacksize s() Returns the number of bytes that
i nt eger (ki nd=knmp_si ze_t _ki nd) knp_get will be allocated for each parallel

_stacksi ze_s thread to use as its private stack.

This value can be changed via
the knp_get _st acksi ze_s
routine, prior to the first parallel
region or via the

KMP_STACKSI ZE environment

variable.
functi on knp_get _stacksize() This routine is provided for
i nteger knp_get_st acksi ze backwards compatibility only; use

knmp_get _stacksi ze_s
routine for compatibility across
different families of Intel

processors.
subrouti ne knp_set _stacksi ze_s(si ze) Sets to si ze the number of bytes
integer (kind=knp_size_t_kind) size that will be allocated for each

parallel thread to use as its
private stack. This value can also

190

Parallel Programming with Intel® Fortran

be set via the KMP_STACKSI ZE
environment variable. In order for
knp_set stacksi ze_s to have
an effect, it must be called before
the beginning of the first
(dynamically executed) parallel
region in the program.

subrouti ne knp_set _stacksi ze(si ze)
i nt eger size

This routine is provided for
backward compatibility only; use
knp_set stacksize_s(size)
for compatibility across different
families of Intel processors.

Memory Allocation

functi on knmp_mal | oc(si ze)
i nt eger (ki nd=knp_poi nter _kind) knp_nal | oc
i nt eger (ki nd=knp_si ze_t ki nd) si ze

Allocate memory block of si ze
bytes from thread-local heap.

functi on knmp_cal | oc(nel em el si ze)

i nt eger (ki nd=knp_poi nter_kind) knp_cal | oc
i nt eger (ki nd=knp_si ze_t _ki nd) nel em

i nt eger (ki nd=knp_si ze t_kind)el size

Allocate array of nel emelements
of size el si ze from thread-local
heap.

functi on knmp_reall oc(ptr, size)

i nt eger (ki nd=knp_poi nter_kind)knp_real | oc
i nt eger (ki nd=knp_poi nter_kind)ptr

i nt eger (ki nd=knp_si ze t ki nd)si ze

Reallocate memory block at
address pt r and si ze bytes
from thread-local heap.

subrouti ne knp_free(ptr)
i nt eger (ki nd=knp_poi nter_kind) ptr

Free memory block at address
pt r from thread-local heap.
Memory must have been
previously allocated with
knmp_mal | oc, knp_cal | oc, or
knmp_real | oc.

Examples of OpenMP Usage

The following examples show how to use the OpenMP feature. See more
examples in the OpenMP Fortran version 2.0 specifications.

DO: A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains a
different number of instructions. To get good load balancing, dynamic scheduling
is used. The END DO has a NOWAIT because there is an implicit BARRIER at

the end of the parallel region.

subroutine do_1 (a,b,n)

real a(n,n), b(n,n)

191

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

c$onp parall el

c$onp& shared(a, b, n)
ckonp& private(i,j)

c$onp do schedul e(dynam c, 1)

doi =2, n

do j =1, i o

b(J!I) :(a(J,|) +a(J!I_1)) / 2
enddo

enddo

c$onp end do nowai t
c$onp end parall el
end

DO: Two Difference Operators

This example shows two parallel regions fused to reduce f or k/ j oi n overhead.
The first END DO has a NOWAIT because all the data used in the second loop is
different than all the data used in the first loop.

subroutine do_2 (a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, d(mn)
c$onp parall el
c$onp& shared(a, b,c,d, mn)
cdonp& private(i,j)
c$onp do schedul e(dynam c, 1)

doi =2, n

do j =1, i .

b(J!I) :(a(J,|) +a(J!I-1)) / 2
enddo

enddo

c$onp end do nowai t
c$onp do schedul e(dynam c, 1)

doi =2, m

doj =1, i .

d(J!I) :(C(J,|) +C(J!I-1)) / 2
enddo

enddo

c$onp end do nowai t
c$onp end parall el
end

SECTIONS: Two Difference Operators

This example demonstrates the use of the SECTIONS directive. The logic is
identical to the preceding DO example, but uses SECTIONS instead of DO. Here
the speedup is limited to 2 because there are only two units of work whereas in
DO: Two Difference Operators above there are n- 1 + m 1 units of work.

subroutine sections_1 (a,b,c,d, mn)

real a(n,n), b(n,n), c(mm, d(mn)
' $onmp parall el

192

Parallel Programming with Intel® Fortran

I $omp& shared(a, b, c, d, mn)
' $onmp& private(i,j)

I'$onp sections

' $onmp section

doi =2, n

do j =1, 1 o

b(j,i)=(a(j,i) +a(j,i-1)) [2
enddo

enddo

' $onp section

doi =2, m

do j =1, 1 o

d(j,i)=(c(j,i) +c(j,i-1)) [/ 2
enddo

enddo

I'$onp end sections nowait
'$onmp end parall el
end

SINGLE: Updating a Shared Scalar

This example demonstrates how to use a SINGLE construct to update an
element of the shared array a. The optional NOWAIT after the first loop is

omitted because it is necessary to wait at the end of the loop before proceeding

into the SINGLE construct.

subroutine sp_la (a,b,n)
real a(n), b(n)
I $onp paral l el
I $onp& shared(a, b, n)
I $onp& private(i)

I $onmp do

doi =1, n

a(i) = 1.0/ a(i)
enddo

'$onmp single

a(l) = mn(a(l1), 1.0)
I'$omp end single

I $onmp do

doi =1, n

b(i) = b(i) / a(i)
enddo

' $onmp end do nowai t
'$onmp end parall el
end

Debugging Multithreaded Programs

Debugging Multithread Programs Overview

193

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The debugging of multithreaded program discussed in this section applies to both
the OpenMP* Fortran API and the Intel® Fortran parallel compiler directives.
When a program uses parallel decomposition directives, you must take into
consideration that the bug might be caused either by an incorrect program
statement or it might be caused by an incorrect parallel decomposition directive.
In either case, the program to be debugged can be executed by multiple threads
simultaneously.

To debug the multithreaded programs, you can use:

e The Intel® Debugger for IA-32 and the Intel Debugger for ltanium®-based
applications (idb)

e The Intel Fortran Compiler debugging options and methods.

o The Intel parallelization extension routines for low-level debugging.

o The VTune(TM) Performance Analyzer to define the problematic areas.

Other best known debugging methods and tips include:

Correct the program in a single-threaded, uni-processor environment
Statically analyze locks

Use a trace statement (such as the PRINT statement)

Think in parallel, make very few assumptions

Step through your code

Make sense of threads and callstack information

Identify the primary thread

Know what thread you are debugging

Single stepping in one thread does not mean single stepping in others
Watch out for context switch

Debugger Limitations for Multithread Programs

Debuggers such as Intel Debugger (IDB) for IA-32 and Intel Debugger (IDB) for
Itanium-based applications support the debugging of programs that are executed
by multiple threads. However, the currently available versions of such debuggers
do not directly support the debugging of parallel decomposition directives, and
therefore, there are limitations on the debugging features.

Some of the new features used in OpenMP are not yet fully supported by the
debuggers, so it is important to understand how these features work to know how
to debug them. The two problem areas are:

e Multiple entry points
e Shared variables

The Intel Debugger (IDB) is not aware of and currently does not handle unique
OpenMP features that relate to multi-threading.

194

Parallel Programming with Intel® Fortran

Debugging Parallel Regions

The compiler implements a parallel region by enabling the code in the region and
putting it into a separate, compiler-created entry point. Although this is different
from outlining — the technique employed by other compilers, that is, creating a
subroutine, — the same debugging technique can be applied.

Constructing an Entry-point Name

The compiler-generated parallel region entry point name is constructed with a
concatenation of the following strings:

" " character
entry point name for the original routine (for example, _paral | el)
" " character
line number of the parallel region
__par _regi on for OpenMP parallel regions (! $OMP PARALLEL)
__par _| oop for OpenMP parallel loops (! $OVP PARALLEL DO),
__par_secti on for OpenMP parallel sections (! $OVP PARALLEL
SECTI ONS)

e sequence number of the parallel region (for each source file, sequence
number starts from zero.)

When you use routine names (for example, padd) and entry names (for example,
_PADD, __ PADD 6__par _| oop0), the following occurs. The Fortran
Compiler, by default, first changes lower/mixed case routine names to upper
case. For example, pAdD() becomes PADD(), and this becomes entry name by
adding one underscore. The secondary entry name change happens after that.
That's why the"__par _| oop" part of the entry name stays as lower case. For
some reason, the debugger doesn't accept the upper case routine name "PADD"
to set the breakpoint. Instead, it accepts the lower case routine name "padd".

Example 1 shows the debugging of the code with a parallel region. Example 1 is
produced by this command:

ifort -opennp -g -Q0 -S file.f90
Let us consider the code of subroutine paral | el in Example 1.
Subroutine PARALLEL() source listing

1 subrouti ne parall el

2 i nteger id, OW_GET_THREAD NUM
3 ' $OWP PARALLEL PRI VATE(i d)

4 id = OW_GET_THREAD NUM)

195

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

5 1$OVP END PARALLEL
6 end

The parallel region is at line 3. The compiler created two entry points:
parallel and ___ parallel 3 __ par_regi on0. The first entry point
corresponds to the subroutine par al | el (), while the second entry point
corresponds to the OpenMP parallel region at line 3.

Example 1 Debugging Code with Parallel Region

Machi ne Code Listing of the Subroutine parallel()

.gl obl parallel _

parall el _:

..Bl. 1: # Preds ..Bl1.0

.. LNL:

pushl Y%ebp #1.0

nov| Y%esp, Yebp #1.0

subl $44, %esp #1.0

pushl %edi #1.0

..B1.13: # Preds ..Bl.9

addl $-12, %sp #6.0

nov | $.2.1 2 knpc_loc_struct _pack.2, (%sp) #6.0

nov | $0, 4(%esp) #6.0

nov | $ parallel 6 par_regionl, 8(%sp) #6.0

cal | __knpc_fork_call #6.0
LOE

.. B1l. 31: # Preds ..Bl1.13

addl $12, %esp #6.0
LOE

.. Bl1. 14: # Preds ..B1.31 ..B1.30

..LN4

| eave #9.0

ret #9.0
LOE

.type parallel , @unction

.Sl ze parallel ,.-parallel _

.globl _parallel 3 par_region0

_parallel 3 par_regionO:

paraneter 1: 8 + %bp

paraneter 2: 12 + %bp

.. B1.15: # Preds ..B1.0

pushl Y%ebp #9.0

nov| Y%esp, Y%ebp #9.0

subl $44, %esp #9.0

.. LN5:

cal | onp_get thread _num_ #4.0
LOE eax

.. Bl1.32: # Preds ..Bl. 15

nov| Y%eax, -32(%ebp) #4.0

196

Parallel Programming with Intel® Fortran

LOE
.. Bl.16: # Preds ..Bl. 32
nov| -32(%bp), %eax #4.0
nov| Y%eax, -20(%ebp) #4.0
.. LNe:
| eave #9.0
ret #9.0
LOE

.type _parallel__3 par_region0O, @unction

.Size parallel 3 par _regionO,. parallel 3 par_region0
.globl _parallel 6 par_regionl
_parallel 6 par_regionl:

paraneter 1: 8 + %bp

paraneter 2: 12 + %bp

.. B1.17: # Preds ..B1.0

pushl Y%ebp #9.0

nmov | Yesp, %bp #9.0

subl $44, %esp #9.0

.. LN7:

cal | onp_get thread num_ #7.0
LOE eax

.. B1. 33: # Preds ..B1.17

nmov | Yeax, -28(%bp) #7.0
LOE

.. B1.18: # Preds ..B1. 33

nmov | -28(%bp), %eax #7.0

nmov | Yeax, -16(%bp) #7.0

.. LN8:

| eave #9.0

ret #9.0

.align 4, 0x90
mark_end;

Debugging the program at this level is just like debugging a program that uses
POSIX threads directly. Breakpoints can be set in the threaded code just like any
other routine. With GNU debugger, breakpoints can be set to source-level routine
names (such as parallel). Breakpoints can also be set to entry point names (such
as parallel_and parallel 3 par_region0). Note that the Intel Fortran Compiler
for Linux converted the upper case Fortran subroutine name to the lower case
one.

Debugging Multiple Threads

When in a debugger, you can switch from one thread to another. Each thread
has its own program counter so each thread can be in a different place in the
code. Example 2 shows a Fortran subroutine PADD() . A breakpoint can be set at
the entry point of OpenMP parallel region.

Source |isting of the Subroutine PADIX)

197

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

12, SUBROUTI NE PADD(A, B, C, N)

13, | NTEGER N

14, | NTEGER A(N), B(N), C(N)

15, | NTEGER |, ID, OWP_GET_THREAD NUM

16. !$OVP PARALLEL DO SHARED (A, B, C, N) PRI VATE(I D)
17, DOI =1, N

18, | D = OWP_GET_THREAD_NUM)
19, c(l) = A(l) ¥ B(1) + 1D
20. ENDDO

21. 1$OVP END PARALLEL DO

22. END

The Call Stack Dumps

The first call stack below is obtained by breaking at the entry to subroutine PADD
using GNU debugger. At this point, the program has not executed any OpenMP
regions, and therefore has only one thread. The call stack shows a system run-
time | ibc_start_mai n function calling the Fortran main program

parall el (), and parall el () calls subroutine padd() . When the program is
executed by more than one thread, you can switch from one thread to another.
The second and the third call stacks are obtained by breaking at the entry to the
parallel region. The call stack of master contains the complete call sequence. At
the top of the call stack is _padd__ 6 par _| oopO() . Invocation of a threaded
entry point involves a layer of Intel OpenMP library function calls (that is,
functions with __knp prefix). The call stack of the worker thread contains a
partial call sequence that begins with a layer of Intel OpenMP library function
calls.

ERRATA: The GNU debugger sometimes fails to properly unwind the call stack
of the immediate caller of the Intel OpenMP library function
__knpc_fork_call ().

