IBM Books

Parallel Engineering and Scientific Subroutine Library for AIX Version 2 Release 3: Guide and Reference

PDGEHRD--Reduce a General Matrix to Upper Hessenberg Form

This subroutine reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:

H = QTAQ

where A represents the global general submatrix Aia+ilo-1: ia+ihi-1, ja+ilo-1: ja+ihi-1.

If n = 0, no computation is performed, and the subroutine returns after doing some parameter checking. Then, if ihi = ilo, the subroutine returns after doing some parameter checking and setting tauja:ja+ilo-2 and tauja+ihi-1:ja+n-2 to zero.

See references [13] and [21].

Table 106. Data Types

A, tau, work Subroutine
Long-precision real PDGEHRD

Syntax

Fortran CALL PDGEHRD (n, ilo, ihi, a, ia, ja, desc_a, tau, work, lwork, info)
C and C++ pdgehrd (n, ilo, ihi, a, ia, ja, desc_a, tau, work, lwork, info);

On Entry

n
is the order of submatrix A used in the computation.

Scope: global

Specified as: a fullword integer; n >= 0.

ilo
lower range of the rows or columns in the global general submatrix A used in the computation.

Scope: global

Specified as: a fullword integer; 1 <= ilo <= max(1, n).

ihi
upper range of the rows or columns in the global general submatrix A used in the computation.

Scope: global

Specified as: a fullword integer; min(ilo, n) <= ihi <= n.

a
is the local part of the global general matrix A. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+n-1 part of the global matrix.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 106. Details about the square block-cyclic data distribution of global matrix A are stored in desc_a.

ia
is the row index of the global matrix A, identifying the first row of the submatrix A.

Scope: global

Specified as: a fullword integer; 1 <= ia <= M_A and ia+n-1 <= M_A.

ja
is the column index of the global matrix A, identifying the first column of the submatrix A.

Scope: global

Specified as: a fullword integer; 1 <= ja <= N_A and ja+n-1 <= N_A.

desc_a
is the array descriptor for global matrix A, described in the following table:
desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP Global
3 M_A Number of rows in the global matrix If n = 0: M_A >= 0

Otherwise: M_A >= 1

Global
4 N_A Number of columns in the global matrix If n = 0: N_A >= 0

Otherwise: N_A >= 1

Global
5 MB_A Row block size MB_A >= 1 Global
6 NB_A Column block size NB_A >= 1 Global
7 RSRC_A The process row of the p × q grid over which the first row of the global matrix is distributed 0 <= RSRC_A < p Global
8 CSRC_A The process column of the p × q grid over which the first column of the global matrix is distributed 0 <= CSRC_A < q Global
9 LLD_A The leading dimension of the local array LLD_A >= max(1,LOCp(M_A)) Local

Specified as: an array of (at least) length 9, containing fullword integers.

tau
See On Return.

work
has the following meaning:

If lwork = 0, work is ignored.

If lwork <> 0, work is the work area used by this subroutine, where:

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 106.

lwork
is the number of elements in array WORK.

Scope:

Specified as: a fullword integer; where:

info
See On Return.

On Return

a
is the updated local part of the global general matrix A, containing the results of the computation.

The upper triangle and the first subdiagonal of Aia:ia+n-1, ja:ja+n-1 are overwritten by the corresponding elements of the upper Hessenberg matrix H. The elements below the first subdiagonal are overwritten with vi+2:ihi. These elements with tau represent the orthogonal matrix Q as a product of elementary reflectors.

See Function, for more information.

Scope: local

Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 106. Details about the square block-cyclic data distribution of global matrix A are stored in desc_a.

tau
is the updated local part of the global matrix tau, where:

This identifies the first element of the local array tau. This subroutine computes the location of the first element of the local subarray used, based on ja, desc_a, p, q, myrow, and mycol; therefore, the leading 1 by LOCq(ja+n-2) part of the local array tau must contain the local pieces of the leading 1 by ja+n-2 part of the global matrix tau.

