PDSYR computes the following rank-one update:
PZHER computes the following rank-one update:
where, in the formula above:
and:
In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:
| A, x | alpha | Subprogram |
| Long-precision real | Long-precision real | PDSYR |
| Long-precision complex | Long-precision real | PZHER |
| Fortran | CALL PDSYR | PZHER (uplo, n, alpha, x, ix, jx, desc_x, incx, a, ia, ja, desc_a) |
| C and C++ | pdsyr | pzher (uplo, n, alpha, x, ix, jx, desc_x, incx, a, ia, ja, desc_a); |
If uplo = 'U', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
Scope: global
Specified as: a fullword integer; n >= 0.
Scope: global
Specified as: a number of the data type indicated in Table 40.
Scope: local
Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 40. Details about the block-cyclic data distribution of the global matrix X are stored in desc_x.
If incx = M_X, it indicates which row of global matrix X is used for vector x.
If incx = 1 and incx <> M_X, it is the row index of global matrix X, identifying the first element of vector x.
Scope: global
Specified as: a fullword integer; 1 <= ix <= M_X and:
If incx = 1 and incx <> M_X, then ix+n-1 <= M_X.
If incx = M_X, it is the column index of global matrix X, identifying the first element of vector x.
If incx = 1 and incx <> M_X, it indicates which column of global matrix X is used for vector x.
Scope: global
Specified as: a fullword integer; 1 <= jx <= N_X and:
If incx = M_X, then jx+n-1 <= N_X.
| desc_x | Name | Description | Limits | Scope |
|---|---|---|---|---|
| 1 | DTYPE_X | Descriptor type | DTYPE_X=1 | Global |
| 2 | CTXT_X | BLACS context | Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP | Global |
| 3 | M_X | Number of rows in the global matrix |
If n = 0: M_X >= 0 Otherwise: M_X >= 1 | Global |
| 4 | N_X | Number of columns in the global matrix |
If n = 0: N_X >= 0 Otherwise: N_X >= 1 | Global |
| 5 | MB_X | Row block size | MB_X >= 1 | Global |
| 6 | NB_X | Column block size | NB_X >= 1 | Global |
| 7 | RSRC_X | The process row of the p × q grid over which the first row of the global matrix is distributed | 0 <= RSRC_X < p | Global |
| 8 | CSRC_X | The process column of the p × q grid over which the first column of the global matrix is distributed | 0 <= CSRC_X < q | Global |
| 9 | LLD_X | The leading dimension of the local array | LLD_X >= max(1,LOCp(M_X)) | Local |
Specified as: an array of (at least) length 9, containing fullword integers.
Scope: global
Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx = M_X, then x is a row-distributed vector.
If incx = 1 and incx <> M_X, then x is a column-distributed vector.
Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 40. Details about the square block-cyclic data distribution of global matrix A are stored in desc_a.
Scope: global
Specified as: a fullword integer; 1 <= ia <= M_A and ia+n-1 <= M_A.
Scope: global
Specified as: a fullword integer; 1 <= ja <= N_A and ja+n-1 <= N_A.
| desc_a | Name | Description | Limits | Scope |
|---|---|---|---|---|
| 1 | DTYPE_A | Descriptor type | DTYPE_A=1 | Global |
| 2 | CTXT_A | BLACS context | Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP | Global |
| 3 | M_A | Number of rows in the global matrix |
If n = 0: M_A >= 0 Otherwise: M_A >= 1 | Global |
| 4 | N_A | Number of columns in the global matrix |
If n = 0: N_A >= 0 Otherwise: N_A >= 1 | Global |
| 5 | MB_A | Row block size | MB_A >= 1 | Global |
| 6 | NB_A | Column block size | NB_A >= 1 | Global |
| 7 | RSRC_A | The process row of the p × q grid over which the first row of the global matrix is distributed | 0 <= RSRC_A < p | Global |
| 8 | CSRC_A | The process column of the p × q grid over which the first column of the global matrix is distributed | 0 <= CSRC_A < q | Global |
| 9 | LLD_A | The leading dimension of the local array | LLD_A >= max(1,LOCp(M_A)) | Local |
Specified as: an array of (at least) length 9, containing fullword integers.
Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 40.
None
Unable to allocate work space
If n <> 0:
If incx = M_X:
If incx = 1( <> M_X):
Otherwise:
This example computes A = alphaxxT+A using a 2 × 2 process grid.
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
UPLO N ALPHA X IX JX DESC_X INCX A IA JA DESC_A
| | | | | | | | | | | |
CALL PDSYR( 'L' , 9 , 1.0D0 , X , 1 , 1 , DESC_X , 1 , A , 1 , 1 , DESC_A)
|
| Desc_A | Desc_X |
|---|---|---|
| DTYPE_ | 1 | 1 |
| CTXT_ | icontxt(IOBGC9) | icontxt(IOBGC9) |
| M_ | 9 | 9 |
| N_ | 9 | 1 |
| MB_ | 4 | 4 |
| NB_ | 4 | 1 |
| RSRC_ | 0 | 0 |
| CSRC_ | 0 | 0 |
| LLD_ | See below(EPSSLA9) | See below(EPSSLA9) |
|
Notes:
| ||
Global real symmetric matrix A of order 9 with block size 4 × 4:
B,D 0 1 2
* *
| 1.0 . . . | . . . . | . |
| 2.0 12.0 . . | . . . . | . |
0 | 3.0 13.0 23.0 . | . . . . | . |
| 4.0 14.0 24.0 34.0 | . . . . | . |
| -------------------------|---------------------------|------- |
| 5.0 15.0 25.0 35.0 | 45.0 . . . | . |
| 6.0 16.0 26.0 36.0 | 46.0 56.0 . . | . |
1 | 7.0 17.0 27.0 37.0 | 47.0 57.0 67.0 . | . |
| 8.0 18.0 28.0 38.0 | 48.0 58.0 68.0 78.0 | . |
| -------------------------|---------------------------|------- |
2 | 9.0 19.0 29.0 39.0 | 49.0 59.0 69.0 79.0 | 89.0 |
* *
The following is the 2 × 2 process grid:
B,D | 0 2 | 1 -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for A:
p,q | 0 | 1
-----|--------------------------------|--------------------------
| 1.0 . . . . | . . . .
| 2.0 12.0 . . . | . . . .
0 | 3.0 13.0 23.0 . . | . . . .
| 4.0 14.0 24.0 34.0 . | . . . .
| 9.0 19.0 29.0 39.0 89.0 | 49.0 59.0 69.0 79.0
-----|--------------------------------|--------------------------
| 5.0 15.0 25.0 35.0 . | 45.0 . . .
| 6.0 16.0 26.0 36.0 . | 46.0 56.0 . .
1 | 7.0 17.0 27.0 37.0 . | 47.0 57.0 67.0 .
| 8.0 18.0 28.0 38.0 . | 48.0 58.0 68.0 78.0
Global vector x of size 9 × 1 with block size 4:
B,D 0
* *
| 1.0 |
| 1.0 |
0 | 1.0 |
| 1.0 |
| ---- |
| 1.0 |
| 1.0 |
1 | 1.0 |
| 1.0 |
| ---- |
2 | 1.0 |
* *
The following is the 2 × 2 process grid:
B,D | 0 | -- -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for x:
p,q | 0
-----|------
| 1.0
| 1.0
0 | 1.0
| 1.0
| 1.0
-----|------
| 1.0
| 1.0
1 | 1.0
| 1.0
Output:
Global real symmetric matrix A of order 9 with block size 4 × 4:
B,D 0 1 2
* *
| 2.0 . . . | . . . . | . |
| 3.0 13.0 . . | . . . . | . |
0 | 4.0 14.0 24.0 . | . . . . | . |
| 5.0 15.0 25.0 35.0 | . . . . | . |
| -------------------------|---------------------------|------- |
| 6.0 16.0 26.0 36.0 | 46.0 . . . | . |
| 7.0 17.0 27.0 37.0 | 47.0 57.0 . . | . |
1 | 8.0 18.0 28.0 38.0 | 48.0 58.0 68.0 . | . |
| 9.0 19.0 29.0 39.0 | 49.0 59.0 69.0 79.0 | . |
| -------------------------|---------------------------|------- |
2 | 10.0 20.0 30.0 40.0 | 50.0 60.0 70.0 80.0 | 90.0 |
* *
The following is the 2 × 2 process grid:
B,D | 0 2 | 1 -----| ------- |----- 0 | P00 | P01 2 | | -----| ------- |----- 1 | P10 | P11
Local arrays for A:
p,q | 0 | 1
-----|--------------------------------|--------------------------
| 2.0 . . . . | . . . .
| 3.0 13.0 . . . | . . . .