Call Stack Dump of Master Thread upon Entry to Subroutine PADD

Bx 08042031 in padd (a=(), b=(), c=(), n=1@) at parallel.f:1
*»B864a595 in parallel {} at parallel.

Bx4PBa6S 07 in 1 _ rt_main (main= 4dbh6 <parallel®, argc=1, ubp_av=0xbffFrafy,
init=0x80u985h < _init>, Fini-BxE8080dch <_fini>, rtld_fini-0:8008dciy ¢_dl_finix,
stack_end=8xbfFffiec) at . ._.-"-'-.yk.d:—'-p'—..a'g:—'-m-'l'i:'._.-'l ibc-start.c:129

* I Thread 2 WP 175) Bx0804a38a in _padd__ 6 | _loop@ () at parallel.f:13
3 Thread 1 ' A7511) Bx48144%ad1 in _ libc_nanosleep () from /lib/i686/1libc.so.6
2 Thread 2 75 Bx4B16F9FF dn __poll (fds=0x80abd5c, nfds=1, timeout=2000)
at ../ sysdepsfunix/syseflinux/poll.c:63
1 Thread 1824 (LWP 17493) Ox0884ad38a din _padd_6__par_loop@ () at parallel.f:13
{gdb)

198

Parallel Programming with Intel® Fortran

Call Stack Dump of Master Thread upon Entry to Parallel Region

38a in _padd__6__par_loop@ () at parallel.f:1i:

¢ in .inwt 3 () at proton/libi/fgetstat.c:2i1

Call Stack Dump of Worker Thread upon Entry to Parallel Region

gl'jtr] L'It
B Bx4BObBaas in . [4 Ad9e9%8)
at i s funi i

suspend () at prot fgetstat
in pthread_start_thread_event (arg=0x48d%bed) at manager.c: 298

kmp

Example 2 Debugging Code Using Multiple Threads with Shared Variables

Subrouti ne PADD() Machi ne Code Li sting
. gl obl padd_

padd :

paraneter 1: 8 + %bp

paraneter 2: 12 + %bp

paraneter 3: 16 + %bp

paraneter 4(n): 20 + %bp

..Bl. 1: # Preds ..Bl1.0

.. LN1:

pushl Y%ebp #1.0
..B1.19: # Preds ..Bl.15

add| $-28, %esp #6.0
nmov | $.2.1 2 knpc_loc_struct _pack.1, (%sp) #6.0
nov| $4, 4(%sp) #6. 0
nov| $ padd 6 par | oop0, 8(%sp) #6. 0
nmov | -196(%®ebp), %eax #6.0
nov| Y%eax, 12(%esp) #6.0
nov| - 152(%bp), %eax #6.0
nov| Y%eax, 16(%esp) #6. 0
nov| -112(%ebp), %eax #6.0
nov| Y%eax, 20(%esp) #6. 0
| ea 20(%ebp), Y%eax #6.0
nov| Yeax, 24(%sp) #6.0
cal | __knpc_fork _call #6.0

LCE

.. B1. 39: # Preds ..Bl.19

addl $28, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0

LCE

..B1.20: # Preds ..Bl.30

199

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

cal | __knpc _for_static_init_4 #6. 0
LCE

.. B1. 40: # Preds ..Bl. 20

addl $36, %esp #6.0
LCE

.. B1. 26: # Preds ..Bl1.28 ..Bl.21

addl $-8, %esp #6.0

nov| $.2.1 2 knpc_loc_struct _pack.1l, (%sp) #6.0

nov| -8(%bp), %eax #6. 0

nov| Yeax, 4(%esp) #6. 0

cal | __knpc _for_static_fini #6. 0
LCE

.. Bl1.41: # Preds ..Bl. 26

addl $8, %esp #6.0

jnp ..B1.31 # Prob 100% #6.0
LCE

.. B1.27: # Preds ..Bl1.28 ..Bl1.25

.. LN7:

cal | onp_get thread _num_ #8.0

LCE eax

.. Bl.42: # Preds ..Bl.27

cnpl Y%edx, %eax #10.0

jle .. B1. 27 # Prob 50% #10.0

j np ..B1.26 # Prob 100% #10.0
LOE

.type padd_, @unction

.Sl ze padd_, . -padd_

.globl _padd__6 par_|oop0
_padd__6__par | oopO:

paraneter 1: 8 + %bp

paraneter 2: 12 + %bp

paraneter 3: 16 + %bp

paraneter 4: 20 + %bp

paraneter 5: 24 + %bp

paraneter 6: 28 + %bp

.. B1. 30: # Preds ..B1.0

.. LN16:

pushl Y%ebp #13.0
nov| Y%esp, Yebp #13.0
subl $208, %esp #13.0
nov| %ebx, -4(%bp) #13.0
.. LN17:

nov| 8(%ebp), %Y%eax #6. 0
nov| (%eax), %eax #6. 0
nov| Y%eax, -8(%bp) #6. 0
nov| 28(%bp), %eax #6. 0
.. LN18:

nov| (%eax), %eax #7.0
nov| (%eax), %eax #7.0

200

Parallel Programming with Intel® Fortran

nov| Y%eax, -80(%ebp) #7.0

nmov| $1, -76(%bp) #7.0

nov| -80(%bp), %eax #7.0

testl Yeax, %Yeax #7.0

ig .. B1.20 # Prob 50% #7.0
LOE

.. B1. 31: # Preds ..B1.41 ..B1.39 ..Bl. 38

.. B1.30

.. LN19:

nov| -4(%bp), %ebx #13.0

| eave #13.0

ret #13. 0

.align 4, 0x90
mark_end;

Debugging Shared Variables

When a variable appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clause on some block, the variable is made private to the parallel
region by redeclaring it in the block. SHARED data, however, is not declared in
the threaded code. Instead, it gets its declaration at the routine level. At the
machine code level, these shared variables become incoming subroutine call
arguments to the threaded entry points (suchas __ PADD 6 __par _| oop0).

In Example 2, the entry point _ PADD 6_par _| oopO has six incoming
parameters. The corresponding OpenMP parallel region has four shared
variables. First two parameters (parameters 1 and 2) are reserved for the
compiler's use, and each of the remaining four parameters corresponds to one
shared variable. These four parameters exactly match the last four parameters to
__kmpc_fork_call () inthe machine code of PADD.

f)Note

The FIRSTPRIVATE, LASTPRIVATE, and REDUCTION variables also
require shared variables to get the values into or out of the parallel region.

Due to the lack of support in debuggers, the correspondence between the shared
variables (in their original names) and their contents cannot be seen in the
debugger at the threaded entry point level. However, you can still move to the
call stack of one of the subroutines and examine the contents of the variables at
that level. This technique can be used to examine the contents of shared
variables. In Example 2, contents of the shared variables A, B, C, and N can be
examined if you move to the call stack of PARALLEL() .

201

Optimization Support Features

Optimization Support Features Overview

This section describes the Intel® Fortran features such as directives, intrinsics,
run-time library routines and various utilities which enhance your application
performance in support of compiler optimizations. These features are Intel
Fortran language extensions that enable you to optimize your source code
directly. This section includes examples of optimizations supported by Intel
extended directives and intrinsics or library routines that enhance and/or help
analyze performance.

For complete details of the Intel® Fortran Compiler directives and examples of
their use, see Chapter 14, "Directive Enhanced Compilation," in the Intel®
Fortran Language Reference. For intrinsic procedures, see Chapter 9, "Intrinsic
Procedures," in the Intel® Fortran Language Reference.

A final topic describes options that enable you to generate optimization reports
for major compiler phases and major optimizations. The optimization report
capability is used for ltanium®-based applications only.

Compiler Directives

Compiler Directives Overview

This section discusses the Intel® Fortran language extended directives that
enhance optimizations of application code, such as software pipelining, loop
unrolling, prefetching and vectorization. For complete list, descriptions and code
examples of the Intel® Fortran Compiler directives, see "Directive Enhanced
Compilation", section "General Directives", in the Intel® Fortran Language
Reference.

Pipelining for Itanium®-based Applications

The SWP and NOSWP directives indicate preference for a loop to get software-
pipelined or not. The SWP directive does not help data dependence, but
overrides heuristics based on profile counts or lop-sided control flow.

The software pipelining optimization triggered by the SWP directive applies
instruction scheduling to certain innermost loops, allowing instructions within a
loop to be split into different stages, allowing increased instruction level
parallelism. This can reduce the impact of long-latency operations, resulting in
faster loop execution. Loops chosen for software pipelining are always innermost
loops that do not contain procedure calls that are not inlined. Because the

203

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

optimizer no longer considers fully unrolled loops as innermost loops, fully
unrolling loops can allow an additional loop to become the innermost loop (see -
unr ol | [n]]). You can request and view the optimization report to see whether
software pipelining was applied (see Optimizer Report Generation).

| DEC$ SWP

doi =1, m

if (a(i) .eq. 0) then
b(i) = a(i) + 1

el se

b(i) = a(i)/c(i)

endi f

enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Loop Count and Loop Distribution
LOOP COUNT (N) Directive

The LOOP COUNT (n) directive indicates the loop count is likely to be n, where n
is an integer constant.

The value of loop count affects heuristics used in software pipelining,
vectorization and loop-transformations.

I DEC$ LOOP COUNT (10000)

doi =1, m

b(i) = a(i) +1 ! This is likely to enable
I the loop to get software-

I pipelined

enddo

For more details on this directive, see "Directive Enhanced Compilation", section
"General Directives", in the Intel® Fortran Language Reference.

Loop Distribution Directive

The DISTRIBUTE POINT directive indicates a preference of performing loop
distribution.

Loop distribution may cause large loops be distributed into smaller ones. This
may enable more loops to get software-pipelined. If the directive is placed inside
a loop, the distribution is performed after the directive and any loop-carried
dependency is ignored. If the directive is placed before a loop, the compiler will
determine where to distribute and data dependency is observed. Currently only
one distribute directive is supported if it is placed inside the loop.

204

Optimization Support Features

IDEC$ DI STRI BUTE PO NT

doi =1, m

b(i) = a(i) +1

c(i) =a(i) + b(i) ! Conpiler will decide where
' to distribute.

I Dat a dependency is observed

d(i) = c(i) + 1
enddo

doi =1, m
b(i) = a(i) +1

| DEC$ DI STRI BUTE PO NT

call sub(a, n) I Distribution will start here,
I ignoring all |oop-carried
I dependency

c(i) =a(i) + b(i)

d(i) = c(i) + 1
enddo

For more details on this directive, see "Directive Enhanced Compilation", section
"General Directives", in the Intel® Fortran Language Reference.

Loop Unrolling Support

The UNROLL[N] directive tells the compiler how many times to unroll a counted
loop.

The n is an integer constant from 0 through 255.

The UNROLL directive must precede the DO statement for each DO loop it
affects.

If n is specified, the optimizer unrolls the loop n times. If n is omitted or if it is
outside the allowed range, the optimizer assigns the number of times to unroll the
loop.

The UNROLL directive overrides any setting of loop unrolling from the command
line.

Currently, the directive can be applied only for the innermost loop nest. If applied
to the outer loop nests, it is ignored. The compiler generates correct code by
comparing n and the loop count.

I DEC$ UNRCLL(4)
doi =1, m

205

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

b(i)
d(i)

enddo

Il
o9
NN
——
+ +
N

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Prefetching Support

The PREFETCH and NOPREFETCH directives assert that the data prefetches
be generated or not generated for some memory references. This affects the
heuristics used in the compiler.

If loop includes expression a(j), placing PREFETCH a in front of the loop,
instructs the compiler to insert prefetches for a(j + d) within the loop. d is
determined by the compiler. This directive is supported when option - O3 is on.

CDEC$ NOPREFETCH c¢
CDEC$ PREFETCH a
doi =1, m

b(i) = a(c(i)) + 1
enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Vectorization Support
The directives discussed in this topic support vectorization.
IVDEP Directive

The IVDEP directive instructs the compiler to ignore assumed vector
dependences. To ensure correct code, the compiler treats an assumed
dependence as a proven dependence, which prevents vectorization. This
directive overrides that decision. Use IVDEP only when you know that the
assumed loop dependences are safe to ignore.

For example, if the expression j >= 0 is always true in the code fragment
bellow, the IVDEP directive can communicate this information to the compiler.
This directive informs the compiler that the conservatively assumed loop-carried
flow dependences for values | < 0 can be safely ignored:

206

Optimization Support Features

| DEC$ | VDEP
doi =1, 100
a(i) = a(i+j)
enddo

f)Note

The proven dependences that prevent vectorization are not ignored, only
assumed dependences are ignored.

The usage of the directive differs depending on the loop form.

Loop 1
Do i

For loops of the form 1, use old values of a, and assume that there is no loop-
carried flow dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-
carried anti-dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output
dependency.
Exanpl e 1

CDEC$ | VDEP

do j=1,n

a(j) =a(j+m + 1
enddo

Exanpl e 2

CDEC$ | VDEP

do j=1,n

a(j) =b(j) +1
b(j) =a(j+m + 1
enddo

Example 1 ignores the possible backward dependencies and enables the loop to
get software pipelined.
Example 2 shows possible forward and backward dependencies involving array

a in this loop and creating a dependency cycle. With IVDEP , the backward
dependencies are ignored.

207

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

IVDEP has options: IVDEP:LOOP and IVDEP:BACK. The IVDEP:LOOP option
implies no loop-carried dependencies. The IVDEP:BACK option implies no
backward dependencies.

The IVDEP directive is also used with the -i vdep_paral | el option for
ltanium®-based applications.

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to IVDEP directive, there are more directives that can be used to
override the efficiency heuristics of the vectorizer:

VECTOR ALWAYS
NOVECTOR

VECTOR ALIGNED
VECTOR UNALIGNED
VECTOR NONTEMPORAL

The VECTOR directives control the vectorization of the subsequent loop in the
program, but the compiler does not apply them to nested loops. Each nested
loop needs its own directive preceding it. You must place the vector directive
before the loop control statement.

