IBM Books

Parallel Engineering and Scientific Subroutine Library for AIX Version 2 Release 3: Guide and Reference

PDSYR and PZHER--Rank-One Update of a Real Symmetric or a Complex Hermitian Matrix

PDSYR computes the following rank-one update:

A<--alphaxxT+A

PZHER computes the following rank-one update:

A<--alphaxxH+A

where, in the formula above:

A represents the global submatrix Aia:ia+n-1, ja:ja+n-1.
x represents the global vector:
alpha is a scalar.

and:

Note:
No data should be moved to form xT or xH; that is, the vector x should always be stored in its untransposed form.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

See references [14] and [15].

Table 40. Data Types

A, x alpha Subprogram
Long-precision real Long-precision real PDSYR
Long-precision complex Long-precision real PZHER

Syntax

Fortran CALL PDSYR | PZHER (uplo, n, alpha, x, ix, jx, desc_x, incx, a, ia, ja, desc_a)
C and C++ pdsyr | pzher (uplo, n, alpha, x, ix, jx, desc_x, incx, a, ia, ja, desc_a);

On Entry

uplo
indicates whether the upper or lower triangular part of the global submatrix A is referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Scope: global

Specified as: a single character; uplo = 'U' or 'L'.

n
is the number of rows and columns in submatrix A and the number of elements in vector x used in the computation.

Scope: global

Specified as: a fullword integer; n >= 0.

alpha
is the scalar alpha.

Scope: global

Specified as: a number of the data type indicated in Table 40.

x
is the local part of the global matrix X. This identifies the first element of the local array X. This subroutine computes the location of the first element of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol; therefore:

Note:
No data should be moved to form xT or xH; that is, the vector x should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 40. Details about the block-cyclic data distribution of the global matrix X are stored in desc_x.

ix
has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector x.

If incx = 1 and incx <> M_X, it is the row index of global matrix X, identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 <= ix <= M_X and:

If incx = 1 and incx <> M_X, then ix+n-1 <= M_X.

jx
has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the first element of vector x.

If incx = 1 and incx <> M_X, it indicates which column of global matrix X is used for vector x.

Scope: global

Specified as: a fullword integer; 1 <= jx <= N_X and:

If incx = M_X, then jx+n-1 <= N_X.

desc_x
is the array descriptor for global matrix X, described in the following table:
desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
2 CTXT_X BLACS context Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP Global
3 M_X Number of rows in the global matrix If n = 0:
M_X >= 0
Otherwise:
M_X >= 1
Global
4 N_X Number of columns in the global matrix If n = 0:
N_X >= 0
Otherwise:
N_X >= 1
Global
5 MB_X Row block size MB_X >= 1 Global
6 NB_X Column block size NB_X >= 1 Global
7 RSRC_X The process row of the p × q grid over which the first row of the global matrix is distributed 0 <= RSRC_X < p Global
8 CSRC_X The process column of the p × q grid over which the first column of the global matrix is distributed 0 <= CSRC_X < q Global
9 LLD_X The leading dimension of the local array LLD_X >= max(1,LOCp(M_X)) Local

Specified as: an array of (at least) length 9, containing fullword integers.

incx
is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx <> M_X, then x is a column-distributed vector.

a
is the local part of the global real symmetric or complex Hermitian matrix A. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+n-1 part of the global matrix, and:

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 40. Details about the square block-cyclic data distribution of global matrix A are stored in desc_a.

ia
is the row index of the global matrix A, identifying the first row of the submatrix A.

Scope: global

Specified as: a fullword integer; 1 <= ia <= M_A and ia+n-1 <= M_A.

ja
is the column index of the global matrix A, identifying the first column of the submatrix A.

Scope: global

Specified as: a fullword integer; 1 <= ja <= N_A and ja+n-1 <= N_A.

desc_a
is the array descriptor for global matrix A, described in the following table:
desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP Global
3 M_A Number of rows in the global matrix If n = 0:
M_A >= 0
Otherwise:
M_A >= 1
Global
4 N_A Number of columns in the global matrix If n = 0:
N_A >= 0
Otherwise:
N_A >= 1
Global
5 MB_A Row block size MB_A >= 1 Global
6 NB_A Column block size NB_A >= 1 Global
7 RSRC_A The process row of the p × q grid over which the first row of the global matrix is distributed 0 <= RSRC_A < p Global
8 CSRC_A The process column of the p × q grid over which the first column of the global matrix is distributed 0 <= CSRC_A < q Global
9 LLD_A The leading dimension of the local array LLD_A >= max(1,LOCp(M_A)) Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

a
is the updated local part of the global matrix A, containing the results of the computation.

