IBM Books

Engineering and Scientific Subroutine Library for AIX Version 3 Release 3: Guide and Reference


Overview of the Eigensystem Analysis Subroutines

The eigensystem analysis subroutines provide solutions to the algebraic eigensystem analysis problem Az = wz and the generalized eigensystem analysis problem Az = wBz ( Table 122). Many of the eigensystem analysis subroutines use the algorithms presented in Linear Algebra by Wilkinson and Reinsch [99] or use adaptations of EISPACK routines, as described in the EISPACK Guide Lecture Notes in Computer Science in reference [87] or in the EISPACK Guide Extension Lecture Notes in Computer Science in reference [58]. (EISPACK is available from the sources listed in reference [49].)

Table 122. List of Eigensystem Analysis Subroutines

Descriptive Name Short- Precision Subroutine Long- Precision Subroutine Page
Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix SGEEV
CGEEV
DGEEV
ZGEEV
SGEEV, DGEEV, CGEEV, and ZGEEV--Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix
Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix SSPEV
CHPEV
DSPEV
ZHPEV
SSPEV, DSPEV, CHPEV, and ZHPEV--Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix SSPSV
CHPSV
DSPSV
ZHPSV
SSPSV, DSPSV, CHPSV, and ZHPSV--Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, Az=wBz, where A and B Are Real General Matrices SGEGV DGEGV SGEGV and DGEGV--Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, Az=wBz, where A and B Are Real General Matrices
Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric and B Is Real Symmetric Positive Definite SSYGV DSYGV SSYGV and DSYGV--Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric and B Is Real Symmetric Positive Definite


[ Top of Page | Previous Page | Next Page | Table of Contents | Index ]