For more details on these directives, see "Directive Enhanced Compilation”,
section "General Directives", in the Intel® Fortran Language Reference.

The VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive overrides the efficiency heuristics of the
vectorizer, but it only works if the loop can actually be vectorized, that is: use
IVDEP to ignore assumed dependences.

The VECTOR ALWAYS directive can be used to override the default behavior of
the compiler in the following situation. Vectorization of non-unit stride references
usually does not exhibit any speedup, so the compiler defaults to not vectorizing
loops that have a large number of non-unit stride references (compared to the
number of unit stride references). The following loop has two references with
stride 2. Vectorization would be disabled by default, but the directive
overrides this behavior.

I DEC$ VECTOR ALWAYS

doi =1, 100, 2
a(i) = b(i)
enddo

208

Optimization Support Features

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization
results in a performance regression rather than improvement), the NOVECTOR
directive can be used in the source text to disable vectorization of a loop. For
instance, the Intel® Compiler vectorizes the following example loop by default. If
this behavior is not appropriate, the NOVECTOR directive can be used, as
shown below.

I DEC$ NOVECTOR

doi =1, 100
a(i) = b(i) + c(i)
enddo

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

The VECTOR ALIGNED and UNALIGNED Directives

Like VECTOR ALWAYS, these directives also override the efficiency heuristics.
The difference is that the qualifiers UNALIGNED and ALIGNED instruct the
compiler to use, respectively, unaligned and aligned data movement instructions
for all array references. This disables all the advanced alignment optimizations of
the compiler, such as determining alignment properties from the program context
or using dynamic loop peeling to make references aligned.

fj Note

The directives VECTOR [ALWAYS, UNALIGNED, ALIGNED] should be
used with care. Overriding the efficiency heuristics of the compiler should
only be done if the programmer is absolutely sure the vectorization will
improve performance. Furthermore, instructing the compiler to implement
all array references with aligned data movement instructions will cause a
run-time exception in case some of the access patterns are actually
unaligned.

For more details on these directives, see "Directive Enhanced Compilation”,
section "General Directives”, in the Intel® Fortran Language Reference.

The VECTOR NONTEMPORAL Directive

The VECTOR NONTEMPORAL directive results in streaming stores on
Pentium® 4 based systems. A floating-point type loop together with the
generated assembly are shown in the example below. For large n, significant
performance improvements result on a Pentium 4 systems over a non-streaming
implementation.

The following example illustrates the use of the VECTOR NONTEMPORAL
directive:

209

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

subr outi ne set(a,n)
integer i,n
real a(n)
DEC$ VECTOR NONTEMPORAL
DEC$ VECTOR ALI GNED
doi =1, n
a(i) =1
enddo
end
program setit
par anet er (n=1024*1204)
real a(n)
i nteger |
doi =1, n
a(i) =0
enddo
call set(a,n)
doi =1, n
if (a(i).ne.1) then
print *, 'failed nontenmp.f"', a(i), i
st op
endi f
enddo
print *, 'passed nontenp.f’
end

For more details on these directives, see "Directive Enhanced Compilation",
section "General Directives", in the Intel® Fortran Language Reference.

Optimizations and Debugging

This topic describes the command-line options that you can use to debug your
compilation and to display and check compilation errors.

The options that enable you to get debug information while optimizing are as
follows:

-Q0 Disables optimizations. Enables - f p option.

-0 Generates symbolic debugging information and line
numbers in the object code for use by the source-
level debuggers. Tums off -2 and makes - Q0
the default unless -2 (or -OL or - M) is
explicitly specified in the command line together
with -g.

- debug keyword Specifies settings that enhance debugging. To use
this option, you must also specify the - g option.
The only choice for keywor d is

210

Optimization Support Features

vari abl e_I ocati ons, which produces
enhanced debug information useful in finding
scalar local variables.

-fp Disables the use of the ebp register in
|A-32 only optimizations. Directs to use the ebp-based stack
frame for all functions.

Support for Symbolic Debugging, -g

Use the - g option to direct the compiler to generate code to provide symbolic
debugging information and line numbers in the object code that will be used by
your source-level debugger. For example:

ifort -g progl.f

Turns off - 2 and makes - Q0 the default unless - Q2 (or - OL or - G8) is explicitly
specified in the command line together with - g.

The Use of ebp Register

-fp (IA-32 only)

Most debuggers use the ebp register as a stack frame pointer to produce a stack
backtrace. The - f p option disables the use of the ebp register in optimizations
and directs the compiler to generate code that maintains and uses ebp as a
stack frame pointer for all functions so that a debugger can still produce a stack
backtrace without turning off - OL, - @2, or - O3 optimizations.

Note that using this option reduces the number of available general-purpose
registers by one, and results in slightly less efficient code.

-fp Summary

Default OFF

-0OL, -2, or - Disables - f p
3

-0 Enables - f p

The -traceback Option

The - t r aceback option also forces the compiler to use ebp as the stack frame
pointer. In addition, the - t r aceback option causes the compiler to generate
extra information into the object file, which allows a symbolic stack traceback to
be produced if a run-time failure occurs.

Combining Optimization and Debugging
211

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

The - Q0 option tumns off all optimizations so you can debug your program before
any optimization is attempted. To get the debug information, use the - g option.

The compiler lets you generate code to support symbolic debugging while one of
the - OL, - A2, or - @B optimization options is specified on the command line along
with - g, which produces symbolic debug information in the object file.

Note that if you specify an - OL, - 2, or - @3 option with the - g option, some of
the debugging information retumed may be inaccurate as a side-effect of
optimization.

It is best to make your optimization and/or debugging choices explicit:

e If you need to debug your program excluding any optimization effect, use
the - Q) option, which turns off all the optimizations.

« If you need to debug your program with optimization enabled, then you
can specify the - OL, - @2, or - O3 option on the command line along with -

g.

Z-J‘]Note

The - g option slows down the program when no optimization level (- On) is
specified. In this case - g tums on - Q0, which is what slows the program
down. However, if, for example, both - @2 and - g are specified, the code
should run very nearly at the same speed as if - g were not specified.

Refer to the table below for the summary of the effects of using the - g option
with the optimization options.

These Produce these results
options
-0 Debugging information produced, - Q0

enabled (optimizations disabled), - f p
enabled for IA-32-targeted compilations

-g - Debugging information produced, - OL
optimizations enabled.
-g - Debugging information produced, - Q2

optimizations enabled.

-g -@ -fp | Debugging information produced, - C8
optimizations enabled, - f p enabled for
IA-32-targeted compilations.

Debugging and Assembling

The assembly listing file is generated without debugging information, but if you
produce an object file, it will contain debugging information. If you link the object

212

Optimization Support Features

file and then use the GDB debugger on it, you will get full symbolic
representation.

Optimizer Report Generation

The Intel® Fortran Compiler provides options to generate and manage
optimization reports.

e -o0pt_report generates optimizations report and places it in a file
specified in
-opt _report _filefilenane.If-opt_report _fil eis notspecified,
-opt _report directs the report to st derr. The default is OFF: no
reports are generated.

e -opt_report_filefilename generates optimizations report and
directs it to afile specified in il enane.

e -opt_report _| evel {m n| med| max} specifies the detail level of the
optimizations report. The m n argument provides the minimal summary
and the max the full report. The default is - opt _r eport _| evel m n.

e -o0Opt_report_routine [substring]generates reports from all
routines with names containing the subst ri ng as part of their name. If
[subst ri ng] is not specified, reports from all routines are generated.
The default is to generate reports for all routines being compiled.

Specifying Optimizations to Generate Reports
The compiler can generate reports for an optimizer you specify in the phase
argument of the

-opt _report _phasephase option.

The option can be used multiple times on the same command line to generate
reports for multiple optimizers.

Currently, the reports for the following optimizers are supported:

Optimizer Logical Optimizer Full Name

Name

i po Interprocedural Optimizer

hl o High-level Language
Optimizer

ilo Intermediate Language
Scalar Optimizer

ecg ltanium®-based Compiler
Code Generator

al | All optimizers

213

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

When one of the above logical names for optimizers are specified all reports from
that optimizer will be generated. For example, - opt _report_phasei po and -
opt _report _phaseecg generate reports from the interprocedural optimizer
and the code generator.

Each of the optimizers can potentially have specific optimizations within them.
Each of these optimizations are prefixed with the optimizer's logical name. For
example:

Optimizer_optimization Full Name

i po_inl Interprocedural Optimizer, inline
expansion of functions

i po_cp Interprocedural Optimizer, copy
propagation

hl o_unrol | High-level Language Optimizer, loop
unrolling

hl o_prefetch High-level Language Optimizer,
prefetching

il o_copy_ propagation Intermediate Language Scalar
Optimizer, copy propagation

ecg_swp [tanium®-based Compiler Code
Generator, software pipelining

The following command generates a report for the ltanium®-based Compiler
Code Generator (ecQ):

ifort -c -opt_report -opt_report _phase ecg nyfile.f
where:

o - tells the compiler to stop at generating the object code, not linking

e -o0pt_report invokes the report generator

e -o0pt_report_phaseecq indicates the phase (ecg) for which to
generate the report; the space between the option and the phase is
optional.

The entire name for a particular optimization within an optimizer need not be
specified in full, just a few characters is sufficient. All optimization reports that
have a matching prefix with the specified optimizer are generated. For example,
if -opt _report _phase il o_co is specified, a report from both the constant
propagation and the copy propagation are generated.

The Availability of Report Generation

214

Optimization Support Features

The - opt _report _hel p option lists the logical names of optimizers and
optimizations that are currently available for report generation.

For IA-32 systems, the reports can be generated for:

ilo

hl o if - O3 is on

i po if interprocedural optimizer is invoked with -i p or -i po

al I the above optimizers if - O3 and -i p or -i po options are on

For ltanium-based systems, the reports can be generated for:

ilo

ecg

hl o if - O3 is on

i po if interprocedural optimizer is invoked with -i p or -i po

al I the above optimizers if - O3 and -i p or -i po options are on

Z-J‘]Note

If hl o ori po report is requested, but the controlling option (- 8 or - i p--
i po, respectively) is not on, the compiler generates an empty report.

215

Glossary

alignment
constraint

The proper boundary of the stack where data must be stored.

alternate loop
transformation

An optimization in which the compiler generates a copy of a
loop and executes the new loop depending on the boundary
size.

branch count

A tool that counts the number of times a program executes

profiler each branch statement. The utility also generates a database
that shows how the program executed.

branch The database generated by the branch count profiler. The

probability database contains the number of times each branch is

database executed.

cache hit The situation when the information the processor wants is in
the cache.

call site A call site consists of the instructions immediately preceding
a call instruction and the call instruction itself.

common An optimization in which the compiler detects and combines

subexpression redundant computations.

elimination

conditionals Any operation that takes place depending on whether or not
a certain condition is true.

constant An optimization in which the compiler replaces the formal

argument arguments of a routine with actual constant values. The

propagation compiler then propagates constant variables used as actual
arguments.

constant Conditionals that always take the same branch.

branches

constant folding

An optimization in which the compiler, instead of storing the
numbers and operators for computation when the program
executes, evaluates the constant expression and uses the
result.

copy propagation

An optimization in which the compiler eliminates
unnecessary assignments by using the value assigned to a
variable instead of using the variable itself.

dataflow

The movement of data through a system, from entry to
destination.

217

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

dead-code
elimination

An optimization in which the compiler eliminates any code
that generates unused values or any code that will never be
executed in the program.

dynamic linking

The process in which a shared object is mapped into the
virtual address space of your program at run time.

empty
declaration

A semicolon and nothing before it.

frame pointer

A pointer that holds a base address for the current stack and
is used to access the stack frame.

in-line function

An optimization in which the compiler replaces each function

expansion call with the function body expanded in place.
induction An optimization in which the compiler reduces the complexity
variable of an array index calculation by using only additions.

simplification

instruction An optimization in which the compiler reorders the generated

scheduling machine instructions so that more than one can execute in
parallel.

instruction An optimization in which the compiler eliminates less efficient

sequencing instructions and replaces them with instruction sequences
that take advantage of a particular processor's features.

interprocedural |An optimization that applies to the entire program except for

optimization library routines.

loop blocking An optimization in which the compiler reorders the execution

sequence of instructions so that the compiler can execute
iterations from outer loops before completing all the iterations
of the inner loop.

loop unrolling

An optimization in which the compiler duplicates the
executed statements inside a loop to reduce the number of
loop iterations.

loop-invariant
code movement

An optimization in which the compiler detects multiple
instances of a computation that does not change within a
loop.

padding The addition of bytes or words at the end of each data type in
order to meet size and alignment constraints.

preloading An optimization in which the compiler loads the vectors, one
cache at a time, so that during the loop computation the
number of external bus tumarounds is reduced.

profiling A process in which detailed information is produced about

the program's execution.

218

Glossary

register variable
detection

An optimization in which the compiler detects the variables
that never need to be stored in memory and places them in
register variables.

side effects

Results of the optimization process that might increase the
code size and/or processing time.

static linking The process in which a copy of the object file that contains a
function used in your program is incorporated in your
executable file at link time.

strength An optimization in which the compiler reduces the complexity

reduction of an array index calculation by using only additions.

strip mining An optimization in which the compiler creates an additional

level of nesting to enable inner loop computations on vectors
that can be held in the cache. This optimization reduces the
size of inner loops so that the amount of data required for the
inner loop can fit the cache size.

token pasting

The process in which the compiler treats two tokens
separated by a comment as one (for example, a/**/b become
ab).

transformation

A rearrangement of code. In contrast, an optimization is a
rearrangement of code where improved run-time
performance is guaranteed.

unreachable
code

Instructions that are never executed by the compiler.

unused code

Instructions that produce results that are not used in the
program.

variable
renaming

An optimization in which the compiler renames instances of a
variable that refer to distinct entities.