Scope: local

Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 40.

Notes and Coding Rules
  1. These subroutines accept lowercase letters for the uplo argument.
  2. The matrix and vector must have no common elements; otherwise, results are unpredictable.
  3. The imaginary parts of the diagonal elements of the complex Hermitian matrix are assumed to be zero, so you do not have to set these values. On output, they are set to zero except when N is zero or alpha is zero, in which case no computation is performed.
  4. The NUMROC utility subroutine can be used to determine the values of LOCp(M_) and LOCq(N_) used in the argument descriptions above. For details, see Determining the Number of Rows and Columns in Your Local Arrays and NUMROC--Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process.
  5. For suggested block sizes, see Coding Tips for Optimizing Parallel Performance.
  6. The following values must be equal: CTXT_A = CTXT_X.
  7. The global matrix A must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
  8. The block row and block column offsets of the global matrix A must be equal; that is, mod(ia-1, MB_A) = mod(ja-1, NB_A).
  9. If incx = M_X:
  10. If incx = 1( <> M_X):

Error Conditions

Computational Errors

None

Resource Errors

Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1 

  1. DTYPE_A is invalid.
  2. DTYPE_X is invalid.

Stage 2 

  1. CTXT_A is invalid.

Stage 3 

  1. This subroutine was called from outside the process grid.

Stage 4 

  1. uplo <> 'U' or 'L'
  2. n < 0
  3. M_X < 0 and n = 0; M_X < 1 otherwise
  4. N_X < 0 and n = 0; N_X < 1 otherwise
  5. MB_X < 1
  6. NB_X < 1
  7. RSRC_X < 0 or RSRC_X >= p
  8. CSRC_X < 0 or CSRC_X >= q
  9. CTXT_A <> CTXT_X
  10. ix < 1
  11. jx < 1
  12. M_A < 0 and n = 0; M_A < 1 otherwise
  13. N_A < 0 and n = 0; N_A < 1 otherwise
  14. MB_A < 1
  15. NB_A < 1
  16. RSRC_A < 0 or RSRC_A >= p
  17. CSRC_A < 0 or CSRC_A >= q
  18. ia < 1
  19. ja < 1

Stage 5 

  1. NB_A <> MB_A

    If n <> 0:

  2. ia > M_A
  3. ja > N_A
  4. ia+n-1 > M_A
  5. ja+n-1 > N_A
  6. ix > M_X
  7. jx > N_X

    If incx = M_X:

  8. NB_X <> NB_A
  9. mod(jx-1, NB_X) <> mod(ia-1, MB_A)
  10. n <> 0 and jx+n-1 > N_X

    If incx = 1( <> M_X):

  11. MB_X <> MB_A
  12. mod(ix-1, MB_X) <> mod(ia-1, MB_A)
  13. n <> 0 and ix+n-1 > M_X

    Otherwise:

  14. incx <> M_X and incx <> 1

Stage 6 

  1. mod(ja-1, NB_A) <> mod(ia-1, MB_A)
  2. If incx = M_X, then (in the process grid) the process column containing the first column of the submatrix A does not contain the first column of the submatrix X; that is, iacol <> ixcol, where:
    iacol = mod((((ja-1)/NB_A)+CSRC_A), q)
    ixcol = mod((((jx-1)/NB_X)+CSRC_X), q)
  3. If incx = 1( <> M_X), then (in the process grid) the process row containing the first row of the submatrix A does not contain the first row of the submatrix X; that is, iarow <> ixrow, where:
    iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
    ixrow = mod((((ix-1)/MB_X)+RSRC_X), p)
  4. LLD_A < max(1, LOCp(M_A))
  5. LLD_X < max(1, LOCp(M_X))

Example 1

This example computes A = alphaxxT+A using a 2 × 2 process grid.

Call Statements and Input


ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
 
            UPLO  N   ALPHA   X  IX  JX   DESC_X  INCX  A  IA  JA   DESC_A
             |    |     |     |   |   |     |      |    |   |   |     |
CALL PDSYR( 'L' , 9 , 1.0D0 , X , 1 , 1 , DESC_X , 1  , A , 1 , 1 , DESC_A)


Desc_A Desc_X
DTYPE_ 1 1
CTXT_ icontxt(IOBGC9) icontxt(IOBGC9)
M_ 9 9
N_ 9 1
MB_ 4 4
NB_ 4 1
RSRC_ 0 0
CSRC_ 0 0
LLD_ See below(EPSSLA9) See below(EPSSLA9)

Notes:

  1. icontxt is the output of the BLACS_GRIDINIT call.