A copy of the vector tau, with a block size of NB_A and global index ja, is returned to each row of the process grid. The process column over which the first column of tau is distributed is CSRC_A.

Scope: local

Returned as: a 1 by (at least) LOCq(N_A-1) array, containing numbers of the data type indicated in Table 106.

work
is the work area used by this subroutine if lwork <> 0, where:

If lwork <> 0 and lwork <> -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Scope: local

Returned as: an area of storage, where:

If lwork >= 1 or lwork = -1, then work1 is set to the minimum lwork value and contains numbers of the data type indicated in Table 106. Except for work1, the contents of work are overwritten on return.

info
indicates that a successful computation occurred.

Scope: global

Returned as: a fullword integer; info = 0.

Notes and Coding Rules
  1. In your C program, argument info must be passed by reference.
  2. Matrix A, tau, and work must have no common elements; otherwise, results are unpredictable.
  3. On entry, the general submatrix Aia:ia+n-1, ja:ja+n-1 must already be upper triangular in rows (ia:ia+ilo-2) and (ia+ihi:ia+n-1), and upper triangular in columns (ja:ja+ilo-2) and (ja+ihi:ja+n-1). If this is not the case, you should set ilo = 1 and ihi = n.

    If n = 0, you should set ilo = 1 and ihi = 0. If n > 0, you should set 1 <= ilo <= ihi <= n.

  4. The NUMROC utility subroutine can be used to determine the values of LOCp(M_) and LOCq(N_) used in the argument descriptions above. For details, see Determining the Number of Rows and Columns in Your Local Arrays and NUMROC--Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process.
  5. The global general matrix A must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
  6. The global general matrix A must be aligned on a block boundary; that is:
  7. There is no array descriptor for tau. tau is a row-distributed vector with block size NB_A, local arrays of dimension 1 by LOCq(N_A-1), and global index ja. A copy of tau exists on each row of the process grid, and the process column over which the first column of tau is distributed is CSRC_A.
  8. For suggested block sizes, see Coding Tips for Optimizing Parallel Performance.
  9. If lwork = -1 on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1.

Function

This subroutine reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:

H = QTAQ

where:

Error Conditions

Computational Errors

None

Resource Errors
  1. lwork = 0 and unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1 

  1. DTYPE_A is invalid.

Stage 2 

  1. CTXT_A is invalid.

Stage 3 

  1. PDGEHRD has been called from outside the process grid.

Stage 4 

  1. n < 0
  2. M_A < 0 and n = 0; M_A < 1 otherwise
  3. N_A < 0 and n = 0; N_A < 1 otherwise
  4. MB_A < 1
  5. NB_A < 1
  6. RSRC_A < 0 or RSRC_A >= p
  7. CSRC_A < 0 or CSRC_A >= q
  8. ia < 1
  9. ja < 1

Stage 5 

  1. ilo < 1 or ilo > max(1, n)
  2. ihi < min(ilo, n) or ihi > n

If n <> 0:

  1. ia > M_A
  2. ja > N_A
  3. ia+n-1 > M_A
  4. ja+n-1 > N_A

In all cases:

  1. MB_A <> NB_A
  2. mod(ia-1, MB_A) <> 0
  3. mod(ja-1, NB_A) <> 0

Stage 6 

  1. LLD_A < max(1, LOCp(M_A))
  2. lwork <> 0, lwork <> -1, and lwork < (nb  ×  nb)+nb × max(ihip+1, ihlp+inlq)

    where:

    nb = MB_A = NB_A
    ioff = mod(ia+ilo-2, nb)
    iroffa = mod(ia-1, nb)
    iarow = mod(RSRC_A+(ia-1)/nb, nprow)
    ilrow = mod(RSRC_A+(ia+ilo-2)/nb, nprow)
    ilcol = mod(CSRC_A+(ja+ilo-2)/nb, npcol)
    ihip = NUMROC(ihi+iroffa, nb, myrow, iarow, nprow)
    ihlp = NUMROC(ihi-ilo+ioff+1, nb, myrow, ilrow, nprow)
    inlq = NUMROC(n-ilo+ioff+1, nb, mycol, ilcol, npcol)

Stage 7 

    Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P00:

  1. n differs.
  2. ilo differs.
  3. ihi differs.
  4. ia differs.
  5. ja differs.
  6. DTYPE_A differs.
  7. M_A differs.
  8. N_A differs.
  9. MB_A differs.
  10. NB_A differs.
  11. RSRC_A differs.
  12. CSRC_A differs.