219

Index

128-bit Streaming SIMD Extensions

.. 137
16-bit data
accessingc.veevneennnnnn. 13, 30, 137
16-byte
aligned address...........cceun..... 140
boundary..........cooiiiiii 140
3
32-bit
COUNTErS ... 97
(o =1 c- T 13, 30, 137
EXCEEAuuiiiiiiie e 79
pointersccoceveviiiiieiicee, 79
6
64-bit data................. 13, 30, 97, 189
64-bit MMX(TM)oeviiiiiiieeeennn. 137
8
80-bit data...........ccccvviiiiiiiiieee 13
8-bitdata........................ 13, 30, 137
8-byte ... 13, 30, 55

ABI visibility options...................... 57
ABS ... 139
absence

of loop-carried memory

dependencyccceeeeennnnn. 124
accessing
16-Dit .o 30
accuracy
controllingcccvieieiiiiinnennnn. 70
added performance...................... 93
advanced PGO options................. 98
affected aspect of the program79
ALIAS ... 101
-align compiler option 13

-align dcommons compiler option. 13,
41, 55

ALIGNED ... 206

aligning
data......c.ooooviiiiii, 140

alignment
example........ccooviiiiiiiie 140
(o] o] (1] o - F 55

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

setting ..o 13

strategyoooevviiii, 140
ALLOCATABLE ... 51
allocating temporary arrays......... 158
-altparam compiler option............. 48
analyzing

effects of IPO..........coooieiiiiiinnnnn. 83

Programmingccce.eeeeeeennnnn. 13
ANSI Fortran standard................ 160

ANSI| standard

conformance with................ 65, 71
-ansi_alias compiler option 48, 51
application

basic blockcciiiiiinnnnn. 103

code coverage.........coeeeuueennnnns 103

OpenMP.......cccoveiniiinnn. 127, 150

pipelining...........ccoiviiiiiiins 203

testS .oovvei 103

visual presentation.................. 103
architectures

coding guidelines for................. 34
argument

aliasing.....ccccoeveiieiiiiiieee 140

222

using efficiently 20

arithmetic precision

improving and restricting 71
arrays
ACCESSING eevvveeeeiiieeeeii e 20
assumed-shape.........c.c.cccunneeee. 20
compiler creates 20
derived-partccoooiiiiiinn 13
efficient compilation using 41
natural storage order................. 25
operations.............ccoeeeviiinnnnn. 139
output argument array types...... 20
requirements...........coocceeeeeeennnns 20
using efficientlyc............. 20
assembling........coocoveiiiiiiiiinnennnn. 210

assembly files

generating 83, 86, 210
-assume compiler option......... 25, 41
assumed-shape arrays................. 20
ATOMIC directive................ 150, 170
-auto compiler option.................... 51
automatic

allocation of stacks.............. 41, 51

checking of stacks 51
optimization for 1A-32 systems... 76
-automatic compiler option............ 51
AUTOMATIC statement................ 51

auto-parallelization

data flow........cooovviiiiiiiiiiiiinnn. 144
diagnostiC.........ccccoveiiiiiiiinnnnn, 147
enablingcccooovviiiiii 145
environment variables............. 145
OVEIVIEWiiviiiiieeei e 143
ProCeSSING.....cccvvunieeeiiieeeennnnn. 144
programming with................... 144
threshold control 147
threshold needed.................... 145
auto-parallelized loops.......... 48, 147
auto-parallelizer
controloooevviiiiiii 127
enablingcoeeeeenn 127, 145
thresholdooooiiiiiiiiiee. 147
auto-vectorization................. 34, 127
auto-vectorizerccc.cceeeeenneens 134
-ax compiler option.......... 34, 62, 131

Index

B
BACKSPACEccoiiiiieeeen 25
-backtrace compiler option.......... 210
BARRIER directive
description ofl. 160
USING v 150, 170

basic PGO options
profile-guided optimization... 94, 97

bcolor option of code-coverage tool

... 103
big-endian...................... 41, 45
binding to a parallel region.......... 150
block size.........ccovviiiiiiiii 138
BLOCKSIZE

INCreasingcooevevvieeeeinneeennnn. 25

OMIttiNG. ... oeeeeee e, 25

ValuESs......oovviiiiiiiieii e 25
browsing

framescccoooiiiiiiii 103
BUFFERCOUNT

buffered_io option..................... 25

default ..o 25

INCFEASE.....ccvvvieeiiiie e 25
buffers

223

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

UBC ..o 25
C
-c compiler option................... 41, 81
c$OMP BARRIERcceveeeee.. 170
c$OMP DO PRIVATE................. 170
c$OMP END PARALLEL 170
cSOMP PARALLEL 170
c$SOMP prefix for OpenMP directives

....................................... 158, 191
cache size

funtion retuming........................ 33
CACHESIZE ... 33
call stack dumps

master thread 197

worker threadc.c...cc. 197
callee. ..o 90
calls

and DO-loop collapsing............. 25

MalloC........ouiiiiiiiiieeiiecee 57

callstack.......ccoooeeviiiiiiiii, 193
cc_omp keyword for -assume........ 48
-ccdefault compiler option............. 48

224

ccolor option of code coverage tool

... 103
CDECS$ prefix for general directives
................ 145, 203, 204, 205, 206
CEIL rounding mode..................... 34
characterdata........................ 13, 55
checking
floating-point stack state............ 51
inefficient unaligned data........... 13
chunk size
SPECIfyiNgovviiiiiieiiii e, 180
clauses
COPYIN ..o 175
cross-reference of 160
DEFAULT ..o 175
FIRSTPRIVATEcoee 176
in worksharing constructs........ 166
LASTPRIVATE ... 176
list Of v, 174
overview ofc.eeee.. 160, 174
PRIVATE ... 176
REDUCTIONcceeeeeee. 178
SHAREDcooviiiiiiiiiiiee 180
summary of..........ccoeeeiiiiinnn. 160

to debug shared variables....... 201
cleanup of loOpS......cceevvvnveinnnnnnns 138
code

assembly.........cooeeeiiininnnn. 37, 206

Preparingcooeeveeeeeeeeeeenneees 150
codecov command..................... 103

codecov_option for code coverage
1 (oo) 103

code-coverage tool..................... 103
coding guidelines

for Intel architectures 34
coloring scheme

Setting ...ccvvviiiiii 103

combined parallel and worksharing
constructsS.......ocovveeninnenns 150, 169

command line
optionscccoe... 48, 55, 65, 131
syntax for code coverage tool.. 103
syntax for IPO executable......... 81
syntax for linker tool.................. 83
syntax for OpenMP directives.. 158
syntax for test prioritization tool111

comma-separated list

for clauses............... 164, 166, 174

for variables........cccoocvveiiiiiil. 160
COMMON

block..13, 34, 41, 55, 57, 150, 164,
174,175

statement...................... 13, 34, 55
compilation
controllingccceiieieiiiiiinennnn. 55
customizing process of.............. 41
efficient........cccoooeiiii 41
optimizingooovvviiiiiiieen, 41
options.......ccccceveenneen 48, 51, 55, 57
parallel programming 127
Phaseccooviiiiiii e 80
techniques........ccccoiviiiiiinnn, 41
using linker tool............c.....cc.... 83
with real object files................... 86
compilation:..........cccoiviiiiiiinnnn. 80
compiler
applying heuristic.................... 147
commandsS........coeeevieeiinienineen, 41
compiler-supplied library 92
creating temporary array 20
debugging parallel regions....... 195
default optimizations 48

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

defining the size of the array

elements ..o, 13
directivescoooeeiieiiiiiiien 203
efficient compilation 41

Intel extension routines....189, 195
IPO benefits.....cccoevveveiaiin. 79

issuing warnings.....86, 97, 98, 99,
131, 160

merging the data from all .dyn files

... 99
optimization levels 62
producing profile-guided

optimization................... 86, 100
relocating the source files........ 102
report generation 213

selecting routines for inlining..... 90

treating assumed dependence 206

using OpenMP................. 150, 158

vectorization 130, 206
COMPLEX.................. 13, 30, 48, 51
conditional parallel region execution

.. 164
conforming

ANSI ..o 65

IEEE 754 ..o, 71

constructing an entry-point name 195

226

controlling
advanced PGO optimizations....98
alignment with options............... 55

auto-parallelizer's diagnostic levels

................................... 127, 147
compilation process 41
complex flow.........cccoeeeiiinnnni. 125
computation of stacks and

variablesccooooiiiii 51
data scope attributes............... 166

floating-point accuracy .. 69, 70, 71
floating-point computations........ 70

generation of profile information

... 118
inline expansion..............cc........ 92
loop vectorization.................... 206
number of threads................... 164
OpenMP* diagnostics.............. 158
roUNdingccevuvieiiiiiieeeiieeeeeennn 69
speculationccoeeiiiiiiennn. 62

your program with OpenMP..... 186
conventions
in the User's Guide, Volume II...11

COPYIN clause.. 156, 160, 164, 174,
175

COPYPRIVATE clause............... 160
correct usage of loops......... 135, 136
coverage analysis 103
CPU
more effective use of................. 20
fiMe ., 25, 38

CRAY pointer aliasing

preventingccooeeveiiiieieinnnnnn. 51
creating

DPIIist. .. 111

multifile IPO executable using xild
... 83

multifile IPO executable with
command line........................ 81

multithreaded applications......... 34

criteria for inline function expansion

.. 90
CRITICAL directive......150, 160, 170
customizing

compilation process.................. 41
D
data

alignment..................... 13, 55, 140

cache unit............ccoeiiiieeennnnnn. 140

declarations..........ccccceoeveiiiinens 13

Index

dependence.... 122, 123, 134, 144,
147, 203

FIOW v 127, 143
TEMS oo 13
(o] o] (1] o - F 51
partitioning..........cc.coeeviiennnne. 144
prefetching...................... 121, 204
scope attribute clauses............ 174
settingsS.....oovviii 48
Sharingcccoeeviveiiieeii e, 150
type...cccoeeeee 13, 30, 66, 127, 130
data flow analysis............... 127, 143
data scope attribute clauses....... 174
DATE_AND_TIME..........ccovvvuennnee 38
DCLOCK.......coiiiiiiieeeeeeeeeie 38
-debug compiler option................ 210
debugger.......cociiiiiiiiiiii, 193
debugging
COUE ..ot 195
multiple threads 197

multithread programs overview 193

optimizations and.................... 210
parallel regionsc......... 195
shared variables 201

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

statements............cccoeeiiiiinnn 193
SYymboliC......ccovviiiiiiiii, 210
default
compiler optimizations............. 147
for record buffers 25
level optimization 41
liStiNg..eveieie e 83
NAME ..o 83
optimizationsc...ccccooe. 48
Value ..o 147
DEFAULT Clause..........ccccccc... 175
deferred-shape arrays.................. 20

demang option for code coverage

tOOl .. 103
denormal
exceptions.........ccoeveeiiiiiiienennnn. 34
flushing......cccooooviiiiiiis 66, 70
values.........ccoooeveeeennnnnnn. 34, 66, 70
denormals-are-zero................ 34, 77
dependence of data.................... 134
dequeuing.........ccoeviiiiiiiineeeenn 170
derived-type components 13, 20
determining parallelization 127
device-specific blocksize 25

228

diagnostic reports............... 147, 158
diagnostics
auto-parallelizer-.............. 127, 147
indicating loops...........ccccccuneee. 131
indicating MASTER................. 158
OpenMPcoviiiiieiiiieeee, 158
difference operators.................... 191
differential coverage.................... 103
DIMENSION...........ccuvvenneee 135, 136
directives
CoNtrols......coovveieiiiiiiiii, 156
enhanced compilation 203, 206
format.........coooovviiiiinnn. 145, 158
IVDEP ..o 124, 206
NAME ...covuniiiiieeeerieeees 145, 158
OVEIVIEW ...ovviieiiiiieeeeeie e 203
preceding........cccoeveeeuneeiinneennnn. 206
usage rules...........ccceeveevnennnn. 150
VECTOR ..o 206
directory
SPECIfYING ...cevieiiii e, 98
disable
A 210

function splitting........................ 97
INHNING ... 48
intrinsics inliningcc..e.... 62
IPO... s 79
-On optimizations...................... 62
disclaimerccoovviiiiiiiiiiii 3
disk /O ...oooiiiii 25
dispatch options.....................el. 73

DISTRIBUTE POINT directive 204

division-to-multiplication optimization

.. 69
DO directive......... 150, 166, 170, 176
DO loop20, 25, 30, 166, 176, 180
DO WHILE.......... 135, 136, 166, 170
document number..............cccooo 1
DO-ENDDOccoeiiieieieeeeeeeeee 135
DOUBLE......cccoiiiiiiiiieeeeee 34
DOUBLE PRECISION

FEtUMS....oovniieii e 186

tYPES .o 139

variables

KIND ..o 48

variables...........cccoiiiiiiiinn, 48

double size 64............ccccoveennnnn. 48

-double_size compiler option 48
dpi
dpi customer.dpi.........cc.......... 103
dpifile.......... 94, 97, 101, 103, 111
D I 1) 111
dpioptions........c.oeeiiiiiiiiiinnn. 103
dpi pgopti.dpi....cccoevviiiiinnnnnn. 103
(o] o 1= J 48
-dps compiler option 48
dummy argument 20, 25, 41
dummy_aliases.............c........ 41, 51
dumping
profiledata.......................... 101
profile information 119, 120
dyn files

dynamic-information files. 100, 101

dynamic
COUNTErS ..o 103
DYNAMIC........cccvvrnnnee 170, 180
dynamic_threads 186

dynamic-information

229

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

information files 98
profile counters....................... 120
E
(2T) G 195, 197

USE ..uiiiieieie et e et e e e e 210
ebp-based..........coeeiiiin. 48, 210
EDX 197
<o I PPN 213
EDB

USE ...iieiieeei ettt e e 13
€di i 195
=70) 197
effective auto-parallelization usage