  2. Each process should set the LLD_ as follows:
    LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
    LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
    

    In this example, LLD_A = 5 on P00 and P01, LLD_A = 4 on P10 and P11, LLD_X = 5 on P00, and LLD_X = 4 on P10.

Global real symmetric matrix A of order 9 with block size 4 × 4:

B,D               0                           1                  2
     *                                                               *
     |   1.0    .     .     .   |     .     .     .     .   |     .  |
     |   2.0  12.0    .     .   |     .     .     .     .   |     .  |
 0   |   3.0  13.0  23.0    .   |     .     .     .     .   |     .  |
     |   4.0  14.0  24.0  34.0  |     .     .     .     .   |     .  |
     | -------------------------|---------------------------|------- |
     |   5.0  15.0  25.0  35.0  |   45.0    .     .     .   |     .  |
     |   6.0  16.0  26.0  36.0  |   46.0  56.0    .     .   |     .  |
 1   |   7.0  17.0  27.0  37.0  |   47.0  57.0  67.0    .   |     .  |
     |   8.0  18.0  28.0  38.0  |   48.0  58.0  68.0  78.0  |     .  |
     | -------------------------|---------------------------|------- |
 2   |   9.0  19.0  29.0  39.0  |   49.0  59.0  69.0  79.0  |   89.0 |
     *                                                               *

The following is the 2 × 2 process grid:

B,D  |   0 2   |  1  
-----| ------- |-----
0    |   P00   |  P01
2    |         |
-----| ------- |-----
1    |   P10   |  P11

Local arrays for A:

p,q  |               0                |             1
-----|--------------------------------|--------------------------
     |   1.0    .     .     .     .   |     .     .     .     .
     |   2.0  12.0    .     .     .   |     .     .     .     .
 0   |   3.0  13.0  23.0    .     .   |     .     .     .     .
     |   4.0  14.0  24.0  34.0    .   |     .     .     .     .
     |   9.0  19.0  29.0  39.0  89.0  |   49.0  59.0  69.0  79.0
-----|--------------------------------|--------------------------
     |   5.0  15.0  25.0  35.0    .   |   45.0    .     .     .
     |   6.0  16.0  26.0  36.0    .   |   46.0  56.0    .     .
 1   |   7.0  17.0  27.0  37.0    .   |   47.0  57.0  67.0    .
     |   8.0  18.0  28.0  38.0    .   |   48.0  58.0  68.0  78.0

Global vector x of size 9 × 1 with block size 4:

B,D     0
     *      *
     |  1.0 |
     |  1.0 |
 0   |  1.0 |
     |  1.0 |
     | ---- |
     |  1.0 |
     |  1.0 |
 1   |  1.0 |
     |  1.0 |
     | ---- |
 2   |  1.0 |
     *      *

The following is the 2 × 2 process grid:

B,D  |    0    | --  
-----| ------- |-----
0    |   P00   |  P01
2    |         |
-----| ------- |-----
1    |   P10   |  P11

Local arrays for x:

p,q  |  0
-----|------
     |  1.0
     |  1.0
 0   |  1.0
     |  1.0
     |  1.0
-----|------
     |  1.0
     |  1.0
 1   |  1.0
     |  1.0

Output:

Global real symmetric matrix A of order 9 with block size 4 × 4:

B,D               0                           1                  2
     *                                                               *
     |   2.0    .     .     .   |     .     .     .     .   |     .  |
     |   3.0  13.0    .     .   |     .     .     .     .   |     .  |
 0   |   4.0  14.0  24.0    .   |     .     .     .     .   |     .  |
     |   5.0  15.0  25.0  35.0  |     .     .     .     .   |     .  |
     | -------------------------|---------------------------|------- |
     |   6.0  16.0  26.0  36.0  |   46.0    .     .     .   |     .  |
     |   7.0  17.0  27.0  37.0  |   47.0  57.0    .     .   |     .  |
 1   |   8.0  18.0  28.0  38.0  |   48.0  58.0  68.0    .   |     .  |
     |   9.0  19.0  29.0  39.0  |   49.0  59.0  69.0  79.0  |     .  |
     | -------------------------|---------------------------|------- |
 2   |  10.0  20.0  30.0  40.0  |   50.0  60.0  70.0  80.0  |   90.0 |
     *                                                               *

The following is the 2 × 2 process grid:

B,D  |   0 2   |  1  
-----| ------- |-----
0    |   P00   |  P01
2    |         |
-----| ------- |-----
1    |   P10   |  P11