    Also:

  13. lwork = -1 on a subset of processes.

Example

This example shows the reduction of a general matrix of order 3 to upper Hessenberg form using a 2 × 2 process grid.

Note:
Because lwork = 0, PDGEHRD dynamically allocates the work area used by this subroutine.

Call Statements and Input


ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
 
              N   ILO   IHI   A  IA  JA   DESC_A   TAU   WORK   LWORK   INFO
              |    |     |    |   |   |     |       |     |       |      |
CALL PDGEHRD( 3 ,  1  ,  3  , A , 1 , 1 , DESC_A , TAU , WORK  ,  0   , INFO)


DESC_A
DTYPE_ 1
CTXT_ icontxt(IITOOT5)
M_ 3
N_ 3
MB_ 1
NB_ 1
RSRC_ 0
CSRC_ 0
LLD_ See below(EPSSTL5)

Notes:

  1. icontxt is the output of the BLACS_GRIDINIT call.

  2. Each process should set the LLD_ as follows:
    LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
    

    In this example, LLD_A = 2 on P00 and P01, and LLD_A = 1 on P10 and P11.

Global general matrix A of order 3 with block sizes 1 × 1:

B,D      0         1         2
     *                           *
 0   |  33.0  |   16.0  |   72.0 |
     | -------|---------|------- |
 1   | -24.0  |  -10.0  |  -57.0 |
     | -------|---------|------- |
 2   |  -8.0  |   -4.0  |  -17.0 |
     *                           *

The following is the 2 × 2 process grid:

B,D  |   0 2   |  1  
-----| ------- |-----
0    |   P00   |  P01
2    |         |
-----| ------- |-----
1    |   P10   |  P11

Local arrays for A:

p,q  |      0       |    1
-----|--------------|--------
 0   |  33.0  72.0  |   16.0
     |  -8.0 -17.0  |   -4.0
-----|--------------|--------
 1   | -24.0 -57.0  |  -10.0

Output:

Global general matrix A of order 3 with block sizes 1 × 1:

B,D      0          1          2
     *                              *
 0   |  33.00  |  -37.95  |   63.25 |
     | --------|----------|-------- |
 1   |  25.30  |  -29.00  |   53.00 |
     | --------|----------|-------- |
 2   |   0.16  |    0.00  |    2.00 |
     *                              *

The following is the 2 × 2 process grid:

B,D  |   0 2   |  1  
-----| ------- |-----
0    |   P00   |  P01
2    |         |
-----| ------- |-----
1    |   P10   |  P11

Local arrays for A:

p,q  |       0        |    1
-----|----------------|---------
 0   |  33.0   63.25  |  -37.95
     |   0.16   2.00  |    0.00
-----|----------------|---------
 1   |  25.30  53.00  |  -29.00

Global row vector tau of length 2 with block sizes of 1:

B,D      0         1
     *                 *
 0   |  1.95  |   0.00 |
     *                 *

Note:
A copy of tau is distributed across each row of the process grid.

The following is the 2 × 2 process grid:

B,D  |    0    |  1  
-----| ------- |-----
     |   P00   |  P01
-----| ------- |-----
     |   P10   |  P11

Local arrays for tau:

p,q  |   0    |    1
-----|--------|--------
 0   |  1.95  |   0.00
-----|--------|--------
 1   |  1.95  |   0.00

The value of info is 0 on all processes.


[ Top of Page | Previous Page | Next Page | Table of Contents | Index ]