.. 144
effects

analyzing........ccooeeveeiiiiiicieen, 83

multiple IPO........cccoovviireen 83
efficient

(oo o [PP 30

compilation......................... 30, 41

use of

AITAYS covnieeeieeee e 20
record buffers........................ 25

230

USE Of e 25
elapsed time..........cc.ccoeeviiennn. 111
elSiZze ..o 189
email.......ccoooviiiiiii 103
enable

auto-parallelizer-.............. 127, 145

DEC ..o 48

denormals-as-zero.................... 34

-fpoptionooeeiiiinnil 65, 210

implied-DO loop collapsing........ 25

INNINING e, 92

-O2 optimizations...................... 62

parallelizer............cccoeeveveeennnn.. 127

SIMD-encodings............ceeeeeee. 138

test-prioritization 111
encounters

SINGLEcooiiiiiiiiie 166
end

DO e 166

parallel construct..................... 156

REDUCTIONcceeeeeee. 178

worksharing

constructc.ooeevviiiiinnnnnn. 156

worksharing..................... 150, 160
END CRITICAL directive 170
END DO directive................ 150, 166
END INTERFACEccee.... 101
END MASTER directive....... 160, 170

END ORDERED directive....160, 170

END PARALLEL directive....156, 164

END PARALLEL DO directive..... 169

END PARALLEL SECTIONS
directive ..o 169

END SECTION directive............. 166

END SECTIONS directive ...150, 166

END SINGLE directive 150, 166
END SUBROUTINE 101, 140
endian........ccooeeiieiiiii 45
Enhanced Debugger 37
ensuring natural alignment 13
entry

parallel region......................... 197

subroutine PADD.................... 197
entry/exit..........ccoviiiiiiiiiii, 144

entry-point name
constructing.........cccceeeeeeennnnnne. 195

environment

Index

data environment directive 156
OpenMP environment routines 186
UNIProcesSOor.......c.ovvvueeeneennnen. 193

variables25, 45, 99, 118, 145, 158,
164, 183, 186, 189

EQUIVALENCE statement

AVOId i 13
EQV ..o 170, 178
ERRATA .o 197

errno variable

setting oo 92
error_limit 30c.coiiiiiiiiies 48
-error_limit compiler option 48
(2T o S 195, 197
examples

OpenMPcoviiiiiiiiieeee, 191

PGO..oiiii 100

vectorizationccceeeeeieen. 140
exceed

32-Dit .o 79
EXCEPTION

St e 45
executable filescccccooeviinis 41
executing

231

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

BARRIER ..., 150
SINGLEccooiiiiiiie 166
test-prioritization 111
execution
environment routines 186
flOW ..o 156
existing
pgopti.dpi......ccceveiiiiin 99
explicit symbol visibility specification
.. 57
explicit-shape arrays 20
EXTENDED PRECISION 71
extended-precision....................... 30
extensions support..............c.c...... 73

EXTERN symbol visibility attribute

value ..., 57
=
F_UFMTENDIAN

setting ...oovviii 45

value ..., 45
-fast compiler option..................... 62
fCOlOr v 103
feature

contributes

232

application..............ccccceuee. 127
contributes............coooeii 127
display......cccoovviiiiiiiiiiiiieen, 103
enable ..o, 45
OpenMP contains................... 150
OVEIVIEW ...ovvieieiiieeeeeiae e 203
WOTIK oo 193

feedback compilation.................. 100
FIELDS ... 174, 175
file
(oo ISR 97, 103, 111
dynfiles.......coooeeiiiiii, 101
assembly..................... 83, 86, 210
default output.........c..coiiee. 41
dynamic-information.................. 97

executable.. 38, 41, 76, 81, 83, 86,
94, 97, 100, 131, 145, 149, 150

INPUL ..o 25
multiple IPO..........cccoeiiii 80
multiple source files 41
object41, 48, 80, 81, 83, 86, 97
pathnamec.ccoeeiiiiiinnnns 57
real objectfiles............ccoceeeennil 86
relocating the source files........ 102

required..................... 81, 103, 111
specifying symbol files 57

FIRSTPRIVATE clause

(U1 176
floating-point
applicationscccceevveennnnn. 34

arithmetic precision

|IA-32 systemsccccoeeeennnnnn. 69
ltanium-based systems.......... 70
-mp optioN........ccovvviiiiiiin, 66
-mp1 option.........cccoeevieeennnne. 66
(o] o] (o] o [J P 66
OVEIVIEW ..cevvniiieiiieeeeiieeeeeennn 66

exception handling.............. 34, 66
floating-point-to-integer............. 69
multiply and add (FA)................ 71
147 01 66
FLOW ..ot 144

1T T 170
flushing
denormalcooeveviviininnnn. 66, 70

zerodenormal..................... 66, 70
FMA e, 71
-fnsplit- compiler option................. 97

FOR_SET_FPE intrinsic

FOR_M ABRUPT UND 77
fork/join ..o, 191
format

auto-parallelization directives .. 145

big-endian...................coo 45
EXPreSSIONS ...cvuvviiiiiieieeeieeennnes 25
floating-point applications.......... 34
OpenMP directives.................. 158

formatted files
unformatted files 25
FORT_BUFFERED

run-time environment variable ...25

Fortran
APl 150, 156, 193
FORTRAN 77
dummy aliasescc........ 41
FORTRAN 77 13, 20, 41
Fortran standard 9
Fortran uninitialized................... 57

233

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Fortran USE statement 186

INCLUDE statement 186
Fourier-Motzkin elimination......... 134
FP

MURIPIY ... 70

operations evaluation................ 70

OPLIONS .., 66

results ... 70
-fp compiler option...................... 210
frames

browsing........ccocovveiiiiinieiinnnnn. 103
-ftz compiler option....................... 34
FTZ flag

ltanium®-based systems........... 66

setting ...oovviii 77
fullname........coooiiiii 213
function

best Performance 77

function splitting

disablingcccccoeeiiiiiiii. 97
function splitting..........ccc...cceee. 97
function/routine....................... 189
function/subroutine 51

234

G
-g compiler option....................... 210
GCC
Id 81
GCD ..o 134
GDB
USE ..iiiiiiieeeeee e e et e e 210
general-purpose registers........... 210
generating
instrumented code 97
NON-SSE.......cccoooiiiiii, 34
processor-specific function version
... 76
profile-optimized executable...... 97
rePortS... .o, 213
vectorization reports................ 131
gigabytesccoeeeveinennnn. 183, 189
global symbols.........ccccceevviininenns 57
GNU* (see also GCC) 195, 197
GOT (global offset table) 57
GP-relative..........ccoooveiiiiiiii, 57
GUIDED (schedule type)............ 180
guidelines
advanced PGO.............cccc... 98

auto-parallelization.................. 144
COAING +eieeieeeieeee e 34
vectorizationc.c.oooeeevnnnnee. 133
H
help
od utility.......coeeeei 45
HIDDEN visibility attribute............. 57

high performance

Programmingcceeeeeeeneennnn. 13
high-level
optimizer.........c.ccovvveiieiinne. 213
parallelization 144
HLO
hlo_prefetch............................ 213
hlo_unroll...............c.cooiini, 213
OVEIVIEWeiieiieeeeii e 121
prefetchingcc..coeeiiiiinnnnn. 125
unrollingcooovveeiiiiieee 123
HTML files ...cccooeveiiiieeie 103

Hyper-Threading technology 34, 127,
149

(0= 15571 o [25

performanceccccceeeeeeinnnnns 25
|1A-32

floating-point arithmetic............. 69

Hyper-Threading Technology-

enabled.............ooiiiiiinnnnn 127
Intel® Debugger.............cc....... 193
Intel® Enhanced Debugger....... 37
IA-32 applications....................... 121
IA-32 systems 69, 73, 77
|A-32-based

little-endiancccoociviennns 45

ProCeSSOrS......cceuveuernannnen. 45, 150
|IA-32-specific feature.................. 131
|A-32-targeted compilations........ 210
IANDoooiiiiii 160, 170, 178
identifying

synchronization....................... 170
IEEE

|IEEE 754

CONfOrM....eiiiiiiiiiie e 71
IEEE 754ccoiiiiii 71
IEEE-754.....ccccoiiiiiiiiii 34

IEOR.....cooiiiiieii 160, 170, 178

235

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

IF
generated..........ccooeeeiiiiineennn. 103
statement ..., 103
IF clause.........ccoooeiiiiiiiiiiiis 164
-iface compiler option 48

ifort. 9, 41, 48, 55, 57, 66, 70, 73, 75,
76, 77, 80, 81, 83, 88, 92, 94, 100,
111, 123, 131, 145, 147, 158, 195,
210, 213

IL
compilerreads.........c...cceeuneeen. 86
fileS v 86
produced..........ccceiviiiiieiiieennnn. 86
1O e 213
| 127

implied DO loop

(olo] | F=T o111 [I 25
improving

I/O performance........................ 25

run-time performance................ 30

improving/restricting FP arithmetic

PrecisSion........coccevevvieiiieiieeen, 71
include
floating-point-to-integer 69

incorrect usage

236

non-countable loop

increase

BLOCKSIZE specifier............
BUFFERCOUNT specifier
individual module source view

industry-standard......................

inefficient

unaligned data

checking........coocevveviinneennn.
unaligned data......................
infinityooooei
init routinecccoooeiinnnn.
initializationcccoooeveiennnnn.

initializer.......ccooveeiein,

initiating

interval profile dumping.........

inlinable ...

inline

expansion

controlling............cccceeeeeenns

library functions.................

103

expansion.............. 65, 90, 92, 213

-inline_debug_info compiler option 92

inlined
librarycoooiiiiii 92
source position 92
inlining
affect ... 88
INEMNSICS ..evvi e 62
preventsoccoeeiiiiiiiiiiee, 41
INPUT
argumentsccooeeiieiiieeennnn. 20
fileS v 25
input/output.........cccocoiiiiinennn. 45
test-prioritization 111
instruction-level 127
instrumentation
compilation....................... 94, 100
compilation/execution 97
repeat........coooviiiiiiiii, 98
instrumented
code generating.......c....ccueeeenn. 97
execution—runceneee. 100
Program........cooeeueeieeieeieennnenn 93

Index

INTEGER
variables........ccooooiiiiiiin, 30

-integer_size compiler option......... 48

Intel®
architecture-based.................. 150

architecture-based processors .34,
37

architecture-specific.................. 37

Intel® architectures

(oo Te |19 o [9, 34
Intel® Compiler
adjusting optimization................ 88
coding guidelines........... 25, 30, 34
directivescccoeeevviniiiieennnn. 203
running in OpenMP mode........ 158
(UES]] o (o [38, 83, 87
vectorization support............... 206

Intel® Debugger
|IA-32 applications 193
ltanium®-based applications ... 193

Intel® Enhanced Debugger

Intel® extensions

extended intrinsics 33

237

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

OpenMP routines.................... 189

Intel® Fortran language

record structures....................... 13
RTL e 25
Intel® Itanium® Compiler 33

Intel® Itanium® processor 48, 73

Intel® Pentium® 4 processor. 75, 76,
77

Intel® Pentium® Il processor 75, 76,
77

Intel® Pentium® M processor 73, 75,
76, 77, 139

Intel® Pentium® processors

refer ..o 123, 125
Intel® processors

optimizing for........... 73,75, 76, 77
Intel® Threading Toolset 34, 37

Intel® VTune Performance Analyzer

.. 37
Intel®-specific 33, 149
INTERFACE ...t 101
intermediate language scalar

optimizer.........c.occoevveiiieennee. 213
intermediate results

USE MEMONY.....uievneeeineeeeiaeennnn 25
internal subprograms.................... 30

238

INTERNAL visibility attribute......... 57

interprocedural
dUMNG ccevei e 92
(UL R 34

interprocedural optimizations (IPO)
compilation with real object files 86

criteria for inline function
EeXPaNSION......cccuevenieiiieiieennnes 90

inline expansion of user functions

... 92
library of IPO objects................. 87
multiple IPO executable............. 83
-Qoption specifiers.................... 88

interprocedural optimizer 79, 213
interthread...........cccooeeiiiiineennnn. 150

interval profile dumping

initiatingccoooviii 120
intrinsics

Cashesizeccccvevieeeiiiieeennn, 33

functions........cccooeviiiiii. 170

INHNING .. 62

proceduresccoeeeieiiniennnnnn. 203
invoking

GCCId ..o, 83

IOR...ooiiiiiiiiiiiiis 160, 170, 178

-ip compiler option 65, 79, 88, 90, 92,
100, 213

ip_ninl_max_total_stats................. 88
ip_ninl_min_stats 88, 90
-ip_no_inlining compiler option 48, 92

-ip_no_pinlining compiler option.... 92

ip_specifier.........ccoeeviiiiinieeiie. 88
-IPF_flt_eval _method compiler
OPLION v, 70
-IPF_fltacc compiler option 70
-IPF_fma compiler option.............. 70

-IPF_fp_relaxed compiler option ... 70

-IPF_fp_speculation compiler option

.. 70
IPO

code layout.........ccooeeviiiinnennnnn.. 85
compilationccooeeiiiin. 86
disable..........cccooiiiiiii 79
generating multiple IPO object files

... 82
intermediate output................... 83
IPO executable...........cccccoeee. 81
ObjJeCtS......uiiiiiiie 87
(o] o] (o]0 |- TR 83, 86

OVEIVIEW ...coviieeeeeeeeeeaanen, 79, 80
PhASES.....ccvviiiiiiiiieiieeee 80
results ..., 93
StOreS ..ovviiiiiiee 80
-ipo compiler option...................... 79
-ipo_c compiler option 83