0 | 4.0 14.0 24.0 . . | . . . .
| 5.0 15.0 25.0 35.0 . | . . . .
| 10.0 20.0 30.0 40.0 90.0 | 50.0 60.0 70.0 80.0
-----|--------------------------------|--------------------------
| 6.0 16.0 26.0 36.0 . | 46.0 . . .
| 7.0 17.0 27.0 37.0 . | 47.0 57.0 . .
1 | 8.0 18.0 28.0 38.0 . | 48.0 58.0 68.0 .
| 9.0 19.0 29.0 39.0 . | 49.0 59.0 69.0 79.0
This example computes A = alphaxxH+A using a 2 × 2 process grid.
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
UPLO N ALPHA X IX JX DESC_X INCX A IA JA DESC_A
| | | | | | | | | | | |
CALL PZHER( 'L' , 3 , 1.0D0 , X , 1 , 1 , DESC_X , 1 , A , 1 , 1 , DESC_A)
|
| Desc_A | Desc_X |
|---|---|---|
| DTYPE_ | 1 | 1 |
| CTXT_ | icontxt(IOBG10) | icontxt(IOBG10) |
| M_ | 3 | 3 |
| N_ | 3 | 1 |
| MB_ | 2 | 2 |
| NB_ | 2 | 1 |
| RSRC_ | 0 | 0 |
| CSRC_ | 0 | 0 |
| LLD_ | See below(EPSSL10) | See below(EPSSL10) |
|
Notes:
| ||
Global complex Hermitian matrix A of order 3 with block size 2 × 2:
B,D 0 1
* *
| ( 1.0, 0.0) . | . |
0 | ( 3.0,-5.0) ( 7.0, 0.0) | . |
| -------------------------|------------ |
1 | ( 2.0, 3.0) ( 4.0, 8.0) | ( 6.0, 0.0) |
* *
The following is the 2 × 2 process grid:
B,D | 0 2 | 1 -----| ------- |----- 0 | P00 | P01 -----| ------- |----- 1 | P10 | P11
Local arrays for A:
p,q | 0 | 1
-----|-------------------------|--------------------------
| ( 1.0, . ) . | .
0 | ( 3.0,-5.0) ( 7.0, . ) | .
-----|-------------------------|--------------------------
1 | ( 2.0, 3.0) ( 4.0, 8.0) | ( 6.0, . ) .
Global vector x of size 3 × 1 with block size 2:
B,D 0
* *
| (1.0,2.0) |
0 | (4.0,0.0) |
| --------- |
1 | (3.0,4.0) |
* *
The following is the 2 × 2 process grid:
B,D | 0 | -- -----| ------- |----- 0 | P00 | P01 -----| ------- |----- 1 | P10 | P11
Local arrays for x:
p,q | 0
-----|-----------
| (1.0,2.0)
0 | (4.0,0.0)
-----|-----------
1 | (3.0,4.0)
Output:
Global complex Hermitian matrix A of order 3 with block size 2 × 2:
B,D 0 1
* *
| ( 6.0, 0.0) . | . |
0 | ( 7.0,-13.0) (23.0, 0.0) | . |
| -------------------------|-------------|
1 | (13.0, 1.0) (16.0,24.0) | (31.0, 0.0) |
* *
The following is the 2 × 2 process grid:
B,D | 0 2 | 1 -----| ------- |----- 0 | P00 | P01 -----| ------- |----- 1 | P10 | P11
Local arrays for A:
p,q | 0 | 1
-----|--------------------------|-------------
| ( 6.0, 0.0) . | .
0 | ( 7.0,-13.0) (23.0, 0.0) | .
-----|--------------------------|-------------
1 | (13.0, 1.0) (16.0,24.0) | (31.0, 0.0)