Local arrays for A:

p,q  |               0                |             1
-----|--------------------------------|--------------------------
     |   2.0    .     .     .     .   |     .     .     .     .
     |   3.0  13.0    .     .     .   |     .     .     .     .
 0   |   4.0  14.0  24.0    .     .   |     .     .     .     .
     |   5.0  15.0  25.0  35.0    .   |     .     .     .     .
     |  10.0  20.0  30.0  40.0  90.0  |   50.0  60.0  70.0  80.0
-----|--------------------------------|--------------------------
     |   6.0  16.0  26.0  36.0    .   |   46.0    .     .     .
     |   7.0  17.0  27.0  37.0    .   |   47.0  57.0    .     .
 1   |   8.0  18.0  28.0  38.0    .   |   48.0  58.0  68.0    .
     |   9.0  19.0  29.0  39.0    .   |   49.0  59.0  69.0  79.0

Example 2

This example computes A = alphaxxH+A using a 2 × 2 process grid.

Note:
The imaginary parts of the diagonal elements of a complex Hermitian matrix are assumed to be zero, so you do not have to set these values. On output, they are set to zero except when N is zero or alpha is zero.

Call Statements and Input


ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
 
            UPLO  N   ALPHA   X  IX  JX   DESC_X  INCX  A  IA  JA   DESC_A
             |    |     |     |   |   |     |      |    |   |   |     |
CALL PZHER( 'L' , 3 , 1.0D0 , X , 1 , 1 , DESC_X , 1  , A , 1 , 1 , DESC_A)


Desc_A Desc_X
DTYPE_ 1 1
CTXT_ icontxt(IOBG10) icontxt(IOBG10)
M_ 3 3
N_ 3 1
MB_ 2 2
NB_ 2 1
RSRC_ 0 0
CSRC_ 0 0
LLD_ See below(EPSSL10) See below(EPSSL10)

Notes:

  1. icontxt is the output of the BLACS_GRIDINIT call.

  2. Each process should set the LLD_ as follows:
    LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
    LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
    

    In this example, LLD_A = 2 on P00 and P01, LLD_A = 1 on P10 and P11, LLD_X = 2 on P00, and LLD_X = 1 on P10.

Global complex Hermitian matrix A of order 3 with block size 2 × 2:

B,D                0                   1
     *                                        *
     |  ( 1.0, 0.0)      .      |      .      |
 0   |  ( 3.0,-5.0) ( 7.0, 0.0) |      .      |
     | -------------------------|------------ |
 1   |  ( 2.0, 3.0) ( 4.0, 8.0) | ( 6.0, 0.0) |
     *                                        *

The following is the 2 × 2 process grid:

B,D  |   0 2   |  1  
-----| ------- |-----
0    |   P00   |  P01
-----| ------- |-----
1    |   P10   |  P11

Local arrays for A:

p,q  |            0            |            1         
-----|-------------------------|--------------------------
     | ( 1.0,  . )      .      |            .       
 0   | ( 3.0,-5.0) ( 7.0,  . ) |            .      
-----|-------------------------|--------------------------
 1   | ( 2.0, 3.0) ( 4.0, 8.0) | ( 6.0,  . )      .      

Global vector x of size 3 × 1 with block size 2:

B,D     0
     *           *
     | (1.0,2.0) |
 0   | (4.0,0.0) |
     | --------- |
 1   | (3.0,4.0) |
     *           *

The following is the 2 × 2 process grid:

B,D  |    0    | --  
-----| ------- |-----
0    |   P00   |  P01
-----| ------- |-----
1    |   P10   |  P11

Local arrays for x:

p,q  |     0
-----|-----------
     | (1.0,2.0) 
 0   | (4.0,0.0) 
-----|----------- 
 1   | (3.0,4.0) 

Output:

Global complex Hermitian matrix A of order 3 with block size 2 × 2:

B,D                0                   1
     *                                        *
     | ( 6.0,  0.0)      .      |      .      |
 0   | ( 7.0,-13.0) (23.0, 0.0) |      .      |           
     | -------------------------|-------------|
 1   | (13.0,  1.0) (16.0,24.0) | (31.0, 0.0) |         
     *                                        *

The following is the 2 × 2 process grid:

B,D  |   0 2   |  1  
-----| ------- |-----
0    |   P00   |  P01
-----| ------- |-----
1    |   P10   |  P11

Local arrays for A:

p,q  |             0            |      1
-----|--------------------------|-------------
     | ( 6.0,  0.0)      .      |      .
 0   | ( 7.0,-13.0) (23.0, 0.0) |      .
-----|--------------------------|-------------
 1   | (13.0,  1.0) (16.0,24.0) | (31.0, 0.0)


[ Top of Page | Previous Page | Next Page | Table of Contents | Index ]