-ipo_obj compiler option... 48, 86, 90,
131

-ipo_S compiler option.................. 83
IR
containing..........ccccceveennenn. 81, 83
objectfile.........ooevviiiiiiiin, 80
ISYNC ... 170
Itanium® acrchitectures................ 34

ltanium® compiler

-auto_ilp32 compiler option 79
code generator...............c........ 213
ltanium® processors......... 34,48, 73

ltanium®-based applications
pipeliningccoooiviiiiiieinnen. 203
ltanium®-based compilation 94
ltanium®-based multiprocessor... 127
ltanium®-based processors.......... 66

ltanium®-based systems

239

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

default..........ooooiiii, 90
Intel® Debuggerc........... 193
optimization reports................. 213
pipelining.......c.ccooeiiiiiiinennn. 203
software pipelining.................. 127
using iNtrinsiCS.........ccoevvevneeann.. 33
IVDEP directive........... 121, 124, 206
ivdep_parallel..............ccoeeeenniis 124

-ivdep_parallel compiler option .. 121,
124, 206

K

KIND parameter

double-precision variables......... 48

specifyingcoeeeeiiiiiiieen 13
KMP e 183, 197
KMP_ALL_THREADS 183
KMP_BLOCKTIME..................... 183
KMP_BLOCKTIME value............ 182
kmp_calloc.........ccoeeviiiniiiinn 189
kmp_free......ccooeviiiiiiiii 189
kmp_get_stacksize..................... 189
kmp_get_stacksize s................. 189
KMP_LIBRARYccoeviiiieeeeee. 183
kmp_malloc.........coooeiiiiiiiiis 189

240

KMP_MONITOR_STACKSIZE.... 183

kmp_pointer_kind....................... 189
kmp_realloC.........cccooeviiiiinnannn. 189
kmp_set_stacksize..................... 189
kmp_set_stacksize_s 189
kmp_size t kindc....oeel. 189
KMP_STACKSIZE.............. 183, 189
KMP_VERSIONcoovviiinnnens 183
kmpc_for_static_fini................... 197
kmpc_for_static_init 4................ 197
kmpc_fork_call............ 195, 197, 201
L
LASTPRIVATE
Clauses.......cccovvveviiiiiiiiieeee, 176
USE ..iiiieiieeeeee e e eet e e e e 176
Id 83, 100
legal information................cceeees 3
level coverage...........ccoeevevnnennn. 103
[IDC.SO .. 57
libc_start main........................... 197
lbdir. .o 48
-libdir keyword compiler option...... 48
libguide.acouvvveeviiiiiiiiienen. 182

libirc.alibrary........c.coooeiiiiinnniin. 100
libraries
functions..........ocoiiiiiiiin, 92
inline expansion..............c......... 92
libintrins.a........cccoovviiiiiiiein. 33
library 1/O.....cccovvevieiiiiiieeeen 25
OpenMP runtime routines 186
rOUtinesoooeviiiiiiiiieeeee, 186
limitations
loop unrolling.........ccccuviennnnnen. 123
line
DPIiSt. .o 111
dpi_list...ccooeiiiiiiiiii 111
lines compiled......................... 147
LINK_commandline...................... 83
linkage phase.............ccviiiiiennnnnn. 80
list
tool generates................ee. 103
tool provides.......c.coevveeenneeennn. 103
listing
file containingcccoeeeees 111
XIld oo 83
little-endian

big-endian..................cooiii 45
converting.......ccovveevveeiineenieeen, 41

little-endian-to-big-endian conversion

environment variable................. 45
Lock routines............ccceuiieiennnnnn. 186
LOGICALocoeiiiiiiiiee 13, 51
-logo compiler option................... 101
loop

blocking........ccooviviiiiiiinn. 138

body ... 139

collapsingoevveiviiieiiiiiieeeenn, 25

CONStructs........ccevvviiiiiiiiieeen, 135

COUNt...oovniiiiii e 204

diagnosticsc.co...... 131, 147

directivescccoeeeeviniiieiennnn. 204

distribution...............ccoeiiiiien. 204

exit conditions............c.....cceee. 136

interchange............cccocooveeennn. 142

LOOP option of IVDEP directive

... 206

parallelization.................. 127, 132

parallelizer..........ccccoveiiiiiinnnns 73

parallelizingccc....... 73, 150

peeling........ccccoeveieeennnnes 140, 206

241

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

sectioning........ccoeeevveiiieiiieennnnn, 138
SKEWING ..o, 122
transformations.......... 71, 122, 204
types vectorized...................... 137
unrollingocevveviieeennnn. 123, 205
variable assignment................ 176
vectorization 132, 206
vectorized types..........ccuunneee. 137

loop-carried memory dependency

absenceceiiiiiiiin, 124
loops

changing.........ccoeeeeveiiiiiieieenn, 20

COMPULING....ccceviieiiiiiieeeciie e 71
lower/mixed..........cccooeiviiiiiiniennn 193
M

machine code listing
subroutinecccoeiiiiiin 195

maddr option for code-coverage tool

.. 103
maintainabilityc.. 30
makefilecoooviiiiiii 83
malloc

CallS e 57
MASTER directive............... 150, 170

242

master thread

call stack dump..........ccceeenneen. 197
USE i 170
math librariescccocovveiiiinins 92
matrix multiplication.................... 142
MAX............ 137, 138, 139, 170, 178

maximum number.. 48, 123, 183, 186

memory
ACCESSuiiviieiii et 34
allocation..........c.oceiviiiiiiennnes 189
dependency.......c.ccoeeeeveieeennnn. 124
layoutcooviiii 34

MIN....... 88, 137, 139, 160, 170, 178,
191, 213

minimizing
execution time 111
NUMDEr.......cooviiiiiiiiieee 111

mintime option for test-prioritization
1(o o | [P 111

misaligned

data crossing 16-byte boundary

... 140
mispredicted..........ccooceiiiiiininn 94
mixed data type arithmetic

EXPreSSIONS ..ccvuviviiviieieeiieeeannes 30

mixing

vectorizableccoooeeiiiennn. 133
MM_PREFETCH........................ 125
MMX(TM) technology................. 127
MODE......ccciiiiiiiiiieeeeeeeeeeeeeeeeeee 45

modules subset

coverage analysis................... 103
more replicated code.................. 156
-mp compiler option...................... 66
-mp1 compiler option.................... 66
multidimensional arrays........ 20, 134
multifile ... 80

multifile IPO

IPO executable............cc........... 83
Xild oo 83
multifile optimization 79

multiple threads
debuggingcceveeeiiiieiieen. 197

multithread programs

debugger limitations................ 193

OVEIVIEW ... 193
multithreaded

applicationsccceevvieennnn. 34

debugging.........cooeiiiiiiiiinennn. 193
producescccceeennenn. 149, 150
FUNL e 158
multi-threadedcoeee. 144
mutually-exclusive
Part......o 48
N
names
optimizers........cc.oooieeeviieeennnnes 213
NAN value.........ocoevvvieiiiinnns 51, 70
natural storage order 25

naturally aligned

data......ccooooiiiii 13

FECOrdSiviviieeiiie e 13

reordered data............cccceeeeeen. 13
-noalign compiler option................ 55
noalignments keyword.................. 13
-noauto compiler option 51
-noauto_scalar compiler option.....51
-noautomatic compiler option........ 51
-nobuffered_io keyword 25
nocommons keyword.................... 55
nodcommons keyword.................. 55

243

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

-nolib_inline compiler option ... 65, 92
-nologo compiler option 101

non-countable loop

USE ..iiiiieieeie e et 166
non-OpenMPccooeiiiin, 182
non-preemptable.......................... 57
non-SSE

generatingoocevviiiieininnenes 34
NONTEMPORAL

USE ..iiiieeeie e et et e e 206
nonvarying values 30
non-vectorizable loop 132
non-vectorized loops.................. 131
@ 123
NOPARALLEL directive....... 144, 145
nopartial option 103
NOPREFTCH directives 206
-nosave compiler option 51
nosequence keyword 55
NOSWP directives 203

244

nototal..........ccooeeeviiiiiiii 111
NOUNROLLcovvviiiiiiiiiiiiinnns 205
NOVECTOR directives 206
NOWAIT optioncceeeeennnnenn. 166
-nozero compiler option................. 51
NUM ... 111, 127
num_threads...................... 160, 186
number
changing........cocccoveeiviiiiinnennn. 164
MINIMIZING ...evveeeeeeeeeeeee 111
O
-O compiler option............cccceeunneees 62
-o filename compiler option........... 81
-O0 compiler option.......... 62, 65, 210
-O1 compiler option....................... 62

-O2 compiler option30, 41, 48, 55,
61, 62, 65, 66, 100, 121, 123, 131,
145, 158, 210

-O3 compiler option.....34, 62, 66, 70,
97, 121, 131, 210

object files

omitting

BLOCKSIZEovviiiiiiiien. 25
SEQUENCE ..o, 13

OMP ... 127, 150, 156, 158, 175, 183,
191

OMP ATOMIC......cooviiiieiiiiies 170
OMP BARRIER................... 166, 170
OMP CRITICALcovvveeeeiirinnnes 170
OMPDO......cceeeeeeiiee, 156, 164
OMP DO LASTPRIVATE............ 176
OMP DO ORDERED,SCHEDULE
.. 170
OMP DO REDUCTION............... 178
OMP END CRITICALccc..... 170
OMP END DO......ccoovvvvvveiiiiinnnns 164
OMP END DO directives 164
OMP END MASTER..........cccee.... 170
OMP END ORDERED................. 170

OMP END PARALLEL 164, 166, 170,
176, 180, 195

OMP END PARALLEL DO .164, 169,
178, 197

OMP END PARALLEL SECTIONS

.. 169
OMP END SECTIONS 166
OMP END SINGLE 166
OMP FLUSH.........covviiiiiiiiiiiiis 170

OMP MASTER ..., 170
OMP ORDEREDccovieeieenns 170
OMP PARALLEL. 164, 166, 176, 195

OMP PARALLEL DEFAULT 164,
166, 170, 175, 180

OMP PARALLEL DO...164, 169, 195

OMP PARALLEL DO DEFAULT 175,
178

OMP PARALLEL DO SHARED...197
OMP PARALLEL IFccccceeennn. 164
OMP PARALLEL PRIVATE 176, 195

OMP PARALLEL SECTIONS169,
195

OMP SECTION................. 166, 169
OMP SECTIONS........ccceeeeeen. 166
OMP SINGLE.......ccovviiiiiiiiies 166

omp_destroy locK...................... 186
omp_destroy_nest_lock.............. 186
OMP_DYNAMICcccceiiiiiiann. 183
omp_get_dynamicC...................... 186
omp_get_max_threads............... 186
omp_get nested 186
omp_get_num_procs.......... 164, 186

omp_get_num_threads....... 180, 186

245

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

omp_get_thread_num 170, 180, 186,
195, 197

omp_get wWtick...........ccoeeeiinnniin. 186
omp_get wtime............ccc.coeen 186
omp_in_parallel.......................... 186
omp_init_locK.........ccoveeiiiiiiinnnnn. 186
omp_init_nest lock..................... 186
omp_lib.mod file......................... 186
omp_lock kind........................... 186
omp_lock t.....ooiiiiiiiiii 186
omp_nest_lock_kind................... 186
omp_nest lock t........................ 186
OMP_NESTEDcoovviiiiiiiiinnnnnns 183
OMP_NUM_THREADS....... 145, 158,
164, 183
OMP_SCHEDULE145, 150, 180,
183
omp_set_dynamic...................... 186
omp_set lock.......c.coeeeiiiiin. 186
omp_set_nest lock.................... 186
omp_set nested......................... 186
omp_set_num_threads........ 164, 186
omp_test locK.........ccoeeniiiiiinniin. 186
omp_test nest lock................... 186
omp_unset_locK..........cceeeviennnin. 186

246

omp_unset_nest_lock................. 186
-On compiler option................. 61, 62
onethread........cccooviviiiiiiiiinnns. 197

open statement
OPEN statement BUFFERED ...25

-openmp compiler option 127, 158

OpenMP*
Clauses......coooveveiiiiieiiiieeee, 160
directivescccoevevveniiiieennnn. 160
environment variables............. 183
examples........ccoovviiiiiiieii, 191

extension environment variables

... 183
Intel® extensions.................... 189
par_100Pcoeevvieiiieiiieieee, 195
par_regioncoeeeveeeineennnnnn. 195
par_section............cccceeeveennnnn. 195
parallelizer option controls....... 158
ProcessiNg......ccccvvuvevneeeneennnnnn. 150
run-time library routines........... 186
synchronization directives 150
USAQJE couiieeeeeeeeeieeeeeaeeeaaenn 191
USES oviiiiieeeie et 150

OpenMP*-compliant compilers.... 189

-openmp_report compiler option .. 48,
127, 158

-openmp_stubs compiler option. 127,
189

operator/intrinsiC......................... 178
operator|intrinsic..........c.....ccc...... 160
-opt_report compiler option... 48, 213

optima record

optimization-level

OPLIONS .. 61

restricting........cccoeeiveiiiiiiiiein, 65

setting ..oovvviiii 62
optimizations

debugging and optimizations... 210

different application types............ 9
floating-point arithmetic precision
... 66
HLO oo 121
IPO... s 79
optimizer report generation 213

optimizing for specific processors

... 73
OVEIVIEW ... 41
PGO.. e, 93

Index

reports.......ccceevveennnen. 48, 203, 213
optimizer

allowingooveieiiiiiiiiiien, 41

full name..........ccccviiiieens 213

logical nameccccoooeeviiees 213

report generation 213

(=T oTo] o £ J R 213
optimizers

NAMES ...oveiiiiieeii e 213

YOUr COAE......ovvviieiieiiieeeeieee, 76

optimizing (see also optimizations)

application types............ccceeeen.n 61
floating-point applications.......... 34
for specific processors 9,73
option
CAUSES....uiivieieieeeteeee e 62
controls
auto-parallelizer's 147
OpenMP parallelizer's.......... 158
controls.......c.ceeevveennn. 98, 147, 158
disables.........ccooviiiiiiiii, 97
fOrces ...ooovviiiiii 51
initializes.........coociiiiiiiin, 51

247

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

Places......ccooeiviiiiiii e, 51

reducCescocvuvvevnieeiiieeieee, 210
options

compiler optimization 41

correspondccoeeevieiieinnnnnnn. 57

debugging summary 210

improve run-time performance... 41

iNStruct ... 132

output summary...................... 210

OVEIVIEWSovvvivieiininnenns 127, 210
OR.....ccii 103, 139, 170, 178
ORDERED

SPECITY ..o 170

USE ..uiiiieiee et e et e e e eeas 170
ORDERED clause...................... 166

ORDERED directive150, 166, 170

ordering
data declarations 13
kmp_set_stacksize_s.............. 189
original serial code..................... 143
output
argument...........cooeeiiiiiiieeennn. 20
overriding

248

vectorizer's efficiency heuristics
... 206

overview

compiler optimization options41
P
PADD

using GNU ..., 197

-par_report compiler option.. 48, 127,
145, 147

-par_threshold compiler option... 127,
145, 147

PARALLEL. 144, 145, 150, 156, 160,
164, 169, 175, 176, 178, 180, 201

parallel construct

PARALLEL directive....145, 164, 170

PARALLEL DO

PARALLEL DO directive..... 144, 180

parallel invocations with makefile .83,
97

PARALLEL PRIVATE.................. 127
parallel processing
directive groupsccceeeeenn.. 150

thread model

pseudo codeceeeunnennn. 156
thread model 156
parallel program development 127

parallel regions

debuggingcoooieiiiiiiiii 195

directivescccooevveviiiieeinnnnnn. 164

eNtry. .o 197
PARALLEL SECTIONS

USE .iiiiieeeiie e eet e 169
PARALLEL SECTIONS/END

PARALLEL SECTIONS........... 169
parallel/worksharing 150, 169
parallelismcoiiiiiiiins 127
parallelization

[oTo] o 1< TP 127

overview.....48, 127, 144, 156, 158

relieves. ..o 143
parsing

O s 25
part

mutually-exclusive 48
pathname............cc.ccoeeiiiiiinnnn. 57
-pc compiler option................. 48, 69
[oTeo] Lo] /N 103

Pentium® 4 processors................ 73
Pentium® Il processors 73
Pentium® M processors 73
performance analysis 149
performance analyzer........... 37,193
performance-critical............. 103, 182
performance-related options......... 41
performing
data flow.......ccoovevienennns 127, 143
@ U 25
PGO
environment variables............... 99
methodology.........ccceeeveviiiinennn. 94
PGO APl ..o 101
PhASES.....cciviiiiiiiieiiieeeeee 94
usage model........ccoooeeeiiiiiiiennn. 94

PGO API support

dumping and resetting profile

information 120
dumping profile information 119
interval profile dumping........... 120
OVEIVIEW ...ovvinieieiiieeeeeiaeeeeenn 118

resetting the dynamic profile
counters.........coeevveeiiiinnennnn. 120

249

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

resetting the profile information 120

pgopti.dpi file
compiler produces.................. 100
existing.....cocovviiveiiii 99
FEMOVE ...coviiiiieeei e 99
[oTe ol o] (1K< o] I 94, 103, 111
PGOPTI_Prof_Dump........... 101, 119
PGOPTI_Prof Dump_ And_ Reset
.. 120
PGOPTI_Prof Reset........... 119, 120
PGOPTI_Set_Interval_Prof Dump
.. 120
PGOUSEr.N. ... 118
phasel.......ccoooviviiiiiiiiieee 150
phase2........ccooovviiiiiiiiiiiieees 150

pipelining

ltanium®-based applications... 203

optimizationc....coeeeeee. 203
placing

PREFETCHovviiiiiiin. 206
pointer aliasing............ccccevevvinn. 51
pointers.....20, 51, 79, 125, 133, 160,

210
position-independent code............ 57
POSIX .o 195

-prec_div compiler option.............. 69
preemption
preemptable.................coool 57
preempted..........cooceiiinnnnnn. 57, 90
PREFETCH
placing.......cccoovveiiiiiiiiieeenn 206
prefetching
optimizations.............cccceeeeunnne. 125
OPLioN .. 125
{0 o] o o] o S 206
preparing
COUE ..ovieiiii e 150
preventing
CRAY pointers..........cccoveeennnnenn. 51
INHNING ..o 41
PRINT ... 176
PRINT statement........................ 103
prioritization..............ccoceeiiinnn. 111
PRIVATE
USE ..uieeiie e et e et e e 176
PRIVATE clause 176, 178

private scoping

variable........ooooi 150

procedure names....................... 160
process
OVEIVIEWeiiiiieeeeei e 41
process _data..........ccocceeeiiiennnnnn 119
processor
processor-based....................... 73
processor-instruction................. 73
targetingccooveviiiiii, 73
produced
IL 86
multithreaded................... 149, 150
profile-optimized 97

-prof_dir dirname compiler option.. 98

prof dpifile.....cc.ccoeeiiiiii 111
prof dpi Test1.dpi........ccc..ceene.. 111
prof dpi Test2.dpi.......ccccevnvennnee. 111
prof dpi Test3.dpi........c.c.ccoen... 111

PROF_DUMP_INTERVAL.... 99, 118

-prof_file flename compiler option 98

-prof_gen compiler option............. 97
PROF_NO CLOBBER................. 99
-prof _use compiler option............. 97

profile data

dumpingccccoeeiiiiiiiiie, 101

profile IGS

describe..........oooiiiiiii, 118
environment variable............... 118
functions........cccooiviiiii. 118
variable...........cccooeii, 118

profile information
dumpingccoovviiiiiien 119
generation support.................. 118

profile-guided optimizations (see
also PGO)

instrumented program............... 93
methodology.........ccccoeeeiviiiiiennn. 94
OVEIVIEW ...evvieeieiiieeeeni e 93
Phases.......cccovvviiiiiiiieieeee 94
utilities ... 101
profile-optimized
executable.........cccooooeiiiiiiinnnn. 97
generatingcooevviiiiiiiiineenns 97
ProducCeovvuiiiieiieeieceeans 97

profiling summary

specifyingccooveviiiiiie, 98
profmerge
1o lo | IR 101, 111

251

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

USE ..iiiiieeiiie e eet et 102

utility. ..., 101
program

affected aspect..............oo..ooe.. 79

program loops

dataflow.........cccoovviiiiiiiiiiiinnnn. 143
programming

high performance...................... 13
project makefile............ccccoeeveennin. 83
PROTECTED.........ceeeeeeeeeeeeeee 57
providing

supersetcocceeviviiieiee 176

pseudo code

parallel processing model........ 156
pushl.......cc.oooviiiiiiiiiee, 195, 197
Q
-qipo_fa xild option 83
-qipo_fo xild option....................... 83
-Qoption compiler option............... 88
R
-rcd compiler option...................... 69
READ

READ DATA. ..o, 134

252

READ/WRITE statements............. 45
REAL

REAL DATA....ccoiiiie 134
real objectfiles.........cccoeeviiiil 86
REAL*6.....ccoiiiieiiieeeeeeeei 30
REAL*A ... 30
REAL*™8 ... 30
-real_size compiler option............. 48
reassociation................... 70, 71, 178
rec8byte keywordc.coeeniil 55
RECL

Value ... 25
recnbyte keywordcc.cceuneees 55
recommendations

COAING ..oeviiiei 34

controlling alignment................. 55

record buffers

efficient use ofccccein 25
RECORD statement 13
-recursive compiler option............. 51
redeclaring..........cccoevvvviiiiineennnn. 201
redirected standard 25
REDUCTION

clause..........ccoeviiiiiiiiiie 178
completed...........ccoeeeiiiiiinnnnn, 178
ENd. .o 178
USE ..iiiiieieiie et 178
variables..........c.cooevenennen. 178, 201
reduction/induction variable........... 62
ref_dpi_file
FESPECt ...oeuiiiieiieiceceeea 103
relieving
/O e 25
relocating source files................. 102
removing
pgopti.dpi.......ccoveiiii 99
reordering
transformations....................... 133
repeating
instrumentation................c........ 98
replicated code............c..ccoeeene. 156
report
availability..............ccccc 213
generationocceiiiiiieennn. 213
optimizer.........c.ocoevveiiiiinnee. 213
Stderr ... 213

Index

resetting

dynamic profile counters 120

profile information 120
restricting

FP arithmetic precision.............. 71

optimizations..............cccceeeeun. 65
RESULT ... 77
results

| O 93
RETURN

double-precision 186

return values..............cccoeeeeeennn. 51
REVERSE...........ooviiiiiiiiis 176
rm PROF_DIR ..., 111
rounding

CoNtrolcooeviiiiiiiii e, 69

significandcc.c.ooeiiiiennnnnn. 69
round-to-nearest..............ccccoeeeee 69
routines

selecting.......ccoeveiiiiiiiii 90

tiMiNg .oovee 186
RTL. e 25
run

253

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

differential coverage................ 103
multithreaded.......................... 158
test prioritization 111
run-time
Call oo, 189
checks for IA-32 systems 77
library routines........................ 186
peelingccoovveiiiiiiiiiie 140
performance............ccceceevuennn.. 41
processor-specific checks.......... 77
scheduling...........cceiiiiiinnnee. 145
S
-S compiler option ... 86
-safe_cray_ptr compiler option...... 51
SAVE statement...................ooeee 51
scalar
clean-up iterations 140
replacement..............c.ccooueee. 123
scalar_integer_expression 160
scalar_logical_expression 160
-scalar_repcoveeiiiiiiiiieens 123
-scalar_rep compiler option......... 123
SCHEDULE

254

clause.......cccooeveviiiiiiiiiiieeen, 180

SPECIfYiNguvveiiiiieiiii e, 180

USE i 166
S ete] o[o [P 174
SCRATCH ... 174, 175
screenshot.......cccovvvveviiiiiiineeees 103
SECNDS ... 38
SECTION......cceeennn. 150, 160, 166
SECTION directive....... 166, 169, 176
SECTIONS

directive.........ccovvveenenn.. 166, 169

USE ..iiieeiie e et e et e e 166
selecting

FOUtINEScoovviiiiiiiiieeeei e, 90
SEQUENCE

(0] 101 | S PP 13

SPECIHTY v 13

statement..............cc. 13, 55

USE .iiieeeee e et et e e e 13
SELENV ... 45
setting

argumentsooieeiiiieeneeen 13

coloring scheme...................... 103

conditional parallel region

executionccccooeeeiiiiiinens 164
emailcoooeeiiiii 103
< [PP 92
F_UFMTENDIAN variable.......... 45
e 77
html files......cccooeiiviii 103

optimization level 62

UNIES .o 164
SHARED

clause.......coooeuiiiiiiiiiii, 180

debuggingccooeviiiiiiii 201

shared scoping........cc..ceeeunnnn. 150

shared variables 197

updatingcooiieiiiiiiees 191

USE ..iiiiieieii e et 180
significand

FOUND....iiiiiii e 69
SIMD34, 127, 130, 133, 137, 138
SIMD SSE2

streamingcoooeviiiiiiiinnn. 34
SIMD-encodings

enablingccccoovveiiiiii 138

simple difference operator 191
SIN Lo 137, 139
SINGLE
directive...........occoevieeies 166, 170
eNCOUNters...........ccvuvveviieennnnens 166
executing........ccooeveuieiiineeennes 166
USE ..iiiieiieeeeit e eeete e e e 166
single-instruction 133
single-precision 30, 66
single-statement loops................ 133
single-threaded 193
small logical data items................. 30
small_bar.......ccc.oooiiiiiiii 33
SMP ..o 34, 143, 149
software pipelining....... 127, 203, 204
source
COUE .o 158
coding guidelines...................... 30
files relocation...............ccc....... 102
9] o]V | S 145, 158
listing....ooovvviniiii, 195, 197
VIEW ..ot 103
specialized code...... 75, 76, 127, 131

255

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

specific
OPtiMIZING ...oeveeeeieee e 73
specifying
8-bytedata............ocooiiiiiinl. 48
DEFAULT ..o 175
directoryccoveeiiiiiin 98
END DO ..o 166
KIND ..o 13
ORDEREDcccoviiiiiee 170
profiling summary 98
RECL oo 25
schedule.............ciiiiiiinee. 180
SEQUENCE ... 13
symbol visibility explicitly........... 57
VECLOrIZEr....covvviiiiiiiiiiieie 140
visibility without symbol file........ 57
spi
file. . 103, 111
(o] o] 1] o 111
PgoPti.SPi...ceeiiiiiiean 103, 111
SQRT ..o 164
SSE....oi 34, 66, 130, 137
SSE2....o 34, 130

256

stacks

SIZE i 189
standard

OpenMP clauses 160

OpenMP directives.................. 160

OpenMP environment variables

... 183

statements

ACCESSING «oevveeeiieeeiieeeieeeeieeen, 13

BLOCKSIZE ... 25

BUFFERCOUNT.............coee. 25

BUFFERED............ccooeeeiiin. 25

functions........ccooovviiii, 30
STATIC ..o 180
STATUS ..o 25
stderr

(=T 0 Lo o SR 213
Stream_LF ... 25
streaming

SIMD SSE2ccoovvvveeeiiiiiiiinnnes 34
Streaming SIMD Extensions

single-precision....................... 138
stride-1

example.........cooiiiiiii 142

StiNGS...cee 25
Strip-miningcovevviiiiii 138
STRUCTURE statements....... 13, 55
SUBDOMAINcoovviiiiiiiiiiiiiinns 180
Subl....oooo 195, 197
subobjectsccoooiiiiiii, 176
suboption.......ccooiiiiiii 41
subroutine
machine code listing 195
PADD
eNtrY .o 197
source listing................c..... 197
PADD......ovviiiiiiiiiiieee e 197
PARALLEL ... 195
PGOPTI_PROF_DUMP........... 101
VEC _COPY....cooiiiiiiiee 140
WORK ..., 170
subscripts
AIAY e 20
[0 o] o 142
Varying «.couoeeeeieeieeeeeeeieeeeiees 25
substring
containing.........c.ccoveviiiiieinnnnn, 213

superset......ccooovciiiiieii e, 176
support
loop unrollingcccceveeennnnnnee. 205
MMX..e 34
OpenMP Libraries........... 143, 182
prefetching..........cccoooeeviens 206
symbolic debugging 210
vectorizationccceeeeeieenn. 206
worksharingccocceveeeeennnis 150
SWP directivecccoceveveinnnns 203
symbol
fil© e 57
preemptioncccoeeiiiieiinnnns 57
visibility attribute options 57
symbolic debugging.................... 210
synchronization
conStructs........coovveviiiiiiiins 170
identify.....c.cooiiiiii 170
worksharing construct directives
... 166
syntaX......cooeveiiiiiiiiiiienn 145, 158
SYSTEM_CLOCKccciiiiiiieeennnn. 38
SYSteMS ..o 66

257

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

T
table operators/intrinsics............. 178
TAN L 137
targeting a processor.................... 73
terabytes........ccoooviiiii 183

test prioritization tool

Test1

Test1.dpiceeeeeeeiiieeeeeeenn. 111

Test1.dpi 00ccceeeeeeeeeeen. 111

Test2.dpi...ceeeeeeiiieeiieeennn, 111
Testl o 111
Test2

adding......ccooveieiiiieeeieees 111

Test2.dpi 00cceeeeeeeeeeeen. 111
Test2 ..o 111
Test3

LI 6 Ko [o] P 111

Test3.dpi 00.......cccvveevneennnnns 111
Test3 . 111
tests listfile......ccoocoeneiinininin. 111
tselect command..................... 111

THREADPRIVATE

directive.........cccceeeeennnnnnne. 150, 174

258

variables..........cccooooiin, 175
threads........cooiviiiiiii 164
threshold

auto-parallelization.................. 145

controlcooviiiiiiiii, 147

option sets.......ccoooeiiiiiiiiienn. 147

time interval for profile dumping.. 120

TIME intrinsic procedure............... 38
timeout.........ooiiii 90
timing

rOUtiNeScoovviiiiiiiiiiiiiiiees 186

your application......................... 38
tips

troubleshooting 147
TLP e 127
tool

St 103
code coverageoouuuneeeennn. 103
test prioritization...................... 111

-tpp compiler option................ 48,73
-traceback compiler option.......... 210
transformations

reordering........ccoeevveeveeenennnn. 133
transformed parallel code........ 143
troubleshooting
tPS e 147
TRUNC ... 34
tselect command........................ 111
two-dimensional
AMMAY e 34
type
aliasablility.........ccccoeeviviiiininnnnn. 51
Casting.......ooovvevviiiiiii e 125
INTEGER ..o 51
padd_,@function 197
parallel_,@function................. 195
part dt......coooiii 13
L 71
TYPE statement 13
U
UBC
buffers........cccooiiiii, 25

Index

unary

SQRT ..o 137
unbuffered.........cccooooiiiiii, 25
underflow/overflow 51
undispatched.............ccoeeveieennnn. 166
unformatted files...................ceee 25
unformatted I/O........cccccceiiiiiiiiens 25
uninterruptable........................... 150
uniprocessor 150, 158, 193
units

Settingoovevviiiii e, 164
unpredicatblecoooeiiii 51

unproven distinction

unvectorizable copy 140
-unroll compiler option 48, 123
UNROLL directiveccceunn... 205
unrolling

[0 o] o TP 123
unvectorizable...........cccccoeeeennnnnn. 133
updating

sharedccoooiiiiiiiiiiiies 191
usage

MOodeloevviiiiiiiiiiiiian, 94, 111

259

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

requirementsc...ceeeeen. 111 Intel® performance analysis tools
... 37
FUIES ..o, 83, 166
interprocedural optimizations.... 34,
user functions..........ccooeviveenen. 92 79
using INtriNSICScoovviiiiiiiii, 33
32-bit counters.........ccoevveennenn.. 97 PO, 79, 93
advanced PGO.........c..cceevue 98 IVDEP ..o 206
ATOMIC ..., 170 LASTPRIVATE ... 176
auto-parallelization.................. 144 MASTER ..o, 170
BARRIER ..., 170 (01T gT0] o VA 25
COPYIN ..o 175 noniterative worksharing
SECTIONS.......ooeieeen 166
CRITICALoeveeeeeeeeeeen 170
non-SSE instructions................. 34
DEFAULT ..., 175
NONTEMPORAL 206
ebp register.........ccccoeviiiin 210
optimal record...........cccoeeenveennnes 25
EDB ..o 13
ORDEREDccccveeeviiiieee, 170
efficient data types.................... 30
orphaned directives................. 156
EQUIVALENCE statements 30
PARALLEL DOcovvevennnnnn. 169
FIRSTPRIVATE........cccvvn, 176
PARALLEL SECTIONS........... 169
FLUSH ..., 170
PRIVATE ... 176
formatted files............coeeee. 25
profile-guided optimization....... 100
GDB ... 210
profmerge utility 102
GOTO .. 166
REAL data type........cccccvvennnnnn. 30
GP-relativeccooevviiiiinnnnnn. 57
REAL variables..............cc......... 34
implied-DO loops.......cccevvuneeeen. 25
RECORD.......ccviiieiiiiiieeeeiieeeee 13

260

REDUCTIONcccooeviiieen, 178 threshold control 147
SCHEDULE.........cccoviiiin 166 visibility attributes...................... 57
SECTIONS ... 166 variables
SEQUENCE ... 13 AUTOMATIC ..., 48
SHAREDcoviiiiiiiiee, 180 automatic allocation 51
SINGLE ..o 166 comma-separated list.............. 160
slow arithmetic operators 30 correspondcoeeviiieiiiiiiieenns 20
SSE .. 34 exXiStingcoeviiiiiii e, 160
THREADPRIVATE directive..... 156 ISYNC ... 170
unbuffered disk writes............... 25 length ..o 25
unformatted files....................... 25 [0 o] o I 176
vectorizationccceeiieeeen. 34 PGO environment..................... 99
VTune(TM) Performance Analyzer private scoping.............cceeeeeen. 150
.................................... 149, 150
profile IGS ... 118
worksharing........ccccooeeeviieeennns 164
FENAMING ..ovveinieieeieeeeeeieeeenes 62
utilities for PGO............cccvueen 101
scalars.......ccooeveiiiiiiiiiieee, 51
Vv
setting ..o 13, 189
value
VAX 55
TE-40 oo, 66
-vec_report compiler option .. 48, 131
INFINItY. ... 66
VECTOR ALWAYS directive....... 206
mixed data typecccc.oeeeennnnen. 30
VECTOr COPY ..ovvniieiiiiiieeei e 140
NaN.....coo 66
VECTOR directives
specified for -src_old and -
SIC_NEW .oeevvieieiiieeeeiie e 102 VECTOR ALIGNED 206

261

Intel® Fortran Compiler for Linux* Systems User’s Guide Vol i

VECTOR ALWAYS........euvnnnns 206

VECTOR NONTEMPORAL..... 206

VECTOR UNALIGNED............ 206
vectorizable

[101°(] o T T 133

vectorization (see also Loop)
avoiding.......cooveieiiiiieiiee 206
examples......ccooviviiiiieiiieeenn. 140

key programming guidelines.... 133

levels......coovviiiii e, 130
[0 To] o 206
(o] o] (o] o [TN 121, 131
OVEIVIEW ...t 130
rePOrtS. ..o 131
{0 o] oo] o A 206
vectorize
[00OPS i 93
vectorized48, 131, 135, 137, 140,
206
vectorizer

efficiency heuristics

overrding.....ccooceveeiiiiiiennns 206
efficiency heuristics................. 206
(o] o] 1o] o - J 131

262

vectorizing compilers.................. 133
vectorizing loopscccceievenenn. 206
version NUMbers............ccceeeveeeenen. 86
view

XMM..ooiiiiiiiiieee e 37
violation

FORTRAN-77 ...ccoiiiiiiiiiiii 41
visibility

specifyingcccoveiiiiiiiii, 57

SYymbOl......ooiii 57

visual presentation

application's code coverage 103

-vms compiler option 13, 41
VMS-relatedcocoeieviiinien. 41
VOLATILE statement.................... 25

USE i e 149
w
-WO compiler option...................... 13
wallclocKuvviiiiiiiiiiiee, 186
whitespace.......c.ccoveeveiiiiiiiiineennn. 57
work

work/pgopti.dpifile.................. 102

WOTK/SOUICESveieeeeaiaaaan . 102

worker thread

call stack dump........cc..cceeeee. 197
WORKSHAREovvviiiiiinnnn. 149
worksharing

construct directives 166

(=] o o [150, 160

XIS .o, 150

USE .iiiiieeeiie e eet e 164
WRITE

WRITE DATA ... 134
write whole arrays 25
X
-x compiler option....................... 131
X AXIS ..o, 166, 169, 170
X86 ProCESSOrS.....cceuveneenaernaennnns 75
XFIELD ..o 174, 175
XIAC i 86
xild

liStiNg..coveeieee 83

Index

options
-ipo_[no]verbose-asm............. 83
-ipo_fcode-asm...................... 83
-ipo_fsource-asm................... 83
-Qipo_fa..cooi 83
~QIPO_fO. v 83
OPLIONS....eiiie e 83
1(oTo PR 80
XMM
VIBW ..o 37
) (O] S 139
Y
Y AXIS .o 166, 169, 170
YFIELDccooiiiii 174, 175
Z
Z AXIS i 166, 169

zero denormal

flushing.........coovviiiiii. 66, 70
ZFIELDcooeiiiiieiiieeee, 174, 175
-Zp compiler option................. 48, 55

263

	Intel(R) Fortran Compiler for Linux* Systems User's Guide Vol II
	Disclaimer and Legal Information
	Optimizing Applications: Overview
	How to Use This Document
	Programming for High Performance
	Programming for High Performance: Overview
	Programming Guidelines
	Setting Data Type and Alignment
	Using Arrays Efficiently
	Improving I/O Performance
	Improving Run-time Efficiency
	Using Intrinsics for Itanium®-based Systems
	Coding Guidelines for Intel® Architectures

	Analyzing and Timing Your Application
	Using Intel Performance Analysis Tools
	Timing Your Application

	Compiler Optimizations
	Compiler Optimizations Overview
	Optimizing the Compilation Process
	Optimizing the Compilation Process Overview
	Efficient Compilation
	Little-endian-to-Big-endian Conversion
	Default Compiler Optimizations
	Using Compilation Options

	Optimizing Different Application Types
	Optimizing Different Application Types Overview
	Setting Optimizations with -On Options
	Restricting Optimizations

	Floating-point Arithmetic Optimizations
	Options Used for Both IA-32 and Itanium® Archite�
	Floating-point Arithmetic Precision for IA-32 Systems
	Floating-point Arithmetic Precision for Itanium®�
	Improving/Restricting FP Arithmetic Precision

	Optimizing for Specific Processors
	Optimizing for Specific Processors Overview
	Targeting a Processor, -tpp{n}
	Processor-specific Optimization (IA-32 only)
	Automatic Processor-specific Optimization (IA-32 only)
	Processor-specific Run-time Checks, IA-32 Systems

	Interprocedural Optimizations (IPO)
	Overview of Interprocedural Optimizations
	IPO Compilation Model
	Command Line for Creating an IPO Executable
	Generating Multiple IPO Object Files
	Capturing Intermediate Outputs of IPO
	Creating an IPO Executable Using xild
	Code Layout and Multi-Object IPO
	Compilation with Real Object Files
	Creating a Library from IPO Objects
	Using -ip with -Qoption Specifiers
	Inline Expansion of Functions

	Profile-guided Optimizations
	Profile-guided Optimizations Overview
	Profile-guided Optimizations Methodology and Usage Model
	Basic PGO Options
	Advanced PGO Options
	PGO Environment Variables
	Example of Profile-Guided Optimization
	Merging the .dyn Files
	Using profmerge to Relocate the Source Files
	Code-coverage Tool
	Test Prioritization Tool
	PGO API: Profile Information Generation Support

	High-level Language Optimizations (HLO)
	HLO Overview
	Loop Transformations
	Scalar Replacement (IA-32 Only)
	Loop Unrolling with -unroll[n]
	Memory Dependency with IVDEP Directive
	Prefetching

	Parallel Programming with Intel® Fortran
	Parallelism: an Overview
	Auto-vectorization (IA-32 Only)
	Vectorization Overview
	Vectorizer Options
	Loop Parallelization and Vectorization
	Vectorization Key Programming Guidelines
	Data Dependence
	Loop Constructs
	Loop Exit Conditions
	Types of Loop Vectorized
	Strip-mining and Cleanup
	Statements in the Loop Body
	Vectorization Examples
	Loop Interchange and Subscripts: Matrix Multiply

	Auto-parallelization
	Auto-parallelization Overview
	Programming with Auto-parallelization
	Auto-parallelization: Enabling, Options, Directives, and Environment Variables
	Auto-parallelization Threshold Control and Diagnostics

	Parallelization with OpenMP*
	Parallelization with OpenMP* Overview
	Programming with OpenMP
	Parallel Processing Thread Model
	Compiling with OpenMP, Directive Format, and Diagnostics
	OpenMP Directives and Clauses Summary
	OpenMP Directive Descriptions
	OpenMP Clause Descriptions
	OpenMP Support Libraries
	OpenMP Environment Variables
	OpenMP Run-time Library Routines
	Intel Extension Routines
	Examples of OpenMP Usage

	Debugging Multithreaded Programs
	Debugging Multithread Programs Overview
	Debugging Parallel Regions
	Debugging Multiple Threads
	Debugging Shared Variables

	Optimization Support Features
	Optimization Support Features Overview
	Compiler Directives
	Compiler Directives Overview
	Pipelining for Itanium®-based Applications
	Loop Count and Loop Distribution
	Loop Unrolling Support
	Prefetching Support
	Vectorization Support

	Optimizations and Debugging
	Optimizer Report Generation

	Glossary
	Glossary

	Index

